JP2005138036A - Catalyst for reforming methanol with steam and method for producing hydrogen by steam reforming of methanol employing the same - Google Patents

Catalyst for reforming methanol with steam and method for producing hydrogen by steam reforming of methanol employing the same Download PDF

Info

Publication number
JP2005138036A
JP2005138036A JP2003377805A JP2003377805A JP2005138036A JP 2005138036 A JP2005138036 A JP 2005138036A JP 2003377805 A JP2003377805 A JP 2003377805A JP 2003377805 A JP2003377805 A JP 2003377805A JP 2005138036 A JP2005138036 A JP 2005138036A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
oxide
steam
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003377805A
Other languages
Japanese (ja)
Inventor
Yasunosuke Hagiwara
康之輔 萩原
Michiaki Umeno
道明 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003377805A priority Critical patent/JP2005138036A/en
Publication of JP2005138036A publication Critical patent/JP2005138036A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel catalyst useful as a steam reforming catalyst of methanol, and to provide a method for producing hydrogen by reforming methanol with steam in the presence of the catalyst. <P>SOLUTION: The steam reforming catalyst of methanol contains a copper oxide, a zinc oxide and an iridium oxide. The method for producing hydrogen to reform methanol with steam in the presence of the catalyst is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、メタノールの水蒸気改質触媒および該触媒の存在下でメタノールを水蒸気改質することを特徴とする水素の製造方法に関する。   The present invention relates to a steam reforming catalyst for methanol and a method for producing hydrogen characterized by steam reforming methanol in the presence of the catalyst.

メタノールの水蒸気改質反応は、次の式(1)、式(2)に示した反応からなると考えられている。   The steam reforming reaction of methanol is considered to consist of the reactions shown in the following formulas (1) and (2).

Figure 2005138036
Figure 2005138036

上記の反応により、メタノールと水蒸気とから水素を製造することができる。   Through the above reaction, hydrogen can be produced from methanol and water vapor.

従来、メタノールの水蒸気改質触媒として、銅系触媒が活性及び選択性に優れていることが広く知られているが、銅系触媒は熱安定性に問題があるといわれている(非特許文献1)。   Conventionally, it is widely known that a copper-based catalyst is excellent in activity and selectivity as a steam reforming catalyst for methanol, but it is said that a copper-based catalyst has a problem in thermal stability (non-patent document). 1).

このように銅系触媒は熱安定性に問題があるといわれてはいるが、高い触媒活性を有することから、銅系触媒の改良に関する報告例はその数が多い。   Thus, although it is said that the copper-based catalyst has a problem in thermal stability, there are many reports on the improvement of the copper-based catalyst because of its high catalytic activity.

例えば、銅系触媒として、銅、亜鉛および周期律表第VIII属の各金属元素を含有する触媒および該触媒を用いたメタノールの水蒸気改質反応に関する報告がなされている。   For example, as a copper-based catalyst, a report has been made on a catalyst containing copper, zinc, and each metal element of Group VIII of the periodic table, and a steam reforming reaction of methanol using the catalyst.

特許文献1には、銅の酸化物、亜鉛、アルミニウムおよびクロムからなる群からえらばれた少なくとも1種の金属の酸化物ならびに周期律表第VIII族金属の酸化物を含有する触媒及び該触媒を製造プロセスに組み込んだメタノールの水蒸気改質法が報告されている。   Patent Document 1 discloses a catalyst containing at least one metal oxide selected from the group consisting of a copper oxide, zinc, aluminum, and chromium, and a Group VIII metal oxide of the periodic table, and the catalyst. A methanol steam reforming method incorporated in the manufacturing process has been reported.

本発明者らは、特許文献2において、銅、亜鉛および貴金属であるパラジウムおよび/または白金を含む特定の触媒およびこれを用いてメタノールと水蒸気とから水素を製造する方法について報告している。   In the patent document 2, the present inventors have reported a specific catalyst containing copper, zinc and the noble metals palladium and / or platinum and a method for producing hydrogen from methanol and water vapor using the same.

また、特許文献3には、一般式:TM(ただし、TはTi,Zr,Hf,Y,Nb,Znから選ばれる少なくとも一種の元素、Mは周期律表IB族〔Cu,Ag,Au〕およびVIII族〔Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt〕から選ばれる少なくとも一種の元素)で示される合金からなり、その表面がT元素からなる酸化物中にM元素からなる金属微細粒子が分散してなることを特徴とするメタノール改質用触媒が報告されている。
触媒学会編「触媒講座・第9巻」(1985年5月10日発行) 講談社、P132〜134 特開昭59-152205号公報 特開2002−95970号公報 特開平7−116517号公報
Patent Document 3 discloses a general formula: TM (where T is at least one element selected from Ti, Zr, Hf, Y, Nb, and Zn, and M is a group IB in the periodic table [Cu, Ag, Au]). And an alloy represented by Group VIII [at least one element selected from Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt], and its surface has an M element in an oxide of T element. There has been reported a methanol reforming catalyst characterized in that fine metal particles made of the above are dispersed.
The Catalysis Society of Japan "Catalyst Course, Volume 9" (issued on May 10, 1985) Kodansha, P132-134 JP 59-152205 A JP 2002-95970 A JP-A-7-116517

本発明は、メタノールの水蒸気改質触媒として有用な新規な触媒を提供することを課題とする。また、本発明は、該触媒の存在下でメタノールを水蒸気改質することを特徴とする水素の製造方法を提供することを課題とする。   An object of the present invention is to provide a novel catalyst useful as a steam reforming catalyst for methanol. Another object of the present invention is to provide a method for producing hydrogen, which comprises steam reforming methanol in the presence of the catalyst.

本発明者らは、前述の課題を解決すべく鋭意検討した結果、銅酸化物、亜鉛酸化物および特定の貴金属元素の酸化物を触媒成分として含有する触媒が課題の解決に有効であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a catalyst containing copper oxide, zinc oxide and an oxide of a specific noble metal element as a catalyst component is effective in solving the problem. The headline and the present invention were completed.

すなわち、本発明は、銅酸化物、亜鉛酸化物、イリジウム酸化物を含むメタノールの水蒸気改質触媒、及び該触媒の存在下でメタノールを水蒸気改質する水素の製造方法に関するものである。    That is, the present invention relates to a methanol steam reforming catalyst containing copper oxide, zinc oxide and iridium oxide, and a method for producing hydrogen by steam reforming methanol in the presence of the catalyst.

本発明によれば、触媒の劣化が小さいメタノールの水蒸気改質触媒を提供することができ、また、該触媒を用いてメタノールを水蒸気改質することにより効率よく水素を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steam reforming catalyst of methanol with little deterioration of a catalyst can be provided, and hydrogen can be efficiently manufactured by carrying out steam reforming of methanol using this catalyst.

本発明のメタノールの水蒸気改質触媒(以下、「触媒」と略記する。)は、銅酸化物、亜鉛酸化物、イリジウム酸化物を含むことを特徴とする。   The methanol steam reforming catalyst of the present invention (hereinafter abbreviated as “catalyst”) includes copper oxide, zinc oxide, and iridium oxide.

本発明の触媒において、銅酸化物、亜鉛酸化物、イリジウム酸化物の各酸化物の合計量に占めるイリジウム酸化物の含有率は、好ましくは0.1〜20重量%、より好ましくは0.5〜16重量%、特に好ましくは1.0〜15重量%である。   In the catalyst of the present invention, the iridium oxide content in the total amount of copper oxide, zinc oxide and iridium oxide is preferably 0.1 to 20% by weight, more preferably 0.5%. -16 wt%, particularly preferably 1.0-15 wt%.

本発明の触媒において、銅酸化物、亜鉛酸化物、イリジウム酸化物の合計量に占めるイリジウム酸化物の含有率が0.1重量%以上であると触媒の劣化率が小さくなる点で好ましく、20重量%以下であると触媒の活性が高くなる点で好ましい。   In the catalyst of the present invention, the content of iridium oxide in the total amount of copper oxide, zinc oxide and iridium oxide is preferably 0.1% by weight or more in that the deterioration rate of the catalyst is reduced. The weight percent or less is preferable in that the activity of the catalyst is increased.

本発明の触媒のなかでも、銅酸化物、亜鉛酸化物、イリジウム酸化物の各酸化物の合計量に占める銅酸化物、亜鉛酸化物、イリジウム酸化物のそれぞれの含有率が、銅酸化物10〜60重量%、亜鉛酸化物30〜75重量%、イリジウム酸化物0.1〜20重量%である触媒は好ましく、銅酸化物15〜50重量%、亜鉛酸化物40〜70重量%、イリジウム酸化物0.5〜16重量%である触媒はより好ましく、銅酸化物25〜45重量%、亜鉛酸化物45〜60重量%、イリジウム酸化物1.0〜15重量%である触媒は特に好ましい。   Among the catalysts of the present invention, each content of copper oxide, zinc oxide and iridium oxide in the total amount of each oxide of copper oxide, zinc oxide and iridium oxide is 10% of copper oxide. Catalysts of ~ 60 wt%, zinc oxide 30-75 wt%, iridium oxide 0.1-20 wt% are preferred, copper oxide 15-50 wt%, zinc oxide 40-70 wt%, iridium oxidation The catalyst which is 0.5 to 16% by weight is more preferable, and the catalyst which is 25 to 45% by weight of copper oxide, 45 to 60% by weight of zinc oxide and 1.0 to 15% by weight of iridium oxide is particularly preferable.

本発明の触媒の製造方法には特に制限はないが、例えば、湿式法を用いて調製することができる。湿式法としては、含浸法および共沈法が挙げられるが、これらのなかでも共沈法は高い活性が得られる点で好ましい。   Although there is no restriction | limiting in particular in the manufacturing method of the catalyst of this invention, For example, it can prepare using a wet method. Examples of the wet method include an impregnation method and a coprecipitation method. Among these, the coprecipitation method is preferable in that high activity is obtained.

本発明の触媒の共沈法による製造方法を具体的に示すとすれば、例えば、銅、亜鉛、イリジウムの各金属元素の酸性塩水溶液を混合した水溶液を塩基性化合物の水溶液と接触させ、析出した析出物を洗浄・回収し、回収した析出物を乾燥した後、焼成する方法が挙げられる。   If the manufacturing method by the coprecipitation method of the catalyst of this invention is shown concretely, for example, the aqueous solution which mixed the acidic salt aqueous solution of each metal element of copper, zinc, and iridium will be contacted with the aqueous solution of a basic compound, and precipitation will be carried out. There is a method in which the deposited precipitate is washed and collected, and the collected precipitate is dried and then fired.

銅、亜鉛、イリジウムの各金属元素の酸性塩としては、塩基性化合物と反応させて得られる析出物を乾燥・焼成して各金属元素の酸化物を与えるものであれば特に制限はない。このような酸性塩としては、例えば、硝酸塩、硫酸塩、塩酸塩が挙げられる。   The acidic salt of each metal element of copper, zinc, and iridium is not particularly limited as long as the precipitate obtained by reacting with a basic compound is dried and fired to give an oxide of each metal element. Examples of such acidic salts include nitrates, sulfates, and hydrochlorides.

各金属元素の酸性塩と接触させる塩基性化合物としては、例えば、アルカリ金属またはアルカリ土類金属の炭酸塩、重炭酸塩が挙げられる。   Examples of the basic compound to be contacted with the acid salt of each metal element include carbonates and bicarbonates of alkali metals or alkaline earth metals.

銅、亜鉛、イリジウムの各金属元素の酸性塩水溶液を塩基性化合物の水溶液と接触させる方法としては、接触させて得られる水溶液のpHを6〜9の範囲となるように制御できれば特に制限はなく、例えば、塩基性化合物の水溶液と各金属元素の酸性塩の水溶液を同時に混合する方法、塩基性化合物の水溶液に各金属元素の酸性塩水溶液を混合した水溶液を加える方法、各金属元素の酸性塩水溶液を混合した溶液に塩基性化合物の水溶液を加える方法が挙げられる。   As a method of bringing the acidic salt aqueous solution of each metal element of copper, zinc, and iridium into contact with the aqueous solution of the basic compound, there is no particular limitation as long as the pH of the aqueous solution obtained by contact can be controlled to be in the range of 6-9. For example, a method of simultaneously mixing an aqueous solution of a basic compound and an aqueous solution of an acidic salt of each metal element, a method of adding an aqueous solution obtained by mixing an aqueous solution of an acidic salt of each metallic element to an aqueous solution of a basic compound, and an acidic salt of each metallic element The method of adding the aqueous solution of a basic compound to the solution which mixed aqueous solution is mentioned.

銅、亜鉛、イリジウムの各金属元素の酸性塩水溶液と塩基性化合物の水溶液とを接触させる温度は、約10〜約80℃の温度範囲であれば特に制限はない。   The temperature at which the acidic salt aqueous solution of each metal element of copper, zinc, and iridium is brought into contact with the aqueous solution of the basic compound is not particularly limited as long as it is in the temperature range of about 10 to about 80 ° C.

銅、亜鉛、イリジウムの各金属元素の酸性塩と塩基性化合物とを反応させて得られる析出物は、通常、室温〜50℃の温度範囲の水で洗浄し、次いで約100〜160℃の温度範囲で空気または不活性ガス雰囲気下で乾燥させる。   A precipitate obtained by reacting an acidic salt of each metal element of copper, zinc, and iridium with a basic compound is usually washed with water in a temperature range of room temperature to 50 ° C, and then a temperature of about 100 to 160 ° C. Dry in air or inert gas atmosphere in the range.

乾燥した後、焼成することにより本発明の触媒を得ることができる。焼成は約200℃〜470℃の温度範囲で行うことができる。焼成温度は450℃以下が好ましい。また、焼成温度が300℃以上であると該析出物の分解が充分行われる点で好ましい。焼成は、通常、空気または不活性ガスの存在下で行う。   After drying, the catalyst of the present invention can be obtained by calcination. Firing can be performed in a temperature range of about 200 ° C to 470 ° C. The firing temperature is preferably 450 ° C. or lower. Moreover, it is preferable that the firing temperature is 300 ° C. or higher in that the precipitate is sufficiently decomposed. Calcination is usually performed in the presence of air or an inert gas.

本発明の触媒には、本発明の効果を損なわない範囲であれば、銅、亜鉛、パラジウム、鉄、白金、ジルコニウムなどの金属元素、酸化珪素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化マグネシウムなどの酸化物から選ばれる少なくとも1種の成分を含むことは差し支えない。これらの成分のなかでも酸化アルミニウムは好ましい。酸化アルミニウムを触媒に含ませる場合、該酸化物は銅酸化物、亜鉛酸化物、イリジウム酸化物の合計量に対して0.1〜20重量%とすることができ、1〜10重量%とすることが好ましい。   In the catalyst of the present invention, metal elements such as copper, zinc, palladium, iron, platinum and zirconium, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, magnesium oxide and the like are within the range not impairing the effects of the present invention. It may contain at least one component selected from these oxides. Of these components, aluminum oxide is preferred. When aluminum oxide is included in the catalyst, the oxide can be 0.1 to 20% by weight based on the total amount of copper oxide, zinc oxide and iridium oxide, and is 1 to 10% by weight. It is preferable.

焼成後の触媒は、そのままメタノールの水蒸気改質反応に用いることができるが、焼成後の触媒を液相または気相中で水素、一酸化炭素等の還元性ガスで処理した後、メタノールの水蒸気改質反応に用いることもできる。   The catalyst after calcination can be used as it is in the steam reforming reaction of methanol, but after treating the catalyst after calcination with a reducing gas such as hydrogen or carbon monoxide in the liquid phase or gas phase, the steam of methanol It can also be used for the reforming reaction.

焼成して得られる本発明の触媒は、打錠成型または押し出し成型する他、ムライト、コージェライトなどのセラミック担体、シリカクロス、スポンジ状金属焼結多孔板等の上に担持せしめたハニカム状の形状にして反応に用いることもできる。   The catalyst of the present invention obtained by firing is formed into a honeycomb-like shape supported on a ceramic carrier such as mullite and cordierite, silica cloth, sponge-like metal sintered porous plate, etc. It can also be used for the reaction.

本発明における水素の製造方法は、本発明の触媒の存在下にメタノールと水(水蒸気)とを接触させることにより行われる。    The method for producing hydrogen in the present invention is carried out by bringing methanol and water (steam) into contact in the presence of the catalyst of the present invention.

メタノールの水蒸気改質反応の反応条件は、メタノールの転化率、生成する水素の収率などの所望値に応じ適宜決定することができる。   The reaction conditions for the steam reforming reaction of methanol can be appropriately determined according to desired values such as the conversion rate of methanol and the yield of hydrogen produced.

通常、メタノールと水の使用割合は、メタノール1モルに対して水0.5〜30モルとなるように用いられるが、好ましくはメタノール1モルに対して水1〜10モルである。   Usually, the ratio of methanol and water used is 0.5 to 30 mol of water with respect to 1 mol of methanol, but preferably 1 to 10 mol of water with respect to 1 mol of methanol.

反応温度としては、通常、150〜600℃、 好ましくは、反応温度200〜500℃である。   As reaction temperature, it is 150-600 degreeC normally, Preferably, reaction temperature is 200-500 degreeC.

反応圧力としては、通常、50kg/cm2G以下、好ましくは30kg/cm2G〜常圧である。 The reaction pressure is usually 50 kg / cm 2 G or less, preferably 30 kg / cm 2 G to normal pressure.

触媒に接触させるメタノールと水蒸気を含む混合ガスの空間速度は、50〜500,000hr-1、好ましくは100〜150,000hr-1の範囲である。 The space velocity of the mixed gas containing methanol and water vapor brought into contact with the catalyst is in the range of 50 to 500,000 hr −1 , preferably 100 to 150,000 hr −1 .

なお、本発明における水素の製造方法においては、必要に応じて水素、一酸化炭素、二酸化炭素、窒素、及び空気等のガスを共存させることもできる。
In the method for producing hydrogen in the present invention, a gas such as hydrogen, carbon monoxide, carbon dioxide, nitrogen, and air can coexist as necessary.

以下に、本発明を実施例によりさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(1)触媒の調製
[実施例1]
塩化イリジウム[ IrCl4 ] 2.15g、硝酸銅・三水和物 [Cu(NO3)2・3H2O]7.77g
硝酸亜鉛・六水和物 [Zn(NO3)2・6H2O]20.10g、硝酸アルミニウム・九水和物[Al(NO3)3・9H2O]3.68g、を純水200mlと混合し水溶液(A液)を調製した。一方、炭酸ナトリウム・十水和物[Na2CO3・10H2O]41.89gを純水200mlに溶解し水溶液(B液)を調製した。水400mlを入れたフラスコを用意し、室温でフラスコの水を攪拌しながら、これにA液およびB液を同一速度で滴下した。生成したスラリーを150分間攪拌した後、スラリー中の析出物を減圧濾過し、蒸留水にて十分に洗浄した。その後、回収した析出物を80℃に調節した乾燥器中で12時間乾燥させた後、大気下で温度350℃に調整した電気炉内で3時間焼成して酸化物を10.0g得た。酸化物を打錠成型、粉砕した後、粉砕物1mlを採取した。これを小型反応管に充填し、H2/N2=1/9の混合ガGHSV=6000 [hr-1]、350℃にて還元処理を行い、触媒を得た。
(1) Preparation of catalyst
[Example 1]
Iridium chloride [IrCl 4 ] 2.15 g, copper nitrate trihydrate [Cu (NO 3 ) 2 3H 2 O] 7.77 g
Zinc nitrate hexahydrate [Zn (NO 3 ) 2 · 6H 2 O] 20.10g, aluminum nitrate nonahydrate [Al (NO 3 ) 3 · 9H 2 O] 3.68g, mixed with pure water 200ml An aqueous solution (solution A) was prepared. On the other hand, 41.89 g of sodium carbonate decahydrate [Na 2 CO 3 · 10H 2 O] was dissolved in 200 ml of pure water to prepare an aqueous solution (solution B). A flask containing 400 ml of water was prepared, and liquid A and liquid B were added dropwise thereto at the same speed while stirring the water in the flask at room temperature. After the produced slurry was stirred for 150 minutes, the precipitate in the slurry was filtered under reduced pressure and washed thoroughly with distilled water. Thereafter, the collected precipitate was dried in a drier adjusted to 80 ° C. for 12 hours and then calcined in an electric furnace adjusted to a temperature of 350 ° C. in the atmosphere for 3 hours to obtain 10.0 g of oxide. After the oxide was tableted and pulverized, 1 ml of pulverized material was collected. This was filled into a small reaction tube and subjected to reduction treatment at a mixed gas GHSV = 6000 [hr −1 ] of H 2 / N 2 = 1/9 at 350 ° C. to obtain a catalyst.

[実施例2]
A液組成として、塩化イリジウム[ IrCl4 ] 1.29g、硝酸銅・三水和物 [Cu(NO3)2・3H2O]9.54g、硝酸亜鉛・六水和物 [Zn(NO3)2・6H2O]20.14g、硝酸アルミニウム・九水和物[Al(NO3)3・9H2O]3.77g B液組成として炭酸ナトリウム十水和物[Na2CO3・10H2O]42.57gを含む液をそれぞれ調製し、実施例1と同様な方法で酸化物を得た。
[Example 2]
As the composition of liquid A, 1.29 g of iridium chloride [IrCl 4 ], copper nitrate trihydrate [Cu (NO 3 ) 2 · 3H 2 O] 9.54 g, zinc nitrate hexahydrate [Zn (NO 3 ) 2・ 6H 2 O] 20.14g, Aluminum nitrate nonahydrate [Al (NO 3 ) 3・ 9H 2 O] 3.77g Sodium carbonate decahydrate [Na 2 CO 3 · 10H 2 O] 42.57 as B liquid composition A liquid containing g was prepared, and an oxide was obtained in the same manner as in Example 1.

[実施例3]
A液組成として、塩化イリジウム[ IrCl4 ] 0.16g、硝酸銅・三水和物 [Cu(NO3)2・3H2O]11.82g、硝酸亜鉛・六水和物 [Zn(NO3)2・6H2O]20.10g、硝酸アルミニウム・九水和物[Al(NO3)3・9H2O]3.68g B液組成として炭酸ナトリウム十水和物[Na2CO3・10H2O]43.49gを含む液をそれぞれ調製し、実施例1と同様な方法で酸化物を得た。
[Example 3]
As the composition of liquid A, 0.16 g of iridium chloride [IrCl 4 ], copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] 11.82 g, zinc nitrate hexahydrate [Zn (NO 3 ) 2・ 6H 2 O] 20.10g, Aluminum nitrate nonahydrate [Al (NO 3 ) 3・ 9H 2 O] 3.68g Sodium carbonate decahydrate [Na 2 CO 3 · 10H 2 O] 43.49 as B liquid composition A liquid containing g was prepared, and an oxide was obtained in the same manner as in Example 1.

[実施例4]
A液組成として、塩化イリジウム[ IrCl4 ] 0.08g、硝酸銅・三水和物 [Cu(NO3)2・3H2O]11.98g、硝酸亜鉛・六水和物 [Zn(NO3)2・6H2O]20.10g、硝酸アルミニウム・九水和物[Al(NO3)3・9H2O]3.68g B液組成として炭酸ナトリウム十水和物[Na2CO3・10H2O]43.56gを含む液をそれぞれ調製し、実施例1と同様な方法で酸化物を得た。
[Example 4]
As the composition of liquid A, 0.08 g of iridium chloride [IrCl 4 ], copper nitrate trihydrate [Cu (NO 3 ) 2 · 3H 2 O] 11.98 g, zinc nitrate hexahydrate [Zn (NO 3 ) 2・ 6H 2 O] 20.10g, Aluminum nitrate nonahydrate [Al (NO 3 ) 3・ 9H 2 O] 3.68g Sodium carbonate decahydrate [Na 2 CO 3 · 10H 2 O] 43.56 as B liquid composition A liquid containing g was prepared, and an oxide was obtained in the same manner as in Example 1.

[比較例1]
イリジウムを含まない触媒として、A液組成として硝酸銅・三水和物 [Cu(NO3)2・3H2O] 12.15g、硝酸亜鉛・六水和物[Zn(NO3)2・6H2O]20.10g、硝酸アルミニウム・九水和物[Al(NO33・9H2O]3.68g、B液組成として炭酸ナトリウム十水和物[Na2CO3・10H2O]43.63gを含む液をそれぞれ調製し、実施例1と同様な方法で酸化物を得た。
[Comparative Example 1]
As a catalyst that does not contain iridium, the composition of liquid A is copper nitrate trihydrate [Cu (NO 3 ) 2 · 3H 2 O] 12.15 g, zinc nitrate hexahydrate [Zn (NO 3 ) 2 · 6H 2 O] 20.10g, Aluminum nitrate nonahydrate [Al (NO 3 ) 3 • 9H2O] 3.68g, B solution containing sodium carbonate decahydrate [Na 2 CO 3 · 10H 2 O] 43.63g Were prepared, and oxides were obtained in the same manner as in Example 1.

[比較例2]
イリジウムを含まない触媒として、A液組成として硝酸銅・三水和物 [Cu(NO3)2・3H2O] 7.59g、硝酸亜鉛・六水和物[Zn(NO3)2・6H2O]25.59g、硝酸アルミニウム・九水和物[Al(NO33・9H2O]3.68g、B液組成として炭酸ナトリウム十水和物[Na2CO3・10H2O]43.48gを含む液をそれぞれ調製し、実施例1と同様な方法で酸化物を得た。
[Comparative Example 2]
As a catalyst that does not contain iridium, the composition of liquid A is copper nitrate trihydrate [Cu (NO 3 ) 2 · 3H 2 O] 7.59 g, zinc nitrate hexahydrate [Zn (NO 3 ) 2 · 6H 2 O] 25.59g, Aluminum nitrate nonahydrate [Al (NO 3 ) 3 · 9H2O] 3.68g, B solution composition containing sodium carbonate decahydrate [Na 2 CO 3 · 10H 2 O] 43.48g Were prepared, and oxides were obtained in the same manner as in Example 1.

2)活性試験
上記の方法で調製した触媒について、メタノールの水蒸気改質反応の活性を測定した。原料として59.7重量%のメタノール水溶液H2O/CH3OH=1.2(モル/モル)を用い、O2/CH3OH=0.1(モル/モル)となるように空気を導入した。反応条件として反応温度250℃、常圧下にて、前記原料であるメタノール水溶液の供給速度を単位触媒量あたり60(L-solv./L-cat・h)にて行った。反応により生成したガスはガスクロマトグラフィーにて成分を測定した。反応初期のメタノール転化率と反応開始後48時間のメタノール転化率より劣化率を求めた。
2) Activity test About the catalyst prepared by said method, the activity of the steam reforming reaction of methanol was measured. A 59.7 wt% aqueous methanol solution H 2 O / CH 3 OH = 1.2 (mol / mol) was used as a raw material, and air was introduced so that O 2 / CH 3 OH = 0.1 (mol / mol). The reaction conditions were a reaction temperature of 250 ° C. and normal pressure, and the feed rate of the raw material methanol aqueous solution was 60 (L-solv./L-cat·h) per unit catalyst amount. The components of the gas produced by the reaction were measured by gas chromatography. The deterioration rate was determined from the methanol conversion rate at the initial stage of the reaction and the methanol conversion rate 48 hours after the start of the reaction.

調製した触媒の組成および活性試験結果を表1に示す。
表1に示したように、本発明の触媒は活性劣化が小さい。
The composition and activity test results of the prepared catalyst are shown in Table 1.
As shown in Table 1, the catalyst of the present invention has little activity deterioration.

Figure 2005138036
Figure 2005138036

Claims (6)

銅酸化物、亜鉛酸化物およびイリジウム酸化物を含むメタノールの水蒸気改質触媒 Methanol steam reforming catalyst containing copper oxide, zinc oxide and iridium oxide 請求項1に記載の触媒において、銅酸化物、亜鉛酸化物およびイリジウム酸化物の各酸化物の合計量に占めるイリジウム酸化物の含有率が0.1〜20重量%である、メタノールの水蒸気改質触媒 The catalyst according to claim 1, wherein the content of iridium oxide in the total amount of each of the oxides of copper oxide, zinc oxide and iridium oxide is 0.1 to 20 wt%. Quality catalyst 請求項1に記載の触媒において、銅酸化物、亜鉛酸化物およびイリジウム酸化物の各酸化物の合計量に占めるイリジウム酸化物の含有率が0.5〜16重量%である、メタノールの水蒸気改質触媒 The catalyst according to claim 1, wherein the content of iridium oxide in the total amount of copper oxide, zinc oxide and iridium oxide is 0.5 to 16% by weight. Quality catalyst 請求項1に記載の触媒において、銅酸化物、亜鉛酸化物およびイリジウム酸化物の各酸化物の合計量に占めるイリジウム酸化物の含有率が1.0〜15重量%である、メタノールの水蒸気改質触媒 The catalyst according to claim 1, wherein the content of iridium oxide in the total amount of each of the oxides of copper oxide, zinc oxide and iridium oxide is 1.0 to 15 wt%. Quality catalyst 請求項1〜4のいずれか1項に記載の触媒が共沈法により調製されたものである、メタノールの水蒸気改質触媒 A steam reforming catalyst for methanol, wherein the catalyst according to any one of claims 1 to 4 is prepared by a coprecipitation method. 請求項1〜4のいずれか1項に記載の触媒の存在下で、メタノールを水蒸気改質することを特徴とする水素の製造方法 A method for producing hydrogen, comprising subjecting methanol to steam reforming in the presence of the catalyst according to any one of claims 1 to 4.
JP2003377805A 2003-11-07 2003-11-07 Catalyst for reforming methanol with steam and method for producing hydrogen by steam reforming of methanol employing the same Pending JP2005138036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377805A JP2005138036A (en) 2003-11-07 2003-11-07 Catalyst for reforming methanol with steam and method for producing hydrogen by steam reforming of methanol employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377805A JP2005138036A (en) 2003-11-07 2003-11-07 Catalyst for reforming methanol with steam and method for producing hydrogen by steam reforming of methanol employing the same

Publications (1)

Publication Number Publication Date
JP2005138036A true JP2005138036A (en) 2005-06-02

Family

ID=34688388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377805A Pending JP2005138036A (en) 2003-11-07 2003-11-07 Catalyst for reforming methanol with steam and method for producing hydrogen by steam reforming of methanol employing the same

Country Status (1)

Country Link
JP (1) JP2005138036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403492A (en) * 2020-12-01 2021-02-26 中科院过程工程研究所南京绿色制造产业创新研究院 Catalyst with good low-temperature activity and high efficiency and stability, and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403492A (en) * 2020-12-01 2021-02-26 中科院过程工程研究所南京绿色制造产业创新研究院 Catalyst with good low-temperature activity and high efficiency and stability, and preparation method and application thereof
CN112403492B (en) * 2020-12-01 2023-03-21 中科南京绿色制造产业创新研究院 Catalyst with good low-temperature activity and high efficiency and stability, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100400591B1 (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
US20090048355A1 (en) PRODUCTION OF Cu/Zn/Al CATALYSTS VIA THE FORMATE ROUTE
CN102105222A (en) Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
US20070249496A1 (en) Catalyst for Production of Hydrogen
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
EA014214B1 (en) Supported cobalt catalysts for the fischer tropsch synthesis
JP2009533468A (en) Method for hydrogenating aldehydes
US6926881B2 (en) Process for producing hydrogen-containing gas
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP4133432B2 (en) Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst
US20040147394A1 (en) Catalyst for production of hydrogen
JP2005138036A (en) Catalyst for reforming methanol with steam and method for producing hydrogen by steam reforming of methanol employing the same
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JPH0419901B2 (en)
JP2002079102A (en) Catalyst for shift reaction and reaction method
JP3727257B2 (en) Methanol steam reforming catalyst and hydrogen production method using the same
JP4092538B2 (en) Method for producing hydrogen-containing gas
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
JP4038651B2 (en) Methanol reforming catalyst and method for producing hydrogen-containing gas
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP2012223768A (en) Catalyst and method for decomposing ammonia
JPH0347894B2 (en)
JP4035694B2 (en) Method for producing hydrogen-containing gas
JP2023167855A (en) Acetone hydrogenation catalyst and method for producing isopropanol