JP2005136015A - Orientation method of permanent magnet powder and manufacturing method of permanent magnet - Google Patents

Orientation method of permanent magnet powder and manufacturing method of permanent magnet Download PDF

Info

Publication number
JP2005136015A
JP2005136015A JP2003368328A JP2003368328A JP2005136015A JP 2005136015 A JP2005136015 A JP 2005136015A JP 2003368328 A JP2003368328 A JP 2003368328A JP 2003368328 A JP2003368328 A JP 2003368328A JP 2005136015 A JP2005136015 A JP 2005136015A
Authority
JP
Japan
Prior art keywords
magnetic field
permanent magnet
orientation
magnet powder
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003368328A
Other languages
Japanese (ja)
Other versions
JP4370877B2 (en
Inventor
Futoshi Kuniyoshi
太 國吉
Koji Nakahara
康次 中原
Yuji Kaneko
裕治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2003368328A priority Critical patent/JP4370877B2/en
Publication of JP2005136015A publication Critical patent/JP2005136015A/en
Application granted granted Critical
Publication of JP4370877B2 publication Critical patent/JP4370877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet having high magnetic characteristics being attained by a method for orienting permanent magnet powder in the direction of an orientation magnetic field. <P>SOLUTION: In the inventive orientation method of permanent magnet powder, a space having length L in the direction of orientation magnetic field is filled with permanent magnet powder at a filling density of 1.4-4.2 g/cm<SP>3</SP>. Subsequently, an inclining magnetic field is formed such that the magnetic field strength indicates a highest value at a position in the space other than the center in the direction of orientation magnetic field, and the magnetic field strength at the end part in the direction of orientation magnetic field remote from the position indicating the highest value becomes lower than the highest value by 1.0 T or more. A magnetic force acts on the permanent magnet powder filling the space and field orientation is carried out while increasing the filling density of permanent magnet powder relatively in the vicinity of the position where the magnetic field strength indicates a highest value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、永久磁石粉末の配向方法および永久磁石の製造方法、並びにそれらの方法を用いて得られる永久磁石に関する。   The present invention relates to a method for orienting a permanent magnet powder, a method for producing a permanent magnet, and a permanent magnet obtained by using these methods.

高性能永久磁石として代表的なR−Fe−B系永久磁石(特許文献1など)は、優れた磁気特性を有しているため、各種モータ、アクチュエータなど様々な用途に使用され、用途に応じた種々の磁石特性を発揮するよう様々な組成のR−Fe−B系永久磁石が提案されている。しかし、電気・電子機器の小型・軽量化ならびに高機能化の要求は強く、R−Fe−B系永久磁石のより一層の高性能化とコストダウンが要求されている。   R-Fe-B permanent magnets (such as Patent Document 1), which are typical high-performance permanent magnets, have excellent magnetic properties and are used in various applications such as various motors and actuators. In addition, R-Fe-B permanent magnets having various compositions have been proposed so as to exhibit various magnet characteristics. However, there are strong demands for reducing the size, weight, and functionality of electric / electronic devices, and there is a demand for higher performance and cost reduction of R-Fe-B permanent magnets.

R−Fe−B系永久磁石の高性能化には、残留磁束密度(Br)の向上、保磁力(iHc)の向上、温度特性の向上、耐食性の向上などが挙げられる。そのうち、残留磁束密度の向上については、以下の手段が有効であることが知られている。   Improvements in the performance of R-Fe-B permanent magnets include an improvement in residual magnetic flux density (Br), an improvement in coercive force (iHc), an improvement in temperature characteristics, and an improvement in corrosion resistance. Among them, the following means are known to be effective for improving the residual magnetic flux density.

(1)強磁性相であり、主相のR2Fe14B相の存在量を多くする。 (1) It is a ferromagnetic phase, and the abundance of the main phase R 2 Fe 14 B phase is increased.

(2)焼結体の密度を理論密度まで高める。   (2) Increase the density of the sintered body to the theoretical density.

(3)主相結晶粒の磁化容易軸方向の配向度を高める。   (3) Increasing the degree of orientation of the main phase crystal grains in the easy axis direction.

上記(1)を達成するためには、磁石の組成を上記R2Fe14Bの化学量論的組成に近づけること、具体的には、R(希土類)量の低減、酸素量を低減することが好ましい。 In order to achieve the above (1), the composition of the magnet is brought close to the stoichiometric composition of R 2 Fe 14 B, specifically, the amount of R (rare earth) is reduced and the amount of oxygen is reduced. Is preferred.

また、上記(2)を達成するためには、合金作製にストリップキャスティング法を採用することにより、合金中のR−rich相を微細に分散させ、それによって焼結性を向上させることが有効である。   In order to achieve the above (2), it is effective to finely disperse the R-rich phase in the alloy by adopting a strip casting method for producing the alloy, thereby improving the sinterability. is there.

さらに、上記(3)を達成するためには、永久磁石粉末を十分に配向させてから成形を行なうことが有効である。永久磁石粉末を十分に配向させるためには、パルス磁界などによって高い強度の磁界を印加したり、永久磁石粉末の潤滑性を向上させたりする方法が知られている。また、配向のバラツキを防止するために、成形空間に均一な磁界分布を形成することが知られている。   Furthermore, in order to achieve the above (3), it is effective to perform molding after sufficiently orienting the permanent magnet powder. In order to sufficiently orient the permanent magnet powder, a method of applying a high strength magnetic field by a pulse magnetic field or improving the lubricity of the permanent magnet powder is known. It is also known to form a uniform magnetic field distribution in the molding space in order to prevent variation in orientation.

上記の永久磁石粉末を十分に配向させる方法として、例えば、R−Fe−B系合金粉末をモールド内に充填密度1.4〜3.5g/cm3に充填し、瞬間的に10kOe以上のパルス磁界を磁界方向を繰り返し反転させて付加し、それによって配向を行なった後、冷間静水圧プレスする方法が提案されている(特許文献2)。 As a method for sufficiently orienting the above permanent magnet powder, for example, an R—Fe—B alloy powder is filled in a mold to a packing density of 1.4 to 3.5 g / cm 3 , and a pulse of 10 kOe or more is instantaneously generated. There has been proposed a method in which a magnetic field is applied by reversing the direction of the magnetic field repeatedly, and orientation is performed thereby, followed by cold isostatic pressing (Patent Document 2).

この提案による方法は、高いパルス磁界を、磁界方向を繰り返し反転させながら印加することが特徴であり、磁界強度が35kOeのパルス磁界を反転繰り返し付加することが記載されている。磁界分布についての記載はないが、モールド全体に対して均一な磁界を印加しているものと思われる。   The method according to this proposal is characterized by applying a high pulse magnetic field while reversing the direction of the magnetic field repeatedly, and describes that a pulse magnetic field having a magnetic field strength of 35 kOe is repeatedly applied. Although there is no description about magnetic field distribution, it seems that the uniform magnetic field is applied with respect to the whole mold.

また、均一な配向度を得るための方法として、磁性粉を所定磁界強度の磁界中にて所定方向に配向する際、磁界強度の配向磁界領域よりも弱い磁界強度を有する弱磁界領域又は無磁界領域から配向磁界領域に磁性粉を相対的に移動させる方法が提案されている(特許文献3)。   Further, as a method for obtaining a uniform degree of orientation, when orienting magnetic powder in a predetermined direction in a magnetic field having a predetermined magnetic field strength, a weak magnetic field region or a no magnetic field having a magnetic field strength weaker than the orientation magnetic field region having a magnetic field strength. A method has been proposed in which magnetic powder is relatively moved from a region to an orientation magnetic field region (Patent Document 3).

前記の提案は、プレス装置のキャビティ内に設けられた、下側から上方へ磁界強度が順次上昇する空間の下側に、ボンド磁石用コンパウンド(磁石と樹脂の混合物)を配置する。コンパウンドの上方は何もない自由空間としておく。この状態で静磁場を印加することにより、コンパウンドは重量に抗して強い磁界領域の上方向へと移動する。このとき、コンパウンドの周囲には自由空間が形成されているので、コンパウンド間の摩擦力が低下し、コンパウンドの回転運動が容易となる。移動したコンパウンドは磁界方向に鎖状につながり、均一に配向するというものである。   According to the above proposal, a bonded magnet compound (a mixture of a magnet and a resin) is disposed below a space provided in a cavity of a press device in which a magnetic field strength sequentially increases from the lower side to the upper side. Leave free space above the compound. By applying a static magnetic field in this state, the compound moves upward in the strong magnetic field region against the weight. At this time, since a free space is formed around the compound, the frictional force between the compounds decreases, and the rotational movement of the compound becomes easy. The moved compound is connected in a chain shape in the direction of the magnetic field and is uniformly oriented.

従来、特許文献2及び特許文献3に代表されるように、主相結晶粒の磁化容易軸方向の配向度を高めるために種々の提案がなされ、磁界分布は均一なほどよい、またその配向磁界は高いほどよいという考え方が支配的であった。
特開昭59−46008号公報 特開平8−167516号公報 特開2001−93712号公報
Conventionally, as typified by Patent Document 2 and Patent Document 3, various proposals have been made to increase the degree of orientation of the main phase crystal grains in the easy axis direction, and the more uniform the magnetic field distribution, the better the orientation magnetic field. The predominance was that the higher the better.
JP 59-46008 A JP-A-8-167516 JP 2001-93712 A

R−Fe−B系永久磁石における残留磁束密度(Br)の理論値は、R2Fe14B金属間化合物の飽和磁化Isである1.6Tであるとされ、最大エネルギー積((BH)max)で512kJ/cm3であるとされている。これは、R2Fe14B金属間化合物(単結晶)による値であるため、市場に供される焼結磁石やボンド磁石といった形態においては、残留磁束密度1.6Tを得ることは実質的に不可能であるが、それに限りなく近づけることは可能である。 The theoretical value of the residual magnetic flux density (Br) in the R—Fe—B permanent magnet is assumed to be 1.6 T which is the saturation magnetization Is of the R 2 Fe 14 B intermetallic compound, and the maximum energy product ((BH) max. ) And 512 kJ / cm 3 . Since this is a value based on the R 2 Fe 14 B intermetallic compound (single crystal), it is substantially possible to obtain a residual magnetic flux density of 1.6 T in the form of sintered magnets and bonded magnets on the market. It is impossible, but it can be as close as possible.

しかし、特許文献2による方法では、最高でも残留磁束密度(Br)は1.4T程度であり、また、特許文献3による方法では、ボンド磁石の例が記載されているが、焼結磁石の場合に得られる残留磁束密度Brについては具体的に記載がなく、この方法も焼結磁石に適用した際に得られる効果は不明である。いずれにしても、近年の要求を満足するためには、それ以上の残留磁束密度(Br)を得ることが必要である。   However, in the method according to Patent Document 2, the residual magnetic flux density (Br) is about 1.4T at the maximum, and in the method according to Patent Document 3, an example of a bonded magnet is described. The residual magnetic flux density Br obtained in the above is not specifically described, and the effect obtained when this method is also applied to a sintered magnet is unknown. In any case, in order to satisfy recent requirements, it is necessary to obtain a residual magnetic flux density (Br) higher than that.

本発明は、配向磁界は高ければ高いほどよい、磁界分布は均一なほどよいという従来の考え方を根本的に変える配向方法により、主相結晶粒の磁化容易軸方向の配向度をさらに高め、電気・電子機器の小型・軽量化および高機能化に対応した高磁気特性を備えた永久磁石を提供することを目的とする。   The present invention further increases the degree of orientation in the easy axis direction of the main phase grains by an orientation method that fundamentally changes the conventional idea that the higher the orientation magnetic field is, the better the magnetic field distribution is. -An object of the present invention is to provide a permanent magnet having high magnetic properties corresponding to a reduction in size, weight and functionality of electronic equipment.

本発明による永久磁石粉末の配向方法は、配向磁界方向に永久磁石粉末を配向させる永久磁石粉末の配向方法であって、配向磁界方向に長さLを有する空間の内部に永久磁石粉末を充填密度1.4〜4.2g/cm3で充填する工程と、前記空間の配向磁界方向における中心以外の位置で磁界強度が最高値を示し、かつ、前記空間の配向磁界方向の両端部のうち前記磁界強度が最高値を示す位置から遠い方の端部における磁界強度が前記磁界強度の最高値よりも1.0T以上低くなる傾斜磁界を形成することにより、前記空間内に充填されている永久磁石粉末に磁力を及ぼし、それによって前記磁界強度の最高値を示す位置の近傍で前記永久磁石粉末の充填密度を相対的に上昇させながら磁界配向を行なう傾斜磁界印加工程とを含む。 A method for orienting a permanent magnet powder according to the present invention is a method for orienting a permanent magnet powder in the direction of an orientation magnetic field, and the density of the permanent magnet powder is filled in a space having a length L in the orientation magnetic field direction. The step of filling with 1.4 to 4.2 g / cm 3 , and the magnetic field strength shows the highest value at a position other than the center in the orientation magnetic field direction of the space, and among the both ends of the orientation magnetic field direction of the space Permanent magnets filled in the space by forming a gradient magnetic field in which the magnetic field strength at the end far from the position where the magnetic field strength shows the maximum value is 1.0T or more lower than the maximum value of the magnetic field strength. And a gradient magnetic field application step of performing magnetic field orientation while relatively increasing the packing density of the permanent magnet powder in the vicinity of the position where the magnetic force is applied to the powder, thereby showing the maximum value of the magnetic field strength.

好ましい実施形態において、前記傾斜磁界印加工程は、パルス磁界を印加する工程である。   In a preferred embodiment, the gradient magnetic field applying step is a step of applying a pulse magnetic field.

好ましい実施形態において、前記傾斜磁界印加工程を複数回行なう。   In a preferred embodiment, the gradient magnetic field applying step is performed a plurality of times.

好ましい実施形態において、複数回行なう前記傾斜磁界印加工程のうち、第1回目の傾斜磁界印加工程と第2回目の傾斜磁界印加工程との間で、印加磁界の極性を変化させる。   In a preferred embodiment, the polarity of the applied magnetic field is changed between the first gradient magnetic field application step and the second gradient magnetic field application step among the gradient magnetic field application steps performed a plurality of times.

好ましい実施形態において、複数回行なう前記傾斜磁界印加工程のうち、第1回目の傾斜磁界印加工程と第2回目の傾斜磁界印加工程との間で、印加磁界の強度分布が示す勾配の極性を変化させる。   In a preferred embodiment, the gradient polarity indicated by the intensity distribution of the applied magnetic field is changed between the first gradient magnetic field application step and the second gradient magnetic field application step among the gradient magnetic field application steps performed a plurality of times. Let

好ましい実施形態において、前記第1回目の傾斜磁界印加工程と前記第2回目の傾斜磁界印加工程とを繰り返す。   In a preferred embodiment, the first gradient magnetic field application step and the second gradient magnetic field application step are repeated.

好ましい実施形態において、前記空間の配向磁界方向における中心で磁界強度が最高値を示す磁界を印加する工程を更に含む。   In a preferred embodiment, the method further includes a step of applying a magnetic field having a maximum magnetic field strength at the center in the orientation magnetic field direction of the space.

好ましい実施形態において、前記配向磁界は、磁界強度が略直線的に変化する部分を含む強度分布を有している。   In a preferred embodiment, the orientation magnetic field has a strength distribution including a portion where the magnetic field strength changes substantially linearly.

好ましい実施形態において、前記傾斜磁界印加工程における前記配向磁界の前記最高値を1.0T以上に設定する。   In a preferred embodiment, the maximum value of the orientation magnetic field in the gradient magnetic field application step is set to 1.0 T or more.

好ましい実施形態において、前記傾斜磁界印加工程において、前記空間内に充填されている永久磁石粉末に磁力を及ぼすとき、前記永久磁石粉末の配向磁界方向の移動を規制する。   In a preferred embodiment, in the step of applying the gradient magnetic field, when a magnetic force is applied to the permanent magnet powder filled in the space, movement of the permanent magnet powder in the orientation magnetic field direction is restricted.

好ましい実施形態において、前記永久磁石粉末は、R−Fe−B系磁石の粉末から構成されている。   In a preferred embodiment, the permanent magnet powder is composed of an R—Fe—B magnet powder.

好ましい実施形態において、前記永久磁石粉末は、ストリップキャスティング法によって得られた鋳片を粉砕することによって作製された粉末である。   In a preferred embodiment, the permanent magnet powder is a powder produced by pulverizing a slab obtained by a strip casting method.

好ましい実施形態において、前記永久磁石粉末を充填する前記空間が、可撓性を有するモールドによって規定される。   In a preferred embodiment, the space filled with the permanent magnet powder is defined by a flexible mold.

好ましい実施形態において、前記空間が、プレス装置のダイと上下パンチとによって規定される。   In a preferred embodiment, the space is defined by a press device die and upper and lower punches.

本発明の永久磁石の製造方法は、永久磁石粉末を用意する工程と、上記いずれかの永久磁石粉末の配向方法によって前記永久磁石粉末を配向する工程と、前記永久磁石粉末を成形し、焼結する工程とを含む。   The method for producing a permanent magnet of the present invention includes a step of preparing a permanent magnet powder, a step of orienting the permanent magnet powder by any of the above-described permanent magnet powder orientation methods, and molding and sintering the permanent magnet powder. Including the step of.

好ましい実施形態において、前記成形は、冷間静水圧プレスによって行なう。   In a preferred embodiment, the molding is performed by cold isostatic pressing.

好ましい実施形態において、前記成形は、一軸圧縮プレスによって行う。   In a preferred embodiment, the molding is performed by a uniaxial compression press.

本発明の永久磁石は、上記いずれかの永久磁石の製造方法によって得られた永久磁石であって、配向度が92%以上である。   The permanent magnet of the present invention is a permanent magnet obtained by any one of the above-described methods for producing a permanent magnet, and has an orientation degree of 92% or more.

本発明の永久磁石は、上記いずれかの永久磁石の製造方法によって得られた永久磁石であって、理論値の90%以上の残留磁束密度(T)値を示す。   The permanent magnet of the present invention is a permanent magnet obtained by any one of the above-described methods for producing a permanent magnet, and exhibits a residual magnetic flux density (T) value of 90% or more of the theoretical value.

本発明の永久磁石粉末の配向方法によれば、強磁性を有する主相結晶粒の磁化容易軸方向の配向度を極限まで高めることができる。   According to the method for aligning permanent magnet powder of the present invention, the degree of orientation in the easy axis direction of the main phase crystal grains having ferromagnetism can be increased to the limit.

例えば、本発明をR−Fe−B系焼結磁石の製造方法に適用することによって最も好ましい条件を選定した場合、残留磁束密度(Br)の値が1.533T(理論値のほぼ96%)、最大エネルギー積((BH)max)の値が460kJ/m3という、これまでには存在しなかった、極めて高い磁気特性を有する永久磁石を得ることが可能となる。これにより、近年要求される、電気・電子機器の小型・軽量化ならびに高機能化に十分に対応することが可能となる。 For example, when the most preferable conditions are selected by applying the present invention to a method for manufacturing an R—Fe—B based sintered magnet, the value of the residual magnetic flux density (Br) is 1.533 T (approximately 96% of the theoretical value). It is possible to obtain a permanent magnet having extremely high magnetic properties, which has never existed before, with a maximum energy product ((BH) max) value of 460 kJ / m 3 . As a result, it is possible to sufficiently meet the recent demands for smaller and lighter electrical and electronic devices and higher functionality.

また、本発明は極めて簡便な方法であるため、永久磁石のコストアップを招くことがない。本発明によれば、磁界強度が比較的低くても極めて高い残留磁束密度Brを得ることできる。換言すれば、従来と同じ程度の残留磁束密度Brを得る場合、配向磁界の強度を低く設定してもよい。従って、従来よりも低い磁界で配向すること可能になるので、プレス装置におけるコイル電源を小型化し、省エネルギーなどを実現することが可能になる。   Further, since the present invention is an extremely simple method, the cost of the permanent magnet is not increased. According to the present invention, an extremely high residual magnetic flux density Br can be obtained even if the magnetic field strength is relatively low. In other words, when the residual magnetic flux density Br of the same level as the conventional one is obtained, the strength of the orientation magnetic field may be set low. Therefore, since it becomes possible to orient with a magnetic field lower than before, the coil power supply in the press apparatus can be miniaturized and energy saving can be realized.

さらに、本発明により得られる永久磁石は、減磁曲線の角型性に極めて優れている。   Furthermore, the permanent magnet obtained by the present invention is extremely excellent in the squareness of the demagnetization curve.

本発明は、強磁性を有する主相結晶粒の磁化容易軸の配向度を極限まで高めることができるという効果を有するため、本発明に適用できる永久磁石粉末としては、強磁性を有する主相結晶粒を有する永久磁石粉末が適用可能である。例えば、フェライト磁石、R−Co系磁石、R−Fe−B系磁石などである。中でも、R−Fe−B系磁石、特に、R−Fe−B系焼結磁石は本発明の効果を最も発揮することができる。   The present invention has the effect that the orientation degree of the easy axis of the main phase crystal grains having ferromagnetism can be increased to the limit. Therefore, as the permanent magnet powder applicable to the present invention, the main phase crystal having ferromagnetism is used. A permanent magnet powder having grains can be applied. For example, ferrite magnets, R—Co magnets, R—Fe—B magnets, and the like. Among these, an R—Fe—B based magnet, in particular, an R—Fe—B based sintered magnet can exhibit the effect of the present invention most.

R−Fe−B系永久磁石を用いる場合、ストリップキャスティング法によって得られた厚さ0.1〜1.0mmの原料合金を水素粉砕法などによって粗く粉砕した後、ジェットミル粉砕などによって更に微粉砕した磁石粉を用いることが好ましい。原料合金の粗粉砕及び微粉砕は、上記方法に限定されず、他の公知の方法を用いて行なうことができる。また、粗粉砕によって得られた粗粉末粉や微粉砕によって得られた微粉砕粉に公知の潤滑剤を添加すると、永久磁石粉末の配向度をより一層向上させることができるので好ましい。   When using an R-Fe-B permanent magnet, a raw material alloy having a thickness of 0.1 to 1.0 mm obtained by strip casting is coarsely pulverized by a hydrogen pulverization method and then further finely pulverized by a jet mill pulverization or the like. It is preferable to use magnet powder. The coarse pulverization and fine pulverization of the raw material alloy are not limited to the above methods, and can be performed using other known methods. Moreover, it is preferable to add a known lubricant to the coarse powder obtained by coarse pulverization or the fine pulverized powder obtained by fine pulverization, since the degree of orientation of the permanent magnet powder can be further improved.

以下、本発明による永久磁石粉末の配向方法の一例を説明する。ここでは、永久磁石粉末としてR−Fe−B系焼結磁石の粉末を用いる例を説明する。   Hereinafter, an example of the orientation method of the permanent magnet powder according to the present invention will be described. Here, an example in which powder of an R—Fe—B based sintered magnet is used as the permanent magnet powder will be described.

まず、図6を参照して、従来の配向方法を説明する。従来の配向方法では、図6に示すように、例えばゴムモールド内やプレス機のキャビティ内などの空間内の磁界分布が、空間の配向方向の長さLの中心に、磁界強度の最高値が位置するとともに、中央部付近において均一磁界を有し、端部へ行くほど磁界強度が低くなっていた。このような磁界分布中において、印加磁界強度の最高値が位置する中心付近(均一磁界内)で成形が行われていた。   First, a conventional alignment method will be described with reference to FIG. In the conventional orientation method, as shown in FIG. 6, for example, the magnetic field distribution in a space such as a rubber mold or a cavity of a press machine has a maximum magnetic field strength at the center of the length L in the orientation direction of the space. In addition to being located, it has a uniform magnetic field in the vicinity of the central portion, and the magnetic field strength decreases toward the end. In such a magnetic field distribution, molding is performed near the center (within a uniform magnetic field) where the highest value of the applied magnetic field strength is located.

次に、図1及び図2を参照して、本発明の永久磁石粉末の配向方法を説明する。   Next, with reference to FIG.1 and FIG.2, the orientation method of the permanent magnet powder of this invention is demonstrated.

本発明による配向方法によれば、粉末が充填されるべき空間の磁界強度が図1に示す分布を持つように形成される。より具体的には、配向方向に長さLを有する上記空間の中心からシフトした位置で磁界強度が最高値を示す。図1の例では、図の左側端部に近い位置に磁界強度の最高値を示す位置があり、右側端部へ行くに従って磁界強度が低くなっている。つまり、磁石粉末が充填される空間内における磁界強度の分布が非対称であり、配向方向に沿って変化している。このような磁界を「傾斜磁界」と称することとする。   According to the orientation method of the present invention, the magnetic field strength of the space to be filled with powder is formed to have the distribution shown in FIG. More specifically, the magnetic field strength shows the maximum value at a position shifted from the center of the space having the length L in the alignment direction. In the example of FIG. 1, there is a position showing the maximum value of the magnetic field strength at a position close to the left end portion in the figure, and the magnetic field strength decreases as going to the right end portion. That is, the distribution of the magnetic field intensity in the space filled with the magnet powder is asymmetric and changes along the orientation direction. Such a magnetic field is referred to as a “gradient magnetic field”.

本発明では、空間内における磁界強度の最高値(a)と、前記空間の端部のうち磁界強度が最高値を示す位置からから遠い方の端部における磁界強度(b)との差(「a−b」)が1.0T以上になるようにパルス状の磁界を印加する。   In the present invention, the difference between the maximum value (a) of the magnetic field strength in the space and the magnetic field strength (b) at the end of the space far from the position where the magnetic field strength shows the maximum value (“ A pulsed magnetic field is applied so that “ab”) is 1.0 T or more.

なお、磁界強度の最高値を示す位置から近い方の端部(c)は、この最高値(a)よりも磁界強度が低いが、最高値を示す位置から遠い方の端部(b)よりも磁界強度が高い方が望ましい。このとき、図の中心に対して、磁界強度が最高値を示す位置を含む左側の領域が高磁界強度側となり、最高値を示す位置から遠い方の端部を含む図中右側の領域が低磁界強度側となる。   Note that the end portion (c) closer to the position showing the maximum value of the magnetic field strength has a lower magnetic field strength than the maximum value (a), but the end portion (b) far from the position showing the maximum value. However, it is desirable that the magnetic field strength is high. At this time, the left area including the position where the magnetic field strength shows the maximum value is the high magnetic field strength side with respect to the center of the figure, and the right area in the figure including the end far from the position where the maximum value is shown is low. On the magnetic field strength side.

図2は、本発明による最も好ましい磁界分布例である。印加磁界強度が左側端部から右側端部へと略直線状に傾斜しながら低下していることが特徴である。   FIG. 2 is a most preferred magnetic field distribution example according to the present invention. It is characterized in that the applied magnetic field intensity decreases while being inclined substantially linearly from the left end to the right end.

前記磁界強度の最高値が位置する近傍で高く、最高値から遠い方の端部近傍で低くし、前記傾斜磁界中において磁界配向を行うと、空間内の永久磁石粉末の充填密度は、前記磁界分布における磁界強度の最高値が位置する近傍(高磁界強度側)で高く、最高値から遠い方の端部近傍(低磁界強度側)で低くなることが本発明の特徴である。   When the magnetic field strength is high in the vicinity where the highest value of the magnetic field strength is located, low in the vicinity of the end far from the highest value, and magnetic field orientation is performed in the gradient magnetic field, the packing density of the permanent magnet powder in the space is the magnetic field. It is a feature of the present invention that the maximum value of the magnetic field strength in the distribution is high in the vicinity (on the high magnetic field strength side) and low near the end farther from the maximum value (on the low magnetic field strength side).

上記の充填密度の変化について、図1を例にとって説明すると、図1の如く、空間の中心より左側に磁界強度の最高値を有する傾斜磁界中で配向を行うと、各永久磁石粉末は磁界強度の最高値が位置する側(高磁界強度側、図中左側)へ移動しようとする力が働くが、結果として、その端部には空間壁面が存在するため、この空間の壁面に永久磁石粉末が押し寄せされて、充填密度が高くなる。逆に、磁界強度の最高値から遠い方の端部側(低磁界強度側、図中右側)の充填密度は低くなる。このとき、空間内の容積全体における平均充填密度は磁界印加前の充填密度と同じである。   The change in the packing density will be described with reference to FIG. 1 as an example. As shown in FIG. 1, when orientation is performed in a gradient magnetic field having the highest magnetic field strength on the left side of the center of the space, each permanent magnet powder has a magnetic field strength. Although the force to move to the side where the highest value is located (high magnetic field strength side, left side in the figure) works, as a result, there is a space wall surface at the end, so permanent magnet powder on the wall surface of this space Are pushed together and the packing density is increased. On the other hand, the packing density on the end portion side (low magnetic field strength side, right side in the figure) far from the maximum value of the magnetic field strength is low. At this time, the average packing density in the entire volume in the space is the same as the packing density before application of the magnetic field.

このように、磁界印加後の永久磁石粉末の充填密度が、磁界分布中における高磁界強度側で高くなることによって、永久磁石粉末は印加磁界方向へ配向されたままで固定されることとなる。従って、パルス磁界を印加し終わったのちも、その固定状態を維持するので、静磁界などの外部磁界を印加し続ける必要がないという利点がある。   As described above, the filling density of the permanent magnet powder after application of the magnetic field is increased on the high magnetic field strength side in the magnetic field distribution, so that the permanent magnet powder is fixed while being oriented in the applied magnetic field direction. Therefore, after the application of the pulse magnetic field, the fixed state is maintained, and there is an advantage that it is not necessary to continue to apply an external magnetic field such as a static magnetic field.

本発明によれば、上記のような永久磁石粉末の移動と空間内における充填密度の変化により、永久磁石粉末の配向度が向上されているものと考えられる。こま永久磁石粉末の移動と空間内における永久磁石粉末の充填密度の変化は、磁界印加前に空間内に充填する永久磁石粉末の充填密度を1.4〜4.2g/cm3にしておくことによって起こる。充填密度が1.4g/cm3未満では永久磁石粉末の移動は起こるが充填密度の変化が起こらず、パルス磁界印加後、その配向状態が維持されず、永久磁石粉末の配向度が低下する。一方充填密度が4.2g/cm3を超えると永久磁石粉末の移動が起こり難くなり、永久磁石粉末の配向度が低下するため好ましくない。より好ましい範囲は3.0〜4.0g/cm3である。 According to the present invention, it is considered that the degree of orientation of the permanent magnet powder is improved by the movement of the permanent magnet powder and the change of the packing density in the space. For the movement of the permanent magnet powder and the change in the packing density of the permanent magnet powder in the space, the packing density of the permanent magnet powder to be filled in the space should be 1.4 to 4.2 g / cm 3 before applying the magnetic field. Caused by. If the packing density is less than 1.4 g / cm 3 , the movement of the permanent magnet powder occurs, but the packing density does not change, the orientation state is not maintained after applying the pulse magnetic field, and the orientation degree of the permanent magnet powder decreases. On the other hand, if the packing density exceeds 4.2 g / cm 3 , the movement of the permanent magnet powder is difficult to occur, and the degree of orientation of the permanent magnet powder is not preferable. A more preferable range is 3.0 to 4.0 g / cm 3 .

前述の特許文献2に開示されている方法では、モールド内でパルス磁界を反転させながら繰り返して印加するが、特許文献2は傾斜磁界の使用については教示も示唆もしてない。このため、特許文献2の方法では、従来通り、モールドの全体に対して均一な磁界を印加していると考えられる。従って、特許文献2の方法によれば、永久磁石粉末の移動と空間内における永久磁石粉末の充填密度の変化は起こっておらず、本発明のような効果は得られない。   In the method disclosed in Patent Document 2, the pulse magnetic field is repeatedly applied while being reversed in the mold. However, Patent Document 2 does not teach or suggest the use of a gradient magnetic field. For this reason, in the method of patent document 2, it is thought that the uniform magnetic field is applied with respect to the whole mold as usual. Therefore, according to the method of Patent Document 2, the movement of the permanent magnet powder and the change in the packing density of the permanent magnet powder in the space do not occur, and the effect of the present invention cannot be obtained.

一方、特許文献3に開示されている方法では、配向磁界領域(成形空間)よりも弱い磁界強度を有する弱磁界領域又は無磁界領域から配向磁界領域へ磁性粉を移動させる。ただし、磁性粉は特定の空間内の所定の密度を有するように充填されておらず、磁性粉の存在しない部分を広く含む空間の内部を磁性粉が移動している。このため、磁性粉の移動は空間を仕切る部材によって規制されず、磁性粉の全体が空間内を比較的自由に移動する。磁性粉は、移動後もコイルによる静磁場によって引き付けられて集合しているだけである。このため、磁性粉の位置による充填密度の変化は生じず、そもそも、磁性粉が自由に移動できる広い空間が形成されているため、磁性粉は充填されているとは言えず、「充填密度」という概念すらない。従って、永久磁石粉末の移動とともに空間内における永久磁石粉末の充填密度の変化は起こっておらず、本発明のような効果は得られない。   On the other hand, in the method disclosed in Patent Document 3, the magnetic powder is moved from the weak magnetic field region or the non-magnetic field region having a magnetic field strength weaker than the orientation magnetic field region (forming space) to the orientation magnetic field region. However, the magnetic powder is not filled so as to have a predetermined density in a specific space, and the magnetic powder moves in a space that widely includes a portion where the magnetic powder does not exist. For this reason, the movement of the magnetic powder is not restricted by the member that partitions the space, and the entire magnetic powder moves relatively freely in the space. Even after the movement, the magnetic powder is attracted and gathered by the static magnetic field generated by the coil. For this reason, there is no change in the packing density depending on the position of the magnetic powder. In the first place, since a wide space is formed in which the magnetic powder can freely move, it cannot be said that the magnetic powder is filled. I don't think the concept. Therefore, the change in the packing density of the permanent magnet powder in the space does not occur with the movement of the permanent magnet powder, and the effect of the present invention cannot be obtained.

また、特許文献3においては、空間内における平均の粉末密度が極めて低いので、配向後に磁粉末の配向方向が固定されない。従って、配向後も静磁界を印加し続けて、成形が終了するまで配向を維持し続けなければならない。   Moreover, in patent document 3, since the average powder density in space is very low, the orientation direction of a magnetic powder is not fixed after orientation. Therefore, it is necessary to continue applying the static magnetic field after the orientation and maintain the orientation until the molding is completed.

従来、配向磁界は高ければ高いほどよく、磁界分布は均一なほどよいという考え方が存在したが、本願発明では、その考え他を根本的に変えている。   Conventionally, there has been a concept that the higher the orientation magnetic field, the better, and the better the magnetic field distribution, but in the present invention, the idea and others are fundamentally changed.

本発明において、配向のために磁性粉末が充填される空間(形成される磁界強度の分布が配向方向に沿って変化している空間)は、プレス装置のダイと上下パンチとで形成されるキャビティや、例えばゴムや樹脂などの可撓性を有するモール度によって規定されることが好ましい。前述のように、本発明では、このような空間内に永久磁石粉末を充填密度1.4〜4.2g/cm3で充填するため、空間内を永久磁石粉末は塊となって移動することはできない。すなわち、永久磁石粉末を構成する個々の粒子はミクロなスケールでは自由に移動するとともに回動することもできるため、充填密度かに分布が生じるが、空間の内壁が粉末の移動を規制するため、特許文献2に記載されているような空間内を磁性粉末がかたまりとなって移動することはない。 In the present invention, the space filled with magnetic powder for orientation (the space in which the distribution of the magnetic field strength formed varies along the orientation direction) is a cavity formed by the die of the pressing device and the upper and lower punches. Or, it is preferably defined by the degree of malleability having flexibility such as rubber or resin. As described above, in the present invention, permanent magnet powder is packed in such a space at a packing density of 1.4 to 4.2 g / cm 3 , and thus the permanent magnet powder moves in a lump in the space. I can't. That is, since the individual particles constituting the permanent magnet powder can freely move and rotate on a micro scale, a distribution occurs in the packing density, but the inner wall of the space regulates the movement of the powder, The magnetic powder does not move as a mass in the space described in Patent Document 2.

本発明では印加する磁界は、パルス磁界である。印加磁界の強度分布における最高値は1.0T以上であることが好ましい。磁界強度の最高値が1.0T未満では、永久磁石粉末を配向することが困難となるため好ましくない。磁界強度の最高値の上限値は、現在一般的に使用されている着磁装置の範囲において、コイル電源装置の大きさや消費電力などを考慮して決定すればよい。但し、本発明による傾斜磁界による配向方法を用いることにより、従来の配向方法のように、高い磁界強度を印加しなくても、比較的低い磁場でも従来と同等の磁気特性を有する永久磁石を得ることが可能になる。言いかえれば、従来と同様に高い磁界強度を印加することにより、従来よりも格段に優れた磁気特性を有する永久磁石を得ることが可能になる。   In the present invention, the applied magnetic field is a pulsed magnetic field. The maximum value in the intensity distribution of the applied magnetic field is preferably 1.0 T or more. If the maximum value of the magnetic field strength is less than 1.0 T, it is difficult to orient the permanent magnet powder, which is not preferable. The upper limit value of the maximum value of the magnetic field strength may be determined in consideration of the size of the coil power supply device, power consumption, and the like within the range of magnetizing devices that are generally used at present. However, by using the orientation method by the gradient magnetic field according to the present invention, a permanent magnet having magnetic characteristics equivalent to those of the conventional one can be obtained even when a relatively low magnetic field is applied without applying a high magnetic field strength as in the conventional orientation method. It becomes possible. In other words, by applying a high magnetic field strength as in the conventional case, it becomes possible to obtain a permanent magnet having magnetic properties that are significantly superior to those of the conventional case.

本発明による配向方法は、傾斜磁界中において1回行えば、本発明による効果を得ることができるが、2回以上(複数回)行うことにより、さらに効果を向上させることができる。複数回行う場合は、第1回目の配向と第2回目の配向との印加磁界の極性を異ならせるか、あるいは強度を異ならせることが好ましい。   If the orientation method according to the present invention is performed once in a gradient magnetic field, the effect of the present invention can be obtained, but the effect can be further improved by performing it twice or more (multiple times). When performing it several times, it is preferable to make the polarity of the applied magnetic field different between the first orientation and the second orientation or to make the strength different.

図1を参照しながら、印加磁界の極性を異ならせる場合を説明すると、例えば、高磁界強度側(図中左側)をN極、低磁界強度側(図中右側)をS極として第1回目の配向を行った場合、第2回目は高磁界強度側(図中左側)をS極、低磁界強度側(図中右側)をN極とする。この場合、永久磁石粉末の移動はほとんど起こらないが、未配向粉末の配向ができ、永久磁石粉末の配向度が向上する。   The case where the polarity of the applied magnetic field is changed will be described with reference to FIG. 1. For example, the first time with the high magnetic field strength side (left side in the figure) as the N pole and the low magnetic field strength side (right side in the figure) as the S pole. In the second time, the high magnetic field strength side (left side in the figure) is the S pole and the low magnetic field strength side (right side in the figure) is the N pole. In this case, the movement of the permanent magnet powder hardly occurs, but the unoriented powder can be oriented, and the degree of orientation of the permanent magnet powder is improved.

次に、図1を参照しながら、印加磁界の傾斜方向を異ならせる場合を説明すると、高磁界強度側(図中左側)をN極、低磁界強度側(図中右側)をS極として第1回目の配向を行った場合、第2回目は、図中左側を低磁界強度とし、図中右側を高磁界強度とする。つまり、右下がりの傾斜を右上がりの傾斜に入れ替える。この場合、永久磁石粉末の移動と空間内における充填密度の変化が起こり、永久磁石粉末の配向度がさらに向上する。なお、この時、極性はそのままでも切り替えてもよい。   Next, referring to FIG. 1, the case where the gradient direction of the applied magnetic field is changed will be described. The high magnetic field strength side (left side in the figure) is the N pole, and the low magnetic field strength side (right side in the figure) is the S pole. When the first orientation is performed, the second time is a low magnetic field strength on the left side in the figure and a high magnetic field strength on the right side in the figure. That is, the downward slope is replaced with the upward slope. In this case, the movement of the permanent magnet powder and the change of the packing density in the space occur, and the degree of orientation of the permanent magnet powder is further improved. At this time, the polarity may be switched as it is.

また、上記の極性を異ならせる場合を繰り返し行ったり、傾斜方向を異ならせる場合を繰り返し行ったり、それらを組み合わせて繰り返し行うこともできる。この場合、最も好ましいのは、第1回目の配向と第2回目の配向の傾斜方向を異ならせ、それを繰り返し行うことである。   Moreover, the case where the above-described polarity is changed can be repeated, the case where the inclination direction is changed can be repeatedly performed, or a combination thereof can be repeatedly performed. In this case, it is most preferable that the first and second orientations have different inclination directions and are repeated.

本発明は、これまで述べた上記の構成によって永久磁石粉末の配向度を向上させることができるが、充填密度が変化したまま次の工程となる成形工程へ進むと、成形体に密度差が生じることとなり、配向度の向上により磁気特性は格段に向上するものの、焼結体の変形、その変形による加工工程の増加などを招く可能性がある。   In the present invention, the degree of orientation of the permanent magnet powder can be improved by the above-described configuration, but when proceeding to the next molding step while the packing density is changed, a density difference occurs in the molded body. Thus, although the magnetic characteristics are remarkably improved by improving the degree of orientation, there is a possibility of causing deformation of the sintered body and an increase in processing steps due to the deformation.

そこで、本発明の配向方法により、1回あるいは複数回の傾斜磁界による配向を行ったのち、空間の配向方向の長さLの中心に印加磁界の強度の最高値が位置する磁界分布、すなわち、従来から行われていた均一な磁界分布で、少なくとも1回配向することにより、成形体の密度差が解消し、焼結体の変形を抑制することができる。但し、この場合においても、上記の通り、磁界印加前に特定の充填密度で充填し、傾斜磁界中で配向を施しているため、単に均一磁界中で高磁界強度によって配向されたものや、均一磁界中で繰り返し反転させるパルス磁界によって配向されたもの(特許文献2)に比べ、永久磁石粉末の配向度が向上していることは言うまでもない。   Therefore, the magnetic field distribution in which the highest value of the intensity of the applied magnetic field is located at the center of the length L in the alignment direction of the space after performing the alignment by one or a plurality of gradient magnetic fields by the alignment method of the present invention, that is, By orienting at least once with a uniform magnetic field distribution that has been conventionally performed, the density difference of the compact can be eliminated, and deformation of the sintered compact can be suppressed. However, even in this case, as described above, filling is performed at a specific packing density before application of a magnetic field and orientation is performed in a gradient magnetic field. It goes without saying that the degree of orientation of the permanent magnet powder is improved as compared with that oriented by a pulsed magnetic field that is repeatedly reversed in a magnetic field (Patent Document 2).

上述した本発明による永久磁石粉末の配向方法によって配向した粉末は、以下の方法によって成形される。   The powder oriented by the permanent magnet powder orientation method according to the present invention described above is formed by the following method.

可撓性を有するモールド内の永久磁石粉末を配向した場合、成形は、冷間静水圧プレスによって行うことが好ましい。先に説明したように、配向後の永久磁石粉末は、モールド内で所定の配向方向に固定されているので、成形時の磁界印加は基本的に必要でない。むろん、磁界を印加して成形しても差しつかえはない。   When the permanent magnet powder in the mold having flexibility is oriented, the molding is preferably performed by cold isostatic pressing. As described above, since the permanent magnet powder after orientation is fixed in a predetermined orientation direction in the mold, it is basically unnecessary to apply a magnetic field during molding. Of course, there is no problem even if a magnetic field is applied for molding.

プレス装置におけるダイと上下パンチとで形成されるキャビティ内で永久磁石粉末を配向した場合、成形は、上下パンチによる一軸圧縮プレスによって行う。この時も、上記と同様に、成形時の磁界印加は基本的に必要ではないが、磁界を印加してもよい。   When the permanent magnet powder is oriented in the cavity formed by the die and the upper and lower punches in the press apparatus, the molding is performed by uniaxial compression press using the upper and lower punches. At this time, similarly to the above, it is not basically necessary to apply a magnetic field during molding, but a magnetic field may be applied.

成形後の成形体は、公知の手段によって焼結、熱処理され、焼結磁石となす。   The molded body after molding is sintered and heat-treated by a known means to form a sintered magnet.

これによって、主相結晶粒の磁化容易軸の配向度を極限まで高めた、永久磁石を得ることができる。   Thereby, it is possible to obtain a permanent magnet in which the orientation degree of the easy axis of the main phase crystal grains is increased to the limit.

得られた永久磁石は、焼結体の配向度が92%以上であり、また、理論値(1.6T)の90%以上の残留磁束密度(Br)を発現することができる。この配高度、残留磁束密度は、従来方法では得られなかった、極めて優れた特性を発揮する。   The obtained permanent magnet has an orientation degree of the sintered body of 92% or more, and can exhibit a residual magnetic flux density (Br) of 90% or more of the theoretical value (1.6T). This distribution altitude and residual magnetic flux density exhibit extremely excellent characteristics that could not be obtained by conventional methods.

(実施例1)
組成が、Nd28.51.00Co0.50Cu0.05Al0.05残部Fe(mass%)を溶解し、合金溶湯をストリップキャスティング法によって急冷し、合金鋳片を得た。合金鋳片は厚さ0.3mmであった。
(Example 1)
Nd 28.5 B 1.00 Co 0.50 Cu 0.05 Al 0.05 The remainder Fe (mass%) was melted, and the molten alloy was rapidly cooled by a strip casting method to obtain an alloy slab. The alloy slab was 0.3 mm thick.

上記合金鋳片を、水素粉砕、脱水素によって粗粉砕し、さらに、ジェットミル粉砕によって、平均粒径3μmに微粉砕した。   The alloy slab was coarsely pulverized by hydrogen pulverization and dehydrogenation, and further finely pulverized to a mean particle size of 3 μm by jet mill pulverization.

次に、得られた微粉砕粉を、直径25mm、高さ25mmのゴムモールドに充填密度3.5g/cm3で充填し、ゴム製の蓋によってゴムモールドを密閉した。 Next, the obtained finely pulverized powder was filled in a rubber mold having a diameter of 25 mm and a height of 25 mm at a filling density of 3.5 g / cm 3 , and the rubber mold was sealed with a rubber lid.

上記ゴムモールドを図3に示す磁界分布の傾斜配向(1)領域において配向した。図3に示す通り、磁界分布は、配向方向の長さLの中心以外(図3においては左側)に磁界強度の最高値(8.0T)が位置し、かつ、最高値と配向方向における該最高値から遠い方の端部(4.5T)との強度差が3.5Tであった。配向は、図3による傾斜配向(1)の磁界分布で1回(第1回目の配向)、傾斜配向(1)の分布を全く逆にした磁界分布(測定位置31mm位置における磁界強度が8.0T、測定位置57.5mm位置における磁界強度が4.5T、強度差が3.5T)で1回(第2回目の配向)、パルス磁界を印加することによって行った。   The rubber mold was oriented in the gradient orientation (1) region of the magnetic field distribution shown in FIG. As shown in FIG. 3, the magnetic field distribution is such that the maximum value (8.0 T) of the magnetic field strength is located outside the center of the length L in the alignment direction (left side in FIG. 3), and the maximum value and the alignment direction The strength difference from the end portion (4.5T) far from the maximum value was 3.5T. The orientation is one time (first orientation) in the magnetic field distribution of the tilt orientation (1) according to FIG. 3, and the magnetic field distribution in which the distribution of the tilt orientation (1) is completely reversed (the magnetic field strength at the measurement position of 31 mm is 8. This was performed by applying a pulsed magnetic field once (second orientation) at 0 T, the magnetic field intensity at a measurement position of 57.5 mm was 4.5 T, and the intensity difference was 3.5 T.

次いで、配向後のゴムモールドを、冷間静水圧プレスによって成形した後、ゴムモールドを除去して内部の成形体を取り出し、この成形体を温度1373Kで2時間焼結し、さらに823Kで1時間熱処理を施し、焼結磁石を作製した。   Next, after the oriented rubber mold was formed by cold isostatic pressing, the rubber mold was removed, the internal molded body was taken out, this molded body was sintered at a temperature of 1373K for 2 hours, and further at 823K for 1 hour. Heat treatment was performed to produce a sintered magnet.

(実施例2)
図3に示す磁界分布の傾斜配向(1)領域で1回配向を行う以外は、実施例1と同じ条件で焼結磁石を作製した。
(Example 2)
A sintered magnet was produced under the same conditions as in Example 1 except that the orientation was performed once in the gradient orientation (1) region of the magnetic field distribution shown in FIG.

(実施例3)
図3に示す磁界分布の傾斜配向(2)領域(測定位置40mm位置における磁界強度が7.5T、測定位置67mm位置における磁界強度が2.5T、強度差が5.0T)で1回配向を行い(第1回目の配向)、次いで傾斜配向(2)の分布を全く逆にした磁界分布で1回(第2回目の配向)パルス磁界を印加する以外は、実施例1と同じ条件で焼結磁石を作製した。
(Example 3)
Orientation once in the gradient orientation (2) region of the magnetic field distribution shown in FIG. 3 (the magnetic field strength at the measurement position 40 mm is 7.5 T, the magnetic field strength at the measurement position 67 mm is 2.5 T, and the strength difference is 5.0 T). Firing (first orientation), followed by firing under the same conditions as in Example 1, except that a pulsed magnetic field is applied once (second orientation) with a magnetic field distribution in which the distribution of the tilt orientation (2) is completely reversed. A magnetized magnet was produced.

(実施例4)
図3に示す磁界分布の傾斜配向(2)領域で1回配向を行う以外は、実施例1と同じ条件で焼結磁石を作製した。
Example 4
A sintered magnet was produced under the same conditions as in Example 1 except that the orientation was performed once in the gradient orientation (2) region of the magnetic field distribution shown in FIG.

(比較例1)
図3に示す磁界分布の中心配向領域で1回配向を行い、極性を逆にして1回配向する以外は実施例1と同じ条件で焼結磁石を作製した。
(Comparative Example 1)
A sintered magnet was produced under the same conditions as in Example 1 except that orientation was performed once in the central orientation region of the magnetic field distribution shown in FIG.

(比較例2)
図3に示す磁界分布の中心配向領域で1回配向を行う以外は、実施例1と同じ条件で焼結磁石を作製した。
(Comparative Example 2)
A sintered magnet was produced under the same conditions as in Example 1 except that the orientation was performed once in the central orientation region of the magnetic field distribution shown in FIG.

図4に実施例1(傾斜(1)の◆印)、実施例2(傾斜(1)の■印)、実施例3(傾斜(2)の◆印)、実施例4(傾斜(2)の■印)比較例1(中心の◆印)及び比較例2(中心の■印)の残留磁束密度Br(T)の値を示す。   FIG. 4 shows Example 1 (♦ mark of inclination (1)), Example 2 (■ mark of inclination (1)), Example 3 (♦ mark of inclination (2)), Example 4 (Inclination (2)) The solid magnetic flux density Br (T) of Comparative Example 1 (center mark) and Comparative Example 2 (center mark) are shown.

図4から明らかなように、傾斜磁界中において第1の配向と第2の配向の磁界強度を異ならせた本発明による実施例1の磁石は、均一磁界中において極性を異ならせて配向した従来の比較例1による磁石に比べて、Brが大きく向上していることがわかる。また、傾斜磁界中において1回配向を施した本発明による実施例2の磁石も、均一磁界中においてい1回配向した従来の比較例2に比べ、Brが向上しており、従来の比較例1と同等のBrを有することが分かる。   As is clear from FIG. 4, the magnet of Example 1 according to the present invention in which the magnetic field strengths of the first and second orientations are different in a gradient magnetic field is oriented with different polarities in a uniform magnetic field. It can be seen that Br is greatly improved as compared with the magnet according to Comparative Example 1. In addition, the magnet of Example 2 according to the present invention in which the orientation was once performed in the gradient magnetic field also showed an improvement in Br as compared with the conventional comparative example 2 in which the orientation was once in the uniform magnetic field. It can be seen that it has Br equivalent to 1.

さらに、特筆すべきは、磁界強度の最高値が傾斜(1)よりも低い磁界分布で配向した実施例3と実施例4の磁石が、実施例1と実施例2の磁石よりもBrが高いということである。この結果は、従来の「磁界分布は均一なほどよい」という考え方を根本的に変えるものであり、本発明の大きな特徴である。   Furthermore, it should be noted that the magnets of Example 3 and Example 4 in which the maximum value of the magnetic field intensity is oriented with a magnetic field distribution lower than the gradient (1) have a higher Br than the magnets of Example 1 and Example 2. That's what it means. This result fundamentally changes the conventional idea that “the more uniform the magnetic field distribution is,” and is a major feature of the present invention.

これらの結果から、磁界強度が比較的低くても、傾斜磁界中で配向することにより、極めて高いBrを得ることできる。換言すれば、従来と同じ程度のBrを得るのならば、磁界強度はもっと低くてもよいことになる。すなわち、従来よりも低い磁界で配向すること可能になるので、従来に比べ、コイル電源の小型化、省エネルギーなどを実現することが可能になる。   From these results, even if the magnetic field strength is relatively low, extremely high Br can be obtained by orienting in a gradient magnetic field. In other words, if the same level of Br as in the conventional case is obtained, the magnetic field strength may be lower. That is, since it becomes possible to orientate with a magnetic field lower than before, it is possible to realize a reduction in the size of the coil power source, energy saving, and the like as compared with the conventional case.

図5は、減磁曲線の角型性を示している。本発明による実施例1及び実施例2の磁石は、従来の比較例に比べ、角型性に極めて優れることが分かる。また、Brの傾向と同様に、角型性においても、実施例3及び実施例4の磁石は、実施例1及び実施例2の磁石よりも優れている。   FIG. 5 shows the squareness of the demagnetization curve. It can be seen that the magnets of Example 1 and Example 2 according to the present invention are extremely excellent in squareness as compared with the conventional comparative example. Moreover, similarly to the tendency of Br, the magnets of Examples 3 and 4 are superior to the magnets of Examples 1 and 2 in terms of squareness.

これは、傾斜磁界中における配向によって、永久磁石粉末の移動と空間内における充填密度の変化が同時に起こっているからであると考えられる。   This is presumably because the movement of the permanent magnet powder and the change of the packing density in the space occur simultaneously due to the orientation in the gradient magnetic field.

本発明は、高性能化が強く求められている永久磁石に広く適用される。   The present invention is widely applied to permanent magnets for which high performance is strongly demanded.

本発明の永久磁石の配向方法を示す説明図である。It is explanatory drawing which shows the orientation method of the permanent magnet of this invention. 本発明の永久磁石の配向方法を示す説明図である。It is explanatory drawing which shows the orientation method of the permanent magnet of this invention. 磁界分布を示す説明図である。It is explanatory drawing which shows magnetic field distribution. 配向方法とBrの関係を示すグラフである。It is a graph which shows the relationship between the orientation method and Br. 配向方法と減磁曲線の角型性の関係を示すグラフである。It is a graph which shows the relationship between the orientation method and the squareness of a demagnetization curve. 従来の永久磁石の配向方法を示す説明図である。It is explanatory drawing which shows the orientation method of the conventional permanent magnet.

Claims (19)

配向磁界方向に永久磁石粉末を配向させる永久磁石粉末の配向方法であって、
配向磁界方向に長さLを有する空間の内部に永久磁石粉末を充填密度1.4〜4.2g/cm3で充填する工程と、
前記空間の配向磁界方向における中心以外の位置で磁界強度が最高値を示し、かつ、前記空間の配向磁界方向の両端部のうち前記磁界強度が最高値を示す位置から遠い方の端部における磁界強度が前記磁界強度の最高値よりも1.0T以上低くなる傾斜磁界を形成することにより、前記空間内に充填されている永久磁石粉末に磁力を及ぼし、それによって前記磁界強度の最高値を示す位置の近傍で前記永久磁石粉末の充填密度を相対的に上昇させながら磁界配向を行なう傾斜磁界印加工程と、
を含む永久磁石粉末の配向方法。
A method for orienting a permanent magnet powder that orients the permanent magnet powder in the orientation magnetic field direction,
Filling the interior of a space having a length L in the direction of the orientation magnetic field with permanent magnet powder at a packing density of 1.4 to 4.2 g / cm 3 ;
The magnetic field strength at the position other than the center in the orientation magnetic field direction of the space has the highest value, and the magnetic field at the end far from the position at which the magnetic field strength has the highest value among both ends of the orientation magnetic field direction of the space. By forming a gradient magnetic field whose strength is 1.0 T or more lower than the maximum value of the magnetic field strength, a magnetic force is exerted on the permanent magnet powder filled in the space, thereby showing the maximum value of the magnetic field strength. A gradient magnetic field application step of performing magnetic field orientation while relatively increasing the packing density of the permanent magnet powder in the vicinity of the position;
Method for orienting permanent magnet powder containing
前記傾斜磁界印加工程は、パルス磁界を印加する工程である請求項1に記載の永久磁石粉末の配向方法。   The method for orienting a permanent magnet powder according to claim 1, wherein the gradient magnetic field applying step is a step of applying a pulse magnetic field. 前記傾斜磁界印加工程を複数回行なう請求項2に記載の永久磁石粉末の配向方法。   The method for orienting permanent magnet powder according to claim 2, wherein the gradient magnetic field applying step is performed a plurality of times. 複数回行なう前記傾斜磁界印加工程のうち、第1回目の傾斜磁界印加工程と第2回目の
傾斜磁界印加工程との間で、印加磁界の極性を変化させる請求項3に記載の永久磁石粉末の配向方法。
The permanent magnet powder according to claim 3, wherein the polarity of the applied magnetic field is changed between the first gradient magnetic field application step and the second gradient magnetic field application step among the gradient magnetic field application steps performed a plurality of times. Orientation method.
複数回行なう前記傾斜磁界印加工程のうち、第1回目の傾斜磁界印加工程と第2回目の
傾斜磁界印加工程との間で、印加磁界の強度分布が示す勾配の極性を変化させる請求項3に記載の永久磁石粉末の配向方法。
The gradient polarity indicated by the intensity distribution of the applied magnetic field is changed between the first gradient magnetic field application step and the second gradient magnetic field application step among the gradient magnetic field application steps performed a plurality of times. An orientation method of the permanent magnet powder as described.
前記第1回目の傾斜磁界印加工程と前記第2回目の傾斜磁界印加工程とを繰り返す請求項4または5に記載の永久磁石粉末の配向方法。   The method for orienting permanent magnet powder according to claim 4 or 5, wherein the first gradient magnetic field application step and the second gradient magnetic field application step are repeated. 前記空間の配向磁界方向における中心で磁界強度が最高値を示す磁界を印加する工程を更に含む、請求項1から6のいずれかに記載の永久磁石粉末の配向方法。   The method for orienting permanent magnet powder according to any one of claims 1 to 6, further comprising a step of applying a magnetic field having a maximum magnetic field strength at the center in the orientation magnetic field direction of the space. 前記配向磁界は、磁界強度が略直線的に変化する部分を含む強度分布を有している請求項1から7のいずれかに記載の永久磁石粉末の配向方法。   The method for orienting a permanent magnet powder according to any one of claims 1 to 7, wherein the orientation magnetic field has a strength distribution including a portion where the magnetic field strength changes substantially linearly. 前記傾斜磁界印加工程における前記配向磁界の前記最高値を1.0T以上に設定する請求項1から8のいずれかに記載の永久磁石粉末の配向方法。   The permanent magnet powder orientation method according to any one of claims 1 to 8, wherein the maximum value of the orientation magnetic field in the gradient magnetic field application step is set to 1.0 T or more. 前記傾斜磁界印加工程において、前記空間内に充填されている永久磁石粉末に磁力を及ぼすとき、前記永久磁石粉末の配向磁界方向の移動を規制する請求項1から9のいずれかに記載の永久磁石粉末の配向方法。   The permanent magnet according to any one of claims 1 to 9, wherein, in the step of applying a gradient magnetic field, when a magnetic force is applied to the permanent magnet powder filled in the space, movement of the permanent magnet powder in an orientation magnetic field direction is restricted. Powder orientation method. 前記永久磁石粉末は、R−Fe−B系磁石の粉末から構成されている請求項1から10のいずれかに記載の永久磁石粉末の配向方法。   The said permanent magnet powder is the orientation method of the permanent magnet powder in any one of Claim 1 to 10 comprised from the powder of the R-Fe-B type magnet. 前記永久磁石粉末は、ストリップキャスティング法によって得られた鋳片を粉砕することによって作製された粉末である請求項1から11のいずれかに記載の永久磁石粉末の配向方法。   The method for orienting a permanent magnet powder according to claim 1, wherein the permanent magnet powder is a powder produced by pulverizing a slab obtained by a strip casting method. 前記永久磁石粉末を充填する前記空間が、可撓性を有するモールドによって規定される請求項1から12のいずれかに記載の永久磁石粉末の配向方法。   The method for orienting permanent magnet powder according to claim 1, wherein the space filled with the permanent magnet powder is defined by a flexible mold. 前記空間が、プレス装置のダイと上下パンチとによって規定される請求項1から12のいずれかに記載の永久磁石粉末の配向方法。   The method for orienting a permanent magnet powder according to any one of claims 1 to 12, wherein the space is defined by a die and a vertical punch of a press device. 永久磁石粉末を用意する工程と、
請求項1から14に記載のいずれかの永久磁石粉末の配向方法によって前記永久磁石粉末を配向する工程と、
前記永久磁石粉末を成形し、焼結する工程と、
をさらに含む永久磁石の製造方法。
Preparing a permanent magnet powder;
Orienting the permanent magnet powder by the method of orienting permanent magnet powder according to any one of claims 1 to 14,
Forming and sintering the permanent magnet powder;
The manufacturing method of the permanent magnet which further contains.
前記成形は、冷間静水圧プレスによって行なう請求項15記載の永久磁石の製造方法   The method of manufacturing a permanent magnet according to claim 15, wherein the forming is performed by cold isostatic pressing. 前記成形は、一軸圧縮プレスによって行う請求項15記載の永久磁石の製造方法。   The method of manufacturing a permanent magnet according to claim 15, wherein the forming is performed by a uniaxial compression press. 請求項15から17のいずれかに記載の永久磁石の製造方法によって得られた永久磁石であって、
配向度が92%以上である永久磁石。
A permanent magnet obtained by the method for producing a permanent magnet according to any one of claims 15 to 17,
A permanent magnet having an orientation degree of 92% or more.
請求項15から17のいずれかに記載の永久磁石の製造方法によって得られた永久磁石であって、
理論値の90%以上の残留磁束密度(T)値を示す永久磁石。


A permanent magnet obtained by the method for producing a permanent magnet according to any one of claims 15 to 17,
A permanent magnet having a residual magnetic flux density (T) value of 90% or more of the theoretical value.


JP2003368328A 2003-10-29 2003-10-29 Method for orienting permanent magnet powder and method for producing permanent magnet Expired - Lifetime JP4370877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368328A JP4370877B2 (en) 2003-10-29 2003-10-29 Method for orienting permanent magnet powder and method for producing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368328A JP4370877B2 (en) 2003-10-29 2003-10-29 Method for orienting permanent magnet powder and method for producing permanent magnet

Publications (2)

Publication Number Publication Date
JP2005136015A true JP2005136015A (en) 2005-05-26
JP4370877B2 JP4370877B2 (en) 2009-11-25

Family

ID=34646024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368328A Expired - Lifetime JP4370877B2 (en) 2003-10-29 2003-10-29 Method for orienting permanent magnet powder and method for producing permanent magnet

Country Status (1)

Country Link
JP (1) JP4370877B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294468A (en) * 2008-08-04 2008-12-04 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED MAGNET
WO2009122709A1 (en) * 2008-03-31 2009-10-08 日立金属株式会社 R-t-b-type sintered magnet and method for production thereof
WO2013027592A1 (en) * 2011-08-22 2013-02-28 住友電気工業株式会社 Method for producing powder compact for magnet, powder compact for magnet, and sintered body
JP2018509756A (en) * 2015-01-26 2018-04-05 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Applied magnetic field synthesis and processing of iron nitride magnetic materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122709A1 (en) * 2008-03-31 2009-10-08 日立金属株式会社 R-t-b-type sintered magnet and method for production thereof
US8317941B2 (en) 2008-03-31 2012-11-27 Hitachi Metals, Ltd. R-T-B-type sintered magnet and method for production thereof
JP5477282B2 (en) * 2008-03-31 2014-04-23 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP2008294468A (en) * 2008-08-04 2008-12-04 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED MAGNET
WO2013027592A1 (en) * 2011-08-22 2013-02-28 住友電気工業株式会社 Method for producing powder compact for magnet, powder compact for magnet, and sintered body
JP2018509756A (en) * 2015-01-26 2018-04-05 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Applied magnetic field synthesis and processing of iron nitride magnetic materials
US11302472B2 (en) 2015-01-26 2022-04-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
JP7385313B2 (en) 2015-01-26 2023-11-22 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Applied magnetic field formation and processing of iron nitride magnetic materials
US11996232B2 (en) 2015-01-26 2024-05-28 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials

Also Published As

Publication number Publication date
JP4370877B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
Nakayama et al. Nd Fe B anisotropic magnet powders produced by the HDDR process
KR100524340B1 (en) Solid Material for Magnet
KR101918975B1 (en) MAGNET of Nd-Fe-B SYSTEM AND THE MANUFACTURING METHOD THEREOF
KR100518067B1 (en) Permanent magnet manufacturing method and press apparatus
EP2767992A1 (en) Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
US7166171B2 (en) Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
US6605162B2 (en) Anisotropic magnet and process of producing the same
JP2001217112A (en) R-t-b sintered magnet
KR101837279B1 (en) Method of controlling a growth of grains in a Rare Earth Permanent Magnet
US7371290B2 (en) Production method for permanent magnet and press device
JP2003203818A (en) Method of manufacturing permanent magnet and pressing apparatus
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP4687267B2 (en) Method for producing powder compact
JPH052735B2 (en)
JPH04293206A (en) Pare earth elements-fe-b based anisotropic permanent magnet
JPS6365742B2 (en)
JP6021096B2 (en) Method to increase demagnetization amount of bonded magnet
JP2020504446A (en) Sintered magnet, electric equipment, use of sintered magnet for electric equipment, and method of manufacturing sintered magnet
JP5501833B2 (en) R-T-B permanent magnet
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet
JP2001185412A (en) Anisotropic bonded magnet
JP3103219B2 (en) Magnet roll and its manufacturing method
JP3614545B2 (en) Method for manufacturing anisotropic sintered magnet
JP2003257767A (en) Manufacturing method for permanent magnet, and pressing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4370877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

EXPY Cancellation because of completion of term