JP2005134924A - Electrophotographic photoreceptor and image forming apparatus using the same - Google Patents
Electrophotographic photoreceptor and image forming apparatus using the same Download PDFInfo
- Publication number
- JP2005134924A JP2005134924A JP2005000992A JP2005000992A JP2005134924A JP 2005134924 A JP2005134924 A JP 2005134924A JP 2005000992 A JP2005000992 A JP 2005000992A JP 2005000992 A JP2005000992 A JP 2005000992A JP 2005134924 A JP2005134924 A JP 2005134924A
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- layer
- dispersion
- undercoat layer
- photosensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
本発明は、導電性支持体上に、酸化チタン粒子とバインダー樹脂を含有する下引き層、及び電荷発生物質と電荷輸送物質とバインダー樹脂を含有する感光層を有する電子写真感光体、及びそれを用いた画像形成装置に関する。詳しくは、電気特性及び画像特性が良好であり、且つ、下引き層形成時における塗布液の保存安定性にも優れる電子写真感光体、及びそれを用いた画像形成装置に関する。 The present invention relates to an electrophotographic photosensitive member having an undercoat layer containing titanium oxide particles and a binder resin on a conductive support, and a photosensitive layer containing a charge generation material, a charge transport material and a binder resin, and The present invention relates to the image forming apparatus used. More specifically, the present invention relates to an electrophotographic photosensitive member having good electrical characteristics and image characteristics and excellent storage stability of a coating solution when an undercoat layer is formed, and an image forming apparatus using the same.
従来、電子写真感光体には、セレン、セレン−テルル合金、セレン化ヒ素、硫化カドミウム等の無機系光導電物質が広く用いられてきた。
一方、近年では低公害であり、製造が容易な有機系の光導電物質を感光層に用いた研究が盛んになっている。特に光を吸収して電荷を発生する機能と、発生した電荷を輸送する機能を分離した電荷発生層及び電荷移動層からなる積層型の感光体が主流となっている。これらの感光体は、複写機、レーザープリンター等の分野に広く用いられている。
Conventionally, inorganic photoconductive materials such as selenium, selenium-tellurium alloys, arsenic selenide, and cadmium sulfide have been widely used for electrophotographic photoreceptors.
On the other hand, in recent years, research using an organic photoconductive material, which is low pollution and easy to manufacture, for a photosensitive layer has been actively conducted. In particular, a laminated type photoreceptor composed of a charge generation layer and a charge transfer layer, which separates the function of absorbing light to generate charges and the function of transporting the generated charges, has become the mainstream. These photoreceptors are widely used in fields such as copying machines and laser printers.
電子写真感光体は、導電性支持体上に感光層を形成したものが基本構成である。支持体からの電荷注入や支持体の欠陥による画像欠陥の解消、感光層との接着性向上や帯電性の改善のために、感光層と支持体の間に下引き層を設けることが行われている。
従来より、下引き層としては、例えば、ポリビニルメチルエーテル、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、メチルセルロース、エチレン−アクリル酸共重合体、ポリアミド、ガゼイン、ゼラチン、ポリエチレン、ポリエステル、フェノール樹脂、塩化ビニル−酢酸ビニル共重合体、エポキシ樹脂、ポリビニルピロリドン、ポリビニルピリジン、ポリウレタン、ポリグルタミン酸、ポリアクリル酸等の樹脂材料を用いることが知られている。これらの樹脂材料の中でも特に可溶性ポリアミド樹脂が好ましいとされている(特許文献1、特許文献2、及び特許文献3参照)。より好ましいものとして、下記一般式(I′)で示されるジアミン成分を構成成分として有する共重合ポリアミドが提案されている(特許文献4参照)。
Conventionally, as the undercoat layer, for example, polyvinyl methyl ether, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, methyl cellulose, ethylene-acrylic acid copolymer, polyamide, casein, gelatin, polyethylene, polyester, phenol resin, It is known to use resin materials such as vinyl chloride-vinyl acetate copolymer, epoxy resin, polyvinyl pyrrolidone, polyvinyl pyridine, polyurethane, polyglutamic acid, and polyacrylic acid. Among these resin materials, a soluble polyamide resin is particularly preferable (see Patent Document 1, Patent Document 2, and Patent Document 3). More preferable is a copolyamide having a diamine component represented by the following general formula (I ′) as a constituent component (see Patent Document 4).
(式中、R1 、R2 、R3 、R4 、R5 及びR6 はそれぞれ独立して、水素原子、メチル基、エチル基を表す。)
更にポリアミド樹脂に無機材料を分散させた下引き層として、例えば、酸化チタンと酸
化スズを8−ナイロンに分散させたもの(特許文献5参照)、アルミナ処理酸化チタンをポリアミド樹脂に分散させたものが提案されている(特許文献6参照)。
Further, as an undercoat layer in which an inorganic material is dispersed in a polyamide resin, for example, titanium oxide and tin oxide are dispersed in 8-nylon (see Patent Document 5), and alumina-treated titanium oxide is dispersed in a polyamide resin. Has been proposed (see Patent Document 6).
ところで、これらの下引き層を用いた場合、電気特性または画像特性の環境依存性が大きくなり、両方とも満足させることが困難であった。例えば、特許文献7記載の実施例の下引き層を用いた場合、膜厚が厚いほど、画像特性は良好になるものの、逆に残留電位は、特に低温低湿環境において急激に悪化する。一方、薄くすると残留電位は改善するものの、画像欠陥は十分に解消できなかった。
そこで、導電剤として、例えば表面処理の無い酸化チタンの微粒子を分散させると、確かに低湿環境における残留電位は改善するが、しかし、逆に高温恒湿条件での画像特性が悪化して、膜厚を上げても十分に改善できなった。また、アルミナ表面処理を施した酸化チタンを分散させたものに関しても同様である。 Therefore, for example, when fine particles of titanium oxide without surface treatment are dispersed as a conductive agent, the residual potential in a low-humidity environment is certainly improved, but conversely, the image characteristics under high temperature and humidity conditions deteriorate, Even if the thickness was increased, it could not be improved sufficiently. The same applies to a dispersion of titanium oxide subjected to alumina surface treatment.
本発明は、高温高湿から低温低湿にわたる全環境下における電気特性及び画像特性が改善され、且つ、下引き層形成時における塗布液の保存安定性にも優れる電子写真感光体、及びそれを用いた画像形成装置の提供を目的とするものである。 The present invention relates to an electrophotographic photoreceptor having improved electrical characteristics and image characteristics in all environments ranging from high temperature and high humidity to low temperature and low humidity, and excellent storage stability of the coating liquid during the formation of the undercoat layer. An object of the present invention is to provide an image forming apparatus.
そこで本発明者らは、上記の要求特性を満足できる電子写真感光体について鋭意検討した結果、下引き層に特定の有機珪素化合物で表面処理した酸化チタン粒子を含有させ、且つ、感光層に電荷発生物質としてチタロフタロシアニンを含有させることが非常に効果的であることを見い出し、本発明に到達した。すなわち本発明の要旨は、導電性支持体上に、酸化チタン粒子とバインダー樹脂を含有する下引き層、及び電荷発生物質と電荷輸送物質とバインダー樹脂を含有する感光層を有する電子写真感光体において、該下引き層が含有する酸化チタン粒子がメチル水素ポリシロキサンで表面処理されたものであり、且つ、該感光層が含有する電荷発生物質がチタロフタロシアニンであることを特徴とする電子写真感光体、及び該電子写真感光体を用いた画像形成装置にある。 Therefore, as a result of intensive studies on the electrophotographic photosensitive member that satisfies the above required characteristics, the present inventors have included titanium oxide particles surface-treated with a specific organosilicon compound in the undercoat layer, and the photosensitive layer has a charge. It has been found that it is very effective to contain titarophthalocyanine as a generating substance, and the present invention has been achieved. That is, the gist of the present invention is an electrophotographic photoreceptor having an undercoat layer containing titanium oxide particles and a binder resin on a conductive support, and a photosensitive layer containing a charge generation material, a charge transport material and a binder resin. An electrophotographic photosensitive film characterized in that the titanium oxide particles contained in the undercoat layer are surface-treated with methylhydrogen polysiloxane, and the charge generating material contained in the photosensitive layer is titarophthalocyanine. And an image forming apparatus using the electrophotographic photosensitive member.
本発明の下引き層及び感光層を用いた電子写真感光体は、高温高湿から低温低湿にわたる全環境において電気特性及び画像特性が良好であり、帯電性及び、感光層と導電性支持体との接着性が改善され、優れている。また、特にメチル水素ポリシロキサン処理の場合は、塗布液の保存安定性も良好である。 Electrophotographic photoreceptor using an undercoat layer and a photosensitive layer of the present invention, electric characteristics and image characteristics in all environments over low temperature and low humidity since high temperature and high humidity are good, and the charging property and the photosensitive layer and the electrically conductive substrate The adhesion is improved and excellent. In particular, in the case of treatment with methyl hydrogen polysiloxane, the storage stability of the coating solution is also good.
以下に本発明を詳細に説明する。本発明における、導電性支持体としては、例えばアルミニウム、ステンレス鋼、銅、ニッケル等の金属からなるもの、或いはポリエステルフィルム、紙、ガラス等の絶縁性基体の表面にアルミニウム、銅、パラジウム、酸化錫、酸化インジウム等からなる導電層を設けたものがある。なかでも、アルミニウム等の金属のエンドレスパイプを適当な長さに切断したものが望ましい。導電性支持体の表面には、画質に影響のない範囲で、例えば酸化処理や薬品処理等の各種の処理を施すことができる。 The present invention is described in detail below. Examples of the conductive support in the present invention include those made of metal such as aluminum, stainless steel, copper and nickel, or aluminum, copper, palladium and tin oxide on the surface of an insulating substrate such as polyester film, paper and glass. Some have a conductive layer made of indium oxide or the like. In particular, it is desirable to cut an endless pipe made of metal such as aluminum into an appropriate length. The surface of the conductive support can be subjected to various treatments such as oxidation treatment and chemical treatment within a range that does not affect the image quality.
有機珪素化合物表面処理酸化チタンは、以下の製造法で製造することができる。すなわち、有機珪素化合物と酸化チタンを粉砕機の中に計量しながら供給して被覆する方法、或
いは適当な溶媒に溶解した有機珪素化合物溶液を酸化チタンスラリーに加え、有機珪素化合物が均一に付着されるまでよく掻きまぜ、後乾燥させる方法で製造することができる。
有機珪素化合物としては、ジメチルポリシロキサンやメチル水素ポリシロキサン等のシロキサン化合物が好ましく、特にメチル水素ポリシロキサンが、特性及び溶液安定性の面で好ましい。
The organosilicon compound surface-treated titanium oxide can be produced by the following production method. That is, a method in which an organosilicon compound and titanium oxide are supplied while being metered into a grinder and coated, or an organosilicon compound solution dissolved in an appropriate solvent is added to a titanium oxide slurry, and the organosilicon compound is uniformly adhered. It can be manufactured by a method of stirring well until it is dried and then drying.
As the organosilicon compound, siloxane compounds such as dimethylpolysiloxane and methylhydrogenpolysiloxane are preferable, and methylhydrogenpolysiloxane is particularly preferable in terms of characteristics and solution stability.
被覆する有機珪素化合物の量は酸化チタンの粒径にもよるが、酸化チタンに対して0.1〜10重量%程度に調整することが好ましい。特に0.2〜5重量%が好ましい。
用いられる酸化チタンとしては、その1次粒径が100nm以下のものが好ましく、10〜60nmが特に好ましい。粒径は、均一であってもまた、異なる粒径の複合系でも良い。例えば、0.1μmのものと0.03μmのものを混合して用いても良い。なお、ここで、1次粒径はTEM写真からの測定による。
The amount of the organic silicon compound to be coated is preferably adjusted to about 0.1 to 10% by weight with respect to titanium oxide, although it depends on the particle size of titanium oxide. In particular, 0.2 to 5% by weight is preferable.
Titanium oxide used preferably has a primary particle size of 100 nm or less, particularly preferably 10 to 60 nm. The particle size may be uniform or a composite system having different particle sizes. For example, a mixture of 0.1 μm and 0.03 μm may be used. Here, the primary particle diameter is measured from a TEM photograph.
酸化チタンは結晶質、非晶質いずれも使用できるが、結晶質の場合、その結晶型はアナタース、ルチル、ブルッカイトのいずれでも良いが、ルチルが一般的に用いられる。本発明における有機珪素化合物被覆酸化チタンは、無処理の酸化チタンに処理したものでも良いし、アルミナ、シリカ、ジルコニア等の無機物で被覆された酸化チタンに処理したものでも良い。 Titanium oxide can be either crystalline or amorphous. In the case of crystalline, the crystalline form may be any of anatase, rutile, or brookite, but rutile is generally used. In the present invention, the organic silicon compound-coated titanium oxide may be treated with untreated titanium oxide, or may be treated with titanium oxide coated with an inorganic material such as alumina, silica, or zirconia.
バインダー樹脂としては、例えば、下記一般式(I)で示されるジアミン成分を構成成分として有する共重合ポリアミド樹脂が用いられる。 As the binder resin, for example, a copolymerized polyamide resin having a diamine component represented by the following general formula (I) as a constituent component is used.
(式中、R1 、及びR2 はそれぞれ独立して、水素原子、アルキル基、アルコキシ基、アリール基を表し、二つのシクロヘキシル環はそれぞれ独立して他の置換基を有していてもよい。)
かかる共重合ポリアミドの数平均分子量は10,000〜50,000、より好ましくは15,000〜35,000である。この範囲を外れると塗布性や保持性に問題を生じることもある。又、上記構造で、より好ましくは、アミド基がパラ位にあり、その他の基が水素原子、メチル基及びエチル基である構造である。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or an aryl group, and the two cyclohexyl rings may each independently have another substituent. .)
The number average molecular weight of the copolymerized polyamide is 10,000 to 50,000, more preferably 15,000 to 35,000. If it is out of this range, problems may arise in applicability and retention. In the above structure, more preferably, the amide group is in the para position and the other groups are a hydrogen atom, a methyl group, and an ethyl group.
また、かかる共重合ポリアミドには通常に用いられる他のジアミン成分、例えば1,6−ジアミノヘキサン等を含んでいてもよく、また、アミノカルボン酸成分、例えばカプロラクタムの開環重合成分等を含んでいてもよい。ジカルボン酸成分には特に制限はなく、ポリアミドに通常に用いられるものであればいずれでもよく、例えばHOOC(CH2 )4 COOH、HOOC(CH2 )8 COOH、HOOC(CH2 )10COOH、HOOC(CH2 )18COOH等のポリメチレンジカルボン酸が挙げられる。 In addition, the copolymerized polyamide may contain other commonly used diamine components such as 1,6-diaminohexane and the like, and aminocarboxylic acid components such as caprolactam ring-opening polymerization components. May be. The dicarboxylic acid component is not particularly limited, and any dicarboxylic acid component may be used as long as it is usually used for polyamide. For example, HOOC (CH 2 ) 4 COOH, HOOC (CH 2 ) 8 COOH, HOOC (CH 2 ) 10 COOH, HOOC And polymethylene dicarboxylic acids such as (CH 2 ) 18 COOH.
次に、チタニウム粒子と共重合ポリアミドの比率は任意に選ぶことが出来るが、液の安定性及び特性面から共重合ポリアミド1重量部に対して、0.5重量部から6重量部の範囲が好ましい。
下引き層は主として、有機珪素化合物表面処理酸化チタンと共重合ポリアミド樹脂で構成されるが、必要に応じて、他の表面処理酸化チタン、表面処理無し酸化チタン、酸化防止剤、添加剤、導電剤等を加えても良い。
Next, the ratio between the titanium particles and the copolymerized polyamide can be arbitrarily selected, but the range of 0.5 to 6 parts by weight with respect to 1 part by weight of the copolymerized polyamide in terms of liquid stability and characteristics. preferable.
The undercoat layer is mainly composed of organosilicon compound surface-treated titanium oxide and copolymerized polyamide resin, but if necessary, other surface-treated titanium oxide, titanium oxide without surface treatment, antioxidant, additive, conductive An agent or the like may be added.
下引き層の膜厚は、薄すぎると局所的な帯電不良に対する効果が充分でなく、また逆に厚すぎると残留電位の上昇、あるいは導電性基体と感光層との間の接着強度の低下の原因となる。本発明の下引き層の膜厚は0.1〜10μmで、より好ましくは0.3〜5μmで使用されるのが望ましい。
有機珪素化合物被覆酸化チタンを共重合ポリアミド樹脂溶液に分散させた塗布液を得るためには有機珪素化合物被覆酸化チタンを共重合ポリアミド樹脂溶液に加えてボールミル、サンドミル、ロールミル、ペイントシェーカー、アトライター、超音波などの手段で処理すればよい。
If the film thickness of the undercoat layer is too thin, the effect on local charging failure will not be sufficient, and conversely if it is too thick, the residual potential will increase or the adhesive strength between the conductive substrate and the photosensitive layer will decrease. Cause. The thickness of the undercoat layer of the present invention is preferably 0.1 to 10 μm, more preferably 0.3 to 5 μm.
In order to obtain a coating solution in which an organosilicon compound-coated titanium oxide is dispersed in a copolymerized polyamide resin solution, a ball mill, a sand mill, a roll mill, a paint shaker, an attritor, What is necessary is just to process by means, such as an ultrasonic wave.
下引き層の塗布は、ある程度均一に塗布できる方法であれば、いかなる塗布方法を用いても良いが、一般的には、浸漬塗布やスプレー塗布、ノズル塗布方法等で塗布される。
下引き層の上には感光層が形成される。感光層は、単層構造でもよいが、電荷発生層と電荷輸送層の分離された、積層構造の方が好ましい。
感光層が単層構造の場合には、感光材料が結着材料に分散してなる公知のものが使用される。例えば、色素増感されたZnO感光層、CdS感光層、電荷発生物質を電荷輸送物質に分散させた感光層が挙げられる。
The undercoat layer may be applied by any application method as long as it can be applied uniformly to some extent, but is generally applied by dip coating, spray coating, nozzle coating, or the like.
A photosensitive layer is formed on the undercoat layer. The photosensitive layer may have a single layer structure, but a laminated structure in which a charge generation layer and a charge transport layer are separated is preferable.
When the photosensitive layer has a single layer structure, a known material in which a photosensitive material is dispersed in a binder material is used. Examples thereof include a dye-sensitized ZnO photosensitive layer, a CdS photosensitive layer, and a photosensitive layer in which a charge generation material is dispersed in a charge transport material.
感光層が積層構造の場合は、下引き層上に電荷発生層、電荷輸送層が形成される。
電荷発生層に用いられる電荷発生物質としては、セレン及びその合金、ヒ素−セレン、硫化カドミウム、酸化亜鉛、その他の無機光導電物質、フタロシアニン、アゾ色素、キナクリドン、多環キノン、ピリリウム塩、インジゴ、チオインジゴ、アントアントロン、ピラントロン、シアニン等の各種有機顔料、色素が使用できる。中でも無金属フタロシアニン、銅、塩化インジウム、塩化ガリウム、錫、オキシチタニウム、亜鉛、バナジウム等の金属、又は酸化物、塩化物の配位したフタロシアニン類、モノアゾ、ビスアゾ、トリスアゾ、ポリアゾ類等のアゾ顔料が好ましい。このうち特に好ましくは、チタニルフタロシアニンである。
When the photosensitive layer has a laminated structure, a charge generation layer and a charge transport layer are formed on the undercoat layer.
Examples of charge generation materials used in the charge generation layer include selenium and its alloys, arsenic-selenium, cadmium sulfide, zinc oxide, other inorganic photoconductive materials, phthalocyanines, azo dyes, quinacridones, polycyclic quinones, pyrylium salts, indigo, Various organic pigments and dyes such as thioindigo, anthanthrone, pyranthrone, and cyanine can be used. Among them, metal or metal oxides such as metal-free phthalocyanine, copper, indium chloride, gallium chloride, tin, oxytitanium, zinc, vanadium, or azo pigments such as monoazo, bisazo, trisazo, polyazos coordinated with chloride Is preferred. Of these, particularly preferred is titanyl phthalocyanine.
電荷発生層はこれらの物質の微粒子とバインダーポリマーを溶剤に溶解あるいは分散して得られる塗布液を塗布乾燥して得ることができる。バインダーとしては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、ビニルアルコール、エチルビニルエーテル等のビニル化合物の重合体及び共重合体、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリアミド、ポリウレタン、セルロースエーテル、フェノキシ樹脂、ケイ素樹脂、エポキシ樹脂等が挙げられる。 The charge generation layer can be obtained by coating and drying a coating solution obtained by dissolving or dispersing fine particles of these substances and a binder polymer in a solvent. As binders, polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic esters, methacrylic esters, vinyl alcohol, ethyl vinyl ether, polyvinyl acetals, polycarbonates, polyesters, polyamides, polyurethanes, cellulose ethers. , Phenoxy resin, silicon resin, epoxy resin and the like.
電荷発生物質とバインダーポリマーの割合は、特に制限はないが、一般には電荷発生物質100重量部に対し、5〜500重量部、好ましくは20〜300重量部のバインダーポリマーを使用する。
また電荷発生層は上記電荷発生物質の蒸着膜であってもよい。
電荷発生層の膜厚は、0.05〜5μm、好ましくは0.1〜2μmになるようにする。
The ratio of the charge generating material to the binder polymer is not particularly limited, but generally 5 to 500 parts by weight, preferably 20 to 300 parts by weight of the binder polymer is used with respect to 100 parts by weight of the charge generating material.
The charge generation layer may be a vapor deposition film of the charge generation material.
The thickness of the charge generation layer is 0.05 to 5 μm, preferably 0.1 to 2 μm.
電荷輸送層は、上記電荷発生層の上に、バインダーとして優れた性能を有する公知のポリマーと混合して電荷輸送物質と共に適当な溶剤中に溶解し、必要に応じて電子吸引性化合物、あるいは、可塑剤、顔料その他の添加剤を添加して得られる塗布液を塗布することにより、製造することができる。電荷輸送層の膜厚は通常は10〜50μm、好ましくは13〜35μmの範囲で使用される。 The charge transport layer is mixed with a known polymer having excellent performance as a binder on the charge generation layer and dissolved in a suitable solvent together with the charge transport material, and if necessary, an electron withdrawing compound, or It can manufacture by apply | coating the coating liquid obtained by adding a plasticizer, a pigment, and other additives. The thickness of the charge transport layer is usually 10 to 50 μm, preferably 13 to 35 μm.
電荷輸送層中の電荷輸送物質としては、ポリビニルカルバゾール、ポリビニルピレン、ポリアセナフチレン等の高分子化合物、又は各種ピラゾリン誘導体、オキサゾール誘導体、ヒドラゾン誘導体、スチルベン誘導体、アリールアミン誘導体等の低分子化合物が使用できる。
バインダーポリマーとしては、上記電荷輸送物質と相溶性が良く、塗膜形成後に電荷輸送物質が結晶化したり、相分離することのないポリマーが好ましい。それらの例としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、ビニルアルコール、エチルビニルエーテル等のビニル化合物の重合体及び共重合体、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロースエステル、セルロースエーテル、フェノキシ樹脂、ケイ素樹脂、エポキシ樹脂等が挙げられる。
Examples of the charge transport material in the charge transport layer include polymer compounds such as polyvinyl carbazole, polyvinyl pyrene, and polyacenaphthylene, or low molecular compounds such as various pyrazoline derivatives, oxazole derivatives, hydrazone derivatives, stilbene derivatives, and arylamine derivatives. Can be used.
The binder polymer is preferably a polymer that has good compatibility with the charge transport material and does not crystallize or phase-separate after formation of the coating film. Examples thereof include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid esters, methacrylic acid esters, vinyl alcohol, ethyl vinyl ether, polyvinyl acetals, polycarbonates, polyesters, polysulfones, polyphenylene oxides. , Polyurethane, cellulose ester, cellulose ether, phenoxy resin, silicon resin, epoxy resin and the like.
電子吸引性化合物としては、テトラシアノキノジメタン、ジシアノキノメタン、ジシアノキノビニル基を有する芳香族エステル類等のシアノ化合物、2,4,6−トリニトロフルオレノン等のニトロ化合物、ペリレン等の縮合多環芳香族化合物、ジフェノキノン誘導体、キノン類、アルデヒド類、ケトン類、エステル類、酸無水物、フタリド類、置換及び無置換サリチル酸の金属錯体、置換及び無置換サリチル酸の金属塩、芳香族カルボン酸の金属錯体、芳香族カルボン酸の金属塩が挙げられる。好ましくは、シアノ化合物、ニトロ化合物、縮合多環芳香族化合物、ジフェノキノン誘導体、置換及び無置換サリチル酸の金属錯体、置換及び無置換サリチル酸の金属塩、芳香族カルボン酸の金属錯体、芳香族カルボン酸の金属塩を用いるのがよい。 Electron-withdrawing compounds include tetracyanoquinodimethane, dicyanoquinomethane, cyano compounds such as aromatic esters having a dicyanoquinovinyl group, condensation of nitro compounds such as 2,4,6-trinitrofluorenone, and perylene. Polycyclic aromatic compounds, diphenoquinone derivatives, quinones, aldehydes, ketones, esters, acid anhydrides, phthalides, metal complexes of substituted and unsubstituted salicylic acid, metal salts of substituted and unsubstituted salicylic acid, aromatic carboxylic acids And metal salts of aromatic carboxylic acids. Preferably, cyano compounds, nitro compounds, condensed polycyclic aromatic compounds, diphenoquinone derivatives, metal complexes of substituted and unsubstituted salicylic acid, metal salts of substituted and unsubstituted salicylic acid, metal complexes of aromatic carboxylic acid, aromatic carboxylic acid A metal salt is preferably used.
更に、本発明の電子写真用感光体の感光層は成膜性、可とう性、塗布性、機械的強度を向上させるために周知の可塑剤、酸化防止剤、紫外線吸収剤、レベリング剤を含有していてもよい。このようにして形成される感光体はまた、必要に応じて、接着層、中間層、透明絶縁層等を有していてもよいことは言うまでもない。 Further, the photosensitive layer of the electrophotographic photoreceptor of the present invention contains known plasticizers, antioxidants, ultraviolet absorbers, and leveling agents in order to improve film formability, flexibility, coatability, and mechanical strength. You may do it. It goes without saying that the photoreceptor formed in this way may also have an adhesive layer, an intermediate layer, a transparent insulating layer, and the like, if necessary.
以下本発明を実施例、比較例により更に詳細に説明するが、本発明はその要旨を越えない限り、これらに限定されるものではない。なお、実施例中で用いる「部」は断りがない限り、「重量部」を示す。
分散液(P1)の調液
メチル水素ポリシロキサン表面処理酸化チタンは、先ず、酸化チタンとして石原産業(株)製 製品名TTO−55N(結晶型 ルチル 1次粒径0.03〜0.05μm)を用い、この表面にメチル水素ポリシロキサンを3重量%均一に施して調製した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these, unless the summary is exceeded. In the examples, “parts” means “parts by weight” unless otherwise specified.
Preparation of Dispersion (P1) Methyl hydrogen polysiloxane surface-treated titanium oxide is first made of Ishihara Sangyo Co., Ltd. product name TTO-55N (crystalline rutile primary particle size 0.03-0.05 μm) as titanium oxide. The surface was prepared by uniformly applying 3% by weight of methylhydrogen polysiloxane on the surface.
次に、得られるメチル水素ポリシロキサン処理酸化チタンと混合アルコール(メタノール/1−プロパノール=7/3)をボールミルで16時間分散した。
ここで得られた酸化チタン分散液を特開平4−31870号公報の実施例で記載された製造法により製造された下記構造のランダム共重合ポリアミドの混合アルコール(メタノール/1−プロパノール=70/30)溶液に加えた。最終的に酸化チタン/ナイロン比3/1(重量比)で固形分濃度16重量%の分散液を調製し、これを分散液(P1)とした。
Next, the obtained methyl hydrogen polysiloxane-treated titanium oxide and mixed alcohol (methanol / 1-propanol = 7/3) were dispersed for 16 hours by a ball mill.
The titanium oxide dispersion obtained here was a mixed alcohol (methanol / 1-propanol = 70/30) of a random copolymer polyamide having the following structure produced by the production method described in the example of JP-A-4-31870. ) Added to solution. Finally, a dispersion having a solid content concentration of 16% by weight with a titanium oxide / nylon ratio of 3/1 (weight ratio) was prepared, and this was designated as dispersion (P1).
分散液(P2)の調液
メチル水素ポリシロキサン処理量を2重量%であること以外分散液(P1)と全く同様にして調液し、分散液(P2)とした。
分散液(P3)の調液
石原産業(株)製 製品名TTO−55S(結晶型 ルチル 1次粒径0.03〜0.05μm表面をアルミナ処理した上に更にジメチルポリシロキサン処理がなされている)を、シクロヘキサノン溶液で、ボールミル分散で16時間分散した。
Preparation of Dispersion (P2) Preparation of Dispersion (P2) was carried out in the same manner as Dispersion (P1) except that the amount of methylhydrogenpolysiloxane treated was 2% by weight.
Preparation of dispersion (P3) Ishihara Sangyo Co., Ltd. product name TTO-55S (crystal type rutile primary particle size 0.03-0.05 μm surface treated with alumina and further dimethylpolysiloxane treatment) ) With a cyclohexanone solution for 16 hours by ball mill dispersion.
ここで得られた酸化チタン分散液を共重合ポリアミドの混合アルコール(メタノール/1−プロパノール=70/30)溶液に加え、最終的に酸化チタン/ナイロン=2/1(重量比)で固形分濃度15重量%の分散液を作製し、これを分散液(P3)とした。
分散液(Q)の調液
表面処理無しの酸化チタン(前記した分散液(P1)の調液に用いたものと同一のもの。)を用いて、分散液(P1)の場合と同様にして、酸化チタン/ナイロン比1.5/1(重量比)、固形分濃度10重量%の分散液を調液し、分散液(Q)とした。
The obtained titanium oxide dispersion was added to a mixed alcohol (methanol / 1-propanol = 70/30) solution of copolymerized polyamide, and finally the solid content concentration was titanium oxide / nylon = 2/1 (weight ratio). A 15% by weight dispersion was prepared, and this was used as dispersion (P3).
Preparation of Dispersion (Q) Using titanium oxide without surface treatment (same as that used for preparation of Dispersion (P1) described above), the same as in the case of Dispersion (P1) A dispersion having a titanium oxide / nylon ratio of 1.5 / 1 (weight ratio) and a solid content concentration of 10% by weight was prepared as dispersion (Q).
分散液(R)の調液
アルミナ表面処理を施した酸化チタン(石原産業(株)製 製品名TTO−55A)を用いて分散液(P1)と同様にして、酸化チタン/ナイロン比2/1(重量比)、固形分濃度10重量%の分散液を調液し、分散液(R)とした。
分散液(S)の調液
石原産業(株)製酸化チタンTTO−55Nに、ジルコニアを6重量%施し、更にその上にアルミナを9重量%施した酸化チタンを用いて、分散液(P1)と同様にして、酸化チタン/ナイロン比1.5/1(重量比)、固形分濃度10重量%の分散液を調液し、分散液(S)とした。
Preparation of dispersion (R) Titanium oxide / nylon ratio 2/1 in the same manner as dispersion (P1) using titanium oxide (product name: TTO-55A manufactured by Ishihara Sangyo Co., Ltd.) subjected to alumina surface treatment A dispersion liquid (weight ratio) and a solid content concentration of 10% by weight was prepared as dispersion liquid (R).
Preparation of Dispersion (S) Dispersion (P1) using titanium oxide obtained by applying 6% by weight of zirconia to titanium oxide TTO-55N manufactured by Ishihara Sangyo Co., Ltd. and further applying 9% by weight of alumina thereon. In the same manner as above, a dispersion having a titanium oxide / nylon ratio of 1.5 / 1 (weight ratio) and a solid content concentration of 10% by weight was prepared to obtain a dispersion (S).
分散液(T)の調液
石原産業(株)製酸化チタンTTO−55Nに、シリカを9重量%施し、更にその上にアルミナを6重量%施した酸化チタンを用いて、分散液(P1)と全く同様にして、酸化チタン/ナイロン比1.5/1(重量比)、固形分濃度10重量%の分散液を調液し、分散液(T)とした。
Preparation of dispersion liquid (T) Dispersion liquid (P1) using titanium oxide obtained by applying 9% by weight of silica to titanium oxide TTO-55N manufactured by Ishihara Sangyo Co., Ltd. and further applying 6% by weight of alumina thereon. In the same manner, a dispersion having a titanium oxide / nylon ratio of 1.5 / 1 (weight ratio) and a solid content of 10% by weight was prepared to obtain a dispersion (T).
分散液(U)の調液
分散液(Q)と同一の酸化チタン、調液方法で、酸化チタン/ナイロン比=1/1(重量比)、固形分濃度9重量%の分散液を調液し、分散液(U)とした。
実施例1
分散液(P1)に、表面が鏡面仕上げされた外径30mm、長さ254mm、肉厚1.0mmのアルミニウム製シリンダーを浸漬塗布し、その乾燥膜厚が、0.75μmとなるように下引き層を設けた。
Preparation of Dispersion (U) Dispersion of titanium oxide / nylon ratio = 1/1 (weight ratio) and solid content of 9% by weight using the same titanium oxide and preparation method as dispersion (Q) Dispersion liquid (U).
Example 1
An aluminum cylinder having an outer diameter of 30 mm, a length of 254 mm, and a wall thickness of 1.0 mm is dip-coated on the dispersion liquid (P1), and the coating is subtracted so that the dry film thickness becomes 0.75 μm. A layer was provided.
次に、オキシチタニウムフタロシニアン10部、ポリビニルブチラール(電気化学工業(株)製、商品名#6000−C)5部に1,2−ジメトキシエタン500部を加え、サンドグラインドミルで粉砕、分散処理を行った。この分散液に先に下引き層を設けたアルミニウム製シリンダーを浸漬塗布し、その乾燥膜厚が0.3g/m2 (約0.3μm)となるように電荷発生層を設けた。 Next, 500 parts of 1,2-dimethoxyethane is added to 10 parts of oxytitanium phthalocyanine and 5 parts of polyvinyl butyral (trade name # 6000-C, manufactured by Denki Kagaku Kogyo Co., Ltd.), and pulverized and dispersed with a sand grind mill. Processed. An aluminum cylinder provided with an undercoat layer in advance was dip coated on this dispersion, and a charge generation layer was provided so that the dry film thickness was 0.3 g / m 2 (about 0.3 μm).
次に、このアルミニウム製シリンダーを、次に示すヒドラゾン化合物56重量部と Next, this aluminum cylinder was mixed with 56 parts by weight of the following hydrazone compound:
次に示すヒドラゾン化合物14重量部、 14 parts by weight of the following hydrazone compound,
及び下記のシアン化合物1.5重量部 And 1.5 parts by weight of the following cyanide compound
及び、特開平3−221962号公報の実施例中に記載された製造法により製造された、2つの繰り返し構造単位を有する下記ポリカーボネート樹脂(モノマーモル比1:1)100部 And 100 parts of the following polycarbonate resin (monomer molar ratio 1: 1) having two repeating structural units produced by the production method described in the examples of JP-A-3-221196
を1,4ジオキサン、テトラヒドロフランの混合溶媒に溶解させた液を浸漬塗布することにより、乾燥膜厚が17μmになるように電荷移動層を設けた。このようにして得られたドラムを感光体A1とする。
実施例2
実施例1で用いたアルミニウム製シリンダーを、分散液(P2)に浸漬塗布し、その乾燥膜厚が0.75μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをA2とする。
A charge transfer layer was provided so that the dry film thickness would be 17 μm by dip-coating a solution prepared by dissolving in a mixed solvent of 1,4 dioxane and tetrahydrofuran. The drum thus obtained is referred to as a photoreceptor A1.
Example 2
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in the dispersion (P2) and an undercoat layer was provided so that the dry film thickness was 0.75 μm. Got the body. The drum thus obtained is designated as A2.
比較例1
実施例2の下引き分散液を(P3)とした以外は、実施例2と全く同様にして得た感光体ドラムをA3とする。
比較例2
実施例1で用いたアルミニウム製シリンダーを、分散液(Q)に浸漬塗布し、その乾燥膜厚が0.5μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをB1とする。
Comparative Example 1
A photosensitive drum obtained in exactly the same manner as in Example 2 except that the undercoat dispersion of Example 2 was changed to (P3) was designated as A3.
Comparative Example 2
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in dispersion (Q) and an undercoat layer was provided so that the dry film thickness was 0.5 μm. Got the body. The drum thus obtained is designated B1.
比較例3
実施例1で用いたアルミニウム製シリンダーを、分散液(Q)に浸漬塗布し、その乾燥膜厚が1.0μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをB2とする。
比較例4
実施例1で用いたアルミニウム製シリンダーを、分散液(Q)に浸漬塗布し、その乾燥膜厚が1.5μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをB3とする。
Comparative Example 3
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in dispersion (Q) and an undercoat layer was provided so that the dry film thickness was 1.0 μm. Got the body. The drum thus obtained is designated B2.
Comparative Example 4
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in dispersion (Q) and an undercoat layer was provided so that the dry film thickness was 1.5 μm. Got the body. The drum thus obtained is designated B3.
比較例5
実施例1で用いたアルミニウム製シリンダーを、分散液(R)に浸漬塗布し、その乾燥膜厚が0.5μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをB4とする。
比較例6
実施例1で用いたアルミニウム製シリンダーを、分散液(R)に浸漬塗布し、その乾燥膜厚が1.0μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをB5とする。
Comparative Example 5
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in the dispersion (R) and an undercoat layer was provided so that the dry film thickness was 0.5 μm. Got the body. The drum thus obtained is designated B4.
Comparative Example 6
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in dispersion (R) and an undercoat layer was provided so that the dry film thickness was 1.0 μm. Got the body. The drum thus obtained is designated B5.
比較例7
実施例1で用いたアルミニウム製シリンダーを、分散液(S)に浸漬塗布し、その乾燥膜厚が1.0μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをB6とする。
比較例8
実施例1で用いたアルミニウム製シリンダーを、分散液(T)に浸漬塗布し、その乾燥膜厚が1.0μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをB7とする。
Comparative Example 7
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in the dispersion (S) and an undercoat layer was provided so that the dry film thickness was 1.0 μm. Got the body. The drum thus obtained is designated B6.
Comparative Example 8
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in the dispersion (T) and an undercoat layer was provided so that the dry film thickness was 1.0 μm. Got the body. The drum thus obtained is designated B7.
比較例9
下引き層を設けないこと以外は、実施例1と同様にして感光体B8を得た。
比較例10
実施例1で用いたアルミニウム製シリンダーを、分散液(U)に浸漬塗布し、その乾燥膜厚が0.75μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムをB9とする。
Comparative Example 9
A photoreceptor B8 was obtained in the same manner as in Example 1 except that the undercoat layer was not provided.
Comparative Example 10
Photosensitive in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was dip-coated in the dispersion (U) and an undercoat layer was provided so that the dry film thickness was 0.75 μm. Got the body. The drum thus obtained is designated B9.
評価
次にこれらの感光体を市販のレーザープリンター(HEWLETT PACK
ARD製 LASER JET 4 Plus)に装着して、各環境下において白地画像を出し、画像評価を行った。その結果を表1にて示す。実施例の感光体A1、A2はいずれも温度/湿度が5℃/10%、25℃/50℃、35℃/85%のいずれの環境下においても良好な画像が得られた。比較例の感光体についてもA3、B9は、各環境下で良好な画像が得られた。
Evaluation Next, these photoconductors are made into commercially available laser printers (HEWRET PACK).
Attached to ARD LASER JET 4 Plus), a white background image was taken out under each environment, and image evaluation was performed. The results are shown in Table 1. In each of the photoreceptors A1 and A2 in Examples, good images were obtained in any environment where the temperature / humidity was 5 ° C / 10%, 25 ° C / 50 ° C, or 35 ° C / 85%. With respect to the photoreceptors of the comparative examples, A3 and B9 obtained good images under each environment.
比較例2の感光体B1ではいずれの環境条件下でも白地画像に微小な黒点が多数現れた。
比較例3、4の感光体B2、B3では、温度/湿度が35℃/85%の環境条件下で白地画像に微小な黒点が多数現れた。
比較例5、6の感光体B4、B5では、温度/湿度が25℃/50%、35℃/85%の環境条件下で白地画像に微小な黒点が多数現れた。
In Photoreceptor B1 of Comparative Example 2, many small black spots appeared on the white background image under any environmental condition.
In the photoconductors B2 and B3 of Comparative Examples 3 and 4, many fine black spots appeared on the white background image under the environmental conditions of temperature / humidity of 35 ° C./85%.
In the photoconductors B4 and B5 of Comparative Examples 5 and 6, many fine black spots appeared on the white background image under the environmental conditions of temperature / humidity of 25 ° C./50% and 35 ° C./85%.
比較例7、8の感光体B6、B7では、温度/湿度が35℃/85%の環境条件下で白地画像に微小な黒点が多数現れた。
比較例9の感光体B8では、特に温度/湿度が5℃/15%、25℃/50%の環境下で白地画像に微小な黒点が多数現れた。
In the photoconductors B6 and B7 of Comparative Examples 7 and 8, many fine black spots appeared on the white background image under the environmental condition of temperature / humidity of 35 ° C./85%.
In the photoconductor B8 of Comparative Example 9, many fine black spots appeared in the white background image particularly in an environment where the temperature / humidity was 5 ° C / 15% and 25 ° C / 50%.
次にこれらの電子写真感光体を感光体特性測定機に装着して、表面電位が−700Vになるように帯電させた後、780nmの光を照射した時の半減露光量、更に−700Vに帯電して5秒放置後の電位保持率、660nmのLED光除電後の残留電位を測定した。その結果を表2に示す。 Next, these electrophotographic photoreceptors are mounted on a photoreceptor characteristic measuring machine and charged so that the surface potential becomes −700 V, and then the half-exposure amount when irradiated with 780 nm light, and further charged to −700 V. Then, the potential holding ratio after being left for 5 seconds and the residual potential after removing the 660 nm LED light were measured. The results are shown in Table 2.
本発明の感光体A1、A2は、温度/湿度が5℃/10%、25℃/50%、35℃/85%の環境下において、下引き層がない感光体B8と比べて、半減露光量は同等で有り、電位保持率については、若干良く、残留電位についても上昇は小さくほぼ同等である。
各環境下において、画像特性が良好であった感光体B9は、5℃/10%の残留電位の上昇が、実施例の感光体に比べて大きく、低温低湿度での特性に問題がある。
The photoconductors A1 and A2 of the present invention are half-exposure compared to the photoconductor B8 having no undercoat layer in an environment where the temperature / humidity is 5 ° C / 10%, 25 ° C / 50%, and 35 ° C / 85%. The amount is the same, the potential holding ratio is slightly good, and the increase in the residual potential is small and almost equal.
In each environment, the photoreceptor B9 having good image characteristics has a large increase in residual potential of 5 ° C./10% as compared with the photoreceptors of the examples, and has a problem in characteristics at low temperature and low humidity.
さらに、比較例1の感光体A3に用いたP3の塗布液(ジメチルポリシロキサン処理)は、高沸点のシクロヘキサノン系の溶媒を混合しないと良分散液が得られなく、又、保存安定性も悪いのに対して、メチル水素ポリシロキサンの塗布液は、低沸点のアルコール溶媒のみで分散でき、保存安定性も優れている。
以上の結果から、本発明の電子写真感光体は、非常に優れた性能を有していると判断できる。
Further, the P3 coating solution (dimethylpolysiloxane treatment) used for the photoreceptor A3 of Comparative Example 1 cannot obtain a good dispersion unless the high boiling point cyclohexanone solvent is mixed, and has poor storage stability. On the other hand, the coating solution of methyl hydrogen polysiloxane can be dispersed only with a low boiling alcohol solvent and has excellent storage stability.
From the above results, it can be judged that the electrophotographic photosensitive member of the present invention has very excellent performance.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005000992A JP2005134924A (en) | 2005-01-05 | 2005-01-05 | Electrophotographic photoreceptor and image forming apparatus using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005000992A JP2005134924A (en) | 2005-01-05 | 2005-01-05 | Electrophotographic photoreceptor and image forming apparatus using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16848997A Division JPH1115183A (en) | 1997-06-25 | 1997-06-25 | Electrophotographic photoreceptor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005134924A true JP2005134924A (en) | 2005-05-26 |
Family
ID=34651091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005000992A Pending JP2005134924A (en) | 2005-01-05 | 2005-01-05 | Electrophotographic photoreceptor and image forming apparatus using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005134924A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007256465A (en) * | 2006-03-22 | 2007-10-04 | Mitsubishi Chemicals Corp | Electrophotographic photoreceptor and image forming apparatus using the photoreceptor |
US7910274B2 (en) | 2007-12-04 | 2011-03-22 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US9063448B2 (en) | 2012-08-06 | 2015-06-23 | Konica Minolta, Inc. | Electrophotographic photoconductor and image forming apparatus |
US9201320B2 (en) | 2013-06-19 | 2015-12-01 | Konica Minolta, Inc. | Production process of organic photoreceptor |
-
2005
- 2005-01-05 JP JP2005000992A patent/JP2005134924A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007256465A (en) * | 2006-03-22 | 2007-10-04 | Mitsubishi Chemicals Corp | Electrophotographic photoreceptor and image forming apparatus using the photoreceptor |
US7910274B2 (en) | 2007-12-04 | 2011-03-22 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US9063448B2 (en) | 2012-08-06 | 2015-06-23 | Konica Minolta, Inc. | Electrophotographic photoconductor and image forming apparatus |
US9201320B2 (en) | 2013-06-19 | 2015-12-01 | Konica Minolta, Inc. | Production process of organic photoreceptor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9977354B2 (en) | Coating liquid for electrophotographic photoreceptor production, electrophotographic photoreceptor, and image formation apparatus | |
JP2007072139A (en) | Electrophotographic photoreceptor | |
JP2007316099A (en) | Multilayer electrophotographic photoreceptor and image forming apparatus | |
JP6503831B2 (en) | Electrophotographic photosensitive member, image forming apparatus, and cartridge | |
JP2009198808A (en) | Application liquid for electrophotographic photoreceptor undercoating layer, manufacturing method therefor, electrophotographic photoreceptor, and image forming device | |
JP3981461B2 (en) | Electrophotographic photoreceptor | |
JP2005134924A (en) | Electrophotographic photoreceptor and image forming apparatus using the same | |
JPH1069116A (en) | Electrophotographic photoreceptor | |
JP2007293372A (en) | Electrophotographic photoreceptor and electrophotographic method | |
JP3714838B2 (en) | Coating liquid for undercoat layer of electrophotographic photosensitive member, method for producing electrophotographic photosensitive member using the same, and electrophotographic photosensitive member | |
JP4010739B2 (en) | Electrophotographic photosensitive member and electrophotographic method | |
JP3791277B2 (en) | Electrophotographic photoreceptor | |
JPH1115183A (en) | Electrophotographic photoreceptor | |
JP2017161718A (en) | Electrophotographic photoreceptor, image forming apparatus, and cartridge | |
JP3617292B2 (en) | Electrophotographic photoreceptor | |
JP2002091044A (en) | Electrophotographic photoreceptor | |
JP2625868B2 (en) | Manufacturing method of electrophotographic photoreceptor | |
JP2008146076A (en) | Electrophotographic photoreceptor and electrophotographic imaging apparatus having the same | |
JP2007256465A (en) | Electrophotographic photoreceptor and image forming apparatus using the photoreceptor | |
JP2003241407A (en) | Electrophotographic photoreceptor and image forming device using the same | |
JP3982868B2 (en) | Electrophotographic photoreceptor | |
JPH10228125A (en) | Electrophotographic photoreceptor | |
JP3875863B2 (en) | Electrophotographic photoreceptor | |
JP2016138936A (en) | Electrophotographic photoreceptor, electrophotographic process cartridge, and image forming apparatus | |
JP3941301B2 (en) | Electrophotographic photoreceptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Written amendment |
Effective date: 20061222 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20070227 Free format text: JAPANESE INTERMEDIATE CODE: A02 |