JP4923010B2 - Equipment with a compressor that sprays water into the intake air - Google Patents

Equipment with a compressor that sprays water into the intake air Download PDF

Info

Publication number
JP4923010B2
JP4923010B2 JP2008216099A JP2008216099A JP4923010B2 JP 4923010 B2 JP4923010 B2 JP 4923010B2 JP 2008216099 A JP2008216099 A JP 2008216099A JP 2008216099 A JP2008216099 A JP 2008216099A JP 4923010 B2 JP4923010 B2 JP 4923010B2
Authority
JP
Japan
Prior art keywords
path
flow rate
air
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008216099A
Other languages
Japanese (ja)
Other versions
JP2010053690A (en
Inventor
市朗 三好
秀文 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008216099A priority Critical patent/JP4923010B2/en
Publication of JP2010053690A publication Critical patent/JP2010053690A/en
Application granted granted Critical
Publication of JP4923010B2 publication Critical patent/JP4923010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は吸気に水を噴霧する圧縮機を有する設備、およびその運転方法に関わる。   The present invention relates to equipment having a compressor for spraying water into intake air, and an operation method thereof.

特開平10−246127号公報や国際公開第98/48159号パンフレットには、圧縮機吸気に水噴霧して吸気温度を外気温より低下させ、さらに高湿分空気とすることにより、ガスタービンの出力と熱効率を向上するガスタービンシステムが開示されている。   In Japanese Patent Application Laid-Open No. 10-246127 and WO98 / 48159, the output of the gas turbine is obtained by spraying water on the compressor intake air to lower the intake air temperature from the outside air temperature and further to make the air high humidity. And a gas turbine system for improving thermal efficiency is disclosed.

圧縮機吸気に水噴霧するガスタービンシステムでは、冬期のように外気温度が低下して凍結のため水噴霧ができない場合には、圧縮機に供給される空気の湿分が低下し、圧縮機で圧縮された空気温度が上昇する。数MW規模の設備では、圧縮機の圧縮比がさほど大きくないため、水噴霧したときと比較して水噴霧しないときの圧縮後の空気温度上昇は、外気温度低下と相殺する程度であり、タービン冷却のために圧縮機から抽気する空気温度は、タービン冷却上、特に問題となっていなかった。   In a gas turbine system that sprays water on the compressor intake air, when the outside air temperature drops and water spray cannot be performed due to freezing as in winter, the humidity of the air supplied to the compressor decreases, The compressed air temperature rises. In equipment of several MW scale, since the compression ratio of the compressor is not so large, an increase in air temperature after compression when water is not sprayed compared to when water is sprayed is offset to a decrease in outside air temperature. The temperature of the air extracted from the compressor for cooling has not been a problem in terms of turbine cooling.

特開平11−72027号公報には、圧縮機吸気温度を制御する方法として、ガスタービン設備の排気を圧縮機入口に誘導することで圧縮機吸気温度を制御するシステムが開示されている。   Japanese Patent Application Laid-Open No. 11-72027 discloses a system for controlling the compressor intake temperature by guiding the exhaust of the gas turbine equipment to the compressor inlet as a method of controlling the compressor intake temperature.

特開平11−280494号公報には、圧縮機出口吐出空気を抽気し、水蒸気発生装置で水を蒸発させ圧縮機吸気の一部とすることが開示されている。ここでは、圧縮機吸気温度が低く、水蒸気が氷結する恐れがある場合、水蒸気発生装置への水の供給を停止し蒸気を圧縮機入口へ誘導しない装置となっている。   Japanese Patent Application Laid-Open No. 11-280494 discloses that air discharged from a compressor outlet is extracted and water is evaporated by a steam generator to form part of the compressor intake air. Here, when the compressor intake air temperature is low and there is a possibility that the water vapor freezes, the water supply to the water vapor generating device is stopped and the vapor is not guided to the compressor inlet.

特開平10−246127号公報JP-A-10-246127 国際公開第98/48159号パンフレットInternational Publication No. 98/48159 pamphlet 特開平11−72027号公報Japanese Patent Laid-Open No. 11-72027 特開平11−28049号公報Japanese Patent Laid-Open No. 11-28049

本発明の目的は、外気吸気温度への依存度が低い圧縮機吸気への加湿方法と、圧縮機吸気の温度または湿度制御におけるエネルギー損失の低減が可能な設備およびその運転方法を提供することにある。   An object of the present invention is to provide a method for humidifying compressor intake air, which is less dependent on the outside air intake temperature, a facility capable of reducing energy loss in controlling the temperature or humidity of the compressor intake air, and a method for operating the same. is there.

空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機と、前記圧縮機の吸気温度を計測する第一の温度計測器と、前記圧縮機の吸気流量を計測する流量計測器と、気体を誘導する第一の経路と、水を誘導する第二の経路と、前記第二の経路の流量を調節する第二の流量調節器と、前記第一の経路で誘導された気体のエネルギーを用いて前記第二の経路で誘導された液体を微粒化し噴霧する第一の噴霧装置と、水を誘導する第三の経路と、前記第三の経路を流れる水の流量を調節する第三の流量調節器2と、前記第三の経路で誘導された水を固体に衝突させて水を微粒化する第二の噴霧装置とを有し、外気を前記第一の噴霧装置または前記第二の噴霧装置によって加湿できるよう構成した設備であって、前記圧縮機から抽気した空気を前記第一の経路に供給する第四の経路と、前記第四の経路を通る気体の流量を調節する第一の流量調節器と、前記第四の経路を通る気体の温度を計測する第二の温度計測器と、前記第一の温度計測器と前記第二の温度計測器と前記流量計測器の情報から前記第一の流量調節器と前記第二の流量調節器と前記第三の流量調節器とを制御する流量制御装置とを有することを特徴とする。

A compressor that sucks air and compresses to generate air that has been heated and pressurized, a first temperature measuring device that measures the intake air temperature of the compressor, and a flow rate measuring device that measures the intake air flow rate of the compressor A first path for inducing gas, a second path for inducing water, a second flow regulator for adjusting the flow rate of the second path, and a gas induced in the first path The first spraying device for atomizing and spraying the liquid induced in the second path using the energy of the first, the third path for guiding water, and the flow rate of water flowing through the third path are adjusted. A third flow rate regulator 2 and a second spraying device for atomizing water by colliding water induced by the third path with a solid, A facility configured to be humidified by a second spraying device, wherein the air extracted from the compressor is A fourth path for supplying the first path, a first flow controller for adjusting a flow rate of the gas passing through the fourth path, and a second for measuring a temperature of the gas passing through the fourth path. The first flow rate controller, the second flow rate controller, and the third flow rate from the information of the first temperature meter, the first temperature meter, the second temperature meter, and the flow rate meter. And a flow rate control device for controlling the regulator .

本発明によると、外気吸気温度への依存度が低い圧縮機吸気への加湿方法と、圧縮機吸気の温度または湿度制御におけるエネルギー損失の低減が可能な設備およびその運転方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the humidification method to the compressor intake with the low dependence on external air intake temperature, the equipment which can reduce the energy loss in the temperature or humidity control of a compressor intake, and its operating method can be provided.

圧縮機吸気に水噴霧するガスタービンシステムでは、冬期のように外気温度が低下して液滴が凍結する恐れがあり水噴霧を停止した場合には、圧縮機に供給される空気の湿分が低下し、圧縮機で圧縮された空気温度が上昇する。この時、タービン冷却空気として用いられることがある圧縮機吐空気温度が上昇し、タービン冷却効率の低下を招く恐れがある。それと同時に燃焼器での燃料流量,増湿器での増湿率の変動が大きくなり、プラントの信頼性が低下する。そこで、外気温度によらず、圧縮機吸気に加湿する装置が必要となる。圧縮機入口温度または湿度を制御する従来技術として、圧縮機吐出空気を圧縮機入口に誘導する方法やタービン通過後の排ガスを圧縮機入口に誘導する方法が提案されてきた。これらの方法を用いた場合、高エネルギー状態の流体を圧縮機吸気の加湿と温度制御に利用できるレベルにまでエネルギーを開放してやる必要があり、系の内部でエネルギー損失が発生する要因となる。本発明が解決する課題は外気吸気温度への依存度が低い圧縮機吸気への加湿方法と、圧縮機吸気の温度または湿度制御におけるエネルギー損失の低減である。以下、本発明の実施形態を図面を用いて示す。   In a gas turbine system that sprays water on the compressor intake air, the temperature of the outside air may drop and the droplets may freeze as in winter. The temperature of air compressed by the compressor increases. At this time, the compressor discharge air temperature, which is sometimes used as turbine cooling air, rises, and there is a risk of lowering the turbine cooling efficiency. At the same time, fluctuations in the fuel flow rate in the combustor and the humidification rate in the humidifier increase, and the reliability of the plant decreases. Therefore, a device for humidifying the compressor intake air is required regardless of the outside air temperature. As conventional techniques for controlling the compressor inlet temperature or humidity, there have been proposed a method of guiding compressor discharge air to the compressor inlet and a method of guiding exhaust gas after passing through the turbine to the compressor inlet. When these methods are used, it is necessary to release the energy of the fluid in a high energy state to a level that can be used for humidification and temperature control of the compressor intake air, which causes energy loss inside the system. The problem to be solved by the present invention is a method of humidifying the compressor intake air having a low dependence on the outside air intake temperature, and a reduction in energy loss in the compressor intake air temperature or humidity control. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に本発明の実施例1であるガスタービンシステムの圧縮機まわりのシステムを示す。
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機(1)、水を誘導する経路(15)と気体を誘導する経路(14)を有し、前記経路(15)で誘導された気体のエネルギーを用いて前記経路(14)で誘導された液体を微粒化し噴霧する水噴霧装置(9)、水を誘導する経路(16)を有し固体に水を衝突させて水を微粒化する水噴霧装置(8)からなり、外気が前記噴霧装置(9),水噴霧装置(8)の順序で加湿されるように二つの噴霧装置を構成し、圧縮機吸気を加湿して圧縮機に供給するようことに特徴がある。
FIG. 1 shows a system around a compressor of a gas turbine system that is Embodiment 1 of the present invention.
A compressor (1) for sucking air and compressing it to generate air that has been heated and pressurized; a path (15) for guiding water and a path (14) for guiding gas; A water spray device (9) for atomizing and spraying the liquid induced in the path (14) using the energy of the induced gas, and having a path (16) for inducing water to make water collide with the solid. Are composed of a water spray device (8), and two spray devices are configured so that the outside air is humidified in the order of the spray device (9) and the water spray device (8), and the compressor intake air is humidified. It is characterized by being supplied to the compressor.

水噴霧装置(8)と水噴霧装置(9)を併用して圧縮機吸気に加湿することで、水噴霧装置(9)のみを使用する場合と比較し、加湿量,空気温度の制御幅を広くすることが出来る。   By using the water spray device (8) and the water spray device (9) together to humidify the compressor intake air, the control range of the humidification amount and the air temperature can be controlled compared to the case where only the water spray device (9) is used. Can be widened.

水噴霧装置(9)の誘導される圧縮機吐出空気温度が高い場合、水噴霧装置(8)から噴霧される水により圧縮機吸気温度を下げることが出来る。   When the compressor discharge air temperature induced by the water spray device (9) is high, the compressor intake temperature can be lowered by the water sprayed from the water spray device (8).

水噴霧装置(8)と水噴霧装置(9)を用いて圧縮機吸気を加湿する際、加湿の順序を入れ替えることが出来る。水噴霧装置(9)での水噴霧の後に水噴霧装置(8)で水噴霧するよう構成すれば、外気温度が低い場合、水噴霧装置(9)から放出される空気を利用し、圧縮機吸気温度を上昇させることができる。   When humidifying the compressor intake air using the water spray device (8) and the water spray device (9), the order of humidification can be changed. If water spraying is performed with the water spraying device (8) after water spraying with the water spraying device (9), when the outside air temperature is low, the air discharged from the water spraying device (9) is used, and the compressor The intake air temperature can be raised.

図2に本発明の実施例2であるガスタービンシステムの圧縮機まわりのシステムを示す。
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機(1)、圧縮機(1)の吸気温度を計測する温度計測器(17)、圧縮機(1)の吸気流量を計測する流量計測器(18)、気体を誘導する経路(14)と水を誘導する経路(15)、また経路(15)の流量を計測する流量計測器(32)を有し、経路(14)で誘導された気体のエネルギーを用いて経路(15)で誘導された液体を微粒化し噴霧する水噴霧装置(9)、水を誘導する経路(16)と経路(16)を流れる水の流量を計測する流量計測器(31)を有し固体に水を衝突させて水を微粒化する水噴霧装置(8)からなり、外気が水噴霧装置(9),水噴霧装置(8)の順序で加湿されるように二つの噴霧装置を構成し、外気を加湿して圧縮機(1)に供給するよう構成した設備であって、圧縮機に吸気される外気の温度を温度計測器(17)、外気の流量を流量計測器(18)で計測し、温度計測器(19)で計測される圧縮機吐出空気温度の情報とあわせて流量調節器(13)を制御装置(20)を用いて制御し、水噴霧装置(9)に誘導される圧縮機吸気流量を調節する。あわせて、流量調節器(11),(12)にも流量制御信号を送り、水補給装置(10)から送られる水量を調節する。そして、水噴霧装置(8),(9)で噴霧される水噴霧量を制御することを特徴とする。
FIG. 2 shows a system around a compressor of a gas turbine system that is Embodiment 2 of the present invention.
A compressor (1) that sucks air and compresses to generate air that has been heated and pressurized, a temperature measuring device (17) that measures the intake air temperature of the compressor (1), and an intake air flow rate of the compressor (1) A flow rate measuring device (18) for measuring, a route (14) for guiding gas, a route (15) for guiding water, and a flow rate measuring device (32) for measuring the flow rate of the route (15) are provided. The water spray device (9) for atomizing and spraying the liquid induced in the path (15) using the energy of the gas induced in (1), the water flow path (16) and the flow rate of water flowing through the path (16). The water spray device (8) has a flow rate measuring device (31) for measuring water and collides water with a solid to atomize the water, and the outside air is in the order of the water spray device (9) and the water spray device (8). The two spraying devices are configured to be humidified by the air, and the outside air is humidified and supplied to the compressor (1). A compressor that is configured equipment and measures the temperature of the outside air sucked into the compressor by the temperature measuring device (17), the flow rate of the outside air by the flow measuring device (18), and is measured by the temperature measuring device (19). The flow rate controller (13) is controlled by using the control device (20) together with the information on the discharge air temperature, and the compressor intake flow rate guided to the water spray device (9) is adjusted. In addition, a flow rate control signal is also sent to the flow rate controllers (11) and (12) to adjust the amount of water sent from the water supply device (10). And it is characterized by controlling the amount of water spray sprayed by the water spray devices (8) and (9).

流量調節器(12),(13)を用いて水噴霧装置(9)での水噴霧を停止することができる。また、流量調節器(11)を用いて水噴霧装置(8)からの水噴霧を停止することができる。水噴霧装置(8),(9)の両方を同時に作動させることも、両方同時に停止することも、また、どちらかを作動させることも可能である。   Water spraying in the water spraying device (9) can be stopped using the flow rate controllers (12) and (13). Moreover, the water spray from the water spray device (8) can be stopped using the flow controller (11). Both water spray devices (8), (9) can be activated simultaneously, both can be stopped simultaneously, or either can be activated.

制御装置(20)を用いることで、温度計測器(17)で計測される温度、流量計測器(17)で計測される流量に応じた圧縮機吸気の加湿,温度制御が可能になる。   By using the control device (20), humidification and temperature control of the compressor intake air according to the temperature measured by the temperature measuring device (17) and the flow rate measured by the flow rate measuring device (17) become possible.

図3に本発明の実施例3であるガスタービンシステムを示す。
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機(1)、圧縮機(1)の吸気温度を計測する温度計測器(17)、圧縮機(1)の吸気流量を計測する流量計測器(31)、圧縮機(1)から供給された空気と燃料を燃焼させる燃焼器(7)、燃焼器(7)から供給される高温ガスにより駆動されるタービン(2)、気体を誘導する経路(14)と水を誘導する経路(15)、また経路(15)の流量を計測する流量計測器(32)を有し、経路(14)で誘導された気体のエネルギーを用いて経路(15)で誘導された液体を微粒化し噴霧する水噴霧装置(9)、水を誘導する経路(16)と経路(16)を流れる水の流量を計測する流量計測器(16)を有し固体に水を衝突させて水を微粒化する水噴霧装置(8)からなり、外気が水噴霧装置(9),水噴霧装置(8)の順序で加湿されるように二つの噴霧装置を構成し、外気を加湿して圧縮機(1)に供給するよう構成したガスタービン設備であって、前記圧縮機(1)から気体を抽気し、経路(14)に接続するために設けた経路(34)、経路(34)を通る気体の流量を調節する流量調節器(13)、経路(34)を通る気体の温度を計測する温度計測器(19)を構成し、流量調節器(13)による水量調節と温度計測器(19)と温度計測器(17)と流量計測器(18)の情報から流量調節器(11),流量調節器(12)を制御する制御装置(20)を用いて圧縮機(1)からの抽気流量調節により水噴霧装置(9)による水噴霧量を調節する。更に水噴霧装置(8)による水噴霧量を調節し圧縮機(1)の入口空気温度と入口空気湿度を調節する。
FIG. 3 shows a gas turbine system that is Embodiment 3 of the present invention.
A compressor (1) that sucks air and compresses to generate air that has been heated and pressurized, a temperature measuring device (17) that measures the intake air temperature of the compressor (1), and an intake air flow rate of the compressor (1) A flow rate measuring device (31) for measuring, a combustor (7) for combusting air and fuel supplied from the compressor (1), a turbine (2) driven by high-temperature gas supplied from the combustor (7), A path (14) for inducing gas, a path (15) for inducing water, and a flow rate measuring device (32) for measuring the flow rate of the path (15), and the energy of the gas induced in the path (14) A water spray device (9) for atomizing and spraying the liquid induced by the route (15), a flow rate measuring device (16) for measuring the flow rate of water flowing through the route (16) and the route (16) for guiding water And a water spray device (8) that atomizes water by colliding water with a solid. Two turbines are configured so that the outside air is humidified in the order of the water spray unit (9) and the water spray unit (8), and the gas turbine equipment is configured to humidify the outside air and supply it to the compressor (1). A flow rate regulator (13) for extracting gas from the compressor (1) and adjusting a flow rate of the gas passing through the route (34) and the route (34) provided for connection to the route (14). The temperature measuring device (19) for measuring the temperature of the gas passing through the path (34) is constituted, the water amount adjustment by the flow rate adjusting device (13), the temperature measuring device (19), the temperature measuring device (17), and the flow measuring device. Water spraying by the water spraying device (9) by adjusting the extraction flow rate from the compressor (1) using the control device (20) for controlling the flow rate regulator (11) and the flow rate regulator (12) from the information of (18). Adjust the amount. Further, the water spray amount by the water spray device (8) is adjusted to adjust the inlet air temperature and the inlet air humidity of the compressor (1).

図4に本発明の実施例4であるガスタービンシステムを示す。
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機(1)、圧縮機(1)から供給された空気と燃料を燃焼させる燃焼器(7)、燃焼器(7)から供給される高温ガスにより駆動されるタービン(2)、圧縮機(1)から吐出された空気から吸熱をする空気冷却器(4)、空気冷却器(4)の吐出空気を加湿する増湿器(5)、増湿器(5)で加湿された圧縮空気をガスタービン排ガスを熱源として加熱させる再生熱交換器(6)、水を誘導する経路(15)と気体を誘導する経路(14)を有し、経路(14)で誘導された気体のエネルギーを用いて経路(15)で誘導された液体を微粒化し噴霧する水噴霧装置(9)からなり、噴霧装置(9)を用いて外気を加湿し圧縮機(1)に供給するよう構成したガスタービン設備であって、前記空気冷却器(4)から気体を抽気し、経路(14)に接続するために設けた経路(34)を構成し、水噴霧器(9)による水噴霧量調節により圧縮機(1)の入口空気温度と入口空気湿度を調節する。
FIG. 4 shows a gas turbine system that is Embodiment 4 of the present invention.
From the compressor (1) that sucks air and compresses to generate air that has been heated and pressurized, the combustor (7) that combusts the air and fuel supplied from the compressor (1), and the combustor (7) Turbine (2) driven by the supplied high temperature gas, air cooler (4) that absorbs heat from the air discharged from the compressor (1), and humidifier that humidifies the discharged air from the air cooler (4) (5) A regenerative heat exchanger (6) for heating the compressed air humidified by the humidifier (5) using the gas turbine exhaust gas as a heat source, a path for inducing water (15), and a path for inducing gas (14) And a water spray device (9) for atomizing and spraying the liquid induced in the route (15) using the energy of the gas induced in the route (14), and using the spray device (9) Is a gas turbine facility configured to humidify and supply to the compressor (1) Then, gas is extracted from the air cooler (4) to form a path (34) provided for connection to the path (14), and the compressor (1) is adjusted by adjusting the water spray amount by the water sprayer (9). Adjust the inlet air temperature and inlet air humidity.

本実施例では、空気冷却器(4)で吸熱された後の圧縮機吐出空気を抽気し、水噴霧装置(9)への気体を誘導する経路(14)に送ることを特徴としている。ガスタービンの圧縮機吐出空気を抽気し、そのまま圧縮機入口に誘導した場合、圧縮機吐出空気は高温高圧の気体であるため、放熱と運動エネルギーの消散の二つのプロセスが必要になりエネルギー損失が大きい。本実施例では圧縮機出口の高温空気を空気冷却器(4)に通すことで吸熱し、別のエネルギーに変換している。また吸熱された空気冷却器(4)の吐出空気の運動エネルギーは経路(14)に誘導され水の微粒化に用いられる。この空気冷却器(4)の吐出空気の運動エネルギー分は従来技術での水の微粒化に用いられるエネルギーの削減に用いられる。従って、本特許により系のエネルギー損失を小さくし、システムの高効率化を行うと同時に、圧縮機吸気の湿度,温度を制御することが出来る。   The present embodiment is characterized in that the compressor discharge air that has been absorbed by the air cooler (4) is extracted and sent to the path (14) for guiding the gas to the water spray device (9). When the gas discharged from the compressor of the gas turbine is extracted and guided to the compressor inlet as it is, the compressor discharge air is a high-temperature and high-pressure gas, so two processes of heat dissipation and kinetic energy dissipation are required, resulting in energy loss. large. In this embodiment, high-temperature air at the compressor outlet is passed through the air cooler (4) to absorb heat and convert it into other energy. The kinetic energy of the discharged air from the air cooler (4) that has absorbed heat is guided to the path (14) and used for atomization of water. The kinetic energy of the air discharged from the air cooler (4) is used to reduce energy used for atomization of water in the prior art. Therefore, this patent makes it possible to reduce the energy loss of the system, increase the efficiency of the system, and control the humidity and temperature of the compressor intake air.

空気冷却で回収する熱量を制御と、空気冷却器(4)を通過した圧縮機吐出空気は季節によらず、温度変動が少ない高圧空気となる。そうすると、水噴霧装置(9)を通過後、空気冷却器(4)を通過後に、経路(14)を通り水噴霧装置(9)に供給される高圧空気も温度変動が少なくなり、圧縮機吸気温度を制御しやすくなる。   When the amount of heat recovered by air cooling is controlled, the compressor discharge air that has passed through the air cooler (4) becomes high-pressure air with little temperature fluctuation regardless of the season. Then, after passing through the water spraying device (9) and after passing through the air cooler (4), the high-pressure air supplied to the water spraying device (9) through the path (14) has less temperature fluctuation, and the compressor intake air It becomes easier to control the temperature.

図5に本発明の実施例5であるガスタービンシステムを示す。
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機(1)、圧縮機(1)から供給された空気と燃料を燃焼させる燃焼器(7)、燃焼器(7)から供給される高温ガスにより駆動されるタービン(2)、圧縮機(1)から吐出された圧縮空気から吸熱をする空気冷却器(4)、空気冷却器(4)の吐出空気を加湿する増湿器(5)、増湿器(5)で加湿された圧縮空気をガスタービン排ガスを熱源として加熱させる再生熱交換器(6)、気体を誘導する経路(14)と水を誘導する経路(15)を有し、経路(14)で誘導された気体のエネルギーを用いて経路(15)で誘導された液体を微粒化し噴霧する水噴霧装置(14)、水を誘導する経路(16)を有し固体に水を衝突させて水を微粒化する水噴霧装置(8)からなり、外気が前記水噴霧装置(9),水噴霧装置(8)の順序で加湿されるように二つの噴霧装置を構成し、外気を加湿して圧縮機(1)に供給するよう構成したガスタービン設備であって、空気冷却器(4)から気体を抽気し、経路(14)に接続するために設けた経路(34)を構成し、水噴霧装置(9)による水噴霧量調節、水噴霧装置(8)による水噴霧量調節により圧縮機(1)の入口空気温度と入口空気湿度を調節する。
FIG. 5 shows a gas turbine system that is Embodiment 5 of the present invention.
From the compressor (1) that sucks air and compresses to generate air that has been heated and pressurized, the combustor (7) that combusts the air and fuel supplied from the compressor (1), and the combustor (7) Turbine (2) driven by the supplied high-temperature gas, air cooler (4) that absorbs heat from compressed air discharged from the compressor (1), and humidification that humidifies the discharged air from the air cooler (4) Regenerator (5), regenerative heat exchanger (6) for heating compressed air humidified by humidifier (5) using gas turbine exhaust gas as a heat source, path for inducing gas (14) and path for inducing water (15 A water spray device (14) for atomizing and spraying the liquid induced in the route (15) using the energy of the gas induced in the route (14), and a route (16) for inducing water. A water spray device (8) that collides water with a solid and atomizes the water, A gas turbine configured such that two sprayers are configured so that air is humidified in the order of the water sprayer (9) and the water sprayer (8), and the outside air is humidified and supplied to the compressor (1). It is a facility, and a path (34) provided for extracting gas from the air cooler (4) and connecting it to the path (14) is configured, and the water spray amount adjustment by the water spray device (9), water spray The inlet air temperature and inlet air humidity of the compressor (1) are adjusted by adjusting the amount of water spray by the device (8).

水噴霧装置(8)と水噴霧装置(9)を併用して圧縮機吸気に加湿することで、水噴霧装置(9)のみを使用する場合と比較し、加湿量,空気温度の制御幅を広くすることが出来る。   By using the water spray device (8) and the water spray device (9) together to humidify the compressor intake air, the control range of the humidification amount and the air temperature can be controlled compared to the case where only the water spray device (9) is used. Can be widened.

水噴霧装置(9)に誘導される圧縮機吐出空気温度が高い場合、水噴霧装置(8)から噴霧される水により圧縮機吸気温度を下げることが出来る。   When the compressor discharge air temperature induced by the water spray device (9) is high, the compressor intake air temperature can be lowered by the water sprayed from the water spray device (8).

水噴霧装置(8)と水噴霧装置(9)を用いて圧縮機吸気を加湿する際、加湿の順序を入れ替えることが出来る。この時、外気温度が低い場合、水噴霧装置(9)から放出される空気を利用し、圧縮機吸気温度を上昇させることができる。   When humidifying the compressor intake air using the water spray device (8) and the water spray device (9), the order of humidification can be changed. At this time, when the outside air temperature is low, the air discharged from the water spray device (9) can be used to increase the compressor intake temperature.

図6に本発明の実施例6であるガスタービンシステムを示す。
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機(1)、圧縮機の吸気温度を計測する温度計測器(17)、圧縮機の吸気流量を計測する流量計測器(18)、圧縮機(1)から供給された空気と燃料を燃焼させる燃焼器(7)、燃焼器(7)から供給される高温ガスにより駆動されるタービン(2)、圧縮機(1)から吐出された圧縮空気から吸熱をする空気冷却器(4)、空気冷却器吐出空気を加湿する増湿器(5)、増湿器(5)で加湿された圧縮空気をガスタービン排ガスを熱源として加熱させる再生熱交換器(6)、気体を誘導する経路(14)と水を誘導する経路(15)、また経路(15)の流量を計測する流量計測器(32)を有し、経路(14)で誘導された気体のエネルギーを用いて経路(15)で誘導された液体を微粒化し噴霧する水噴霧装置(9)、水を誘導する経路(16)と経路(16)を流れる水の流量を計測する流量計測器(31)を有し固体に水を衝突させて水を微粒化する水噴霧装置(8)からなり、外気が水噴霧装置(9),水噴霧装置(8)の順序で加湿されるように二つの噴霧装置を構成し、外気を加湿して圧縮機(1)に供給するよう構成したガスタービン設備であって、空気冷却器(4)を通過後の気体を抽気し、経路(14)に接続するために設けた経路(34)、経路(34)を通る気体の流量を調節する流量調節器(13)、経路(34)を通る気体の温度を計測する温度計測器(19)を構成し、流量調節器(12)による水量調節と温度計測器(17)と温度計測器(19)と流量計測器(18)の情報から流量調節器(13)を制御する流量制御装置を用いて空気冷却器(4)からの抽気流量調節により水噴霧装置(9)による水噴霧量を調節し、更に水噴霧装置(8)による水噴霧量を調節し圧縮機(1)の入口空気温度と入口空気湿度を調節する。
FIG. 6 shows a gas turbine system that is Embodiment 6 of the present invention.
A compressor (1) that sucks air and compresses to generate air that has been heated and pressurized, a temperature measuring device (17) that measures the intake air temperature of the compressor, and a flow rate measuring device that measures the intake air flow rate of the compressor ( 18), a combustor (7) for burning air and fuel supplied from the compressor (1), a turbine (2) driven by high-temperature gas supplied from the combustor (7), and a compressor (1) An air cooler (4) that absorbs heat from the discharged compressed air, a humidifier (5) that humidifies the air cooler discharge air, and the compressed air humidified by the humidifier (5) using the gas turbine exhaust gas as a heat source A regenerative heat exchanger (6) for heating, a path (14) for guiding gas, a path (15) for guiding water, and a flow rate measuring device (32) for measuring the flow rate of the path (15) 14) guided by path (15) using the energy of the gas induced in 14) A water spray device (9) for atomizing and spraying the liquid, a path (16) for guiding water, and a flow rate measuring device (31) for measuring the flow rate of the water flowing through the path (16), causing water to collide with the solid It consists of a water spray device (8) that atomizes water and comprises two spray devices so that the outside air is humidified in the order of the water spray device (9) and the water spray device (8). A gas turbine facility configured to supply to the compressor (1), wherein the gas (24) provided for extracting the gas after passing through the air cooler (4) and connecting it to the route (14); A flow rate controller (13) for adjusting the flow rate of the gas passing through the path (34) and a temperature measuring device (19) for measuring the temperature of the gas passing through the path (34) are configured, and the water amount is adjusted by the flow rate controller (12). Information of temperature measuring device (17), temperature measuring device (19) and flow rate measuring device (18) The amount of water spray by the water spray device (9) is adjusted by adjusting the extraction flow rate from the air cooler (4) using the flow rate control device that controls the flow rate controller (13), and further the water by the water spray device (8). The spray amount is adjusted to adjust the inlet air temperature and the inlet air humidity of the compressor (1).

流量調節器(12),(13)を用いて水噴霧装置(9)からの水噴霧を停止することができる。また、流量調節器(11)を用いて水噴霧装置(8)からの水噴霧を停止することができる。水噴霧装置(8),(9)の両方を同時に作動させることも、両方同時に停止することも、また、どちらかを作動させることも可能である。   Water spray from the water spray device (9) can be stopped using the flow rate controllers (12) and (13). Moreover, the water spray from the water spray device (8) can be stopped using the flow controller (11). Both water spray devices (8), (9) can be activated simultaneously, both can be stopped simultaneously, or either can be activated.

図7に本発明の実施例7であるガスタービンシステムを示す。
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機(1)、圧縮機の吸気温度を計測する温度計測器(17)、圧縮機の吸気流量を計測する流量計測器(18)、圧縮機(1)から供給された空気と燃料を燃焼させる燃焼器(7)、燃焼器(7)から供給される高温ガスにより駆動されるタービン(2)、圧縮機(1)から吐出された圧縮空気から吸熱をする空気冷却器(4)、空気冷却器吐出空気を加湿する増湿器(5)、増湿器(5)で加湿された圧縮空気をガスタービン排ガスを熱源として加熱させる再生熱交換器(6)、水を誘導する経路(15)と気体を誘導する経路(14)、また経路(15)の流量を調節する流量調節器(12)を有し、経路(14)で誘導された気体のエネルギーを用いて経路(15)で誘導された液体を微粒化し噴霧する水噴霧装置(9)、水を誘導する経路(16)と経路(16)を流れる水の流量を調節する流量調節器(11)を有し固体に水を衝突させて水を微粒化する水噴霧装置(8)からなり、外気を水噴霧装置(9)または水噴霧装置(8)によって加湿できるよう構成したガスタービン設備であって、空気冷却器から気体を抽気し、経路(14)に接続するために設けた経路(34)、前記経路(34)を通る気体の流量を調節する流量調節器(13)、前記経路(34)を通る気体の温度を計測する温度計測器(19)を構成し、また、経路(34)に接続するために設けた経路(23)、経路(23)を通る気体の流量を調節する流量調節器(22)、経路(23)を通る気体の温度を計測する温度計測器(21)を構成し、温度計測器(21)と温度計測器(19)と流量計測器(18)と温度計測器(21)の情報から流量調節器(12),流量調節器(11),流量調節器(13),流量調節器(22)を制御する流量制御装置を用いて前記水噴霧装置(9)による水噴霧量と前記水噴霧装置(8)による水噴霧量を調節し前記圧縮機の入口空気温度と入口空気湿度を調節する。
FIG. 7 shows a gas turbine system that is Embodiment 7 of the present invention.
A compressor (1) that sucks air and compresses to generate air that has been heated and pressurized, a temperature measuring device (17) that measures the intake air temperature of the compressor, and a flow rate measuring device that measures the intake air flow rate of the compressor ( 18), a combustor (7) for burning air and fuel supplied from the compressor (1), a turbine (2) driven by high-temperature gas supplied from the combustor (7), and a compressor (1) An air cooler (4) that absorbs heat from the discharged compressed air, a humidifier (5) that humidifies the air cooler discharge air, and the compressed air humidified by the humidifier (5) using the gas turbine exhaust gas as a heat source A regenerative heat exchanger (6) for heating, a path (15) for guiding water and a path (14) for guiding gas, and a flow rate regulator (12) for adjusting the flow rate of the path (15) 14) guided by path (15) using the energy of the gas induced in 14) A water spray device (9) for atomizing and spraying the liquid, and a flow path (16) for guiding water and a flow rate controller (11) for adjusting the flow rate of water flowing through the path (16). Gas turbine equipment comprising a water spray device (8) for atomizing water and configured to be able to humidify the outside air by the water spray device (9) or the water spray device (8), and extracting gas from an air cooler The path (34) provided for connection to the path (14), the flow rate regulator (13) for adjusting the flow rate of the gas passing through the path (34), and the temperature of the gas passing through the path (34) are measured. A flow rate regulator (22) for adjusting the flow rate of gas passing through the path (23), the path (23), and the path ( 23) a temperature measuring device (21 The flow rate regulator (12), the flow rate regulator (11), and the flow rate regulation are configured from the information of the temperature meter (21), the temperature meter (19), the flow rate meter (18), and the temperature meter (21). The amount of water sprayed by the water spraying device (9) and the amount of water sprayed by the water spraying device (8) are adjusted by using a flow rate control device for controlling the flow rate regulator (13) and the flow rate regulator (22). Adjust inlet air temperature and inlet air humidity.

流量調節器(12),(13),(22)を用いて水噴霧装置(9)からの水噴霧を停止することができる。また、流量調節器(11)を用いて水噴霧装置(8)からの水噴霧を停止することができる。水噴霧装置(8),(9)の両方を同時に作動させることも、両方同時に停止することも、また、どちらかを作動させることも可能である。外気温度が0度以上であり、噴霧した液滴が氷結する恐れが無い場合、水噴霧装置(8)のみで水噴霧を行ってもよい。この時、水噴霧装置(9)の機能は停止させる。外気温度が氷点下になり、噴霧した液滴が氷結する恐れがある場合、水噴霧装置(8)は停止させ、水噴霧装置(9)のみを起動させる。水噴霧装置(9)に誘導させる高温空気の効果で、圧縮機(1)に誘導される温度が上昇し、噴霧した液滴の氷結を抑制できる。従って、外気が氷点下の場合でも圧縮機吸気温度を上昇させ、液滴が氷結しないように圧縮機に誘導し、圧縮機前段側で蒸発潜熱の効果が得られ中間冷却器と同様の効果が得られる。それにより圧縮機吐出空気の急激な温度上昇を抑制できる。   Water spray from the water spray device (9) can be stopped using the flow rate regulators (12), (13), (22). Moreover, the water spray from the water spray device (8) can be stopped using the flow controller (11). Both water spray devices (8), (9) can be activated simultaneously, both can be stopped simultaneously, or either can be activated. When the outside air temperature is 0 ° C. or higher and there is no fear that the sprayed droplets freeze, the water spray may be performed only with the water spray device (8). At this time, the function of the water spray device (9) is stopped. When the outside air temperature becomes below freezing point and the sprayed droplets may freeze, the water spray device (8) is stopped and only the water spray device (9) is started. The temperature induced by the compressor (1) rises due to the effect of high-temperature air induced by the water spray device (9), and icing of the sprayed droplets can be suppressed. Therefore, even when the outside air is below freezing point, the intake temperature of the compressor is raised and the droplet is guided to the compressor so that it does not freeze. It is done. Thereby, a rapid temperature rise of the compressor discharge air can be suppressed.

外気温度によって水噴霧装置(8),(9)を使い分けることにより、常に圧縮機吸気に氷結しない液滴噴霧が可能になる。この結果、圧縮機吐出空気温度の変動が小さくなると同時にタービン冷却効率の変動を抑えることが出来る。また、タービンの熱負荷を抑制し、ローターの信頼性向上にも効果がある。   By properly using the water spraying devices (8) and (9) depending on the outside air temperature, it is possible to spray droplets that are not always frozen in the compressor intake air. As a result, the fluctuation of the compressor cooling air temperature becomes small and the fluctuation of the turbine cooling efficiency can be suppressed. In addition, the thermal load of the turbine is suppressed, and the reliability of the rotor is improved.

圧縮機吐出空気の温度変動が小さくなることにより、増湿器(5)の増湿率も安定し、燃焼器(7)で使用する燃料流量制御も容易になる。従って、プラントの信頼性も向上に寄与する。   By reducing the temperature fluctuation of the compressor discharge air, the humidification rate of the humidifier (5) is stabilized, and control of the fuel flow rate used in the combustor (7) is facilitated. Therefore, plant reliability also contributes to improvement.

外気温度が氷点下を大きく下回る場合、流量調節器(22)を用いて空気冷却器(4)通過前の圧縮機抽気を水噴霧装置(9)に誘導する。これにより、水噴霧装置(9)に供給する空気温度を上昇させ、外気温度が氷点下を大きく下回る場合にも圧縮機入口温度を0度以上にすることができ、圧縮機吸気に液滴噴霧が出来る。この機能により、外気温度が氷点下を大きく下回る環境下においても、圧縮機吐出空気温度の上昇を防ぐことができ、タービンの冷却効率の維持,ローター,プラント性能の信頼性向上に寄与する。   When the outside air temperature is significantly below the freezing point, the compressor bleed air before passing through the air cooler (4) is guided to the water spray device (9) using the flow rate regulator (22). As a result, the temperature of the air supplied to the water spray device (9) is raised, and the compressor inlet temperature can be set to 0 ° C. or more even when the outside air temperature is significantly below the freezing point. I can do it. This function can prevent the compressor discharge air temperature from rising even in an environment where the outside air temperature is well below freezing point, and contributes to maintaining the cooling efficiency of the turbine and improving the reliability of the rotor and plant performance.

効率よく、吸気温度をむらなく均一にするためには吸気ダクト断面に均一に熱源となる水噴霧装置(9)を配置する必要がある。この時、水噴霧装置(9)の経路(14)に誘導される高温アシスト空気として、ある一定以上の空気流量が必要となる。数百度の圧縮機吐出空気を水噴霧装置(9)に誘導する場合、水噴霧装置(9)に誘導した水が蒸発し液滴を圧縮機に誘導できなくなると同時に圧縮機吸気温度も高くなりすぎるため冷却のプロセスが別途必要になる。また、圧力比により圧縮機吐出空気温度は変化し、また、水噴霧装置(9)に必要な高温アシスト空気流量は一定であるので、圧縮機吸気温度を制御するためには水噴霧装置(9)で使用する二流体ノズル本数を調整する必要がある。二流体ノズルとは水噴霧装置(9)に誘導される空気で、同じく水噴霧装置(9)に誘導される水を粉砕し微粒化する装置である。本実施例のガスタービン設備では空気冷却器通過後の空気は水噴霧装置(9)で利用後、液滴が蒸発しない程度の温度であるため液滴噴霧の効果を利用できる。この機能により、噴霧された液滴の蒸発潜熱を利用し圧縮空気の温度上昇が抑えられ、中間冷却器と同様の効果が得られる。   In order to efficiently and uniformly make the intake air temperature uniform, it is necessary to dispose a water spray device (9) as a heat source uniformly on the cross section of the intake duct. At this time, an air flow rate higher than a certain level is required as the high-temperature assist air guided to the path (14) of the water spray device (9). When the compressor discharge air of several hundred degrees is guided to the water spraying device (9), the water guided to the water spraying device (9) evaporates and the droplets cannot be guided to the compressor, and at the same time, the compressor intake temperature increases. Therefore, a cooling process is required separately. Further, since the compressor discharge air temperature varies depending on the pressure ratio, and the high-temperature assist air flow rate required for the water spray device (9) is constant, the water spray device (9) is used to control the compressor intake air temperature. It is necessary to adjust the number of two-fluid nozzles used in step (1). The two-fluid nozzle is an air that is guided to the water spray device (9), and is a device that pulverizes and atomizes the water that is also guided to the water spray device (9). In the gas turbine equipment of the present embodiment, the air after passing through the air cooler is at a temperature at which the droplets do not evaporate after being used by the water spray device (9), so that the effect of droplet spraying can be used. With this function, the temperature rise of the compressed air is suppressed using the latent heat of vaporization of the sprayed droplets, and the same effect as the intermediate cooler can be obtained.

本発明の設備は圧縮機吐出空気を水噴霧装置(8)の経路(34)に誘導することで水の微粒化のための供給エネルギーと系全体のエネルギー損失を削減し、また、圧縮機吐出空気は水の微粒化に用いられた後、圧縮機入口に誘導されるため圧縮機吸気の温度制御にも利用可能になる。更に水噴霧装置(9)を併用することで外気温度の条件により二種類の水噴霧装置を用いて前記圧縮機の入口空気温度と入口空気湿度を調節可能になるという利点がある。   The facility of the present invention reduces the supply energy for atomization of water and the energy loss of the entire system by guiding the compressor discharge air to the path (34) of the water spraying device (8). After air is used for atomization of water, it is guided to the inlet of the compressor and can also be used for temperature control of the compressor intake air. Further, the combined use of the water spray device (9) has an advantage that the inlet air temperature and the inlet air humidity of the compressor can be adjusted using two types of water spray devices according to the outside air temperature conditions.

本発明の設備は圧縮機吐出空気を水噴霧装置(8)の経路(34)に誘導することで水の微粒化のための供給エネルギーと系全体のエネルギー損失を削減し、また、圧縮機吐出空気は水の微粒化に用いられた後、圧縮機入口に誘導されるため圧縮機吸気の温度制御にも利用可能になる。流量調節器(12),流量調節器(13)により水噴霧装置(8)の水噴霧量と圧縮機吐出空気流量が調節可能になり、また、流量調節器(11)により水噴霧装置(9)の水噴霧量が調節可能になる。これにより、これにより圧縮機の入口空気温度と入口空気湿度を調節可能になるという利点がある。   The facility of the present invention reduces the supply energy for atomization of water and the energy loss of the entire system by guiding the compressor discharge air to the path (34) of the water spraying device (8). After air is used for atomization of water, it is guided to the inlet of the compressor and can also be used for temperature control of the compressor intake air. The flow rate regulator (12) and the flow rate regulator (13) can adjust the water spray amount of the water spray device (8) and the compressor discharge air flow rate, and the flow rate regulator (11) can adjust the water spray device (9 ) Water spray amount can be adjusted. This has the advantage that this makes it possible to adjust the inlet air temperature and the inlet air humidity of the compressor.

本発明のガスタービン設備は圧縮機吐出空気を水噴霧装置(8)の経路(34)に誘導することで水の微粒化のための供給エネルギーと系全体のエネルギー損失を削減し、また、圧縮機吐出空気は水の微粒化に用いられた後、圧縮機入口に誘導されるため圧縮機吸気の温度制御にも利用可能になる。流量調節器(12),流量調節器(13)により水噴霧装置(8)の水噴霧量と圧縮機吐出空気流量が調節可能になり、また、流量調節器(11)により水噴霧装置(9)の水噴霧量が調節可能になる。これにより圧縮機の入口空気温度と入口空気湿度を調節可能になるという利点がある。   The gas turbine equipment of the present invention reduces the supply energy for atomization of water and the energy loss of the entire system by guiding the compressor discharge air to the path (34) of the water spraying device (8). After the machine discharge air is used for atomization of water, it is guided to the compressor inlet so that it can be used for temperature control of the compressor intake air. The flow rate regulator (12) and the flow rate regulator (13) can adjust the water spray amount of the water spray device (8) and the compressor discharge air flow rate, and the flow rate regulator (11) can adjust the water spray device (9 ) Water spray amount can be adjusted. This has the advantage that the compressor inlet air temperature and inlet air humidity can be adjusted.

本発明のガスタービン設備は空気冷却器吐出空気を水噴霧装置(8)の経路(14)に誘導することで水の微粒化のための供給エネルギーと系全体のエネルギー損失を削減し、また、圧縮機吐出空気は水の微粒化に用いられた後、圧縮機入口に誘導されるため圧縮機吸気の温度制御にも利用可能になる。それにより圧縮機の入口空気温度と入口空気湿度を調節可能になるという利点がある。   The gas turbine equipment of the present invention reduces the supply energy for atomization of water and the energy loss of the entire system by guiding the air cooler discharge air to the path (14) of the water spray device (8). The compressor discharge air is used for atomizing water and then guided to the compressor inlet, so that it can be used for temperature control of the compressor intake air. This has the advantage that the compressor inlet air temperature and inlet air humidity can be adjusted.

本発明のガスタービン設備は空気冷却器吐出空気を水噴霧装置(8)の経路(14)に誘導することで水の微粒化のための供給エネルギーと系全体のエネルギー損失を削減し、また、圧縮機吐出空気は水の微粒化に用いられた後、圧縮機入口に誘導されるため圧縮機吸気の温度制御にも利用可能になる。更に水噴霧装置(9)を併用することで圧縮機の入口空気温度と入口空気湿度を調節可能になるという利点がある。   The gas turbine equipment of the present invention reduces the supply energy for atomization of water and the energy loss of the entire system by guiding the air cooler discharge air to the path (14) of the water spray device (8). The compressor discharge air is used for atomizing water and then guided to the compressor inlet, so that it can be used for temperature control of the compressor intake air. Furthermore, there is an advantage that the inlet air temperature and the inlet air humidity of the compressor can be adjusted by using the water spray device (9) together.

本発明のガスタービン設備は空気冷却器吐出空気を水噴霧装置(8)の経路(34)に誘導することで水の微粒化のための供給エネルギーと系全体のエネルギー損失を削減し、また、圧縮機吐出空気は水の微粒化に用いられた後、圧縮機入口に誘導されるため圧縮機吸気の温度制御にも利用可能になる。流量調節器(12),流量調節器(13)により水噴霧装置(8)の水噴霧量と圧縮機吐出空気流量を調節可能になり、また、流量調節器(11)により水噴霧装置(9)の水噴霧量が調節可能になる。これにより圧縮機の入口空気温度と入口空気湿度を調節可能になるという利点がある。   The gas turbine equipment of the present invention reduces the supply energy for atomization of water and the energy loss of the entire system by guiding the air cooler discharge air to the path (34) of the water spray device (8). The compressor discharge air is used for atomizing water and then guided to the compressor inlet, so that it can be used for temperature control of the compressor intake air. The flow rate regulator (12) and the flow rate regulator (13) can adjust the water spray amount and the compressor discharge air flow rate of the water spray device (8), and the flow rate regulator (11) can adjust the water spray device (9 ) Water spray amount can be adjusted. This has the advantage that the compressor inlet air temperature and inlet air humidity can be adjusted.

本発明の実施例1であるガスタービンシステムの圧縮機まわりのシステムを示す。1 shows a system around a compressor of a gas turbine system that is Embodiment 1 of the present invention. 本発明の実施例2であるガスタービンシステムの圧縮機まわりのシステムを示す。7 shows a system around a compressor of a gas turbine system that is Embodiment 2 of the present invention. 本発明の実施例3であるガスタービンシステムを示す。3 shows a gas turbine system that is Embodiment 3 of the present invention. 本発明の実施例4であるガスタービンシステムを示す。4 shows a gas turbine system that is Embodiment 4 of the present invention. 本発明の実施例5であるガスタービンシステムを示す。9 shows a gas turbine system that is Embodiment 5 of the present invention. 本発明の実施例6であるガスタービンシステムを示す。9 shows a gas turbine system that is Embodiment 6 of the present invention. 本発明の実施例7であるガスタービンシステムを示す。9 shows a gas turbine system that is Embodiment 7 of the present invention.

符号の説明Explanation of symbols

1 圧縮機
2 タービン
3 発電機
4 空気冷却器
5 増湿器
6 再生熱交換器
7 燃焼器
8,9 水噴霧装置
10 水補給装置
11,12,13 流量調節器
14,15,16,23,34 経路
17,19,21 温度計測器
18,31,32 流量計測器
20 制御装置
22 流量調節器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Turbine 3 Generator 4 Air cooler 5 Humidifier 6 Regenerative heat exchanger 7 Combustor 8, 9 Water spray device 10 Water supply device 11, 12, 13 Flow rate regulator 14, 15, 16, 23, 34 paths 17, 19, and 21 temperature measuring devices 18, 31, and 32 flow rate measuring device 20 control device 22 flow rate adjusting device

Claims (4)

空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機と、前記圧縮機の吸気温度を計測する第一の温度計測器と、前記圧縮機の吸気流量を計測する流量計測器と、気体を誘導する第一の経路と、水を誘導する第二の経路と、前記第二の経路の流量を調節する第二の流量調節器と、前記第一の経路で誘導された気体のエネルギーを用いて前記第二の経路で誘導された液体を微粒化し噴霧する第一の噴霧装置と、水を誘導する第三の経路と、前記第三の経路を流れる水の流量を調節する第三の流量調節器2と、前記第三の経路で誘導された水を固体に衝突させて水を微粒化する第二の噴霧装置とを有し、外気を前記第一の噴霧装置または前記第二の噴霧装置によって加湿できるよう構成した設備であって、A compressor that sucks air and compresses to generate air that has been heated and pressurized, a first temperature measuring device that measures the intake air temperature of the compressor, and a flow rate measuring device that measures the intake air flow rate of the compressor A first path for inducing gas, a second path for inducing water, a second flow regulator for adjusting the flow rate of the second path, and a gas induced in the first path The first spraying device for atomizing and spraying the liquid induced in the second path using the energy of the first, the third path for guiding water, and the flow rate of water flowing through the third path are adjusted. A third flow rate regulator 2 and a second spraying device for atomizing water by colliding water induced by the third path with a solid, A facility configured to be humidified by a second spraying device,
前記圧縮機から抽気した空気を前記第一の経路に供給する第四の経路と、前記第四の経路を通る気体の流量を調節する第一の流量調節器と、前記第四の経路を通る気体の温度を計測する第二の温度計測器と、前記第一の温度計測器と前記第二の温度計測器と前記流量計測器の情報から前記第一の流量調節器と前記第二の流量調節器と前記第三の流量調節器とを制御する流量制御装置とを有することを特徴とする設備。A fourth path for supplying the air extracted from the compressor to the first path, a first flow controller for adjusting the flow rate of the gas passing through the fourth path, and the fourth path From the information of the 2nd temperature measuring device which measures the temperature of gas, the 1st temperature measuring device, the 2nd temperature measuring device, and the flow rate measuring device, the 1st flow rate regulator and the 2nd flow rate A facility comprising a flow controller for controlling the controller and the third flow controller.
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機と、前記圧縮機の吸気温度を計測する第一の温度計測器と、前記圧縮機の吸気流量を計測する流量計測器と、前記圧縮機から供給された空気と燃料を燃焼させる燃焼器と、前記燃焼器から供給される高温ガスにより駆動されるタービンと、気体を誘導する第一の経路と、水を誘導する第二の経路と、前記第二の経路の流量を調節する第二の流量調節器と、前記第一の経路で誘導された気体のエネルギーを用いて前記第二の経路で誘導された液体を微粒化し噴霧する第一の噴霧装置と、水を誘導する第三の経路と、前記第三の経路を流れる水の流量を調節する第三の流量調節器と、前記第三の経路で誘導された水を固体に衝突させて水を微粒化する第二の噴霧装置とを有し、前記圧縮機に吸引する空気を前記第一の噴霧装置または前記第二の噴霧装置によって加湿できるよう構成したガスタービン設備であって、A compressor that sucks air and compresses to generate air that has been heated and pressurized, a first temperature measuring device that measures the intake air temperature of the compressor, and a flow rate measuring device that measures the intake air flow rate of the compressor A combustor that combusts air and fuel supplied from the compressor, a turbine that is driven by high-temperature gas supplied from the combustor, a first path that induces gas, and a first that induces water. The second path, the second flow controller for adjusting the flow rate of the second path, and the liquid energy induced in the second path using the energy of the gas induced in the first path. A first spraying device for spraying and spraying, a third path for inducing water, a third flow regulator for adjusting the flow rate of water flowing through the third path, and the third path A second spraying device for causing water to collide with the solid and atomizing the water, The air sucked into the machine a gas turbine equipment constructed to be able to humidify by said first spray device or the second spraying device,
前記圧縮機から抽気した空気を前記第一の経路に供給する第四の経路と、前記第四の経路を通る気体の流量を調節する第一の流量調節器と、前記第四の経路を通る気体の温度を計測する第二の温度計測器と、前記第一の温度計測器と前記第二の温度計測器と前記流量計測器の情報から前記第一の流量調節器と前記第二の流量調節器と前記第三の流量調節器とを制御する流量制御装置とを有することを特徴とするガスタービン設備。A fourth path for supplying the air extracted from the compressor to the first path, a first flow controller for adjusting the flow rate of the gas passing through the fourth path, and the fourth path From the information of the 2nd temperature measuring device which measures the temperature of gas, the 1st temperature measuring device, the 2nd temperature measuring device, and the flow rate measuring device, the 1st flow rate regulator and the 2nd flow rate A gas turbine equipment comprising a flow controller for controlling the regulator and the third flow regulator.
空気を吸引し、圧縮して昇温・昇圧した空気を生成する圧縮機と、前記圧縮機の吸気温度を計測する第一の温度計測器と、前記圧縮機の吸気流量を計測する流量計測器と、前記圧縮機から供給された空気と燃料を燃焼させる燃焼器と、前記燃焼器から供給される高温ガスにより駆動されるタービンと、前記圧縮機から吐出された圧縮空気から吸熱をする空気冷却器と、前記空気冷却器の吐出空気を加湿する増湿器と、前記増湿器で加湿された圧縮空気をガスタービン排ガスを熱源として加熱させる再生熱交換器と、気体を誘導する第一の経路と、水を誘導する第二の経路と、前記第二の経路の流量を調節する第二の流量調節器と、前記第一の経路で誘導された気体のエネルギーを用いて前記第二の経路で誘導された液体を微粒化し噴霧する第一の噴霧装置と、水を誘導する第三の経路と、前記第三の経路を流れる水の流量を調節する第三の流量調節器と、前記第三の経路で誘導された水を固体に衝突させて水を微粒化する第二の噴霧装置とを有し、前記圧縮機に吸引する空気を前記第一の噴霧装置または前記第二の噴霧装置によって加湿できるよう構成したガスタービン設備であって、A compressor that sucks air and compresses to generate air that has been heated and pressurized, a first temperature measuring device that measures the intake air temperature of the compressor, and a flow rate measuring device that measures the intake air flow rate of the compressor A combustor that combusts air and fuel supplied from the compressor, a turbine that is driven by high-temperature gas supplied from the combustor, and air cooling that absorbs heat from the compressed air discharged from the compressor A humidifier that humidifies the air discharged from the air cooler, a regenerative heat exchanger that heats the compressed air humidified by the humidifier using a gas turbine exhaust gas as a heat source, and a first that induces gas A second flow path, a second flow path for guiding water, a second flow rate regulator for adjusting the flow rate of the second path, and the gas energy induced in the first path The atomization and atomization of the liquid induced by the route Spray device, a third path for guiding water, a third flow regulator for adjusting the flow rate of water flowing through the third path, and the water guided by the third path collide with the solid And a second spraying device for atomizing water, wherein the air sucked into the compressor is configured to be humidified by the first spraying device or the second spraying device. ,
前記空気冷却器から抽気した空気を前記第一の経路に供給する第四の経路と、前記第四の経路を通る気体の流量を調節する第一の流量調節器と、前記第四の経路を通る気体の温度を計測する第二の温度計測器と、前記第一の温度計測器と前記第二の温度計測器と前記流量計測器の情報から前記第一の流量調節器と前記第二の流量調節器と前記第三の流量調節器とを制御する流量制御装置とを有することを特徴とするガスタービン設備。A fourth path for supplying the air extracted from the air cooler to the first path, a first flow controller for adjusting a flow rate of gas passing through the fourth path, and the fourth path. A second temperature measuring device for measuring the temperature of the gas passing through, the first temperature measuring device, the second temperature measuring device, and the information from the flow measuring device, the first flow rate regulator and the second A gas turbine facility comprising a flow rate controller and a flow rate control device for controlling the third flow rate regulator.
請求項3に記載のガスタービンであって、The gas turbine according to claim 3, wherein
前記空気冷却器に流入する前に圧縮機から抽気した空気を前記第一の経路に供給する第五の経路と、前記第五の経路を通る気体の流量を調節する第四の流量調節器と、前記第五の経路を通る気体の温度を計測する第三の温度計測器と、前記第一の温度計測器と前記第二の温度計測器と前記流量計測器と前記第三の温度計測器の情報から前記第一の流量調節器と前記第二の流量調節器と前記第三の流量調節器と前記第四の流量調節器とを制御する流量制御装置とを有することを特徴とするガスタービン設備。A fifth path for supplying the air extracted from the compressor before flowing into the air cooler to the first path, and a fourth flow rate controller for adjusting the flow rate of the gas passing through the fifth path; A third temperature measuring device for measuring the temperature of the gas passing through the fifth path, the first temperature measuring device, the second temperature measuring device, the flow rate measuring device, and the third temperature measuring device. A gas flow rate control device for controlling the first flow rate regulator, the second flow rate regulator, the third flow rate regulator, and the fourth flow rate regulator from the above information. Turbine equipment.
JP2008216099A 2008-08-26 2008-08-26 Equipment with a compressor that sprays water into the intake air Active JP4923010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216099A JP4923010B2 (en) 2008-08-26 2008-08-26 Equipment with a compressor that sprays water into the intake air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216099A JP4923010B2 (en) 2008-08-26 2008-08-26 Equipment with a compressor that sprays water into the intake air

Publications (2)

Publication Number Publication Date
JP2010053690A JP2010053690A (en) 2010-03-11
JP4923010B2 true JP4923010B2 (en) 2012-04-25

Family

ID=42069881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216099A Active JP4923010B2 (en) 2008-08-26 2008-08-26 Equipment with a compressor that sprays water into the intake air

Country Status (1)

Country Link
JP (1) JP4923010B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042652A1 (en) * 2010-09-30 2012-04-05 株式会社日立製作所 Gas turbine system and method of controlling same
JP6165514B2 (en) * 2013-06-19 2017-07-19 三菱日立パワーシステムズ株式会社 Spray cooling device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3937640B2 (en) * 1995-12-28 2007-06-27 株式会社日立製作所 Gas turbine, combined cycle plant and compressor
JP2004108377A (en) * 1998-02-20 2004-04-08 Yoshihide Nakamura Gas turbine plant and its intake air cooling method
JP2001214757A (en) * 2000-01-27 2001-08-10 Hitachi Ltd Gas turbine facility
JP4254508B2 (en) * 2003-12-01 2009-04-15 株式会社日立製作所 Gas turbine system

Also Published As

Publication number Publication date
JP2010053690A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP2877098B2 (en) Gas turbines, combined cycle plants and compressors
US8402735B2 (en) Cooling apparatus, gas turbine system using cooling apparatus, heat pump system using cooling system, cooling method, and method for operating cooling apparatus
US6634165B2 (en) Control system for gas turbine inlet-air water-saturation and supersaturation system
JP4285781B2 (en) Gas turbine power generation equipment
JP2008175149A (en) Suction air spray device for compressor
WO2013124899A1 (en) Solar heat assisted gas turbine system
De Paepe et al. T100 micro gas turbine converted to full humid air operation: A thermodynamic performance analysis
JP4299313B2 (en) Gas turbine equipment
JP5427953B2 (en) Solar-powered gas turbine system
JP2001214757A (en) Gas turbine facility
JP4923010B2 (en) Equipment with a compressor that sprays water into the intake air
JP6137831B2 (en) Gas turbine cogeneration system using high humidity air
JP3937640B2 (en) Gas turbine, combined cycle plant and compressor
JP5433590B2 (en) Gas turbine system
JPH1113486A (en) Gas turbine
JP2980095B2 (en) Gas turbines, combined cycle plants and compressors
JP3567090B2 (en) Gas turbines, combined cycle plants and compressors
JP4120699B2 (en) Gas turbine power generation equipment and air humidifier
JP4167989B2 (en) Gas turbine equipment and humidification equipment for gas turbine
JP2002266658A (en) Gas turbine equipment and method of limiting dangerous process value
JP4315625B2 (en) Gas turbine equipment
WO2005071244A1 (en) Gas turbine power generation apparatus
JP4898597B2 (en) Gas turbine equipment and operation method of gas turbine equipment
JPWO2013124899A1 (en) Solar assisted gas turbine system
JP2005098156A (en) Gas turbine cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R151 Written notification of patent or utility model registration

Ref document number: 4923010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250