JP2005136484A - Microwave circuit board and mount method for imaging device onto the microwave circuit board - Google Patents

Microwave circuit board and mount method for imaging device onto the microwave circuit board Download PDF

Info

Publication number
JP2005136484A
JP2005136484A JP2003367456A JP2003367456A JP2005136484A JP 2005136484 A JP2005136484 A JP 2005136484A JP 2003367456 A JP2003367456 A JP 2003367456A JP 2003367456 A JP2003367456 A JP 2003367456A JP 2005136484 A JP2005136484 A JP 2005136484A
Authority
JP
Japan
Prior art keywords
circuit board
opening hole
image pickup
pickup device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003367456A
Other languages
Japanese (ja)
Other versions
JP4269887B2 (en
Inventor
Toshiyuki Suzuki
俊之 鈴木
Hiroshi Yamanaka
山中  浩
Shinobu Kida
忍 木田
Yoshiharu Sanagawa
佳治 佐名川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003367456A priority Critical patent/JP4269887B2/en
Publication of JP2005136484A publication Critical patent/JP2005136484A/en
Application granted granted Critical
Publication of JP4269887B2 publication Critical patent/JP4269887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Wire Bonding (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave circuit board which can be mounted with an imaging device without causing a large deformation and in which an optical characteristic of a light transmission part in an opening hole is not degraded. <P>SOLUTION: The microwave circuit board 6 is disclosed, which is provided with at one side an imaging device mount part 2 for mounting the imaging device 1 and a lens support part 4 for supporting a lens 3 at the side opposite from the imaging device mount part 2, and wherein the opening hole 5 open to the imaging device mount part 2 and the lens support part 4 is formed. The opening hole 5 is provided with the light transmission part 7 formed by integrally forming an optical transparent material to clog the inside of the opening hole 5. Clogging the opening hole 5 with the light transmission part 7 can reinforce the part of the opening hole 5. Further, the optical transparent material is integrally formed in the opening hole 5 to be able to form the light transmission part 7 after the microwave circuit board 6 is formed, so that a forming pressure and a stress of curing contraction caused when the microwave circuit board 6 is formed do not act on the light transmission part 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、撮像装置を作製するために用いられる立体回路基板、及び、撮像装置を作製するために立体回路基板に撮像素子を実装する方法に関するものである。   The present invention relates to a three-dimensional circuit board used for manufacturing an imaging device, and a method for mounting an imaging element on a three-dimensional circuit board to manufacture an imaging device.

撮像装置として、立体回路基板に半導体撮像素子をフリップチップ実装して作製したものが提供されている(例えば特許文献1等参照)。   As an imaging device, a device manufactured by flip-chip mounting a semiconductor imaging device on a three-dimensional circuit board is provided (see, for example, Patent Document 1).

図10は上記のような撮像装置において、立体回路基板6への撮像素子1の実装の一例を示すものである。立体回路基板6はインジェクション成形等してMIDとして形成してあり、立体回路基板6の片側の面には回路14等を形成することによって撮像素子実装部2を形成すると共に他方の面にはレンズ保持筒20などを一体に設けてレンズ保持部4が形成してある。また立体回路基板6には撮像素子実装部2とレンズ保持部4の両面で開口する開口穴5が設けてあり、開口穴5の周囲の撮像素子実装部2には回路14の一部に形成したパッド21が配設してある。そして立体回路基板6の撮像素子実装部2に撮像素子1を実装するにあたっては、図10(a)に示すように、撮像素子1にバンプなどで形成した電極22を撮像素子実装部2のパッド21に対向させ、撮像素子1に矢印のように実装荷重をかけてパッド21に電極22を圧接させることによって行なうことができる。このように、撮像素子1に実装荷重をかけて圧接を行なうにあたって、この荷重は1パッド当たり30〜300gであり、例えば40パッドの撮像素子1を実装する場合、撮像素子実装部2の開口穴5の周囲の箇所には1200〜12000gの荷重がかかることになる。   FIG. 10 shows an example of mounting the image pickup device 1 on the three-dimensional circuit board 6 in the image pickup apparatus as described above. The three-dimensional circuit board 6 is formed as an MID by injection molding or the like, and the imaging element mounting portion 2 is formed by forming a circuit 14 or the like on one surface of the three-dimensional circuit board 6 and a lens on the other surface. The lens holder 4 is formed by integrally providing a holding cylinder 20 and the like. Further, the three-dimensional circuit board 6 is provided with an opening hole 5 that opens on both surfaces of the imaging element mounting portion 2 and the lens holding portion 4, and is formed in a part of the circuit 14 in the imaging element mounting portion 2 around the opening hole 5. A pad 21 is provided. When mounting the imaging device 1 on the imaging device mounting portion 2 of the three-dimensional circuit board 6, as shown in FIG. 10A, the electrodes 22 formed by bumps or the like on the imaging device 1 are pads of the imaging device mounting portion 2. The electrode 22 is pressed against the pad 21 by applying a mounting load to the image sensor 1 as indicated by an arrow. Thus, when performing pressure contact by applying a mounting load to the image sensor 1, this load is 30 to 300 g per pad. For example, when mounting the 40-pad image sensor 1, the opening hole of the image sensor mounting portion 2 is used. A load of 1200 to 12000 g is applied to a portion around 5.

しかし、立体回路基板6には撮像素子1への光入射のために開口穴5が設けてあり、この開口穴5によって撮像素子実装部2の強度は低いものとなっている。従って上記のように撮像素子実装部2の開口穴5の周囲に荷重が加わると、立体回路基板6には図10(b)のように撮像素子実装部2の開口穴5の周縁部において変形が発生し易い。   However, the three-dimensional circuit board 6 is provided with an opening hole 5 for light incident on the image pickup device 1, and the strength of the image pickup device mounting portion 2 is low due to the opening hole 5. Therefore, when a load is applied to the periphery of the opening hole 5 of the image pickup device mounting portion 2 as described above, the three-dimensional circuit board 6 is deformed at the peripheral portion of the opening hole 5 of the image pickup device mounting portion 2 as shown in FIG. Is likely to occur.

そして図10(c)のようにアンダーフィル樹脂13を撮像素子1と撮像素子実装部2の表面との間に充填して硬化させ、さらにレンズ保持部4にレンズ3を取り付けることによって、撮像装置を作製することができるが、上記のように立体回路基板6に変形が発生していると、撮像素子1とレンズ3との位置関係が設計値からずれ、高い光学性能を得ることができないという問題があった。また立体回路基板6の変形部分に弾性変形の応力が残留し、この応力の開放によって撮像素子実装部2のパッド21から撮像素子1の電極22が外れるなどして、不良発生の原因となるという問題もあった。さらには、撮像素子実装部2に開口穴5が開口していると、組立て時に開口穴5から撮像素子1の撮像面にゴミなどが落ちて黒点不良が生じるおそれがあるという問題もあった。   Then, as shown in FIG. 10C, the underfill resin 13 is filled between the image pickup device 1 and the surface of the image pickup device mounting portion 2 and cured, and the lens 3 is attached to the lens holding portion 4. However, if the three-dimensional circuit board 6 is deformed as described above, the positional relationship between the imaging element 1 and the lens 3 is deviated from the design value, and high optical performance cannot be obtained. There was a problem. In addition, elastic deformation stress remains in the deformed portion of the three-dimensional circuit board 6, and the release of this stress causes the electrode 22 of the image sensor 1 to be detached from the pad 21 of the image sensor mounting portion 2, thereby causing defects. There was also a problem. Furthermore, if the opening hole 5 is opened in the image pickup device mounting portion 2, there is a problem that dust or the like may fall from the opening hole 5 to the image pickup surface of the image pickup device 1 at the time of assembly, resulting in a black spot defect.

一方、立体回路基板6に設けた開口穴5に透光性部材を設けることの検討も行なわれている(例えば特許文献2等参照)。そしてこの特許文献2のものでは、透光性部材を予め形成しておき、立体回路基板6をインジェクション等で成形する際に、透光性部材を同時にインサート成形することによって、立体回路基板6の開口穴5に透光性部材を設けるようにしている。   On the other hand, examination of providing a translucent member in the opening hole 5 provided in the three-dimensional circuit board 6 is also performed (for example, refer patent document 2 etc.). And in the thing of this patent document 2, when forming the three-dimensional circuit board 6 by injection etc. previously forming a translucent member, by simultaneously carrying out insert molding of the translucent member of the three-dimensional circuit board 6, A translucent member is provided in the opening hole 5.

しかしこのように立体回路基板6をインジェクション等で成形する際に、透光性部材をインサート成形するようにすると、立体回路基板6の成形時の射出成形圧や立体回路基板6の硬化収縮が透光性部材に作用し、透光性部材に変形等が発生するおそれがあり、透光性部材の光学特性が低下するおそれがあるという問題があった。
特開2001−245186号公報 特開2003−168793号公報
However, when the molded circuit board 6 is molded by injection or the like as described above, if the translucent member is formed by insert molding, the injection molding pressure at the molding of the molded circuit board 6 and the curing shrinkage of the molded circuit board 6 are not transmitted. There is a problem that the light-transmitting member may be deformed and the light-transmitting member may be deformed, and the optical characteristics of the light-transmitting member may be deteriorated.
JP 2001-245186 A JP 2003-168793 A

本発明は上記の点に鑑みてなされたものであり、大きな変形が発生することなく撮像素子を実装することができ、しかも開口穴内の透光部の光学特性が低下することがない立体回路基板及び立体回路基板への撮像素子の実装方法を提供することを目的とするものである。   The present invention has been made in view of the above points, and is a three-dimensional circuit board in which an image pickup device can be mounted without causing a large deformation, and the optical characteristics of the light transmitting portion in the opening hole are not deteriorated. It is another object of the present invention to provide a method for mounting an image sensor on a three-dimensional circuit board.

本発明の請求項1に係る立体回路基板は、撮像素子1を実装する撮像素子実装部2を片側に備えると共に撮像素子実装部2と反対側にレンズ3を保持するためのレンズ保持部4を備え、撮像素子実装部2とレンズ保持部4とに開口する開口穴5を形成した立体回路基板6であって、開口穴5には開口穴5内を塞ぐように光透過性材料を一体成形して形成される透光部7を備えて成ることを特徴とするものである。   The three-dimensional circuit board according to claim 1 of the present invention includes an image sensor mounting portion 2 for mounting the image sensor 1 on one side and a lens holding portion 4 for holding the lens 3 on the opposite side of the image sensor mount portion 2. A three-dimensional circuit board 6 in which an opening hole 5 is formed in the image sensor mounting portion 2 and the lens holding portion 4, and the light transmitting material is integrally formed in the opening hole 5 so as to close the opening hole 5. The translucent part 7 formed in this way is provided.

この発明によれば、開口穴5内を透光部7で塞ぐことによって、開口穴5の部分の補強を行なうことができ、撮像素子実装部2に撮像素子1を実装する際に開口穴5の周辺に圧力が作用しても、立体回路基板6の撮像素子実装部2の部分が変形することを防ぐことができる。また、立体回路基板6を成形した後に開口穴5内に光透過性材料を一体成形して透光部7を形成することができ、立体回路基板6を成形する際の成形圧や硬化収縮の応力が透光部7に作用することがなく、透光部7の光学特性が低下することを防止することができる。   According to the present invention, the opening hole 5 can be reinforced by closing the inside of the opening hole 5 with the translucent part 7, and the opening hole 5 is mounted when the imaging element 1 is mounted on the imaging element mounting part 2. Even if a pressure acts on the periphery of the three-dimensional circuit board 6, it is possible to prevent the part of the imaging element mounting portion 2 of the three-dimensional circuit board 6 from being deformed. Further, after the molded circuit board 6 is molded, a light transmissive material can be integrally formed in the opening hole 5 to form the light-transmitting portion 7, and molding pressure and curing shrinkage when molding the molded circuit board 6 can be reduced. It is possible to prevent the stress from acting on the translucent part 7 and the optical characteristics of the translucent part 7 from deteriorating.

また請求項2の発明は、請求項1において、透光部7をレンズ形状に形成して成ることを特徴とするものである。   The invention of claim 2 is characterized in that, in claim 1, the translucent portion 7 is formed in a lens shape.

この発明によれば、透光部7にレンズ機能を与えることができ、光学特性を向上することができると共に、レンズ保持部4に取り付けられるレンズ3の数を低減したり小型化したりすることが可能になる。   According to this invention, a lens function can be given to the translucent portion 7, optical characteristics can be improved, and the number of lenses 3 attached to the lens holding portion 4 can be reduced or downsized. It becomes possible.

また請求項3の発明は、請求項2において、レンズ形状はマイクロレンズアレイ形状であることを特徴とするものである。   According to a third aspect of the present invention, in the second aspect, the lens shape is a microlens array shape.

この発明によれば、撮像素子実装部2に実装される撮像素子1の各画素に対応するレンズ形状に透光部7を形成することができるものである。   According to this invention, the translucent part 7 can be formed in the lens shape corresponding to each pixel of the image sensor 1 mounted on the image sensor mounting part 2.

また請求項4の発明は、請求項1乃至3のいずれかにおいて、開口穴5の近傍に抜け止め穴8を設け、開口穴5と抜け止め穴8に光透過性材料を一体成形して開口穴5内に透光部7を形成すると共に抜け止め穴8内に透光部7と一体となった抜け止め部9を形成して成ることを特徴とするものである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the retaining hole 8 is provided in the vicinity of the opening hole 5, and the light transmitting material is integrally formed in the opening hole 5 and the retaining hole 8. The light transmitting part 7 is formed in the hole 5 and the retaining part 9 integrated with the light transmitting part 7 is formed in the retaining hole 8.

この発明によれば、透光部7が開口穴5から脱落することを抜け止め部9によって防止することができる。   According to the present invention, the light-transmitting portion 7 can be prevented from falling off the opening hole 5 by the retaining portion 9.

また請求項5の発明は、請求項1乃至4のいずれかにおいて、レンズ保持部4に保持されるレンズ3を位置決めするための位置決め部10を透光部7に形成して成ることを特徴とするものである。   The invention of claim 5 is characterized in that in any one of claims 1 to 4, a positioning part 10 for positioning the lens 3 held by the lens holding part 4 is formed in the translucent part 7. To do.

この発明によれば、撮像素子実装部2に実装される撮像素子1に対するレンズ3の位置決めを正確に設定することが容易になり、光学性能を向上させることができる。   According to the present invention, it becomes easy to accurately set the positioning of the lens 3 with respect to the image pickup device 1 mounted on the image pickup device mounting portion 2, and the optical performance can be improved.

また請求項6の発明は、請求項1乃至5のいずれかにおいて、開口穴5内からレンズ保持部4の表面に沿って透光部7の一部を補強部11として一体に突出させて成ることを特徴とするものである。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects, a part of the light transmitting portion 7 is integrally projected as a reinforcing portion 11 from the inside of the opening hole 5 along the surface of the lens holding portion 4. It is characterized by this.

この発明によれば、開口穴5の周辺を補強部11で補強することができ、撮像素子実装部2に撮像素子1を実装する際に撮像素子実装部2の部分が変形することをより有効に防ぐことができる。   According to the present invention, the periphery of the opening hole 5 can be reinforced with the reinforcing portion 11, and it is more effective that the portion of the image pickup device mounting portion 2 is deformed when the image pickup device 1 is mounted on the image pickup device mounting portion 2. Can be prevented.

また請求項7の発明は、請求項1乃至6のいずれかにおいて、透光部7の表面を断面V字形が繰り返す波形形状に形成して成ることを特徴とするものである。   A seventh aspect of the invention is characterized in that, in any one of the first to sixth aspects, the surface of the translucent portion 7 is formed in a waveform shape having a V-shaped cross section.

この発明によれば、透光部7にこの形状によってフィルターとしての機能を付与することが可能になり、フィルターを用いる必要をなくすことができるものである。   According to this invention, it becomes possible to give the function as a filter to the translucent part 7 by this shape, and the necessity of using a filter can be eliminated.

また請求項8の発明は、請求項1乃至7のいずれかにおいて、開口穴5の内周を内径がレンズ保持部4の側が広くなるテーパ形状に形成して成ることを特徴とするものである。   The invention of claim 8 is characterized in that, in any one of claims 1 to 7, the inner periphery of the opening hole 5 is formed in a tapered shape having an inner diameter that is wider on the lens holding portion 4 side. .

この発明によれば、開口穴5を小さくしても開口穴5の内周のテーパ状の広がりによって、撮像素子実装部2に実装される撮像素子1の撮像エリアを広く確保することができる。   According to the present invention, even if the opening hole 5 is made small, a wide imaging area of the image pickup device 1 mounted on the image pickup device mounting portion 2 can be secured by the taper-shaped expansion of the inner periphery of the opening hole 5.

本発明の請求項9に係る立体回路基板への撮像素子の実装方法は、立体回路基板6にその片側の撮像素子実装部2と反対側のレンズ保持部4にそれぞれ開口する開口穴5を形成し、この開口穴5内に透光性材料を一体成形することによって開口穴5内を塞ぐ透光部7を形成し、立体回路基板6の撮像素子実装部2に回路形成をした後に、撮像素子実装部2に撮像素子1を実装すると共にレンズ保持部4にレンズ3を取り付けることを特徴とするものである。   According to the ninth aspect of the present invention, in the method of mounting an image pickup device on the three-dimensional circuit board, the opening holes 5 are formed in the three-dimensional circuit board 6 so as to open in the lens holding portion 4 opposite to the image pickup device mounting portion 2 on one side. The translucent material is integrally formed in the opening hole 5 to form the light transmitting portion 7 that closes the inside of the opening hole 5, and after the circuit is formed on the imaging element mounting portion 2 of the three-dimensional circuit board 6, the imaging is performed. The image pickup device 1 is mounted on the element mounting portion 2 and the lens 3 is attached to the lens holding portion 4.

この発明によれば、開口穴5内を透光部7で塞ぐことによって、開口穴5の部分を補強することができ、撮像素子実装部2に撮像素子1を実装する際に開口穴5の周辺に圧力が作用しても、撮像素子実装部2が変形することを防ぐことができる。また、立体回路基板6を成形した後に開口穴5内に光透過性材料を一体成形して透光部7を形成することができ、立体回路基板6を成形する際の成形圧や硬化収縮の応力が透光部7に作用することがなく、透光部7の光学特性が低下することを防止することができる。   According to this invention, the portion of the opening hole 5 can be reinforced by closing the inside of the opening hole 5 with the light transmitting portion 7, and when the image pickup device 1 is mounted on the image pickup device mounting portion 2, Even if pressure acts on the periphery, the image sensor mounting portion 2 can be prevented from being deformed. Further, after the molded circuit board 6 is molded, a light transmissive material can be integrally formed in the opening hole 5 to form the light-transmitting portion 7, and molding pressure and curing shrinkage when molding the molded circuit board 6 can be reduced. It is possible to prevent the stress from acting on the translucent part 7 and the optical characteristics of the translucent part 7 from deteriorating.

また請求項10の発明は、請求項9において、透光部7の撮像素子実装部2の側の表面の端部に流れ止め突部12を設け、撮像素子実装部2に撮像素子1を搭載した後、流れ止め突部12より外側において撮像素子1と撮像素子実装部2との間にアンダーフィル樹脂13を充填することを特徴とするものである。   According to a tenth aspect of the present invention, in the ninth aspect, the flow stop protrusion 12 is provided at the end of the surface of the light transmitting portion 7 on the image pickup device mounting portion 2 side, and the image pickup device 1 is mounted on the image pickup device mounting portion 2. After that, the underfill resin 13 is filled between the image pickup device 1 and the image pickup device mounting portion 2 outside the flow stop protrusion 12.

この発明によれば、撮像素子1と撮像素子実装部2の間にアンダーフィル樹脂13を充填するに際に、アンダーフィル樹脂13が撮像素子1と透光部7の間に侵入することを防ぐことができ、アンダーフィル樹脂13で撮像素子1の撮像面が光学的に塞がれる不良の発生を防止できる。   According to the present invention, when the underfill resin 13 is filled between the image pickup device 1 and the image pickup device mounting portion 2, the underfill resin 13 is prevented from entering between the image pickup device 1 and the light transmitting portion 7. Therefore, the underfill resin 13 can prevent the occurrence of a defect that the image pickup surface of the image pickup device 1 is optically blocked.

また請求項11の発明は、請求項9において、撮像素子実装部2に撮像素子1を搭載した後、撮像素子1と透光部7との間に透光性のアンダーフィル樹脂13を充填することを特徴とするものである。   According to an eleventh aspect of the present invention, in the ninth aspect, after the image pickup device 1 is mounted on the image pickup device mounting portion 2, a light-transmitting underfill resin 13 is filled between the image pickup device 1 and the light transmission portion 7. It is characterized by this.

この発明によれば、撮像素子1の撮像面を光学的に塞ぐことなく、透光性のアンダーフィル樹脂13を撮像素子1と透光部7の間に充填して撮像素子1の実装を行なうことができ、アンダーフィル樹脂13によって接合面積を確保して、実装の信頼性を高く得ることができる。また撮像素子1の撮像面の表面に空気層がなくなり、撮像面に結露が発生することを防止できる。   According to the present invention, the image pickup device 1 is mounted by filling the light-transmitting underfill resin 13 between the image pickup device 1 and the light transmitting portion 7 without optically blocking the image pickup surface of the image pickup device 1. In addition, a bonding area can be ensured by the underfill resin 13 and high mounting reliability can be obtained. Moreover, an air layer is eliminated on the surface of the image pickup surface of the image pickup element 1, and it is possible to prevent dew condensation on the image pickup surface.

本発明によれば、開口穴5内を透光部7で塞ぐことによって、開口穴5の部分を補強することができ、撮像素子実装部2に撮像素子1を実装する際に開口穴5の周辺に圧力が作用しても、立体回路基板6の撮像素子実装部2の部分が変形することを防ぐことができるものであり、また立体回路基板6を成形した後に開口穴5内に光透過性材料を一体成形して透光部7を形成することができ、立体回路基板6を成形する際の成形圧や硬化収縮の応力が透光部7に作用することがなく、透光部7の光学特性が低下することを防止することができるものである。   According to the present invention, the opening hole 5 can be reinforced by closing the inside of the opening hole 5 with the translucent part 7, and when the imaging element 1 is mounted on the imaging element mounting part 2, Even if pressure acts on the periphery, it is possible to prevent the portion of the image pickup device mounting portion 2 of the three-dimensional circuit board 6 from being deformed, and light is transmitted into the opening hole 5 after the three-dimensional circuit board 6 is formed. The translucent portion 7 can be formed by integrally molding the conductive material, and the molding pressure and the curing shrinkage stress when molding the three-dimensional circuit board 6 do not act on the translucent portion 7. It is possible to prevent the deterioration of the optical characteristics.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものであり、図1(a)はエポキシ樹脂などの熱硬化性樹脂をインジェクション成形等して形成される立体回路基板6である。この立体回路基板6は一方の片側表面を撮像素子実装部2として形成してあり、立体回路基板6の他方の片側表面にレンズ保持筒20を一体に設けて、レンズ保持筒20の内周側にレンズ保持部4が形成してある。また立体回路基板6には撮像素子実装部2とレンズ保持筒20に囲まれるレンズ保持部4の両面で開口する開口穴5が形成してある。この開口穴5は、撮像素子実装部2の側からレンズ保持部4の側へと徐々に内径が大きくなるテーパ穴として形成してある。   FIG. 1 shows an example of an embodiment of the present invention. FIG. 1 (a) shows a three-dimensional circuit board 6 formed by injection molding or the like of a thermosetting resin such as an epoxy resin. The one-sided surface of the three-dimensional circuit board 6 is formed as the imaging element mounting portion 2, and the lens holding cylinder 20 is integrally provided on the other one-side surface of the three-dimensional circuit board 6, and the inner peripheral side of the lens holding cylinder 20 A lens holding portion 4 is formed on the surface. In addition, the three-dimensional circuit board 6 is formed with opening holes 5 that are opened on both surfaces of the lens holding unit 4 surrounded by the imaging element mounting unit 2 and the lens holding cylinder 20. The opening hole 5 is formed as a tapered hole whose inner diameter gradually increases from the image sensor mounting portion 2 side to the lens holding portion 4 side.

そしてこの立体回路基板6の撮像素子実装部2などに図1(b)のように回路14を設けることによって、立体的な電気的配線を備えるMID(Molded Interconnection Device)として形成してある。この回路14の作製は、銅スパッタリング法などで形成した銅薄膜に対してレーザー加工等して、回路として必要な部分と不要な部分を分離し、回路として必要な部分に電気めっきを施すことによって行なうことができるものである。ここで、撮像素子実装部2に設けた回路14の、開口穴5の周辺側に位置する端部はパッド21として形成してある。   Then, by providing the circuit 14 as shown in FIG. 1B on the image sensor mounting portion 2 of the three-dimensional circuit board 6, a MID (Molded Interconnection Device) having three-dimensional electrical wiring is formed. The circuit 14 is manufactured by performing laser processing or the like on a copper thin film formed by a copper sputtering method or the like to separate a necessary part and an unnecessary part as a circuit and subjecting the necessary part as a circuit to electroplating. It can be done. Here, an end portion of the circuit 14 provided in the image sensor mounting portion 2 located on the peripheral side of the opening hole 5 is formed as a pad 21.

次に、上記のように形成した立体回路基板6を成形金型にセットし、透明エポキシ樹脂等の透明熱硬化性樹脂など、光透過性の樹脂成形材料をトランスファー成形等し、立体回路基板6の開口穴5内に光透過性材料を充填して硬化させることによって、開口穴5内に透光部7を一体成形する。このようにして図1(c)のように開口穴5内を塞ぐ透光部7を形成することができるものであり、この透光部7は立体回路基板6を成形した後に形成するようにしているために、予め透光部7を作製しておいて立体回路基板6を成形する際に透光部7をインサート成形する場合のような、立体回路基板6を成形する際の射出圧等の成形圧や、成形後の硬化収縮による応力などが透光部7に作用するようなことがなくなり、透光部7が変形等してその光学特性が低下することを防止することができるものである。   Next, the three-dimensional circuit board 6 formed as described above is set in a molding die, and a light-transmitting resin molding material such as a transparent thermosetting resin such as a transparent epoxy resin is transfer-molded. The light-transmitting material 7 is filled in the opening hole 5 and cured, whereby the light-transmitting portion 7 is integrally formed in the opening hole 5. Thus, as shown in FIG. 1 (c), the light transmitting part 7 for closing the inside of the opening hole 5 can be formed. The light transmitting part 7 is formed after the molded circuit board 6 is formed. Therefore, the injection pressure at the time of molding the three-dimensional circuit board 6, such as when the light-transmitting part 7 is formed in advance and the three-dimensional circuit board 6 is molded, and the light-transmitting part 7 is insert-molded. It is possible to prevent the molding pressure and stress due to curing shrinkage after molding from acting on the translucent part 7 and prevent the translucent part 7 from being deformed or the like to deteriorate its optical characteristics. It is.

上記のように開口穴5に透光部7を形成した後、図1(d)のように、立体回路基板6の撮像素子実装部2に撮像素子1を実装すると共に、レンズ保持部4のレンズ保持筒20の内周にレンズ3を取り付けることによって、撮像装置を組み立てることができるものである。ここで、撮像素子1の実装は、撮像素子実装部2に撮像素子1を搭載し、撮像素子1に設けた金バンプなどの電極22を撮像素子実装部2の回路14のパッド21に接合させた状態で、図2(a)に示すように、撮像素子1と撮像素子実装部2との間にアンダーフィル樹脂13と呼ばれるエポキシ樹脂などの接着剤を充填して硬化させることによって行なうことができる。   After forming the translucent part 7 in the opening hole 5 as described above, the imaging element 1 is mounted on the imaging element mounting part 2 of the three-dimensional circuit board 6 as shown in FIG. The imaging device can be assembled by attaching the lens 3 to the inner periphery of the lens holding cylinder 20. Here, the image pickup device 1 is mounted by mounting the image pickup device 1 on the image pickup device mounting portion 2 and bonding electrodes 22 such as gold bumps provided on the image pickup device 1 to the pads 21 of the circuit 14 of the image pickup device mounting portion 2. In this state, as shown in FIG. 2A, an adhesive such as an epoxy resin called an underfill resin 13 is filled between the image pickup device 1 and the image pickup device mounting portion 2 and cured. it can.

そしてこのように形成される撮像装置にあって、光はレンズ3によって集光された後、開口穴5内の透光部7を透過して、撮像素子1の撮像面に受光されるものである。光を通過させる開口穴5にはこのように透光部7が充填されているので、撮像装置を組立てる際に開口穴5から撮像素子1の撮像面にゴミなどが落ちるようなことがなくなり、ゴミによる黒点不良などの発生を防ぐことができるものである。   In the imaging device thus formed, the light is collected by the lens 3 and then transmitted through the light transmitting portion 7 in the opening hole 5 and received by the imaging surface of the imaging device 1. is there. Since the light transmitting portion 7 is filled in the opening hole 5 through which light passes, dust or the like does not fall from the opening hole 5 onto the image pickup surface of the image pickup device 1 when the image pickup apparatus is assembled. It is possible to prevent the occurrence of black spot defects due to dust.

ここで、上記のように撮像素子1を実装するにあたって、撮像素子1の電極22を撮像素子実装部2のパッド21に圧接させることが行なわれ、撮像素子実装部2の開口穴5の周囲の箇所に大きな荷重がかかるが、開口穴5内には透光部7が充填して設けてあり、開口穴5の部分が補強されている。従って撮像素子1を実装する際に、撮像素子実装部2の開口穴5の周辺に圧力が作用しても、撮像素子実装部2の部分が変形することを防ぐことができるものである。このように撮像素子実装部2の部分に変形が生じるようなことなく撮像素子1の実装を行なうことができるので、この撮像素子1とレンズ保持部4に取り付けられたレンズ3との位置関係が設計値からずれるようなことがなくなり、高い光学性能を得ることができるものである。また撮像素子実装部2に残留する弾性変形の応力開放によって撮像素子実装部2から撮像素子1が外れるような不良発生の問題もなくなるものである。   Here, when mounting the image pickup device 1 as described above, the electrode 22 of the image pickup device 1 is pressed into contact with the pad 21 of the image pickup device mounting portion 2, and around the opening hole 5 of the image pickup device mounting portion 2. Although a large load is applied to the location, the opening hole 5 is provided with a light-transmitting portion 7 filled therein, and the portion of the opening hole 5 is reinforced. Therefore, when mounting the image pickup device 1, even if pressure acts on the periphery of the opening hole 5 of the image pickup device mounting portion 2, it is possible to prevent the portion of the image pickup device mounting portion 2 from being deformed. Since the image pickup device 1 can be mounted without causing deformation in the image pickup device mounting portion 2 as described above, the positional relationship between the image pickup device 1 and the lens 3 attached to the lens holding portion 4 is determined. There is no deviation from the design value, and high optical performance can be obtained. Further, it is possible to eliminate the problem of occurrence of a defect such that the image pickup device 1 is detached from the image pickup device mounting portion 2 due to release of the elastic deformation stress remaining in the image pickup device mounting portion 2.

図3は本発明の他の実施の形態を示すものであり、開口穴5内に設けた透光部7の撮像素子実装部2側の表面とレンズ保持部4側の表面の少なくとも一方を曲面形状に形成することによって、透光部7をレンズ形状に形成するようにしてある。従ってこのものでは、透光部7にレンズ機能を与えることができ、光学特性を向上することができるものである。また透光部7がレンズを兼用するので、図1(d)の状態から図3(b)の状態へのようにレンズ保持部4に取り付けられるレンズ3の数を減らしたり、レンズ3を小型化したりすることが可能になるものである。   FIG. 3 shows another embodiment of the present invention. At least one of the surface on the imaging element mounting portion 2 side and the surface on the lens holding portion 4 side of the light transmitting portion 7 provided in the opening hole 5 is curved. By forming it into a shape, the translucent part 7 is formed into a lens shape. Therefore, in this case, a lens function can be given to the light transmitting portion 7 and the optical characteristics can be improved. Further, since the light transmitting portion 7 also serves as a lens, the number of lenses 3 attached to the lens holding portion 4 is reduced as shown in FIG. 1D to the state shown in FIG. It becomes possible to make it.

図4の実施の形態では、透光部7をレンズ形状に形成するにあたって、多数のマイクロレンズ24が縦横に碁盤目状に規則配列したマイクロレンズアレイ形状に形成するようにしてある。すなわち図の例では、透光部7のレンズ保持部4の側の表面に凸曲面部を設けてマイクロレンズ24を形成し、このマイクロレンズ24を透光部7の表面に碁盤目状に配置してマイクロレンズアレイ形状に形成するようにしてある。このように透光部7をマイクロレンズアレイ形状に形成することによって、撮像素子1の各画素と透光部7の各マイクロレンズ24とを対応させた状態で光を受光させることが可能になり、光学性能が向上するものである。   In the embodiment of FIG. 4, when the translucent portion 7 is formed in a lens shape, a large number of microlenses 24 are formed in a microlens array shape that is regularly arranged in a grid pattern. That is, in the example shown in the figure, a convex curved surface portion is provided on the surface of the translucent portion 7 on the lens holding portion 4 side to form a microlens 24, and the microlenses 24 are arranged in a grid pattern on the surface of the translucent portion 7. Thus, a microlens array is formed. By forming the translucent part 7 in the microlens array shape in this way, it becomes possible to receive light in a state where each pixel of the image sensor 1 and each microlens 24 of the translucent part 7 are associated with each other. The optical performance is improved.

図5は本発明の他の実施の形態を示すものであり、開口穴5の近傍に撮像素子実装部2の側の表面とレンズ保持部4の側の表面とに開口するように貫通して立体回路基板6に抜け止め穴8が設けてある。そして立体回路基板6を成形金型内にセットすると共に光透過性の樹脂成形材料をトランスファー成形し、この光透過性材料で開口穴5に透光部7を一体成形する際に、同時にこの光透過性材料の一部を抜け止め穴8内に充填して抜け止め部9を成形するようにしてある。この抜け止め穴8内に充填される抜け止め部9は、撮像素子実装部2の表面とレンズ保持部4の表面に沿った連結片25によって、開口穴5の透光部7と一体に連結している。図の例では、開口穴5を平面四角に形成し、四角の各角部に対応して抜け止め穴8を設けるようにしてあり、開口穴5に形成した透光部7は抜け止め穴8の抜け止め部9と連結片25で放射状に一体に連結されるようにしてある。   FIG. 5 shows another embodiment of the present invention, and penetrates in the vicinity of the opening hole 5 so as to open to the surface on the side of the image sensor mounting portion 2 and the surface on the side of the lens holding portion 4. A retaining hole 8 is provided in the three-dimensional circuit board 6. Then, when the molded circuit board 6 is set in a molding die and a light-transmitting resin molding material is transfer-molded, and the light-transmitting portion 7 is integrally formed in the opening hole 5 with this light-transmitting material, A part of the permeable material is filled into the retaining hole 8 to form the retaining part 9. The retaining portion 9 filled in the retaining hole 8 is integrally connected to the light transmitting portion 7 of the opening hole 5 by a connecting piece 25 along the surface of the image sensor mounting portion 2 and the surface of the lens holding portion 4. doing. In the example shown in the figure, the opening hole 5 is formed in a plane square, and a retaining hole 8 is provided corresponding to each corner of the square, and the translucent part 7 formed in the opening hole 5 is the retaining hole 8. The retaining portions 9 and the connecting pieces 25 are integrally connected radially.

このように開口穴5に形成される透光部7を抜け止め穴8内の抜け止め部9と一体化させることによって、透光部7が開口穴5内から抜け出ることを抜け止め部9によって防ぐことができるものである。従って、エポキシ樹脂などの光透過性材料で透光部7を開口穴5内に成形する際に、透光部7が硬化収縮して透光部7の幅寸法が開口穴5の内径よりも小さくなっても、透光部7が開口穴5から脱落するようなことを防ぐことができるものである。また立体回路基板6と透光部7の熱膨張率の差で透光部7が開口穴5の内周から剥離しても、同様に透光部7が開口穴5から脱落するようなことを防ぐことができるものである。   By integrating the translucent part 7 formed in the opening hole 5 in this way with the retaining part 9 in the retaining hole 8, the retaining part 9 prevents the translucent part 7 from slipping out of the opening hole 5. It can be prevented. Therefore, when the translucent part 7 is formed in the opening hole 5 with a light transmissive material such as epoxy resin, the translucent part 7 is cured and contracted, so that the width dimension of the translucent part 7 is larger than the inner diameter of the aperture hole 5. Even if it becomes small, it can prevent that the translucent part 7 falls out of the opening hole 5. FIG. Further, even if the translucent part 7 is peeled off from the inner periphery of the opening hole 5 due to the difference in thermal expansion coefficient between the three-dimensional circuit board 6 and the translucent part 7, the translucent part 7 is similarly dropped from the opening hole 5. Can be prevented.

図6は本発明の他の実施の形態を示すものであり、開口穴5に設けられる透光部7にレンズ保持部4の側へ突出する位置決め部10が一体に複数本設けてある。図の例では、透光部7をレンズ形状に形成すると共に、透光部7のレンズ保持部4の側の面を開口穴5の外周方向に張り出し、この張り出し部29に位置決め部10が一体に設けてある。そしてレンズ3の外周端部には位置決め穴30が凹設してあり、位置決め部10にこの位置決め穴30をはめ合わせた状態で、レンズ3をレンズ保持部4に取り付けることができるものである。このようにレンズ3はレンズ位置決め部10で位置決めした状態でレンズ保持部4に正確な位置で取り付けることができるものであり、撮像素子実装部2に実装されている撮像素子1に対してレンズ3を正確に位置合わせすることが容易になり、光学性能を向上させることができるものである。またレンズ3をレンズ保持部4に取り付ける組み立ての作業が容易になり、生産性を向上することができるものである。   FIG. 6 shows another embodiment of the present invention, in which a plurality of positioning portions 10 projecting toward the lens holding portion 4 are integrally provided in a light transmitting portion 7 provided in the opening hole 5. In the example shown in the figure, the translucent portion 7 is formed in a lens shape, and the surface of the translucent portion 7 on the lens holding portion 4 side is projected in the outer peripheral direction of the opening hole 5, and the positioning portion 10 is integrated with the projected portion 29. Is provided. A positioning hole 30 is recessed in the outer peripheral end portion of the lens 3, and the lens 3 can be attached to the lens holding portion 4 with the positioning hole 30 fitted in the positioning portion 10. In this way, the lens 3 can be attached to the lens holding unit 4 at an accurate position while being positioned by the lens positioning unit 10, and the lens 3 is attached to the imaging device 1 mounted on the imaging device mounting unit 2. Can be accurately aligned, and optical performance can be improved. Further, the assembly work for attaching the lens 3 to the lens holding portion 4 is facilitated, and the productivity can be improved.

図7は本発明の他の実施の形態を示すものであり、開口穴5内に設けた透光部7から補強部11を一体に突設させ、この補強部11を開口穴5の外周方へ放射状に突出させてレンズ保持部4の表面に密着させるようにしてある。このように補強部11を設けた部分では透光部7の全体の厚みtは開口穴5内での透光部7の厚みtより厚くなっている。図7の例では、図7(b)に示すように補強部11は放射状に形成してある。このように透光部7と一体に補強部11を形成することによって、開口穴5の周辺を補強部11で補強することができるものである。従って、撮像素子1を実装する際に開口穴5の周辺に荷重が作用しても撮像素子実装部2に変形が生じることをより有効に防ぐことができるものである。また撮像素子実装部2に残留する弾性変形の応力開放によって撮像素子実装部2から撮像素子1が外れるような不良発生の問題も、より有効に解消することができるものである。 FIG. 7 shows another embodiment of the present invention, in which a reinforcing portion 11 is integrally projected from a translucent portion 7 provided in the opening hole 5, and the reinforcing portion 11 is arranged on the outer periphery side of the opening hole 5. It is made to project radially and closely contact the surface of the lens holding part 4. Thus, in the portion where the reinforcing portion 11 is provided, the entire thickness t 2 of the light transmitting portion 7 is thicker than the thickness t 1 of the light transmitting portion 7 in the opening hole 5. In the example of FIG. 7, the reinforcing portions 11 are formed radially as shown in FIG. Thus, by forming the reinforcement part 11 integrally with the translucent part 7, the periphery of the opening hole 5 can be reinforced with the reinforcement part 11. FIG. Therefore, even when a load acts on the periphery of the opening hole 5 when the image pickup device 1 is mounted, deformation of the image pickup device mounting portion 2 can be more effectively prevented. Further, it is possible to effectively solve the problem of occurrence of a defect such that the image pickup device 1 is detached from the image pickup device mounting portion 2 due to release of elastic deformation stress remaining in the image pickup device mounting portion 2.

図8は本発明の他の実施の形態を示すものであり、透光部7の表面を断面V字形の微小なV溝27が繰り返す波形断面形状に形成してある。図の例では透光部7の撮像素子実装部2の側の表面を波形形状に形成してある。ここで、V溝27の溝幅を光の波長λの1/4の寸法に形成することによって、その波長λの光を遮光することができる。従って、所望の遮光波長λに応じてV溝27の大きさ(ピッチ)を設定することによって、任意の波長の光を遮断するフィルターとしての機能を透光部7に付与することができるものであり、別途フィルターを用いる必要をなくすことができるものである。   FIG. 8 shows another embodiment of the present invention, in which the surface of the translucent portion 7 is formed in a waveform cross-sectional shape in which minute V grooves 27 having a V-shaped cross section are repeated. In the example of the figure, the surface of the translucent part 7 on the side of the image sensor mounting part 2 is formed in a waveform shape. Here, by forming the groove width of the V-groove 27 to be 1/4 of the wavelength λ of the light, the light of the wavelength λ can be shielded. Therefore, by setting the size (pitch) of the V-groove 27 according to the desired light shielding wavelength λ, a function as a filter that blocks light of an arbitrary wavelength can be given to the light transmitting portion 7. There is no need to use a separate filter.

また、上記の各実施の形態では、開口穴5の内周を内径が撮像素子実装部2の側からレンズ保持部4の側へと徐々に広くなるテーパ形状に形成してあり、この開口穴5内に充填するように透光部7が設けてある。従ってこのものでは、開口穴5の径を小さくしても、開口穴5の内周がレンズ3の側にテーパ状に広がっていることによって、撮像素子1の撮像エリアを広く確保することができるものであり、撮像装置の小型化が容易になるものである。また撮像素子1を撮像素子実装部2にアンダーフィル樹脂13で実装する際に、アンダーフィル樹脂13を硬化させるときの熱で透光部7が膨張すると、膨張による応力は開口穴5の内周面にほぼ直角に作用し、図9の矢印のように撮像素子実装部2を撮像素子1の側に押える力Fとして作用する。従って、撮像素子1を実装する際の荷重に対してこの力Fが対抗することになり、撮像素子実装部2が実装荷重で変形することをより有効に防ぐことができるものである。   Further, in each of the above embodiments, the inner periphery of the opening hole 5 is formed in a tapered shape in which the inner diameter gradually increases from the image sensor mounting portion 2 side to the lens holding portion 4 side. A translucent portion 7 is provided so as to fill the inside 5. Therefore, in this case, even if the diameter of the opening hole 5 is reduced, the inner periphery of the opening hole 5 is tapered toward the lens 3 side, so that a wide imaging area of the imaging element 1 can be secured. Therefore, the image pickup apparatus can be easily downsized. Further, when the image pickup device 1 is mounted on the image pickup device mounting portion 2 with the underfill resin 13, if the light transmitting portion 7 is expanded by heat when the underfill resin 13 is cured, the stress due to the expansion causes the inner periphery of the opening hole 5. 9 acts as a force F that presses the image sensor mounting portion 2 toward the image sensor 1 as indicated by an arrow in FIG. Therefore, this force F opposes the load at the time of mounting the image pickup device 1, and it is possible to more effectively prevent the image pickup device mounting portion 2 from being deformed by the mounting load.

ここで、上記の図2(a)のように撮像素子1と撮像素子実装部2の間にエポキシ樹脂などのアンダーフィル樹脂13を充填して硬化させることによって、撮像素子1の実装を行なうことができるが、アンダーフィル樹脂13が撮像素子1と透光部7の間に侵入すると、撮像素子1の撮像面がアンダーフィル樹脂13で覆われる不良発生のおそれがある。そこで図2(b)の実施の形態では、透光部7の撮像素子実装部2の側の表面の端部に流れ止め突部12を一体に設けるようにしてあり、撮像素子実装部2に撮像素子1を搭載して流れ止め突部12より外側において、撮像素子1と撮像素子実装部2との間にアンダーフィル樹脂13を充填するようにしてある。このものでは、撮像素子1と撮像素子実装部2の間にアンダーフィル樹脂13を充填するに際に、流れ止め突部12でアンダーフィル樹脂13が撮像素子1と透光部7の間に侵入することを防ぐことができるものであり、アンダーフィル樹脂13で撮像素子1の撮像面が塞がれる不良の発生を防止できるものである。   Here, as shown in FIG. 2A, the imaging element 1 is mounted by filling and curing an underfill resin 13 such as an epoxy resin between the imaging element 1 and the imaging element mounting portion 2. However, if the underfill resin 13 enters between the image pickup device 1 and the light transmitting portion 7, there is a possibility of occurrence of a defect in which the image pickup surface of the image pickup device 1 is covered with the underfill resin 13. Therefore, in the embodiment of FIG. 2B, the flow stop protrusion 12 is integrally provided at the end of the surface of the translucent part 7 on the image sensor mounting part 2 side. The underfill resin 13 is filled between the image pickup device 1 and the image pickup device mounting portion 2 on the outer side of the flow stop protrusion 12 after the image pickup device 1 is mounted. In this case, when the underfill resin 13 is filled between the image pickup device 1 and the image pickup device mounting portion 2, the underfill resin 13 enters between the image pickup device 1 and the light transmitting portion 7 at the flow stop protrusion 12. The underfill resin 13 can prevent the occurrence of a defect in which the imaging surface of the imaging element 1 is blocked.

また図2(c)の実施の形態では、アンダーフィル樹脂13として透明エポキシ樹脂などの透光性のものを用いるようにしてあり、撮像素子実装部2に撮像素子1を搭載した後、撮像素子1と撮像素子実装部2の間から撮像素子1と透光部7との間にかけて透光性のアンダーフィル樹脂13を充填するようにしてある。アンダーフィル樹脂13は透光性であるので、撮像素子1の撮像面を光学的に塞ぐことなく、透光性のアンダーフィル樹脂13を撮像素子1と透光部7の間に充填して撮像素子1の実装を行なうことができるものである。そしてこのものでは、アンダーフィル樹脂13の充填面積を大きくすることができるので、撮像素子1の接合面積を確保して実装の信頼性を高く得ることができるものである。また撮像素子1の撮像面はアンダーフィル樹脂13で塞がれていて撮像面の表面に外部とつながった空気層がなくなるので、撮像面に結露が発生することを防ぐことができるものである。   In the embodiment of FIG. 2C, a light-transmitting material such as a transparent epoxy resin is used as the underfill resin 13, and after the image pickup device 1 is mounted on the image pickup device mounting portion 2, the image pickup device is used. A light-transmitting underfill resin 13 is filled between the image sensor 1 and the image sensor mounting portion 2 and between the image sensor 1 and the light transmitting portion 7. Since the underfill resin 13 is translucent, the translucent underfill resin 13 is filled between the imaging element 1 and the translucent portion 7 without optically blocking the imaging surface of the imaging element 1. The element 1 can be mounted. And in this thing, since the filling area of the underfill resin 13 can be enlarged, the joining area of the image pick-up element 1 can be ensured, and the reliability of mounting can be obtained highly. In addition, since the imaging surface of the imaging device 1 is covered with the underfill resin 13 and there is no air layer connected to the outside on the surface of the imaging surface, it is possible to prevent the occurrence of condensation on the imaging surface.

本発明の実施の形態の一例を示すものであり、(a)乃至(d)はそれぞれ断面図である。An example of embodiment of this invention is shown, (a) thru | or (d) are sectional drawings, respectively. 本発明の実施の形態の一例を示すものであり、(a)乃至(c)はそれぞれ一部の拡大した断面図である。FIG. 1 shows an example of an embodiment of the present invention, and (a) to (c) are partially enlarged sectional views, respectively. 本発明の他の実施の形態の一例を示すものであり、(a),(b)はそれぞれ断面図である。An example of other embodiment of this invention is shown, (a), (b) is sectional drawing, respectively. 本発明の他の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of other embodiment of this invention. 本発明の他の実施の形態の一例を示すものであり、(a)は平面図、(b)は(a)のA−A′線断面図である。An example of other embodiment of this invention is shown, (a) is a top view, (b) is the sectional view on the AA 'line of (a). 本発明の他の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of other embodiment of this invention. 本発明の他の実施の形態の一例を示すものであり、(a)は(b)のA−A′線断面図、(b)は底面図である。It shows an example of another embodiment of the present invention, (a) is a sectional view taken along line AA 'of (b), (b) is a bottom view. 本発明の他の実施の形態の一例を示すものであり、(a)は断面図,(b)は一部の拡大断面図である。An example of other embodiment of this invention is shown, (a) is sectional drawing, (b) is a partial expanded sectional view. 本発明の他の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of other embodiment of this invention. 従来例を示すものであり、(a)乃至(c)はそれぞれ断面図である。A conventional example is shown, and (a) to (c) are sectional views.

符号の説明Explanation of symbols

1 撮像素子
2 撮像素子実装部
3 レンズ
4 レンズ保持部
5 開口穴
6 立体回路基板
7 透光部
8 抜け止め穴
9 抜け止め部
10 位置決め部
11 補強部
12 流れ止め部
13 アンダーフィル樹脂
14 回路
DESCRIPTION OF SYMBOLS 1 Image pick-up element 2 Image pick-up element mounting part 3 Lens 4 Lens holding part 5 Open hole 6 Three-dimensional circuit board 7 Translucent part 8 Retaining hole 9 Retaining part 10 Positioning part 11 Reinforcing part 12 Flow preventing part 13 Underfill resin 14 Circuit

Claims (11)

撮像素子を実装する撮像素子実装部を片側に備えると共に撮像素子実装部と反対側にレンズを保持するためのレンズ保持部を備え、撮像素子実装部とレンズ保持部とに開口する開口穴を形成した立体回路基板であって、開口穴には開口穴内を塞ぐように光透過性材料を一体成形して形成される透光部を備えて成ることを特徴とする立体回路基板。   An image sensor mounting part for mounting the image sensor is provided on one side and a lens holding part for holding the lens on the opposite side of the image sensor mounting part, and an opening hole is formed in the image sensor mounting part and the lens holding part. What is claimed is: 1. A three-dimensional circuit board comprising: a light-transmitting portion formed by integrally molding a light-transmitting material so as to close the inside of the opening hole. 透光部をレンズ形状に形成して成ることを特徴とする請求項1に記載の立体回路基板。   The three-dimensional circuit board according to claim 1, wherein the translucent part is formed in a lens shape. レンズ形状はマイクロレンズアレイ形状であることを特徴とする請求項2に記載の立体回路基板。   The three-dimensional circuit board according to claim 2, wherein the lens shape is a microlens array shape. 開口穴の近傍に抜け止め穴を設け、開口穴と抜け止め穴に光透過性材料を一体成形して開口穴内に透光部を形成すると共に抜け止め穴内に透光部と一体となった抜け止め部を形成して成ることを特徴とする請求項1乃至3のいずれかに記載の立体回路基板。   A retaining hole is provided in the vicinity of the opening hole, and a light-transmitting material is integrally formed in the opening hole and the retaining hole to form a light-transmitting portion in the opening hole, and a hole that is integral with the light-transmitting portion in the retaining hole. The three-dimensional circuit board according to any one of claims 1 to 3, wherein a stop portion is formed. レンズ保持部に保持されるレンズを位置決めするための位置決め部を透光部に形成して成ることを特徴とする請求項1乃至4のいずれかに記載の立体回路基板。   The three-dimensional circuit board according to any one of claims 1 to 4, wherein a positioning portion for positioning a lens held by the lens holding portion is formed in the translucent portion. 開口穴内からレンズ保持部の表面に沿って透光部の一部を補強部として一体に突出させて成ることを特徴とする請求項1乃至5のいずれかに記載の立体回路基板。   6. The three-dimensional circuit board according to claim 1, wherein a part of the translucent part is integrally projected as a reinforcing part along the surface of the lens holding part from the inside of the opening hole. 透光部の表面をV字形が繰り返す波形形状に形成して成ることを特徴とする請求項1乃至6のいずれかに記載の立体回路基板。   The three-dimensional circuit board according to any one of claims 1 to 6, wherein the surface of the light-transmitting portion is formed in a waveform shape having a V-shape. 開口穴の内周を内径がレンズ保持部の側が広くなるテーパ形状に形成して成ることを特徴とする請求項1乃至7のいずれかに記載の立体回路基板。   The three-dimensional circuit board according to any one of claims 1 to 7, wherein an inner periphery of the opening hole is formed in a tapered shape having an inner diameter that is wider on a lens holding portion side. 立体回路基板にその片側の撮像素子実装部と反対側のレンズ保持部にそれぞれ開口する開口穴を形成し、この開口穴内に透光性材料を一体成形することによって開口穴内を塞ぐ透光部を形成し、立体回路基板の撮像素子実装部に回路形成をした後に、撮像素子実装部に撮像素子を実装すると共にレンズ保持部にレンズを取り付けることを特徴とする立体回路基板への撮像素子の実装方法。   An opening hole is formed in the three-dimensional circuit board so as to open each of the lens holding part on the opposite side of the image sensor mounting part on one side, and a light-transmitting part that blocks the inside of the opening hole by integrally forming a light-transmitting material in the opening hole. After mounting and forming a circuit on the image pickup device mounting portion of the three-dimensional circuit board, mounting the image pickup device on the image pickup device mounting portion and attaching a lens to the lens holding portion. Method. 透光部の撮像素子実装部の側の表面の端部に流れ止め突部を設け、撮像素子実装部に撮像素子を搭載した後、流れ止め突部より外側において撮像素子と撮像素子実装部との間にアンダーフィル樹脂を充填することを特徴とする請求項9に記載の立体回路基板への撮像素子の実装方法。   An anti-flow projection is provided at the end of the surface of the translucent portion on the image sensor mounting portion side, and after mounting the image sensor on the image sensor mounting portion, the image sensor and the image sensor mounting portion The method of mounting an image pickup device on a three-dimensional circuit board according to claim 9, wherein an underfill resin is filled in between. 撮像素子実装部に撮像素子を搭載した後、撮像素子と透光部との間に透光性のアンダーフィル樹脂を充填することを特徴とする請求項9に記載の立体回路基板への撮像素子の実装方法。   The image pickup device for a three-dimensional circuit board according to claim 9, wherein after the image pickup device is mounted on the image pickup device mounting portion, a light-transmitting underfill resin is filled between the image pickup device and the light transmitting portion. How to implement
JP2003367456A 2003-10-28 2003-10-28 3D circuit board and mounting method of image sensor on 3D circuit board Expired - Lifetime JP4269887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367456A JP4269887B2 (en) 2003-10-28 2003-10-28 3D circuit board and mounting method of image sensor on 3D circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367456A JP4269887B2 (en) 2003-10-28 2003-10-28 3D circuit board and mounting method of image sensor on 3D circuit board

Publications (2)

Publication Number Publication Date
JP2005136484A true JP2005136484A (en) 2005-05-26
JP4269887B2 JP4269887B2 (en) 2009-05-27

Family

ID=34645455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367456A Expired - Lifetime JP4269887B2 (en) 2003-10-28 2003-10-28 3D circuit board and mounting method of image sensor on 3D circuit board

Country Status (1)

Country Link
JP (1) JP4269887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170534A (en) * 2007-01-09 2008-07-24 Konica Minolta Opto Inc Method of manufacturing optical element, the optical element, and optical element unit
JP2017146527A (en) * 2016-02-19 2017-08-24 大日本印刷株式会社 Imaging module and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170534A (en) * 2007-01-09 2008-07-24 Konica Minolta Opto Inc Method of manufacturing optical element, the optical element, and optical element unit
JP2017146527A (en) * 2016-02-19 2017-08-24 大日本印刷株式会社 Imaging module and imaging apparatus

Also Published As

Publication number Publication date
JP4269887B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4686400B2 (en) Optical device, optical device apparatus, camera module, and optical device manufacturing method
KR101100790B1 (en) Semiconductor device and method for manufacturing same
JP5009209B2 (en) Wafer-like optical device and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information device
KR100791730B1 (en) Semiconductor device and production method thereof
US6897428B2 (en) Solid-state imaging device and method for manufacturing the same
US7433555B2 (en) Optoelectronic device chip having a composite spacer structure and method making same
KR100603918B1 (en) Solid state imaging device and method for manufacturing the same
KR100710964B1 (en) Method for manufacturing a optical device
KR100824514B1 (en) A semiconductor device
JP2006041183A (en) Image pickup device
JP2005026426A (en) Solid-state imaging device and its manufacturing method
JP2008277325A (en) Semiconductor device, and manufacturing method of semiconductor device
JP4824461B2 (en) The camera module
JP2008277593A (en) Circuit board, optical device employing the same, camera module, and manufacturing method for the circuit board
US6864117B2 (en) Method for producing solid-state imaging device
JP2007317719A (en) Imaging device and its manufacturing method
JP2010021283A (en) Solid state imaging device and manufacturing method thereof
JP2009086092A (en) Method of manufacturing optical component and method of manufacturing photographing device
JP4269887B2 (en) 3D circuit board and mounting method of image sensor on 3D circuit board
JP4219943B2 (en) Solid-state imaging device
JP2005217337A (en) Optical device
JP2006080597A (en) Image pickup module and method of manufacturing the same
KR102559339B1 (en) Light receiving module and method of manufacturing the light receiving module
KR20220071294A (en) Photosensitive assembly, imaging module, intelligent terminal, and method and mould for manufacturing photosensitive assembly
JP4444931B2 (en) Optical device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4