JP2005137969A - Organic wastewater treatment apparatus - Google Patents

Organic wastewater treatment apparatus Download PDF

Info

Publication number
JP2005137969A
JP2005137969A JP2003374471A JP2003374471A JP2005137969A JP 2005137969 A JP2005137969 A JP 2005137969A JP 2003374471 A JP2003374471 A JP 2003374471A JP 2003374471 A JP2003374471 A JP 2003374471A JP 2005137969 A JP2005137969 A JP 2005137969A
Authority
JP
Japan
Prior art keywords
sludge
treatment
tank
aeration tank
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003374471A
Other languages
Japanese (ja)
Inventor
Hisanori Fujimoto
尚則 藤本
Koichi Watanabe
幸一 渡辺
Keitaro Watanabe
圭太郎 渡辺
Hisahiro Kobori
寿浩 小掘
Hitoshi Kumagai
仁志 熊谷
Ritsuko Ono
律子 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Cosmo Engineering Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Cosmo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Cosmo Engineering Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2003374471A priority Critical patent/JP2005137969A/en
Publication of JP2005137969A publication Critical patent/JP2005137969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic wastewater treatment apparatus which achieves a higher reduction of surplus sludge. <P>SOLUTION: The organic wastewater treatment apparatus comprises an aeration tank which passes organic wastewater to bring the wastewater in contact with floating microbial sludge to biologically treating the wastewater; a submerged filter bed tank which has a packed bed consisting of a filler the surface of which has deposits of activated sludge and passes the treated water of the aeration tank through the packed bed to biologically treat it, a sludge separator which separates sludge from the treated water of the submerged filter bed tank and from back washing water generated when a submerged filter bed is back washed, a sludge solubilization device which solubilizes the sludge separated by the sludge separator; and a means for returning sludge-solubilized liquid after the solubilization treatment to the aeration tank. The organic wastewater treatment apparatus comprises the aeration tank which passes the organic wastewater to bring the wastewater in contact with the floating microbial sludge to biologically treat the wastewater, a fluidized bed tank which contains the filler the surface of which has deposits of the activated sludge and passes the treated water of the aeration tank to aerate the treated water together with the filling material while mixing them, the sludge separator which separates sludge from the treated water of the fluidized bed tank, the sludge solubilization device which solubilizes the sludge separated by the sludge separator, and the means for returning the sludge-solubilized liquid after the solubilization treatment to the aeration tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機性排水を生物処理する際に発生する余剰汚泥量を削減するための有機性排水の処理装置に関する。   The present invention relates to an organic wastewater treatment apparatus for reducing the amount of excess sludge generated when biologically treating organic wastewater.

有機性排水の生物学的排水処理としては、活性汚泥法、浸漬ろ床法及び流動床法が主流をなしている。活性汚泥法では、曝気槽において被処理水と微生物汚泥を混合曝気し、曝気槽からの汚泥混合液を汚泥分離槽で分離して処理水を得る。一方、浸漬ろ床法では、活性汚泥が表面に着生した充填材が浸漬されている浸漬ろ床槽に被処理水を通液し、生物学的に処理して処理水を得る。流動床法では、当該充填材を含む槽内に被処理水を通液し、生物学的に処理して処理水を得る。活性汚泥法では、余剰汚泥が非常に多いのが最大の問題点である。   As biological wastewater treatment of organic wastewater, the activated sludge method, the submerged filter bed method and the fluidized bed method are mainly used. In the activated sludge method, treated water and microbial sludge are mixed and aerated in an aeration tank, and a sludge mixed solution from the aeration tank is separated in a sludge separation tank to obtain treated water. On the other hand, in the submerged filter bed method, water to be treated is passed through a submerged filter bed in which a filler having activated sludge deposited on the surface is immersed and biologically treated to obtain treated water. In the fluidized bed method, treated water is passed through a tank containing the filler and biologically treated to obtain treated water. In the activated sludge method, the biggest problem is that there is a lot of excess sludge.

一方、浸漬ろ床槽では、一般に、有機性排水中の有機物を分解する微生物と微生物を補食する原生動物、更に原生動物を補食する後生動物が混在し、高次の食物連鎖が形成されるため、汚泥発生量が少なくなる。しかし、浸漬ろ床槽内では、急激な酸素消費が生じるとともに、急激な細菌類の増殖によりろ床が目詰まりを起し、ろ床槽内での気液接触効率が低下する結果、処理水の水質を悪化させるという問題がある。また、ろ床上に堆積した活性汚泥を除去するための逆洗浄操作が高い頻度で必要となる。   On the other hand, a submerged filter bed generally contains a mixture of microorganisms that decompose organic matter in organic wastewater, protozoa that supplement the microorganisms, and metazoans that supplement the protozoa, forming a higher-order food chain. Therefore, the amount of sludge generated is reduced. However, in the submerged filter bed, rapid oxygen consumption occurs and the filter bed is clogged due to rapid bacterial growth, resulting in a decrease in gas-liquid contact efficiency in the filter bed tank. There is a problem of deteriorating water quality. Moreover, the reverse washing operation for removing the activated sludge accumulated on the filter bed is required at a high frequency.

そこで、これらの活性汚泥法と浸漬ろ床法を組み合わせた処理法(特許文献1参照)が提案されている。具体的には、生物処理槽として浸漬ろ床槽と曝気槽との2槽をこの順に直列に配置し、まず、浸漬ろ床槽で有機性排水を生物処理した後、得られた浸漬ろ床処理水を曝気槽に通液して更に生物処理を行う。当該処理法は、単なる活性汚泥法に比べて発生汚泥量の減量化を図ることができる。   Then, the processing method (refer patent document 1) which combined these activated sludge methods and the immersion filter bed method is proposed. Specifically, two tanks, an immersion filter bed tank and an aeration tank, are arranged in series in this order as biological treatment tanks. First, biological wastewater is biologically treated in the immersion filter bed tank, and then the obtained filter bed is obtained. The treated water is passed through the aeration tank for further biological treatment. The treatment method can reduce the amount of generated sludge as compared with a simple activated sludge method.

しかし、浸漬ろ床法では、充填材に着生した微生物は非浮遊性であり、このような非浮遊性の微生物は有機物の分解能力が浮遊性の微生物に比較して劣るため、最初に有機性排水を非浮遊性の微生物に接触させる上記処理法では、未だかなりの余剰汚泥が発生する。   However, in the submerged filter bed method, the microorganisms that have grown on the filler are non-floating, and such non-floating microorganisms are less organic than the floating microorganisms, so organic matter is first decomposed. In the above treatment method in which the effluent is brought into contact with non-floating microorganisms, a considerable amount of excess sludge is still generated.

一方、余剰汚泥の発生を減少させる方法として、有機性排水処理工程に余剰汚泥の一部又は全部を可溶化する可溶化処理手段を設け、その可溶化をアルカリ剤による処理にホモジナイザー、ミキサー等による処理を組み合わせて行う方法(特許文献2参照)が知られている。   On the other hand, as a method of reducing the generation of surplus sludge, a solubilization means for solubilizing a part or all of the surplus sludge is provided in the organic wastewater treatment process, and the solubilization is treated with an alkaline agent by using a homogenizer, a mixer or the like. A method of performing processing in combination (see Patent Document 2) is known.

特開2000−229297号公報JP 2000-229297 A 特開2002−113487号公報JP 2002-113487 A

従って、本発明は、より高い余剰汚泥の削減することができる有機性排水処理装置を提供することを目的とする。   Therefore, an object of this invention is to provide the organic waste water treatment equipment which can reduce a higher surplus sludge.

本発明者らは、斯かる実情に鑑み、効率よく余剰汚泥を削減することが可能な有機性排水処理装置について鋭意検討した結果、排水処理装置の生物処理槽として曝気槽及び浸漬ろ床槽又は流動床槽の2つをこの順に設置して、有機性排水を有機物の分解能力の高い浮遊性微生物に最初に接触させることにより、安定して余剰汚泥が削減できることを見出し、本発明を完成させた。   In light of such circumstances, the present inventors have made extensive studies on an organic wastewater treatment apparatus that can efficiently reduce excess sludge. As a result, an aeration tank and a submerged filter bed tank or a biological treatment tank for a wastewater treatment apparatus It was found that surplus sludge can be stably reduced by installing two fluidized bed tanks in this order and bringing organic wastewater into contact with floating microorganisms with high organic matter decomposing ability first. It was.

すなわち、本発明は、有機性排水を通液して浮遊の微生物汚泥と接触させ生物学的に処理する曝気槽、活性汚泥が表面に着生した充填材からなる充填層を有し、当該曝気槽の処理水をこの充填層に通液して生物学的に処理する浸漬ろ床槽、当該浸漬ろ床槽の処理水及び当該浸漬ろ床を逆洗した際に発生する逆洗水から汚泥を分離する汚泥分離装置、当該汚泥分離装置で分離された汚泥を可溶化処理する汚泥可溶化装置、並びに可溶化処理後の汚泥可溶化液を前記曝気槽に返送する手段を備えた有機性排水処理装置を提供する。   That is, the present invention has an aeration tank in which organic wastewater is passed through and brought into contact with floating microbial sludge for biological treatment, a packed bed made of a filler on which activated sludge is deposited, and the aeration Sludge from the submerged filter bed for biological treatment by passing the treated water of the tank through the packed bed, the treated water of the submerged filter bed and the backwash water generated when the submerged filter bed is backwashed Sludge separation device for separating the sludge, sludge solubilization device for solubilizing the sludge separated by the sludge separation device, and organic waste water provided with means for returning the sludge solubilized liquid after the solubilization treatment to the aeration tank A processing device is provided.

本発明はまた、有機性排水を通液して浮遊の微生物汚泥と接触させ生物学的に処理する曝気槽、活性汚泥が表面に着生した充填材を含み、当該曝気槽の処理水を通液してこの充填材と共に混合曝気処理する流動床槽、当該流動床槽の処理水から汚泥を分離する汚泥分離装置、当該汚泥離装置で分離された汚泥を可溶化処理する汚泥可溶化装置、及び可溶化処理後の汚泥可溶化液を前記曝気槽に返送する手段を備えた有機性排水処理装置を提供する。   The present invention also includes an aeration tank in which organic wastewater is passed through and brought into contact with floating microbial sludge for biological treatment, and a filler on which activated sludge is deposited, and the treated water in the aeration tank is passed through. A fluidized bed tank that is mixed and aerated with the filler, a sludge separator that separates sludge from the treated water of the fluidized bed tank, a sludge solubilizer that solubilizes sludge separated by the sludge separator, And an organic wastewater treatment apparatus comprising means for returning the solubilized sludge solubilized liquid to the aeration tank.

本発明により、処理水の水質を悪化させることなく、余剰汚泥発生量を削減することができる。また、アルカリ剤による処理にホモジナイザー等による処理を組み合わせた汚泥の可溶化処理を行うことにより、余剰汚泥の発生を更に少なくすることができる。更に、流動床槽を用いる本発明の排水処理装置では逆洗浄操作が不要のため、排水処理が簡便となる。   According to the present invention, it is possible to reduce the amount of excess sludge generated without deteriorating the quality of treated water. Moreover, the generation | occurrence | production of excess sludge can further be reduced by performing the solubilization process of the sludge which combined the process by a homogenizer etc. with the process by an alkaline agent. Furthermore, in the wastewater treatment apparatus of the present invention using a fluidized bed tank, the backwashing operation is unnecessary, so that the wastewater treatment becomes simple.

本発明の有機性排水処理装置は、余剰汚泥を発生する各種の有機性排水の生物処理に適用することができる。本発明の有機性排水処理装置の第1実施形態を図1に示す。   The organic wastewater treatment apparatus of the present invention can be applied to biological treatment of various organic wastewaters that generate excess sludge. 1st Embodiment of the organic waste water treatment apparatus of this invention is shown in FIG.

排水ライン1から有機性排水が曝気槽14に通液され、曝気槽14において曝気されて好気性生物処理を受ける。曝気槽14の微生物汚泥は、原生動物が少なく浮遊性の微生物が優勢に生息する。   Organic wastewater is passed from the drainage line 1 to the aeration tank 14 and aerated in the aeration tank 14 to undergo aerobic biological treatment. The microbial sludge in the aeration tank 14 has few protozoa and is predominantly populated with floating microorganisms.

曝気槽の処理水は、ライン2を経て浸漬ろ床槽15に流入する。この浸水ろ床槽15の内部に微生物が表面に着生した充填材が充填され、充填層が形成されている。充填材としては、各種の材質、形状のものが使用でき、円筒型網目状充填材などが挙げられる。例えば、円筒型不織布の充填材は、プロピレン繊維の不織布を中空円筒状に成型したもので、充填層では、この充填材円筒の向きが順次直行するようにして井桁状に積み上げて形成されている。すなわち、1つの層では、円筒が同一の方向を向くようにして並べ、その上の層では、これに直行する方向に円筒が向くように並べてある。   The treated water in the aeration tank flows into the immersion filter bed tank 15 via the line 2. The inside of the submerged filter bed tank 15 is filled with a filler on which microorganisms are deposited, and a packed bed is formed. As the filler, various materials and shapes can be used, and examples thereof include a cylindrical mesh filler. For example, the filler of the cylindrical nonwoven fabric is formed by molding a nonwoven fabric of propylene fiber into a hollow cylindrical shape, and the packed layer is formed by stacking in a grid pattern so that the direction of the filler cylinder is perpendicular to each other. . That is, in one layer, the cylinders are arranged in the same direction, and in the upper layer, the cylinders are arranged in a direction perpendicular to the cylinder.

充填層の底部には、散気管が設置され、ライン13から空気が槽内に供給されることにより、浸漬ろ床槽15内が曝気される。散気管から供給された気泡は、充填層内を上昇する。このため、気泡の上昇速度が空塔に比較して低下し、酸素溶解効率が上昇する。特に、充填材が円筒型網目状のものである場合には、この充填材が気泡を細分化し、気液接触面積を増大させることができ、酸素溶解効率を著しく高めることができる。流入水は、充填層の底部より流入し、充填層を上昇し、上部より処理水が放流される。浸漬ろ床槽15で処理された浸漬ろ床処理水は、ライン3を経て、汚泥分離槽17に流入する。   A diffuser pipe is installed at the bottom of the packed bed, and air is supplied from the line 13 into the tank, whereby the inside of the submerged filter bed 15 is aerated. Bubbles supplied from the air diffuser rise in the packed bed. For this reason, the rising speed of the bubbles is lower than that of the empty tower, and the oxygen dissolution efficiency is increased. In particular, when the filler is a cylindrical mesh, the filler can subdivide the bubbles, increase the gas-liquid contact area, and remarkably increase the oxygen dissolution efficiency. Inflow water flows in from the bottom of the packed bed, ascends the packed bed, and treated water is discharged from the top. The immersion filter bed treated water treated in the immersion filter tank 15 flows into the sludge separation tank 17 via the line 3.

また、浸漬ろ床槽では、微生物の増殖により充填材の目詰まりや気液接触効率の低下を防止するために、充填材の表面に堆積した活性汚泥を剥離する逆洗浄操作が定期的に行われる。具体的には、充填材の底部より洗浄水又は空気がライン4より急激に流入し、浸漬ろ床の上部よりオーバーフローした後、ライン5を通して逆洗水貯槽16に回収される。本明細書において、充填材の表面に着生又は堆積した「活性汚泥」には、非浮遊性の微生物、これを補食する浸漬ろ床に生息する原生動物及び当該原生動物を補食する後生動物が含まれる。   In addition, in the submerged filter bed tank, in order to prevent clogging of the filler and deterioration of gas-liquid contact efficiency due to the growth of microorganisms, a reverse cleaning operation is periodically performed to remove the activated sludge accumulated on the surface of the filler. Is called. Specifically, the washing water or air rapidly flows from the bottom of the filler from the line 4 and overflows from the upper part of the submerged filter bed, and then is collected in the backwash water storage tank 16 through the line 5. In this specification, the “activated sludge” that has grown or accumulated on the surface of the filler includes non-floating microorganisms, protozoa that inhabit the submerged filter bed that supplements this, and metazoites that supplement the protozoa. Includes animals.

回収後の逆洗水は、多量の余剰汚泥を含み、ライン6から一定の流量でライン3に合流し、汚泥分離槽17に流入し、そこで余剰汚泥と処理水とに分離される。処理水はライン7を経て放流される。汚泥分離槽17としては、汚泥分離に多用されている沈降分離槽、加圧浮上分離槽、膜分離装置などが挙げられ、沈降分離槽又は加圧浮上分離槽が好ましい。   The backwash water after recovery contains a large amount of excess sludge, joins the line 3 at a constant flow rate from the line 6 and flows into the sludge separation tank 17, where it is separated into excess sludge and treated water. The treated water is discharged via line 7. Examples of the sludge separation tank 17 include a sedimentation separation tank, a pressurized flotation separation tank, and a membrane separation apparatus that are frequently used for sludge separation, and a sedimentation separation tank or a pressurized flotation separation tank is preferable.

ライン3のSS(水中懸濁物質)を含む処理水とライン6の余剰汚泥を含む逆洗水には、必要に応じて凝集剤が添加される。これにより、SS分が凝集され、余剰汚泥フロックが大きくなり、その結果、余剰汚泥が汚泥分離層17にて自然沈降する。沈殿汚泥は、通常、固形物濃度約0.5〜2.5%で得られる。   A flocculant is added to the treated water containing SS (substance suspended in water) in line 3 and the backwash water containing excess sludge in line 6 as necessary. As a result, the SS component is agglomerated and the surplus sludge flocs become larger. As a result, the surplus sludge naturally settles in the sludge separation layer 17. The precipitated sludge is usually obtained at a solid concentration of about 0.5 to 2.5%.

そして、ライン8を通過した余剰汚泥の一部又は全部は、ライン9を通して汚泥可溶化装置に流入し、汚泥可溶化処理される。この可溶化処理工程は必須であるものの、汚泥の全量又は一部が処理されればよい。また、ライン8を通過した余剰汚泥の一部は、ライン9を通らずに更に脱水機などにより汚泥濃縮された後、ライン11より余剰汚泥19として排出されてもよい。更に、ライン9を通過する余剰汚泥は、ライン9の中途で公知の汚泥濃縮器、例えば汚泥沈殿槽、脱水機などにより濃縮され、余剰汚泥の固形物濃度が高まることが望ましい。濃縮汚泥の固形物濃度は、通常約2%である。   And a part or all of the surplus sludge which passed the line 8 flows in into a sludge solubilizer through the line 9, and is sludge solubilized. Although this solubilization treatment step is essential, it is sufficient that the entire amount or a part of the sludge is treated. Further, a part of the excess sludge that has passed through the line 8 may be discharged as excess sludge 19 from the line 11 after being further concentrated by a dehydrator or the like without passing through the line 9. Furthermore, it is desirable that surplus sludge passing through the line 9 is concentrated in the middle of the line 9 by a known sludge concentrator, for example, a sludge settling tank, a dehydrator or the like, so that the solids concentration of the surplus sludge is increased. The solids concentration of the concentrated sludge is usually about 2%.

汚泥の可溶化処理は、アルカリ剤による処理と共に、ホモジナイザーによる処理、ミキサーによる処理、ミルによる処理、高圧と瞬間的な減圧膨脹による処理及び酸化剤による処理から選ばれる一種以上の処理によって行うことが好ましい。即ち、アルカリ剤による処理によって、汚泥を構成する微生物体の細胞を化学的に破壊すると共に、ホモジナイザーによる処理等によって、汚泥を構成する微生物体の細胞を物理的にも破壊する。アルカリ剤による処理に、ミルやミキサーのような強力な摩砕力を有する処理を組み合わせることによってアルカリ剤の使用量を軽減することができる。可溶化を促進するため、50〜100℃に加温してもよい。   The sludge solubilization treatment may be performed by one or more treatments selected from treatment with an alkali agent, treatment with a homogenizer, treatment with a mixer, treatment with a mill, treatment with high pressure and instantaneous decompression, and treatment with an oxidizing agent. preferable. That is, the cells of the microorganisms constituting the sludge are chemically destroyed by the treatment with the alkaline agent, and the cells of the microorganisms constituting the sludge are also physically destroyed by the treatment with the homogenizer. The amount of the alkali agent used can be reduced by combining the treatment with the alkali agent with a treatment having a strong grinding force such as a mill or a mixer. In order to promote solubilization, it may be heated to 50 to 100 ° C.

アルカリ剤による処理に用いるアルカリ剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カルシウム、炭酸カルシウム、酸化カルシウム等が挙げられ、水酸化ナトリウム又は酸化カルシウムが好ましい。アルカリ剤の添加量は、可溶化処理する余剰汚泥に対して0.005〜0.1Nが好ましく、特に好ましくは0.01〜0.05Nである。   Examples of the alkali agent used for the treatment with the alkali agent include sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, calcium hydroxide, calcium carbonate, calcium oxide and the like, and sodium hydroxide or calcium oxide is preferable. The addition amount of the alkaline agent is preferably 0.005 to 0.1N, particularly preferably 0.01 to 0.05N, with respect to the excess sludge to be solubilized.

ホモジナイザー、ミキサー、ミルによる処理は、例えば、アルカリ剤が添加された余剰汚泥をホモジナイザー等によって処理することにより行われる。ホモジナイザー等としては、汚泥を構成する微生物体の細胞に機械的なせん断応力や摩砕力を加えることができ、該細胞の細胞膜、細胞壁を破壊できるものであれば、公知のものを適宜使用できる。具体的には、配管に邪魔板を入れたものに高速でアルカリ剤の添加された余剰汚泥を通過させたり、フードミキサーのように鋭利な刃先をアルカリ剤の添加された余剰汚泥中で高速で回転させたり、食物を粉にするミルのように高速で回転する2枚の円盤の狭い間を通過させるものなどが挙げられる。   The processing by a homogenizer, a mixer, and a mill is performed, for example, by processing excess sludge to which an alkaline agent has been added using a homogenizer or the like. As a homogenizer or the like, any known one can be used as long as it can apply mechanical shear stress or grinding force to the cells of the microorganisms constituting the sludge and can destroy the cell membrane and cell wall of the cells. . Specifically, let the excess sludge added with alkaline agent pass through a pipe with a baffle plate at high speed, or sharp edge like a food mixer at high speed in excess sludge added with alkaline agent. One that rotates or passes through a narrow space between two disks that rotate at high speed, such as a mill that turns food into powder.

アルカリ剤による処理とホモジナイザー等による処理を組み合わせた可溶化処理の処理時間は、一般に1分〜5時間、好ましくは1分〜3時間、特に好ましくは2分〜2時間である。アルカリ剤による処理のみの可溶化処理に比べて格段に可溶化処理時間を短縮できる。   The treatment time of the solubilization treatment combining treatment with an alkaline agent and treatment with a homogenizer or the like is generally 1 minute to 5 hours, preferably 1 minute to 3 hours, particularly preferably 2 minutes to 2 hours. The solubilization time can be significantly shortened as compared with the solubilization treatment only with the treatment with the alkali agent.

高圧と瞬間的な減圧膨脹による処理は、アルカリ剤の添加された余剰汚泥を、例えば、70〜180kg/cm2の高圧に加圧し、該高圧の加圧から瞬間的に減圧し、この減圧によって瞬間的に汚泥を膨脹させ、汚泥を構成する微生物体の細胞を破壊することにより行われる。この処理は、例えば、アルカリ剤の添加された余剰汚泥を、邪魔板を入れた配管に高圧で加圧挿入し、該高圧に加圧された配管から、常圧タンクに放出して行うことができる。アルカリ剤による処理と高圧と瞬間的な減圧膨脹による処理を組み合わせた可溶化処理の処理時間は、一般に1〜60分間、好ましくは5〜30分間である。アルカリ剤による処理のみの可溶化処理に比べて格段に可溶化処理時間を短縮できる。 In the treatment by high pressure and instantaneous decompression expansion, the excess sludge to which the alkali agent is added is pressurized to a high pressure of, for example, 70 to 180 kg / cm 2 , and the pressure is reduced instantaneously from the high pressure. This is done by instantaneously expanding the sludge and destroying the cells of the microorganisms that make up the sludge. This treatment may be performed, for example, by inserting excess sludge to which an alkali agent is added into a pipe containing a baffle plate at a high pressure, and then discharging the sludge from the pressurized pipe to a normal pressure tank. it can. The treatment time of the solubilization treatment combining treatment with an alkaline agent, treatment with high pressure and instantaneous decompression expansion is generally 1 to 60 minutes, preferably 5 to 30 minutes. The solubilization time can be significantly shortened as compared with the solubilization treatment only with the treatment with the alkali agent.

酸化剤による処理に用いる酸化剤としては、酸化力が強く、そのものが分解後、活性汚泥にとって無害なものに変化する過酸化水素、過酸化ナトリウム、過炭酸ナトリウム等が好ましい。この酸化剤による処理は、余剰汚泥にアルカリ剤と共に酸化剤を添加して行われるが、その際、余剰汚泥のpHを好ましくは11以上、さらに好ましくは11〜12.5とする。余剰汚泥のpHが11未満では、汚泥の可溶化が不十分であり、好ましくない。酸化剤の添加量は、余剰汚泥中の乾燥汚泥量に対して、一般に10〜10000ppm、好ましくは100〜1000ppmである。アルカリ剤による処理と酸化剤による処理を組み合わせた可溶化処理の処理時間は、一般に1〜6時間、好ましくは1〜4時間である。アルカリ剤による処理のみの可溶化処理に比べて一般に可溶化処理時間を短縮できる。   As the oxidizing agent used for the treatment with the oxidizing agent, hydrogen peroxide, sodium peroxide, sodium percarbonate, etc., which have strong oxidizing power and change itself to be harmless to activated sludge after decomposition, are preferable. The treatment with the oxidizing agent is performed by adding an oxidizing agent together with the alkaline agent to the excess sludge. At this time, the pH of the excess sludge is preferably 11 or more, more preferably 11 to 12.5. If the pH of the excess sludge is less than 11, solubilization of the sludge is insufficient, which is not preferable. The addition amount of the oxidizing agent is generally 10 to 10000 ppm, preferably 100 to 1000 ppm, based on the amount of dry sludge in the excess sludge. The treatment time of the solubilization treatment that combines treatment with an alkaline agent and treatment with an oxidizing agent is generally 1 to 6 hours, preferably 1 to 4 hours. Generally, the solubilization time can be shortened as compared with the solubilization treatment only with the treatment with the alkali agent.

可溶化処理の方法としては、他に、好熱性細菌による方法、ビーズミルによる方法、次亜塩素酸塩等の薬剤を添加する方法、オゾン酸化による方法、超音波による方法、UV照射処理、これらの組み合わせによる処理などが挙げられる。   Other solubilization methods include thermophilic bacteria methods, bead mill methods, methods of adding chemicals such as hypochlorite, ozone oxidation methods, ultrasonic methods, UV irradiation treatments, Processing by combination is mentioned.

可溶化処理後の汚泥可溶化液(以下、「可溶化液」という)は、必要に応じて中和処理又は酸化剤による脱色処理を行ってもよい。脱色処理を行うことによって、余剰汚泥の減容化を行う際に発生する可溶化処理物の着色、それに起因する処理水の色相への悪影響を削減することができる。この脱色処理と中和処理とは併用できるが、その場合、中和処理を行う前に脱色処理を行うことが好ましい。中和処理には、硫酸等の鉱酸、使用済みの廃酸などを使用できる。酸化剤としては、酸化力が強く、そのものが分解後、活性汚泥にとって無害なものに変化する過酸化水素、過酸化ナトリウム、過炭酸ナトリウム等が好ましく、過酸化水素が特に好ましい。   The sludge solubilizing solution after the solubilization treatment (hereinafter referred to as “solubilizing solution”) may be subjected to neutralization treatment or decolorization treatment with an oxidizing agent as necessary. By performing the decolorization treatment, it is possible to reduce the adverse effect on the color of the solubilized treatment product generated when the volume of excess sludge is reduced and the hue of the treated water resulting therefrom. Although the decoloring treatment and the neutralization treatment can be used in combination, it is preferable to perform the decoloring treatment before the neutralization treatment. For the neutralization treatment, a mineral acid such as sulfuric acid, a spent waste acid or the like can be used. As the oxidizing agent, hydrogen peroxide, sodium peroxide, sodium percarbonate, etc., which have strong oxidizing power and change itself to be harmless to activated sludge after decomposition, are preferable, and hydrogen peroxide is particularly preferable.

可溶化液は、ライン10を通して曝気槽14に返送される。返送された可溶化液は、排水ライン1から流入する有機性排水によって希釈され、曝気槽14内において、槽内に生息する微生物と可溶化液中に残存する細菌類により更に分解される。   The solubilized liquid is returned to the aeration tank 14 through the line 10. The returned solubilized liquid is diluted by the organic wastewater flowing from the drainage line 1 and further decomposed in the aeration tank 14 by microorganisms living in the tank and bacteria remaining in the solubilized liquid.

曝気槽14では、可溶化液の返送によりBOD(生物化学的酸素要求量)負荷が増加するが、曝気槽14内において、曝気槽14底部の散気管からライン12を通じて空気が供給されることにより、高い気液接触効率が得られ、有機性排水中の有機物及び可溶化液中の有機物を高速に分解することができる。曝気槽14内で増殖した微生物は、処理水と共にSSとなってライン2を経て浸漬ろ床槽15に流入する。浸漬ろ床槽15では、ライン2より流入した処理水中に僅かに残存している有機物が分解されると共に、主にSSとして流入した微生物が原生動物により補食され、汚泥の発生が抑制される。このようにして、有機性排水中の有機物の分解工程と増殖した微生物の補食工程が分離されることにより、浸漬ろ床槽15内の充填材の目詰まりや気液接触効率の低下が抑制される。   In the aeration tank 14, the BOD (biochemical oxygen demand) load increases due to the return of the solubilized liquid. In the aeration tank 14, air is supplied from the diffuser pipe at the bottom of the aeration tank 14 through the line 12. High gas-liquid contact efficiency can be obtained, and organic substances in organic waste water and organic substances in solubilized liquid can be decomposed at high speed. The microorganisms grown in the aeration tank 14 become SS together with the treated water and flow into the submerged filter tank 15 via the line 2. In the submerged filter bed 15, organic substances slightly remaining in the treated water flowing in from the line 2 are decomposed, and microorganisms that flowed in mainly as SS are supplemented by protozoa, and sludge generation is suppressed. . Thus, the clogging of the filler in the submerged filter bed 15 and the reduction of the gas-liquid contact efficiency are suppressed by separating the decomposition process of the organic matter in the organic waste water and the supplementing process of the grown microorganisms. Is done.

本発明の有機性排水処理装置の第2実施形態を図2に示す。ライン1から有機性排水が曝気槽14に供給され、曝気槽14で曝気され生物処理を受ける。曝気槽の処理水は、ライン2を経て、流動床槽20に流入する。この流動床槽20内には、第1実施形態で説明した活性汚泥が表面に着生した充填材が浮遊する。活性汚泥が着生した充填材は、流動床槽20内で曝気槽の処理水と共に、槽底部から供給される空気によって充分に混合される。充填材の材質、形状については、第1実施形態で説明した充填材と同様である。流動床槽20の底部には、散気管が設置され、ライン13から空気が流動床槽20内に供給され、流動床槽20内で曝気される。   2nd Embodiment of the organic waste water treatment apparatus of this invention is shown in FIG. Organic waste water is supplied from the line 1 to the aeration tank 14 and aerated in the aeration tank 14 to undergo biological treatment. The treated water in the aeration tank flows into the fluidized bed tank 20 via the line 2. In the fluidized bed tank 20, the filler on which the activated sludge described in the first embodiment is deposited floats. The filler on which the activated sludge is deposited is sufficiently mixed in the fluidized bed tank 20 together with the treated water of the aeration tank by the air supplied from the bottom of the tank. The material and shape of the filler are the same as those described in the first embodiment. A diffuser pipe is installed at the bottom of the fluidized bed tank 20, and air is supplied from the line 13 into the fluidized bed tank 20 and aerated in the fluidized bed tank 20.

流動床槽20で処理された処理水は、ライン3を経て、汚泥分離槽17に流入する。汚泥分離以後の工程については第1実施形態と同様である。第2実施形態においても、余剰汚泥の可溶化処理を実施することが好ましく、また、この可溶化処理は、アルカリ剤による処理と共に、ホモジナイザーによる処理、ミキサーによる処理、ミルによる処理、高圧と瞬間的な減圧膨脹による処理及び酸化剤による処理から選ばれる一種以上の処理によって行うことが好ましい。   The treated water treated in the fluidized bed tank 20 flows into the sludge separation tank 17 via the line 3. The processes after the sludge separation are the same as in the first embodiment. Also in the second embodiment, it is preferable to carry out solubilization treatment of excess sludge, and this solubilization treatment includes treatment with an alkaline agent, treatment with a homogenizer, treatment with a mixer, treatment with a mill, high pressure and instantaneous. It is preferable to carry out the treatment by one or more treatments selected from the treatment by the expansion under reduced pressure and the treatment with the oxidizing agent.

以下、実施例および比較例により本発明をより詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in more detail, this invention is not limited to these Examples.

実施例1
本実施例の排水処理装置を図1に示す。工場排水(BOD1000〜1100mg/L)を曝気時間8hr、活性汚泥MLSS3000〜3500mg/Lの曝気槽24Lに供給した後、曝気槽から流出する処理水を15L浸漬ろ床槽でさらに処理を行い、20L沈殿槽で活性汚泥を沈降分離して固形物濃度0.5〜1%の沈殿汚泥を得た。また、浸漬ろ床槽については、定期的に逆洗浄操作を実施して、この逆洗水を逆洗水貯槽に回収し、逆洗水に含まれる多量の余剰汚泥を汚泥分離装置に流入させた。工場排水処理量を0.072m3/dayとし、沈降汚泥の2400ml/day(dry-base18g/day)を遠心分離機による汚泥濃縮工程に供給し、残りの沈殿汚泥は曝気槽に返送した。遠心分離機により、沈殿汚泥を濃縮したところ、固形物濃度約2%の濃縮汚泥を得た。次いで、この濃縮汚泥を、滞留時間30分間の回分式タイプの汚泥可溶化槽を有する汚泥可溶化装置に導き、NaOHを当該槽の内液に対して、0.05N濃度(pH12.5程度)になるように添加して、ホモジナイザーにて高速撹拌(12000rpm)しながら汚泥の可溶化を行った。その可溶化汚泥(SS6000〜9000mg/L、上清TOC6000〜8000mg/L、pH11)に、2N硫酸を加えpH8に中和した後、前記曝気槽に返送して、好気的な生物処理を行った。約1ヶ月、上記条件に従って運転を続けた結果、沈殿池流出水の水質はBOD9〜12であった。また、その間の全余剰汚泥量は約270g-ssであった。
Example 1
A wastewater treatment apparatus of this example is shown in FIG. After supplying factory wastewater (BOD1000-1100mg / L) to the aeration tank 24L with aeration time 8hr and activated sludge MLSS 3000-3500mg / L, the treated water flowing out from the aeration tank is further processed in a 15L submerged filter bed tank, 20L The activated sludge was settled and separated in a sedimentation tank to obtain a precipitated sludge having a solid concentration of 0.5 to 1%. In addition, the backwashing tank is periodically backwashed to recover the backwash water in the backwash water storage tank, and a large amount of excess sludge contained in the backwash water is allowed to flow into the sludge separator. It was. The factory wastewater treatment amount was 0.072 m 3 / day, and 2400 ml / day (dry-base 18 g / day) of the settled sludge was supplied to the sludge concentration step using a centrifugal separator, and the remaining precipitated sludge was returned to the aeration tank. When the precipitated sludge was concentrated by a centrifugal separator, a concentrated sludge having a solid concentration of about 2% was obtained. Next, this concentrated sludge is led to a sludge solubilizer having a batch type sludge solubilization tank with a residence time of 30 minutes, and NaOH is 0.05N concentration (pH about 12.5) with respect to the internal liquid of the tank. The sludge was solubilized while stirring at high speed (12000 rpm) with a homogenizer. The solubilized sludge (SS6000-9000 mg / L, supernatant TOC6000-8000 mg / L, pH 11) is neutralized to pH 8 by adding 2N sulfuric acid, and then returned to the aeration tank for aerobic biological treatment. It was. As a result of continuing the operation according to the above conditions for about one month, the water quality of the settling basin effluent was BOD 9-12. The total amount of excess sludge during that period was about 270 g-ss.

実施例2
可溶化する汚泥の量を沈降汚泥の7200ml/day(dry-base54g/day)に変更する以外は実施例1と同様にして工場排水の処理を行った。可溶化汚泥はSS6000〜9000mg/L、上清TOC6000〜8000mg/L、pH11の性状であった。次いで、実施例1と同様に中和後生物処理を行った(図1)。約1ヶ月、当該条件に従って運転を続けた結果、沈殿池流出水の水質はBOD11〜15であった。また、その間の全余剰汚泥量は約50g-ssであった。
Example 2
Factory waste water was treated in the same manner as in Example 1 except that the amount of sludge to be solubilized was changed to 7200 ml / day (dry-base 54 g / day) of settled sludge. The solubilized sludge was SS6000-9000 mg / L, supernatant TOC6000-8000 mg / L, pH 11. Subsequently, biological treatment after neutralization was performed in the same manner as in Example 1 (FIG. 1). As a result of continuing the operation according to the conditions for about one month, the water quality of the settling basin effluent was BOD 11-15. The total amount of excess sludge during that period was about 50 g-ss.

比較例1
可溶化処理を行わない以外は実施例1と同様にして工場排水の処理を行った(図3)。約1ヶ月、当該条件に従って運転を続けた結果、沈殿池流出水の水質はBOD9〜12であった。また、その間の全余剰汚泥量は、約600g-ssであった。
Comparative Example 1
The factory waste water was treated in the same manner as in Example 1 except that the solubilization treatment was not performed (FIG. 3). As a result of continuing the operation according to the conditions for about one month, the water quality of the settling basin effluent was BOD 9-12. Moreover, the total surplus sludge amount in the meantime was about 600 g-ss.

比較例2
曝気槽を浸漬ろ床槽の後に設けるように処理流路を変更した以外は実施例1と同様にして工場排水の処理を行った(図4)。また、可溶化汚泥を2N硫酸で中和した後の可溶化液は、浸漬ろ床槽に返送した。約1ヶ月、当該条件に従って運転を続けた結果、沈殿池流出水の水質はBOD20〜40であった。また、その間の全余剰汚泥量は、約300g-ssであった。
Comparative Example 2
The factory waste water was treated in the same manner as in Example 1 except that the treatment channel was changed so that the aeration tank was provided after the immersion filter bed (FIG. 4). Further, the solubilized liquid after neutralizing the solubilized sludge with 2N sulfuric acid was returned to the submerged filter bed. As a result of continuing the operation according to the conditions for about one month, the water quality of the settling basin effluent was BOD 20-40. Moreover, the total surplus sludge amount in the meantime was about 300 g-ss.

実施例3
本実施例の排水処理装置を図2に示す。工場排水(BOD1000〜1100mg/L)を曝気時間8hr、活性汚泥MLSS3000〜3500mg/Lの曝気槽24Lに供給した後、曝気槽から流出する処理水を15L流動ろ床槽でさらに処理を行い、20L沈殿槽で活性汚泥を沈降分離して固形物濃度0.5〜1%の沈殿汚泥を得た。工場排水処理量を0.072m3/dayとし、沈降汚泥の2400ml/day(dry-base18g/day)を遠心分離機による汚泥濃縮工程に供給し、残りの沈殿汚泥は曝気槽に返送した。遠心分離機により沈殿汚泥を濃縮する以降は、実施例1と同様の操作を行った。約1ヶ月、当該条件に従って運転を続けた結果、沈殿池流出水の水質はBOD9〜11であった。また、その間の全余剰汚泥量は約280g-ssであった。
Example 3
A wastewater treatment apparatus of this example is shown in FIG. After supplying industrial wastewater (BOD1000-1100mg / L) to aeration tank 24L with aeration time 8hr and activated sludge MLSS 3000-3500mg / L, the treated water flowing out from the aeration tank is further processed in a 15L fluidized bed tank, and 20L The activated sludge was settled and separated in a sedimentation tank to obtain a precipitated sludge having a solid concentration of 0.5 to 1%. The factory wastewater treatment amount was 0.072 m 3 / day, and 2400 ml / day (dry-base 18 g / day) of the settled sludge was supplied to the sludge concentration step using a centrifugal separator, and the remaining precipitated sludge was returned to the aeration tank. After concentrating the precipitated sludge using a centrifuge, the same operation as in Example 1 was performed. As a result of continuing the operation according to the conditions for about 1 month, the water quality of the settling basin effluent was BOD 9-11. The total amount of excess sludge during that period was about 280 g-ss.

比較例3
可溶化処理を行わない以外は実施例3と同様にして工場排水の処理を行った(図5)。約1ヶ月、当該条件に従って運転を続けた結果、沈殿池流出水の水質はBOD9〜12であった。また、その間の全余剰汚泥量は約560g-ssであった。
Comparative Example 3
Factory wastewater was treated in the same manner as in Example 3 except that the solubilization treatment was not performed (FIG. 5). As a result of continuing the operation according to the conditions for about one month, the water quality of the settling basin effluent was BOD 9-12. In addition, the total surplus amount during that period was about 560 g-ss.

以上より、実施例1、2及び3では、処理水のBOD値を低く抑えつつ、余剰汚泥の発生量を低減できた。一方、比較例1及び3では、可溶化を実施していないため多量の余剰汚泥が発生した。また、比較例2では、浸漬ろ床槽による処理を最初に実施し、可溶化液を添加したため、処理水のBOD値が上昇した。   From the above, in Examples 1, 2 and 3, it was possible to reduce the amount of excess sludge generated while keeping the BOD value of the treated water low. On the other hand, in Comparative Examples 1 and 3, since solubilization was not performed, a large amount of excess sludge was generated. Moreover, in the comparative example 2, since the process by the immersion filter bed tank was implemented initially and the solubilization liquid was added, the BOD value of the treated water rose.

本発明の代表的な有機性排水処理装置の一態様を示す図である。It is a figure which shows the one aspect | mode of the typical organic waste water treatment equipment of this invention. 本発明の代表的な有機性排水処理装置の一態様を示す図である。It is a figure which shows the one aspect | mode of the typical organic waste water treatment equipment of this invention. 比較例1の有機性廃水処理装置を示す図である。It is a figure which shows the organic waste water treatment apparatus of the comparative example 1. FIG. 比較例2の有機性廃水処理装置を示す図である。It is a figure which shows the organic waste water treatment apparatus of the comparative example 2. FIG. 比較例3の有機性廃水処理装置を示す図である。It is a figure which shows the organic waste water treatment apparatus of the comparative example 3. FIG.

符号の説明Explanation of symbols

1 排水ライン
2 ライン
3 ライン
4 逆洗水ライン
5 ライン
6 ライン
7 処理水ライン
8 ライン
9 ライン
10 ライン
11 ライン
12 ライン
13 ライン
14 曝気槽
15 浸漬ろ床槽
16 逆洗水貯槽
17 汚泥分離槽
18 汚泥可溶化装置
19 余剰汚泥
20 流動床槽
1 drainage line 2 line 3 line 4 backwash water line 5 line 6 line 7 treated water line 8 line 9 line 10 line 11 line 12 line 13 line 14 aeration tank 15 immersion filter bed tank 16 backwash water storage tank 17 sludge separation tank 18 Sludge solubilizer 19 Excess sludge 20 Fluidized bed tank

Claims (3)

有機性排水を通液して浮遊の微生物汚泥と接触させ生物学的に処理する曝気槽、活性汚泥が表面に着生した充填材からなる充填層を有し、当該曝気槽の処理水をこの充填層に通液して生物学的に処理する浸漬ろ床槽、当該浸漬ろ床槽の処理水及び当該浸漬ろ床を逆洗した際に発生する逆洗水から汚泥を分離する汚泥分離装置、当該汚泥分離装置で分離された汚泥を可溶化処理する汚泥可溶化装置、並びに可溶化処理後の汚泥可溶化液を前記曝気槽に返送する手段を備えた有機性排水処理装置。   An aeration tank in which organic wastewater is passed through and brought into contact with floating microbial sludge for biological treatment, and has a packed bed consisting of a filler with activated sludge deposited on the surface. Submerged filter bed for biological treatment by passing through a packed bed, treated water of the submerged filter bed, and sludge separator for separating sludge from backwash water generated when the submerged filter bed is backwashed An organic wastewater treatment apparatus comprising a sludge solubilizer for solubilizing sludge separated by the sludge separator, and means for returning the solubilized sludge solubilized liquid to the aeration tank. 有機性排水を通液して浮遊の微生物汚泥と接触させ生物学的に処理する曝気槽、活性汚泥が表面に着生した充填材を含み、当該曝気槽の処理水を通液してこの充填材と共に混合曝気処理する流動床槽、当該流動床槽の処理水から汚泥を分離する汚泥分離装置、当該汚泥離装置で分離された汚泥を可溶化処理する汚泥可溶化装置、及び可溶化処理後の汚泥可溶化液を前記曝気槽に返送する手段を備えた有機性排水処理装置。   An aeration tank in which organic wastewater is passed through and brought into contact with floating microbial sludge for biological treatment, including a filler on which activated sludge has formed on the surface. Fluidized bed tank to be mixed and aerated with the material, sludge separator to separate sludge from the treated water of the fluidized bed tank, sludge solubilizer to solubilize sludge separated by the sludge separator, and after solubilization An organic wastewater treatment apparatus comprising means for returning the sludge solubilizing solution to the aeration tank. 前記可溶化処理が、アルカリ剤による処理と共に、ホモジナイザーによる処理、ミキサーによる処理、ミルによる処理、高圧と瞬間的な減圧膨張による処理及び酸化剤による処理から選ばれる一種以上の処理を行うものである請求項1又は2記載の有機性排水処理装置。

The solubilization treatment is a treatment with an alkali agent and one or more treatments selected from a treatment with a homogenizer, a treatment with a mixer, a treatment with a mill, a treatment with high pressure and instantaneous decompression expansion, and a treatment with an oxidizing agent. The organic waste water treatment apparatus of Claim 1 or 2.

JP2003374471A 2003-11-04 2003-11-04 Organic wastewater treatment apparatus Pending JP2005137969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374471A JP2005137969A (en) 2003-11-04 2003-11-04 Organic wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374471A JP2005137969A (en) 2003-11-04 2003-11-04 Organic wastewater treatment apparatus

Publications (1)

Publication Number Publication Date
JP2005137969A true JP2005137969A (en) 2005-06-02

Family

ID=34686182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374471A Pending JP2005137969A (en) 2003-11-04 2003-11-04 Organic wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP2005137969A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207066A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
CN109851049A (en) * 2019-04-11 2019-06-07 信开水环境投资有限公司 Sewage treatment unit and its application method and purposes
CN110759582A (en) * 2019-09-17 2020-02-07 熊雪根 Diversified organic wastewater treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207066A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
CN109851049A (en) * 2019-04-11 2019-06-07 信开水环境投资有限公司 Sewage treatment unit and its application method and purposes
CN110759582A (en) * 2019-09-17 2020-02-07 熊雪根 Diversified organic wastewater treatment system
CN110759582B (en) * 2019-09-17 2022-01-11 贵港市佰羽羽绒有限公司 Diversified organic wastewater treatment system

Similar Documents

Publication Publication Date Title
US20100126931A1 (en) Method and device for purifying liquid effluents
JP2008055291A (en) Water treating device
JP2007136367A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007130526A (en) Wastewater treatment apparatus and wastewater treatment method
CN106396270A (en) High-concentration pharmaceutical wastewater treatment system and treatment method
CN101269903B (en) Further advanced treatment technique and apparatus for sewage water of oil refining
JP2011088053A (en) Equipment and method for desalination treatment
JP4649529B1 (en) Membrane treatment equipment
CN104591443A (en) Circular treatment equipment for aquiculture agricultural waste water
JP3867326B2 (en) Ozone treatment method for activated sludge process water
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JP2002011498A (en) Device for treating leachate
KR101858028B1 (en) Rapid complex water treatment system
CN101708927B (en) Method for deeply processing waste water from paper making
JP2002177990A (en) Water cleaning method and water cleaning plant
JP2005169304A (en) Method of treating high concentration colored organic waste water
KR101208683B1 (en) Water Re-Cycling System and method thereof
JP2009090222A (en) Apparatus and method for kitchen effluent treatment
JP2005137969A (en) Organic wastewater treatment apparatus
JP2001300576A (en) Sewage treating method
CN212269808U (en) Reverse osmosis strong brine processing system
JP4549000B2 (en) Water purification equipment for suspended solids
KR101745562B1 (en) Advanced treatment process for high-concentrated organic wastewater
JP2001347295A (en) Apparatus for cleaning seawater containing floating substance
JP4314984B2 (en) Organic wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805