JP2005139259A - Active carbon treatment apparatus - Google Patents

Active carbon treatment apparatus Download PDF

Info

Publication number
JP2005139259A
JP2005139259A JP2003375591A JP2003375591A JP2005139259A JP 2005139259 A JP2005139259 A JP 2005139259A JP 2003375591 A JP2003375591 A JP 2003375591A JP 2003375591 A JP2003375591 A JP 2003375591A JP 2005139259 A JP2005139259 A JP 2005139259A
Authority
JP
Japan
Prior art keywords
temperature
activated carbon
gas
active carbon
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003375591A
Other languages
Japanese (ja)
Other versions
JP4901064B2 (en
Inventor
Soichiro Tsujimoto
聡一郎 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003375591A priority Critical patent/JP4901064B2/en
Publication of JP2005139259A publication Critical patent/JP2005139259A/en
Application granted granted Critical
Publication of JP4901064B2 publication Critical patent/JP4901064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active carbon treatment apparatus the initial cost and running cost of which are low and which can decrease relative humidity appropriately. <P>SOLUTION: In this active carbon treatment apparatus, an active carbon treatment vessel 6 having an active carbon-filled layer 7 filled with active carbon is connected through a gas introduction pipe 5 to a storage tank 3 for storing a biogas; and the gas introduction pipe 5 is equipped with an electric heater 9, an inlet thermometer 10 for measuring the temperature of a treatment object gas supplied to the electric heater 9, and an outlet thermometer 11 for measuring the temperature of the treatment object gas heated by the electric heater 9 and supplied to the active carbon-filled layer 7 from the electric heater 9. The difference between temperatures of the treatment object gas measured by the thermometers 10, 11 is calculated by a temperature difference calculation means 13; the heating output of the electric heater 9 is controlled so that the temperature difference is maintained in a set temperature range; thereby the relative humidity of the treatment object gas is reduced surely and appropriately, regardless of the change in atmospheric temperature; and thus an organopolysiloxane is caused to be adsorbed by the active carbon and the break time of the active carbon is increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、活性炭を充填した活性炭充填層に、メタンを主成分とするとともに有機ポリシロキサンを含有した被処理ガスを供給し、有機ポリシロキサンを活性炭に吸着させて除去する活性炭処理装置に関する。   The present invention relates to an activated carbon treatment apparatus for supplying a treatment gas containing methane as a main component and containing an organic polysiloxane to an activated carbon packed bed filled with activated carbon, and adsorbing the organic polysiloxane to the activated carbon to remove it.

生活排水を処理した下水汚泥とか、ビンのコーティング処理を行うビール工場や消泡剤を使う食品工場などからの排水を処理した汚泥を嫌気性発酵処理すると、メタンを主成分とするとともに有機ポリシロキサンを含有した被処理ガス(バイオガス)が発生する。
近年、このような被処理ガスを発電装置用のガスエンジンなどの燃料として使用することが進められている。
Anaerobic fermentation treatment of sewage sludge treated with domestic wastewater, wastewater from beer factories that coat bottles and food factories that use antifoaming agents, and methane as the main component and organic polysiloxane Gas to be treated (biogas) containing is generated.
In recent years, the use of such a gas to be treated as a fuel for a gas engine for a power generation apparatus has been promoted.

ところが、被処理ガス中に微量に含まれている有機ポリシロキサンに起因して固体の酸化ケイ素(SiO2)が生じ、点火プラグに付着しての点火不良、シリンダやピストンに付着しての早期摩損、吸気弁や排気弁に付着しての動作不良、燃焼室ヘッドに付着しての動作不良を惹き起こすなど、ガスエンジンを損傷させる不都合があり、有機ポリシロキサンを除去することが望まれている。 However, solid silicon oxide (SiO 2 ) is generated due to the organic polysiloxane contained in a trace amount in the gas to be treated, resulting in poor ignition due to adhesion to the spark plug, early attachment to the cylinder or piston. There are inconveniences that cause damage to the gas engine, such as wear, malfunction due to adhesion to the intake and exhaust valves, malfunction due to adhesion to the combustion chamber head, and it is desirable to remove organopolysiloxane. Yes.

このような有機ポリシロキサンを除去するために、従来、活性炭の充填層を通過させ、活性炭に吸着させるようにしている。
また、被処理ガスの相対湿度が高いと、活性炭の細孔が水で飽和状態になるために、活性炭充填層を通過させる前に、相対湿度を低下させるものが知られている(特許文献1参照)。
特開2003−225525号公報
In order to remove such organic polysiloxane, conventionally, it is made to pass through a packed bed of activated carbon and be adsorbed on the activated carbon.
In addition, when the relative humidity of the gas to be treated is high, the pores of the activated carbon become saturated with water, so that the relative humidity is reduced before passing through the activated carbon packed bed (Patent Document 1). reference).
JP 2003-225525 A

しかしながら、図3の有機ポリシロキサンの平衡吸着量の温度依存性のグラフに示すように、温度が高くなると、活性炭の吸着性能が低下する傾向にある。
このため、通常、夏期の被処理ガスが高温多湿となる条件に合わせ、高温になり過ぎないような温度に設定し、活性炭充填層を通過させる前に、設定温度になるように被処理ガスを加熱していた。
被処理ガスが低温多湿の冬期においても、夏期と同じ温度で加熱しているが、種々の検討の結果、冬期では、高温にしなくても吸着性能の低下を防止できることを見出すに至り、この点から、従来例の場合、ヒータ容量が大きいためにイニシャルコストが高価であり、更に、ランニングコストが高価になる欠点があった。また、必要以上に昇温して活性炭の吸着性能を低下させていた。
However, as shown in the graph of the temperature dependence of the equilibrium adsorption amount of the organopolysiloxane in FIG. 3, the adsorption performance of the activated carbon tends to decrease as the temperature increases.
For this reason, the gas to be processed is usually set to a temperature that does not become excessively high in accordance with the conditions in which the gas to be processed in summer is hot and humid, and the gas to be processed is set to the set temperature before passing through the activated carbon packed bed. It was heated.
Even in the winter when the gas to be treated is cold and humid, it is heated at the same temperature as in the summer, but as a result of various studies, it has been found that the adsorption performance can be prevented from decreasing even if the temperature is not high in the winter. Therefore, in the case of the conventional example, since the heater capacity is large, the initial cost is expensive, and further, the running cost is expensive. Moreover, it heated up more than needed and the adsorption | suction performance of activated carbon was reduced.

相対湿度を低下する手法として、活性炭充填層を通過させる前に被処理ガスを冷却し、水蒸気を凝縮液化させ、その液化した水分を除去し、その水分除去後の被処理ガスを活性炭充填層に供給するものも考えられるが、凝縮液化のための冷凍設備が高価でイニシャルコストが増大する問題があり、実用性に欠けるものであった。   As a method for reducing the relative humidity, the gas to be treated is cooled before passing through the activated carbon packed bed, the water vapor is condensed and liquefied, the liquefied water is removed, and the gas to be treated after the moisture removal is transferred to the activated carbon packed bed. Although what to supply can also be considered, there existed a problem that the refrigeration equipment for condensate liquefaction was expensive and the initial cost increased, and it was lacking in practicality.

本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、イニシャルコストおよびランニングコストが低く、かつ、必要以上に昇温することを防止して、活性炭の性能を維持するとともに適切に相対湿度を低下できるようにすることを目的とし、請求項2に係る発明は、より精度良く相対湿度を低下できるようにすることを目的とし、請求項3に係る発明は、バイオガスを良好な燃料として得られるようにすることを目的とし、また、請求項4に係る発明は、イニシャルコストおよびランニングコストをより良好に低減できるようにするとともに活性炭の性能をより良好に維持することを目的とする。   The present invention has been made in view of such circumstances, and the invention according to claim 1 has a low initial cost and a low running cost and prevents the temperature from being increased more than necessary. The purpose of the present invention is to maintain the performance and appropriately reduce the relative humidity, and the invention according to claim 2 aims to enable the relative humidity to be reduced more accurately, and the invention according to claim 3. The purpose of the present invention is to obtain biogas as a good fuel, and the invention according to claim 4 makes it possible to reduce the initial cost and the running cost better and to improve the performance of activated carbon. The purpose is to maintain.

請求項1に係る発明は、上述のような目的を達成するために、
活性炭を充填した活性炭充填層に、メタンを主成分とするとともに有機ポリシロキサンを含有した被処理ガスを供給し、有機ポリシロキサンを前記活性炭に吸着させて除去する活性炭処理装置において、
前記活性炭充填層に供給する被処理ガスを加熱する加熱手段と、
前記加熱手段による加熱前の温度と加熱後の被処理ガスの温度との温度差を測定する温度差測定手段と、
前記温度差測定手段によって測定される温度差に基づき、温度差が設定温度範囲内に維持されるように前記加熱手段の加熱出力を制御する加熱制御手段とを備えて構成する。
上記温度差の設定温度範囲は、10〜20℃である。10℃未満では相対湿度を50%以下にしにくく、破過時間が短くなって活性炭の吸着性能が低下し、一方、20℃を越えると、夏期に高温になりすぎて活性炭の吸着性能を低下するとともに、一年を通じて不必要な加熱熱量が過大になるからである。
In order to achieve the above-described object, the invention according to claim 1
In the activated carbon treatment apparatus that supplies a treatment gas containing methane as a main component and containing an organic polysiloxane to an activated carbon packed bed filled with activated carbon, and adsorbs the organic polysiloxane to the activated carbon to remove it.
Heating means for heating the gas to be treated to be supplied to the activated carbon packed bed;
A temperature difference measuring means for measuring a temperature difference between the temperature before heating by the heating means and the temperature of the gas to be treated after heating;
And heating control means for controlling the heating output of the heating means so that the temperature difference is maintained within a set temperature range based on the temperature difference measured by the temperature difference measuring means.
The set temperature range of the temperature difference is 10 to 20 ° C. If the temperature is less than 10 ° C, the relative humidity is difficult to be reduced to 50% or less, and the breakthrough time is shortened and the activated carbon adsorption performance decreases. On the other hand, if the temperature exceeds 20 ° C, the temperature becomes too high in summer and the activated carbon adsorption performance decreases. At the same time, unnecessary heating heat becomes excessive throughout the year.

(作用・効果)
請求項1に係る発明の活性炭処理装置の構成によれば、活性炭充填層に供給される被処理ガスを、加熱前の温度と加熱後の温度との差が設定範囲内に維持するように加熱して相対湿度を低下する。
したがって、夏期でも冬期でも、一定の温度になるまで加熱するのでは無く、所定の温度差分だけ被処理ガスを加熱して相対湿度を低下するから、被処理ガスの温度が夏期よりも低い中間期や冬期において、被処理ガスの加熱に要する熱量を減少でき、イニシャルコストおよびランニングコストが低く、かつ、必要以上に昇温することを防止して、活性炭の性能を維持できるとともに適切に相対湿度を低下できる。
(Action / Effect)
According to the configuration of the activated carbon treatment apparatus of the invention according to claim 1, the gas to be treated supplied to the activated carbon packed bed is heated so that the difference between the temperature before heating and the temperature after heating is maintained within a set range. And reduce the relative humidity.
Therefore, in summer and winter, instead of heating to a certain temperature, the gas to be processed is heated by a predetermined temperature difference to lower the relative humidity, so that the temperature of the gas to be processed is lower than that in summer. In winter and winter, the amount of heat required to heat the gas to be treated can be reduced, the initial cost and running cost are low, and the temperature can be prevented from rising more than necessary, maintaining the performance of the activated carbon and appropriately controlling the relative humidity. Can be reduced.

また、請求項2に係る発明は、前述のような目的を達成するために、
請求項1に記載の活性炭処理装置において、
温度差測定手段を、
加熱手段に供給される被処理ガスの温度を測定する入口温度計と、
前記加熱手段から前記活性炭充填層に供給される加熱後の被処理ガスの温度を測定する出口温度計と、
前記出口温度計で測定される被処理ガスの温度と前記入口温度計で測定される被処理ガスの温度との差を算出する温度差算出手段とから構成する。
In order to achieve the above-described object, the invention according to claim 2
The activated carbon treatment apparatus according to claim 1,
Temperature difference measurement means
An inlet thermometer for measuring the temperature of the gas to be treated supplied to the heating means;
An outlet thermometer for measuring the temperature of the gas to be treated after being supplied from the heating means to the activated carbon packed bed;
It comprises temperature difference calculating means for calculating the difference between the temperature of the gas to be processed measured by the outlet thermometer and the temperature of the gas to be processed measured by the inlet thermometer.

(作用・効果)
請求項2に係る発明の活性炭処理装置の構成によれば、加熱手段に供給する入口および出口それぞれにおいて被処理ガスの温度を測定し、両者の測定温度に基づいて温度差を算出するから、精度良く相対湿度を低下できる。
(Action / Effect)
According to the configuration of the activated carbon treatment apparatus of the invention according to claim 2, the temperature of the gas to be treated is measured at each of the inlet and the outlet supplied to the heating means, and the temperature difference is calculated based on the measured temperature of both. The relative humidity can be reduced well.

また、請求項3に係る発明は、前述のような目的を達成するために、
請求項1または2に記載の活性炭処理装置において、
被処理ガスが排水汚泥を嫌気性発酵処理する際に得られるバイオガスである。
In order to achieve the above-described object, the invention according to claim 3
In the activated carbon treatment apparatus according to claim 1 or 2,
The gas to be treated is a biogas obtained when wastewater sludge is subjected to anaerobic fermentation treatment.

(作用・効果)
請求項3に係る発明の活性炭処理装置の構成によれば、バイオガス中に含まれる有機ポリシロキサンを活性炭充填層に吸着して除去するから、バイオガスを、エンジンの動作に支障をきたすことのない良好な燃料として得ることができる。
(Action / Effect)
According to the configuration of the activated carbon treatment apparatus of the invention according to claim 3, since the organic polysiloxane contained in the biogas is adsorbed and removed by the activated carbon packed bed, the biogas may interfere with the operation of the engine. Not as good fuel can be obtained.

また、請求項4に係る発明は、前述のような目的を達成するために、
請求項1,2,3のいずれかに記載の活性炭処理装置において、
設定温度範囲を12〜17℃にする。
In order to achieve the above-described object, the invention according to claim 4
In the activated carbon treatment apparatus according to any one of claims 1, 2, and 3,
Set the temperature range to 12-17 ° C.

(作用・効果)
請求項4に係る発明の活性炭処理装置の構成によれば、設定温度範囲を12℃以上にすることで、冬期はもちろんのこと夏期においても破過時間を十分長くできて交換頻度を低減でき、ランニングコストをより良好に低減できる。また、設定温度範囲を17℃未満にすることで、冬期および夏期のいずれにおいても破過時間を十分長くできて交換頻度を低減できながら、必要以上に高温にせず、活性炭の吸着性能を高い状態に維持でき、イニシャルコストおよびランニングコストを良好に低減できる。
(Action / Effect)
According to the configuration of the activated carbon treatment apparatus of the invention according to claim 4, by setting the set temperature range to 12 ° C. or more, the breakthrough time can be sufficiently lengthened not only in winter but also in summer, and the replacement frequency can be reduced. The running cost can be reduced more favorably. In addition, by setting the set temperature range to less than 17 ° C, the breakthrough time can be extended sufficiently in both winter and summer, and the replacement frequency can be reduced. The initial cost and running cost can be reduced well.

以上の説明から明らかなように、請求項1に係る発明の活性炭処理装置の構成によれば、活性炭充填層に供給される被処理ガスを、加熱前の温度と加熱後の温度との差が設定範囲内に維持するように加熱して相対湿度を低下するから、夏期でも冬期でも、一定の温度になるまで加熱するのでは無く、所定の温度差分だけ被処理ガスを加熱して相対湿度を低下するから、被処理ガスの温度が夏期よりも低い中間期や冬期において、被処理ガスの加熱に要する熱量を減少でき、イニシャルコストおよびランニングコストが低く、かつ、必要以上に昇温することを防止して、活性炭の性能を維持できるとともに適切に相対湿度を低下できる。   As is apparent from the above description, according to the configuration of the activated carbon treatment apparatus of the invention according to claim 1, the difference between the temperature before heating and the temperature after heating of the gas to be treated supplied to the activated carbon packed bed is Since the relative humidity is reduced by heating to maintain within the set range, the gas to be treated is heated by a predetermined temperature difference to reduce the relative humidity in summer and winter rather than heating to a certain temperature. Therefore, it is possible to reduce the amount of heat required for heating the gas to be processed in the intermediate period and winter when the temperature of the gas to be processed is lower than the summer, lower the initial cost and running cost, and increase the temperature more than necessary. And can maintain the performance of the activated carbon and appropriately reduce the relative humidity.

次に、本発明の実施例を図面に基づいて詳細に説明する。
図1は、本発明に係る活性炭処理装置の実施例を示す全体概略構成図であり、生活排水を処理した下水汚泥とか、ビンのコーティング処理を行うビール工場や消泡剤を使う食品工場などからの排水を処理した汚泥を嫌気性発酵処理するメタン発酵槽1に配管2を介して貯留タンク3が接続され、嫌気性発酵処理に伴ってメタン発酵槽1で発生する、メタンを主成分とするとともに有機ポリシロキサンを含有した被処理ガスとしてのバイオガスを貯留タンク3内に貯めるように構成されている。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall schematic configuration diagram showing an embodiment of an activated carbon treatment apparatus according to the present invention, from a sewage sludge treated with domestic wastewater, a beer factory performing a bottle coating process, a food factory using an antifoaming agent, and the like. A storage tank 3 is connected via a pipe 2 to a methane fermentation tank 1 for anaerobic fermentation of sludge treated with effluent, and is generated in the methane fermentation tank 1 along with the anaerobic fermentation process. At the same time, the biogas as the gas to be treated containing the organic polysiloxane is stored in the storage tank 3.

貯留タンク3に、ブロアー4と第1の開閉弁V1とを介装したガス導入管5を介して活性炭処理槽6が接続されている。
活性炭処理槽6内には、活性炭を充填した活性炭充填層7が設けられ、活性炭処理槽6に、第2の開閉弁V2を介装した処理ガス取出管8が接続され、有機ポリシロキサンを活性炭に吸着させて除去し、除去後のガスを燃料ガスとして取出すように構成されている。
An activated carbon treatment tank 6 is connected to the storage tank 3 via a gas introduction pipe 5 provided with a blower 4 and a first on-off valve V1.
An activated carbon packed bed 7 filled with activated carbon is provided in the activated carbon treatment tank 6, and a treatment gas take-off pipe 8 having a second on-off valve V 2 is connected to the activated carbon treatment tank 6, and the organic polysiloxane is activated carbon. It is made to adsorb | suck and remove, and the gas after removal is taken out as fuel gas.

ガス導入管5の、ブロアー4と第1の開閉弁V1との間に、加熱手段としての電気ヒータ9が設けられ、活性炭充填層7に供給する被処理ガスを加熱して被処理ガスの相対湿度を低下させ、活性炭の吸着性能を向上できるように構成されている。電気ヒータ9としては、ガス導入管5を被覆するようにバンドヒータを巻くなど、各種の構成が採用できる。   An electric heater 9 as a heating means is provided between the blower 4 and the first on-off valve V1 of the gas introduction pipe 5, and heats the gas to be processed supplied to the activated carbon packed bed 7 to make the relative gas to be processed. It is comprised so that humidity can be reduced and the adsorption | suction performance of activated carbon can be improved. As the electric heater 9, various configurations such as winding a band heater so as to cover the gas introduction pipe 5 can be adopted.

ガス導入管5において、ブロアー4と電気ヒータ9との間に、電気ヒータ9に供給される被処理ガスの温度を測定する入口温度計10が設けられ、電気ヒータ9と第1の開閉弁V1との間に、電気ヒータ9から活性炭充填層7に供給される加熱後の被処理ガスの温度を測定する出口温度計11が設けられている。   In the gas introduction pipe 5, an inlet thermometer 10 for measuring the temperature of the gas to be processed supplied to the electric heater 9 is provided between the blower 4 and the electric heater 9, and the electric heater 9 and the first on-off valve V 1. The outlet thermometer 11 for measuring the temperature of the heated gas supplied from the electric heater 9 to the activated carbon packed bed 7 is provided.

入口温度計10および出口温度計11がコントローラ12に接続されるとともに、そのコントローラ12に電気ヒータ9が接続されている。
コントローラ12には、温度差算出手段13と第1および第2の比較手段14,15と加熱制御手段16とが備えられている。
An inlet thermometer 10 and an outlet thermometer 11 are connected to a controller 12, and an electric heater 9 is connected to the controller 12.
The controller 12 includes a temperature difference calculation means 13, first and second comparison means 14 and 15, and a heating control means 16.

温度差算出手段13では、出口温度計11で測定される被処理ガスの温度と入口温度計10で測定される被処理ガスの温度との差を算出するようになっている。
第1の比較手段14では、温度差算出手段13で算出された温度差と上限設定器17で設定される上限温度差(例えば、17℃)とを比較し、算出温度差が上限温度差よりも大きいときには温度低下信号を出力するようになっている。
第2の比較手段15では、温度差算出手段13で算出された温度差と下限設定器18で設定される下限温度差(例えば、12℃)とを比較し、算出温度差が下限温度差よりも小さいときには温度上昇信号を出力するようになっている。
The temperature difference calculating means 13 calculates the difference between the temperature of the gas to be processed measured by the outlet thermometer 11 and the temperature of the gas to be processed measured by the inlet thermometer 10.
The first comparison means 14 compares the temperature difference calculated by the temperature difference calculation means 13 with the upper limit temperature difference (for example, 17 ° C.) set by the upper limit setting unit 17, and the calculated temperature difference is greater than the upper limit temperature difference. When the value is too large, a temperature drop signal is output.
The second comparison means 15 compares the temperature difference calculated by the temperature difference calculation means 13 with the lower limit temperature difference (for example, 12 ° C.) set by the lower limit setting device 18, and the calculated temperature difference is less than the lower limit temperature difference. When it is smaller, a temperature rise signal is output.

加熱制御手段16では、第1の比較手段14からの温度低下信号に応答して電気ヒータ9に指令信号を出力し、加熱出力を設定量だけ低下させ、一方、第2の比較手段15からの温度上昇信号に応答して電気ヒータ9に指令信号を出力し、加熱出力を設定量だけ上昇するように、すなわち、温度差が設定温度範囲内に維持されるように電気ヒータ9の加熱出力を制御するなっている。   The heating control means 16 outputs a command signal to the electric heater 9 in response to the temperature drop signal from the first comparison means 14 to reduce the heating output by a set amount, while the second comparison means 15 A command signal is output to the electric heater 9 in response to the temperature rise signal, and the heating output of the electric heater 9 is set so that the heating output is increased by a set amount, that is, the temperature difference is maintained within the set temperature range. It is supposed to control.

以上の構成により、夏期や冬期など、外気温度の変化にかかわらず、活性炭充填層7に供給する前に被処理ガスを設定温度範囲の温度だけ加熱し、被処理ガスの相対湿度を確実に低下させてから活性炭充填層7に供給し、有機ポリシロキサンを活性炭に良好に吸着させるとともに、活性炭の破過時間を増大できるようになっている。   With the above configuration, the gas to be treated is heated by a temperature within the set temperature range before being supplied to the activated carbon packed bed 7 regardless of changes in the outside air temperature, such as in summer and winter, and the relative humidity of the gas to be treated is reliably reduced. Then, the activated carbon is supplied to the activated carbon packed bed 7 so that the organic polysiloxane can be adsorbed well on the activated carbon and the breakthrough time of the activated carbon can be increased.

次に、実験例について説明する。
活性炭処理槽としては、ステンレス製で内径60mm、高さ400mmのものを用い、その活性炭処理槽内に、粒状活性炭0.28kgを充填密度0.40g/ccで充填高さ245mmになるように充填した。
電気ヒータとしてはシーズヒータを用いた。
被処理ガスとしては、有機ポリシロキサンとしてオクタメチルクロテトラシロキサン75mg/Nm3を含有させ、相対湿度100%、90%それぞれに調整した水分中に、メタン60%、二酸化炭素40%に調整した模擬バイオガスをバブリングさせることにより蒸発させたガスを用い、その被処理ガスを流量1Nm3/hで流すように構成した。
Next, experimental examples will be described.
The activated carbon treatment tank is made of stainless steel and has an inner diameter of 60 mm and a height of 400 mm. The activated carbon treatment tank is filled with 0.28 kg of granular activated carbon so that the filling density is 0.40 g / cc and the filling height is 245 mm. did.
A sheathed heater was used as the electric heater.
As a gas to be treated, an organic polysiloxane containing 75 mg / Nm 3 of octamethyl chlorotetrasiloxane, and a moisture adjusted to a relative humidity of 100% and 90%, respectively, is simulated to be adjusted to 60% methane and 40% carbon dioxide. A gas evaporated by bubbling biogas was used, and the gas to be treated was made to flow at a flow rate of 1 Nm 3 / h.

上記試験装置を6台作製し、電気ヒータへの供給前において、相対湿度90%、温度35℃の被処理ガス(グラフ中Aで示す)、相対湿度100%、温度35℃の被処理ガス(グラフ中でB示す)、相対湿度90%、温度1℃の被処理ガス(グラフC中で示す)、相対湿度100%、温度1℃の被処理ガス(グラフD中で示す)の4種類の試験ガスを、5段階あるいは6段階(Bについてのみ)の温度差を設定して有機ポリシロキサンの吸着試験を実施し、有機ポリシロキサンの破過時間を測定したところ、表1および図2の温度差(昇温幅)と破過時間との相対関係のグラフに示す結果が得られた。なお、昇温しなかった場合の結果は、グラフ左下に集中して示される。
破過したと考える濃度は1.0mg/Nm3に設定した。活性炭処理槽の出口での有機ポリシロキサンの濃度測定は、定期的にガスクロマトグラフ質量分析計で行った。
Six test devices were prepared, and before being supplied to the electric heater, a gas to be treated (indicated by A in the graph) having a relative humidity of 90% and a temperature of 35 ° C., a gas to be treated having a relative humidity of 100% and a temperature of 35 ° C. ( 4 types of gas to be processed (shown in graph C), relative humidity 90%, temperature 1 ° C., gas to be processed (shown in graph D) 100% relative humidity, temperature 1 ° C. The test gas was subjected to an organic polysiloxane adsorption test with a temperature difference of 5 or 6 steps (only for B), and the breakthrough time of the organic polysiloxane was measured. The temperatures shown in Table 1 and FIG. The result shown in the graph of the relative relationship between a difference (temperature rise width) and breakthrough time was obtained. The results when the temperature is not raised are shown concentrated in the lower left of the graph.
The concentration considered to be broken through was set at 1.0 mg / Nm 3 . The concentration of the organic polysiloxane at the outlet of the activated carbon treatment tank was periodically measured with a gas chromatograph mass spectrometer.

Figure 2005139259
Figure 2005139259

また、メタン60%、二酸化炭素40%に調整した模擬バイオガスに有機ポリシロキサンとしてオクタメチルクロテトラシロキサン75mg/Nm3を含有させ、相対湿度30%の被処理ガスを、活性炭処理槽に供給する前の温度を変えながら平衡吸着量を測定したところ、図3の、温度を横軸にとり、平衡吸着量を縦軸にとった有機ポリシロキサンの平衡吸着量の温度依存性のグラフに示す結果が得られた。但し、活性炭量は11gとした。 Further, a simulated biogas adjusted to 60% methane and 40% carbon dioxide contains 75 mg / Nm 3 of octamethylchlorotetrasiloxane as an organic polysiloxane, and a gas to be treated having a relative humidity of 30% is supplied to the activated carbon treatment tank. When the equilibrium adsorption amount was measured while changing the previous temperature, the results shown in the graph of temperature dependence of the organic polysiloxane equilibrium adsorption amount with the horizontal axis representing the temperature and the vertical axis representing the equilibrium adsorption amount are shown in FIG. Obtained. However, the amount of activated carbon was 11 g.

上記結果から、夏期の高温時(約35℃)を考慮するとともに、破過時間を考慮することにより、温度差が12℃未満で急激に破過時間が減少していることがわかり、また、温度が高温になるに伴って活性炭の平衡吸着量が減少していることがわかり、設定温度範囲を12〜17℃にするのが好ましいことがわかる。
また、冬期(約1℃)では、温度差が10℃未満で急激に破過時間が減少しており、一方、夏期でも30℃近辺で推移するような場合であれば、20℃でも所望の平衡吸着量を確保でき、温度差の範囲として、10〜20℃の範囲に設定するものでも良い。
From the above results, it can be seen that the breakthrough time is drastically reduced when the temperature difference is less than 12 ° C by considering the summer high temperature (about 35 ° C) and the breakthrough time. It can be seen that the equilibrium adsorption amount of the activated carbon decreases as the temperature increases, and it is preferable that the set temperature range is 12 to 17 ° C.
In winter (about 1 ° C), the breakthrough time is drastically reduced when the temperature difference is less than 10 ° C. On the other hand, if the temperature changes in the vicinity of 30 ° C even in summer, the desired temperature is 20 ° C. An equilibrium adsorption amount can be secured, and the temperature difference range may be set to a range of 10 to 20 ° C.

上記実施例では、ガス導入管5に、入口温度計10と出口温度計11とを設け、両温度計10,11で測定される温度を温度差算出手段13に入力して、電気ヒータ9による加熱前の温度と加熱後の被処理ガスの温度との温度差を測定するように構成しているが、本発明としては、入口温度計10に代えて外気温度を測定する気温計を用いるようにしても良く、それらの温度差を測定する構成をして測定温度差測定手段と総称する。   In the above embodiment, the gas introduction pipe 5 is provided with the inlet thermometer 10 and the outlet thermometer 11, and the temperature measured by both the thermometers 10, 11 is input to the temperature difference calculating means 13, and the electric heater 9 Although the temperature difference between the temperature before heating and the temperature of the gas to be treated after heating is measured, the present invention uses a thermometer that measures the outside air temperature instead of the inlet thermometer 10. Alternatively, the temperature difference between them may be measured and collectively referred to as measurement temperature difference measuring means.

上記実施例では、被処理ガスを加熱するのに電気ヒータ9を用いているが、例えば、ガス導入管5に熱交換器を設け、バーナなどにより加熱して温水を生じさせ、その温水を流量可変型ポンプで熱交換器に送るように構成するなど各種の構成変形が可能であり、それらをして加熱手段と総称する。   In the above embodiment, the electric heater 9 is used to heat the gas to be treated. For example, a heat exchanger is provided in the gas introduction pipe 5 and heated by a burner or the like to generate hot water. Various structural modifications are possible, such as a configuration in which the pump is sent to a heat exchanger by a variable pump, and these are collectively referred to as heating means.

本発明に係る活性炭処理装置の実施例を示す全体概略構成図である。It is a whole schematic block diagram which shows the Example of the activated carbon processing apparatus which concerns on this invention. 温度差(昇温幅)と破過時間との相対関係を示すグラフである。It is a graph which shows the relative relationship between a temperature difference (temperature rise width) and breakthrough time. 有機ポリシロキサンの平衡吸着量の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the equilibrium adsorption amount of organopolysiloxane.

符号の説明Explanation of symbols

7…活性炭充填層
9…電気ヒータ(加熱手段)
10…入口温度計(温度差測定手段)
11…出口温度計(温度差測定手段)
13…温度差算出手段(温度差測定手段)
16…加熱制御手段

7 ... Activated carbon packed bed 9 ... Electric heater (heating means)
10 ... Inlet thermometer (temperature difference measuring means)
11 ... Outlet thermometer (temperature difference measuring means)
13. Temperature difference calculating means (temperature difference measuring means)
16 ... Heating control means

Claims (4)

活性炭を充填した活性炭充填層に、メタンを主成分とするとともに有機ポリシロキサンを含有した被処理ガスを供給し、有機ポリシロキサンを前記活性炭に吸着させて除去する活性炭処理装置において、
前記活性炭充填層に供給する被処理ガスを加熱する加熱手段と、
前記加熱手段による加熱前の温度と加熱後の被処理ガスの温度との温度差を測定する温度差測定手段と、
前記温度差測定手段によって測定される温度差に基づき、温度差が設定温度範囲内に維持されるように前記加熱手段の加熱出力を制御する加熱制御手段と、
を備えたことを特徴とする活性炭処理装置。
In the activated carbon treatment apparatus that supplies a treatment gas containing methane as a main component and containing an organic polysiloxane to an activated carbon packed bed filled with activated carbon, and adsorbs the organic polysiloxane to the activated carbon to remove it.
Heating means for heating the gas to be treated to be supplied to the activated carbon packed bed;
A temperature difference measuring means for measuring a temperature difference between the temperature before heating by the heating means and the temperature of the gas to be treated after heating;
Heating control means for controlling the heating output of the heating means based on the temperature difference measured by the temperature difference measuring means so that the temperature difference is maintained within a set temperature range;
An activated carbon treatment apparatus comprising:
請求項1に記載の活性炭処理装置において、
温度差測定手段が、
加熱手段に供給される被処理ガスの温度を測定する入口温度計と、
前記加熱手段から前記活性炭充填層に供給される加熱後の被処理ガスの温度を測定する出口温度計と、
前記出口温度計で測定される被処理ガスの温度と前記入口温度計で測定される被処理ガスの温度との差を算出する温度差算出手段とから構成されるものである活性炭処理装置。
The activated carbon treatment apparatus according to claim 1,
The temperature difference measuring means
An inlet thermometer for measuring the temperature of the gas to be treated supplied to the heating means;
An outlet thermometer for measuring the temperature of the gas to be treated after being supplied from the heating means to the activated carbon packed bed;
An activated carbon treatment apparatus comprising temperature difference calculating means for calculating a difference between a temperature of the gas to be processed measured by the outlet thermometer and a temperature of the gas to be processed measured by the inlet thermometer.
請求項1または2に記載の活性炭処理装置において、
被処理ガスが排水汚泥を嫌気性発酵処理する際に得られるバイオガスである活性炭処理装置。
In the activated carbon treatment apparatus according to claim 1 or 2,
An activated carbon treatment apparatus which is a biogas obtained when the gas to be treated is subjected to anaerobic fermentation treatment of wastewater sludge.
請求項1,2,3のいずれかに記載の活性炭処理装置において、
設定温度範囲が12〜17℃である活性炭処理装置。
In the activated carbon treatment apparatus according to any one of claims 1, 2, and 3,
An activated carbon treatment apparatus having a set temperature range of 12 to 17 ° C.
JP2003375591A 2003-11-05 2003-11-05 Activated carbon treatment equipment Expired - Fee Related JP4901064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375591A JP4901064B2 (en) 2003-11-05 2003-11-05 Activated carbon treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375591A JP4901064B2 (en) 2003-11-05 2003-11-05 Activated carbon treatment equipment

Publications (2)

Publication Number Publication Date
JP2005139259A true JP2005139259A (en) 2005-06-02
JP4901064B2 JP4901064B2 (en) 2012-03-21

Family

ID=34686921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375591A Expired - Fee Related JP4901064B2 (en) 2003-11-05 2003-11-05 Activated carbon treatment equipment

Country Status (1)

Country Link
JP (1) JP4901064B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576618A (en) * 1991-09-13 1993-03-30 Japan Organo Co Ltd Purification processing method of earth polluted with organic solvent and purification processing device
JPH07115898A (en) * 1993-10-26 1995-05-09 Sanyo Electric Co Ltd Apparatus for removing harmful substance with active carbon
JP2002069468A (en) * 2000-09-01 2002-03-08 Nkk Corp Method and apparatus for purifying digested gas
JP2002081983A (en) * 2000-06-23 2002-03-22 Omron Corp Heat generation device for sensor, sensor, and acceleration sensor
JP2003225525A (en) * 2002-01-31 2003-08-12 Kobe Steel Ltd Gas refining method and method for utilizing refined gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576618A (en) * 1991-09-13 1993-03-30 Japan Organo Co Ltd Purification processing method of earth polluted with organic solvent and purification processing device
JPH07115898A (en) * 1993-10-26 1995-05-09 Sanyo Electric Co Ltd Apparatus for removing harmful substance with active carbon
JP2002081983A (en) * 2000-06-23 2002-03-22 Omron Corp Heat generation device for sensor, sensor, and acceleration sensor
JP2002069468A (en) * 2000-09-01 2002-03-08 Nkk Corp Method and apparatus for purifying digested gas
JP2003225525A (en) * 2002-01-31 2003-08-12 Kobe Steel Ltd Gas refining method and method for utilizing refined gas

Also Published As

Publication number Publication date
JP4901064B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP6247788B1 (en) Carbon dioxide separation and recovery system and method
CN102274672B (en) General partition wall vibrating process and device for recovering volatile organic matters
RU2007125425A (en) METHOD OF TECHNOLOGICAL PROCESSING OF VOLATILE ORGANIC COMPOUND, DEVICE FOR ADSORPTION AND DESORPTION AND INSTALLATION FOR TECHNOLOGICAL PROCESSING OF VOLATILE ORGANIC COMPOUND
Águeda et al. Column dynamics of an adsorption–drying–desorption process for butanol recovery from aqueous solutions with silicalite pellets
KR101903297B1 (en) Carbon dioxide application device
CN110813019B (en) Organic waste gas adsorbent vacuum desorption method and device
JP4901064B2 (en) Activated carbon treatment equipment
JP2006199954A (en) Digestion gas purification apparatus
CN210356576U (en) Improved VOCs desorption device utilizing high-temperature steam desorption
JP2013249488A (en) Hydrogen-oxygen generating apparatus and hydrogen-oxygen production method
CN103453656A (en) Environment-friendly type residual-heat recycling device
JP2012206011A (en) Water purifying material and method for production thereof
CN104772035B (en) Volatile organic compound processing device
US10144683B2 (en) Method for collecting isoprene contained in fermented gas, and method for producing purified isoprene
CN209306987U (en) Active carbon automatic regeneration filter for wastewater treatment
JP2011153183A (en) Combustible gas concentrator
JP3958412B2 (en) Method for measuring moisture concentration in gas
JPH0251656B2 (en)
JP5050706B2 (en) Tank vent gas treatment method
CN108144413A (en) Method for heating and controlling, device and heating system applied to zeolite rotor machine
JP2007014919A (en) Exhaust gas treatment device and exhaust gas treatment system
JP2003277022A (en) Method and device for concentrating ozone
JP2000077387A (en) Method and system for removing resist
CN219356268U (en) Active carbon regenerating unit
JP6041029B2 (en) Siloxane removal method and siloxane removal apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees