JP2005134246A - Tritium sampler - Google Patents

Tritium sampler Download PDF

Info

Publication number
JP2005134246A
JP2005134246A JP2003370877A JP2003370877A JP2005134246A JP 2005134246 A JP2005134246 A JP 2005134246A JP 2003370877 A JP2003370877 A JP 2003370877A JP 2003370877 A JP2003370877 A JP 2003370877A JP 2005134246 A JP2005134246 A JP 2005134246A
Authority
JP
Japan
Prior art keywords
tritium
water vapor
sampling
pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003370877A
Other languages
Japanese (ja)
Other versions
JP4376590B2 (en
Inventor
Kenichi Mogi
健一 茂木
Naohiro Mizushima
直大 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003370877A priority Critical patent/JP4376590B2/en
Publication of JP2005134246A publication Critical patent/JP2005134246A/en
Application granted granted Critical
Publication of JP4376590B2 publication Critical patent/JP4376590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tritium sampler capable of reducing the error of evaluation for radiation of tritium and also improving workability. <P>SOLUTION: The tritium sampler for collecting the tritium at the measurement of radiation concentration of the tritium in the gaseous waste comprises: the mean water vapor concentration measurement means 4, 5, 14, for prescribed period in the sampling interval of sampling air by sampling the air containing the tritium; the mean water vapor concentration calculation means 14 for calculating the water vapor concentration for each prescribed period during the sampling interval; the mean water vapor concentration memory means 14a; the mean water vapor concentration memory and display means 15, 16: and the tritium collection means 6-9 for collecting the tritium in the phase of water by compressing the sample air during the sampling interval and cooling it so as to condense the tritium containing water vapor into the form of water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば原子力発電所などの軽水型原子炉施設における排気筒から放出される気体廃棄物内に含まれるトリチウムの放射能濃度を測定する際に使用するトリチウムサンプラに関するものである。   The present invention relates to a tritium sampler used when measuring the radioactivity concentration of tritium contained in gas waste discharged from an exhaust stack in a light water reactor facility such as a nuclear power plant.

トリチウムは、空気を主体とする気体廃棄物中に水蒸気(THO、TO)の形態で存在することから、原子力発電所では主に冷却凝縮法を採用したトリチウムサンプラが使用されている。一方、「発電用軽水型原子炉施設における放出放射性物質の測定に関する指針」では、冷却凝縮法による場合は、温度計・湿度計を設置する必要があるとしている。また、冷却凝縮法による場合は、得られた水試料の一部を計測試料として、1カ月に1回以上の頻度で、液体シンチレーション計数装置等を使用して凝縮試料水のトリチウム濃度を計測するとしている。更に、測定された水のトリチウム濃度(凝縮試料水の放射能濃度)から次のようにしてトリチウムの放出放射能を算出するとしている。 Since tritium is present in the form of water vapor (THO, T 2 O) in gaseous waste mainly composed of air, a tritium sampler employing a cooling condensation method is mainly used in nuclear power plants. On the other hand, “Guidelines for the measurement of radioactive materials released at light water reactor facilities for power generation” states that a thermometer and a hygrometer must be installed in the case of the cooling condensation method. In the case of the cooling condensation method, the tritium concentration of the condensed sample water is measured using a liquid scintillation counting device or the like at a frequency of at least once a month, using a part of the obtained water sample as a measurement sample. It is said. Furthermore, the tritium emission radioactivity is calculated from the measured tritium concentration of water (the radioactivity concentration of the condensed sample water) as follows.

C=C×W×H×10−2 (Bq/cm)・・・(1)
但し、C:凝縮試料水の放射能濃度 (Bq/g)
W:試料採取期間における平均飽和水蒸気密度 (g/cm)
H:試料採取期間における平均相対湿度 (%)
C = Cw * W * H * 10 <-2 > (Bq / cm < 3 >) ... (1)
However, Cw : Radioactivity concentration of condensed sample water (Bq / g)
W: Average saturated water vapor density during the sampling period (g / cm 3 )
H: Average relative humidity during the sampling period (%)

従来、試料採取期間における平均飽和水蒸気密度は、記録計の1カ月間の温度記録から目視で平均温度を読み取り、その平均温度に対応する飽和水蒸気圧をJIS−Z8806の表と照合して求めていた。同様に、記録計の1カ月間の相対湿度記録から目視で平均相対湿度を求めていた。   Conventionally, the average saturated water vapor density during the sampling period is obtained by visually reading the average temperature from the temperature record for one month of the recorder and comparing the saturated water vapor pressure corresponding to the average temperature with the table of JIS-Z8806. It was. Similarly, the average relative humidity was visually determined from the relative humidity record for one month of the recorder.

相対湿度は、空気中の水蒸気密度が一定でも温度に依存して大きく変化するため、記録計の記録から平均相対湿度を読み取る場合、読み取り誤差が大きい欠点があった。これを改善するために、塩化リチウム露点計で露点を測定する方法が導入された。この場合、記録計から目視で平均露点を読み取り、その平均露点に対応する飽和水蒸気圧を、同様にJIS−Z8806の表と照合して求める(例えば特許文献1参照)。   Since the relative humidity varies greatly depending on the temperature even if the water vapor density in the air is constant, there is a drawback that reading error is large when reading the average relative humidity from the record of the recorder. In order to improve this, a method of measuring the dew point with a lithium chloride dew point meter was introduced. In this case, the average dew point is visually read from a recorder, and the saturated water vapor pressure corresponding to the average dew point is similarly obtained by collating with the table of JIS-Z8806 (see, for example, Patent Document 1).

特開2001−330695号公報JP 2001-330695 A

以上のような装置においては空気中の水蒸気密度が一定の場合、温度が変化しても露点は変わらないため、相対湿度に比べて昼夜の指示の変動が小さくなり、1カ月間の平均値の読み取り誤差は改善された。しかしながら、1カ月分の記録紙から、温度計と湿度計の場合は平均温度と平均湿度を、露点計の場合は平均露点を目視で読み取るために、平均値読み取りに誤差が生じること、記録紙の回収と読み取り作業に手間がかかるという問題があった。
また、フィルタの目詰まりにより、サンプリング点の圧力とトリチウムサンプラの水蒸気密度測定点の圧力に差が生じてこれが水蒸気密度の測定誤差をうみ、ひいてはトリチウムの放出放射能評価に誤差を生じさせる問題があった。
In the apparatus as described above, when the water vapor density in the air is constant, the dew point does not change even if the temperature changes. Read error was improved. However, since one month of recording paper is used to visually read the average temperature and average humidity in the case of thermometers and hygrometers, and the average dew point in the case of dew point meters, there is an error in reading the average value. There is a problem that it takes time to collect and read the data.
In addition, due to clogging of the filter, there is a difference between the pressure at the sampling point and the pressure at the water vapor density measurement point of the tritium sampler. there were.

この発明はトリチウムの放出放射能評価の誤差をより小さくできるとともに作業性を向上させたトリチウムサンプラを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a tritium sampler that can reduce the error in evaluating the released radioactivity of tritium and that has improved workability.

この発明は、気体廃棄物内に含まれるトリチウムの放射能濃度を測定する際にトリチウムを捕集するために使用するトリチウムサンプラであって、トリチウムを含む空気をサンプリングしこのサンプリング空気の採取期間中の所定周期毎の水蒸気密度を測定する手段と、前記採取期間中の所定周期毎に得られた前記水蒸気密度の平均水蒸気密度を算出する手段と、前記平均水蒸気密度を記憶する手段と、前記平均水蒸気密度を記録、表示する手段と、前記採取期間中のサンプリング空気を加圧しさらに冷却してトリチウムを含む水蒸気を凝縮しトリチウムを水の形で捕集するトリチウム捕集手段と、を備えたことを特徴とするトリチウムサンプラにある。   The present invention relates to a tritium sampler used to collect tritium when measuring the radioactive concentration of tritium contained in gaseous waste, and samples the air containing tritium during the sampling period of the sampling air. Means for measuring the water vapor density for each predetermined period, means for calculating an average water vapor density of the water vapor density obtained for each predetermined period during the sampling period, means for storing the average water vapor density, and the average A means for recording and displaying the water vapor density, and a tritium collecting means for condensing the water vapor containing tritium by pressurizing and cooling the sampling air during the sampling period and collecting the tritium in the form of water. The tritium sampler is characterized by

この発明のトリチウムサンプラは、水蒸気密度に基づき試料採取期間の平均水蒸気密度を算出して記録・表示するようにしたので、トリチウムの放出放射能評価の誤差を小さくできるとともに作業性が向上する。   Since the tritium sampler of the present invention calculates and records and displays the average water vapor density during the sampling period based on the water vapor density, it can reduce errors in the evaluation of the released radioactivity of tritium and improve workability.

実施の形態1.
図1はこの発明の実施の形態1に係わるトリチウムサンプラの構成を示すブロック図である。同図において、吸気ノズル1は例えば原子力発電所などの軽水型原子炉施設における排気筒(図示せず)からサンプリングした気体廃棄物としての空気を吸入し、入口弁2は吸気の遮断を行い、エアーフィルタ3はサンプリングした空気から粒子状物質を除去する。温度計4および湿度計5はサンプリングした空気の温度、湿度をそれぞれ測定し、コンプレッサ6は排気筒から空気をサンプリングして加圧する。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a tritium sampler according to Embodiment 1 of the present invention. In the figure, an intake nozzle 1 sucks air as gas waste sampled from an exhaust pipe (not shown) in a light water reactor facility such as a nuclear power plant, and an inlet valve 2 shuts off the intake air. The air filter 3 removes particulate matter from the sampled air. The thermometer 4 and the hygrometer 5 respectively measure the temperature and humidity of the sampled air, and the compressor 6 samples and pressurizes the air from the exhaust pipe.

冷却装置7は加圧された空気を冷却して水蒸気を凝縮して試料水を捕集する。オートドレン8は試料水が所定のレベルまで溜まると自動的に排出し、ポリ容器9は排出された試料水を試料採取期間の間溜めておく。加圧空気圧力計10は加圧された空気の圧力を測定し、圧力調整弁11は加圧空気圧力計10の指示を見ながら加圧空気の圧力を所定の値に調整し、排気ノズル12はサンプリングした気体廃棄物としての空気を排気筒へ排気する。制御回路13はコンプレッサ6と冷却装置7を制御する。シーケンサ14はコンピュータ等により構成されるプログラムに従って動作する制御部でありこれに記録計15、入力機能および表示機能を備えた操作表示装置16が接続されている。   The cooling device 7 cools the pressurized air, condenses water vapor, and collects sample water. The auto drain 8 automatically discharges when the sample water accumulates to a predetermined level, and the poly container 9 accumulates the discharged sample water for the sample collection period. The pressurized air pressure gauge 10 measures the pressure of the pressurized air, and the pressure adjustment valve 11 adjusts the pressure of the pressurized air to a predetermined value while looking at the instructions of the pressurized air pressure gauge 10, and the exhaust nozzle 12 Exhausts sampled air as gas waste to the exhaust stack. The control circuit 13 controls the compressor 6 and the cooling device 7. The sequencer 14 is a control unit that operates according to a program configured by a computer or the like, and is connected to a recorder 15 and an operation display device 16 having an input function and a display function.

シーケンサ14は、操作表示装置16からコンプレッサ6と冷却装置7の操作データを受け、制御回路13に起動・停止信号として出力する。また、シーケンサ14は、温度計4の温度信号、湿度計5の相対湿度信号として得られる温度測定値と相対湿度測定値から水蒸気密度を計算し、その水蒸気密度に基づいて試料採取期間の平均水蒸気密度を計算して記録計15と操作表示装置16に出力する。記録計15はシーケンサ14から出力された測定値に基づきサンプリング空気の温度と相対湿度と平均水蒸気密度を記録する。操作表示装置16は操作画面と表示画面を搭載し、操作画面を選択して表示されたボタンを操作することによりコンプレッサ6と冷却装置7の起動・停止を行う。操作画面にはコンプレッサ6と冷却装置7の運転状態も表示される。表示画面を選択することにより、例えばサンプリング空気の温度、相対湿度、平均水蒸気密度が表示される。   The sequencer 14 receives operation data of the compressor 6 and the cooling device 7 from the operation display device 16 and outputs the operation data to the control circuit 13 as a start / stop signal. The sequencer 14 calculates the water vapor density from the temperature measurement value obtained as the temperature signal of the thermometer 4 and the relative humidity signal of the hygrometer 5 and the relative humidity measurement value, and based on the water vapor density, the average water vapor during the sampling period is calculated. The density is calculated and output to the recorder 15 and the operation display device 16. The recorder 15 records the temperature, relative humidity, and average water vapor density of the sampling air based on the measurement value output from the sequencer 14. The operation display device 16 includes an operation screen and a display screen, and starts and stops the compressor 6 and the cooling device 7 by selecting the operation screen and operating the displayed buttons. The operation screen also displays the operating states of the compressor 6 and the cooling device 7. By selecting the display screen, for example, the temperature, relative humidity, and average water vapor density of the sampling air are displayed.

シーケンサのメモリ14aには、温度に対する飽和水蒸気圧のテーブルが記憶されており、サンプリング空気の温度と前記テーブルを照合してその温度の飽和水蒸気圧を求める。その飽和水蒸気に対応する水蒸気密度は、例えば次式から計算できる。   The memory 14a of the sequencer stores a table of saturated water vapor pressure with respect to temperature, and the saturated water vapor pressure at that temperature is obtained by comparing the sampling air temperature with the table. The water vapor density corresponding to the saturated water vapor can be calculated from the following equation, for example.

Wh=(H/100)×{0.000804/(1+0.00366T)}×(e/P)・・・(2)
但し、Wh:サンプリング空気の水蒸気密度 (g/cm)
:サンプリング空気の相対湿度 (%)
:サンプリング空気の温度 (℃)
:T℃における飽和水蒸気圧
:サンプリング空気の圧力(eと同じ単位)
*通常、Pは大気圧(標準状態圧力:固定値)としている。また水蒸気密度Whは上記(1)式のW×Hに相当する。
Wh n = (H n /100)×{0.000804/(1+0.00366T n )} × (e n / P n) ··· (2)
However, Wh n : Water vapor density of sampling air (g / cm 3 )
H n : Relative humidity of sampling air (%)
T n : temperature of sampling air (° C.)
e n: T saturated water vapor pressure at n P n: (same units as e n) the pressure of the sampling air
* Normally, Pn is atmospheric pressure (standard pressure: fixed value). The water vapor density Wh corresponds to W × H in the above equation (1).

図2はシーケンサ14における平均水蒸気密度の計算手順を示すフローチャートである。ステップS01では定周期毎にサンプリング空気の温度Tと相対湿度Hを入力する。ステップS02では計算式(2)に基づき水蒸気密度(量)Whを計算する。ステップS03では試料採取期間の積算水蒸気密度(量)ΣWhを計算してその値と積算回数nをメモリ14aに上書きする。ステップS04では平均水蒸気密度(量)Whav=(ΣWh)/nを計算し、メモリ14aに上書きして記録計15と操作表示装置16に出力する。 FIG. 2 is a flowchart showing a procedure for calculating the average water vapor density in the sequencer 14. In step S01 every fixed cycle inputting a temperature T n and the relative humidity H n of the sampling air. In step S02, the water vapor density (amount) Wh n is calculated based on the calculation formula (2). Step S03 In calculates an integrated steam density (amount) ΣWh i sampling periods to overwrite the value and the accumulated number of times n in the memory 14a. In step S04, the average water vapor density (amount) Wh av = (ΣWh i ) / n is calculated, overwritten in the memory 14a, and output to the recorder 15 and the operation display device 16.

図3は操作表示装置16の表示画面例を示すもので、サンプリング開始時に「試料採取開始」ボタン(特に図示せず)をタッチする。すると開始日時が表示される。通常は、サンプリング空気の温度と相対湿度、試料採取期間の平均水蒸気密度、試料採取開始日時が表示される。試料採取終了時に新しいポリ容器9に置き換え、「試料採取終了」ボタン(特に図示せず)をタッチすると終了日時が表示される。これらの日時は例えばシーケンサ14内でプログラムによりタイマで管理される。さらに図3に示す温度、相対湿度、平均水蒸気密度、試料採取開始、終了日時はメモリ14aに随時記憶される。   FIG. 3 shows an example of a display screen of the operation display device 16, and a “sample collection start” button (not shown) is touched at the start of sampling. Then the start date is displayed. Normally, the temperature and relative humidity of the sampling air, the average water vapor density during the sampling period, and the sampling start date and time are displayed. When the sample collection is completed, the plastic container 9 is replaced with a new one, and a “sample collection end” button (not shown) is touched to display the end date and time. These dates and times are managed by a timer by a program in the sequencer 14, for example. Further, the temperature, relative humidity, average water vapor density, sampling start and end date / time shown in FIG. 3 are stored in the memory 14a as needed.

図4は記録計15における温度と湿度と平均水蒸気密度の日変化例を模式的に表した図で、aは温度、bは相対湿度、cは試料採取開始からの平均水蒸気密度を示す。晴天の場合、温度aは5〜10℃程度変化し、その影響で相対湿度は20〜30%変化するのに対し、平均水蒸気密度cの日変化は殆どない。   FIG. 4 is a diagram schematically showing an example of daily changes in temperature, humidity, and average water vapor density in the recorder 15, where a is the temperature, b is the relative humidity, and c is the average water vapor density from the start of sampling. In the case of fine weather, the temperature a changes by about 5 to 10 ° C., and the relative humidity changes by 20 to 30% due to the influence, whereas there is almost no daily change in the average water vapor density c.

試料採取期間終了時に、操作表示装置16に表示された平均水蒸気密度を記録してポリ容器に入った1カ月分の試料水を持ち帰り、分析室でその試料水の一部について液体シンチレーション計数装置を使用して試料水のトリチウム(放射能)濃度Cを計測し、その測定結果と前記平均水蒸気密度Whav(=上記(1)式の(W×H)の平均に相当)の記録に基づき上記(1)式でサンプル空気のトリチウム(放射能)濃度Cを計算する。したがって、記録紙を現場から持ち帰って分析室で試料採取期間の平均温度と平均相対湿度を読み取るという手間のかかる作業がなくなり、また、平均水蒸気密度の計算も不要になり作業を省力化できる。 At the end of the sampling period, the average water vapor density displayed on the operation display device 16 is recorded, and the sample water for one month in the plastic container is brought back, and a liquid scintillation counter is used for a part of the sample water in the analysis room. use measuring tritium (radioactive) concentration C w of the sample water, based on the record of the measurement results and the average water vapor density Wh av (= equivalent to an average of the (1) formula (W × H)) The tritium (radioactivity) concentration C of the sample air is calculated by the above equation (1). Therefore, the troublesome work of reading the recording paper from the site and reading the average temperature and the average relative humidity during the sampling period in the analysis room is eliminated, and the calculation of the average water vapor density is not required, so that the work can be saved.

なおシーケンサ14は図示のように入力弁2、圧力調整弁11等も含めた制御部であってもよい。   Note that the sequencer 14 may be a control unit including the input valve 2, the pressure adjustment valve 11, and the like as illustrated.

実施の形態2.
図5はこの発明の実施の形態2に係わるトリチウムサンプラの構成を示すブロック図である。同図において上記実施の形態と同一もしくは相当部分は同一符号で示す。サンプリング空気圧力計17はサンプリング空気の圧力を測定する。エアーフィルタ3が目詰まりしてくるとサンプリング空気圧力計17の指示は、源流のサンプリング点の圧力に対して差を生じる。サンプリング点は概ね大気圧であり、その差はエアーフィルタ3の圧力損失と配管の圧力損失である。配管の圧力損失は小さいため平均水蒸気密度への影響は無視できる程度に小さいが、エアーフィルタ3の目詰まりによる圧力損失の影響は、例えば15%程度になることもある。
Embodiment 2. FIG.
FIG. 5 is a block diagram showing a configuration of a tritium sampler according to Embodiment 2 of the present invention. In the figure, the same or corresponding parts as those in the above embodiment are indicated by the same reference numerals. The sampling air pressure gauge 17 measures the pressure of sampling air. When the air filter 3 becomes clogged, the indication of the sampling air pressure gauge 17 makes a difference with respect to the pressure at the sampling point of the source flow. The sampling point is generally atmospheric pressure, and the difference is the pressure loss of the air filter 3 and the pressure loss of the piping. Since the pressure loss of the pipe is small, the influence on the average water vapor density is negligibly small. However, the influence of the pressure loss due to the clogging of the air filter 3 may be about 15%, for example.

平均水蒸気密度はサンプリング点のものとして評価しているので、エアーフィルタ3の圧力損失が大きい場合は圧力補正することが望ましい。しかもエアーフィルタ3の圧力損失は刻々と変化するため、水蒸気密度の計算毎に補正することが望ましい。サンプリング空気圧力計17はこの圧力補正のために設置されるもので、測定されたサンプリング空気圧力値はシーケンサ14に入力され、次式により補正計算が実行される。   Since the average water vapor density is evaluated as that at the sampling point, it is desirable to correct the pressure when the pressure loss of the air filter 3 is large. Moreover, since the pressure loss of the air filter 3 changes every moment, it is desirable to correct each time the water vapor density is calculated. The sampling air pressure gauge 17 is installed for this pressure correction, and the measured sampling air pressure value is input to the sequencer 14 and correction calculation is executed by the following equation.

Whp=Wh×(P/P) (g/cm) ・・・(3)
但し、Whp:補正後のサンプリング空気の水蒸気密度 (g/cm)
Wh:サンプリング空気の水蒸気密度 (g/cm)
:サンプリング空気圧力
:標準状態圧力(固定値)(Pと同じ単位)
Whp n = Wh n × (P 0 / P n ) (g / cm 3 ) (3)
However, Whp n : Water vapor density of the sampling air after correction (g / cm 3 )
Wh n : Water vapor density of sampling air (g / cm 3 )
P n : Sampling air pressure P 0 : Standard state pressure (fixed value) (same unit as P n )

図6はシーケンサ14における水蒸気密度の圧力補正の計算手順を示すフローチャートである。ステップS011では定周期毎にサンプリング空気の温度Tと相対湿度Hと圧力Pを入力する。ステップS021では計算式(3)に基づき水蒸気密度(量)Whpを計算する。ステップS031では試料採取期間の積算水蒸気密度(量)ΣWhpを計算してその値と積算回数nをメモリ14aに上書きする。ステップS041では平均水蒸気密度(量)Whpav=(ΣWhp)/nを計算し、メモリ14aに上書きして記録計15と操作表示装置16に出力する。 FIG. 6 is a flowchart showing a calculation procedure for the pressure correction of the water vapor density in the sequencer 14. In step S011, the temperature T n of the sampling air, the relative humidity H n and the pressure P n are input at regular intervals. Based on in step S021 equation (3) calculating a water vapor density (amount) WHP n. In step S031, the integrated water vapor density (amount) ΣWhp i during the sampling period is calculated, and the value and the integrated number n are overwritten in the memory 14a. In step S041, the average water vapor density (amount) Whp av = (ΣWhp i ) / n is calculated, overwritten on the memory 14a, and output to the recorder 15 and the operation display device 16.

このように水蒸気密度の計算に圧力補正項を加えることにより、トリチウムの放出放射能評価の誤差を小さくできる。   Thus, by adding a pressure correction term to the calculation of the water vapor density, the error in the evaluation of the released radioactivity of tritium can be reduced.

実施の形態3.
図7はこの発明の実施の形態3に係わるトリチウムサンプラのシーケンサ14におけるトリチウム捕集異常警報出力の演算手順を示すフローチャートである。例えば実施の形態1の図2のステップS04の後、ステップS05では加圧空気圧力計10からの加圧空気の圧力P、冷却装置7からの冷却温度Tcを入力する。ステップS06では許容圧力下限値≦加圧空気の圧力P≦許容圧力上限値と、許容温度下限値≦冷却温度Tc≦許容温度上限値のAND条件を満たす場合は図2のステップS01へ戻り、前記条件を満たさない場合はステップS07でトリチウム捕集異常警報を、例えば記録計15や操作表示装置16、あるいは後述する図8に示す伝送ケーブル18を介して監視装置19へ出力する。なお、加圧空気の圧力Pの許容圧力下限値および上限値、冷却温度Tcの許容温度下限値および上限値はそれぞれ例えばシーケンサ14のメモリ14a内に予め格納されている。
Embodiment 3 FIG.
FIG. 7 is a flowchart showing a calculation procedure of tritium collection abnormality alarm output in the sequencer 14 of the tritium sampler according to the third embodiment of the present invention. For example, after step S04 of FIG. 2 of the first embodiment, in step S05, the pressure P of the pressurized air from the pressurized air pressure gauge 10 and the cooling temperature Tc from the cooling device 7 are input. In step S06, if the AND condition of allowable pressure lower limit value ≦ pressure P of pressurized air ≦ allowable pressure upper limit value and allowable temperature lower limit value ≦ cooling temperature Tc ≦ allowable temperature upper limit value is satisfied, the process returns to step S01 in FIG. If the condition is not satisfied, a tritium collection abnormality alarm is output to the monitoring device 19 via the recorder 15, the operation display device 16, or the transmission cable 18 shown in FIG. In addition, the allowable pressure lower limit value and the upper limit value of the pressure P of the pressurized air and the allowable temperature lower limit value and the upper limit value of the cooling temperature Tc are respectively stored in advance in the memory 14a of the sequencer 14, for example.

加圧空気の圧力Pが許容圧力下限値より小さい場合は、単位体積当たりに内包できる許容水蒸気量が大きくなるため、冷却温度が一定でも試料水の捕集効率が低下することになり、試料水のトレーサビリティが問題になる。また、加圧空気の圧力Pが許容圧力上限値より大きい場合は、サンプルリング空気の流量が低下し、同様に試料水のトレーサビリティが問題になる。また、冷却温度Tcが許容温度下限値より小さい場合は、過冷却で氷が生成されて空気の通路が閉塞される。こうした状態は、復旧に多大な時間を要し、長時間欠側(測定不能)の問題を生じる。冷却温度Tcが許容温度上限値より大きい場合は、試料水の捕集効率を低下させる。従来は、定期パトロール時に加圧空気の圧力と冷却温度を念入りにチェックしていた。加圧空気の圧力異常及び冷却温度異常を検知して警報を出力することにより、保守の作業性が向上するとともに早期異常検知により欠側を未然に防止できる。   When the pressure P of the pressurized air is smaller than the allowable pressure lower limit value, the amount of allowable water vapor that can be contained per unit volume increases, so that even if the cooling temperature is constant, the collection efficiency of the sample water is reduced. Traceability becomes a problem. Further, when the pressure P of the pressurized air is larger than the allowable pressure upper limit value, the flow rate of the sample ring air is lowered, and similarly the traceability of the sample water becomes a problem. Further, when the cooling temperature Tc is lower than the allowable temperature lower limit value, ice is generated by supercooling and the air passage is closed. Such a state requires a long time for recovery, and causes a problem of missing for a long time (unmeasurable). When the cooling temperature Tc is higher than the allowable temperature upper limit value, the collection efficiency of the sample water is lowered. Conventionally, the pressure of the pressurized air and the cooling temperature have been carefully checked during regular patrols. By detecting an abnormality in the pressure of the pressurized air and an abnormality in the cooling temperature and outputting an alarm, maintenance workability can be improved and a missing side can be prevented in advance by early abnormality detection.

なお上記説明では実施の形態1にこの機能を追加する場合について説明しているが、実施の形態2の図6のステップS041の後に図7のステップS05を開始し、ステップS06、S07の後に図6のステップS011に戻るようにしてもよく、同様の効果が得られる。   In the above description, the case where this function is added to the first embodiment is described. However, step S05 in FIG. 7 is started after step S041 in FIG. 6 in the second embodiment, and the steps after steps S06 and S07 are performed. It is also possible to return to step S011 in step 6, and the same effect can be obtained.

実施の形態4.
図8はこの発明の実施の形態4に係わるトリチウムサンプラの構成を示すブロック図である。図8において、シーケンサ14はデータを伝送する伝送ケーブル18により遠隔から現場のトリチウムサンプラを監視する監視装置19に接続されている。シーケンサ14はメモリ14aに試料採取の開始日時と終了日時及び平均水蒸気密度を記憶しており、例えば監視装置19が設けられた分析室からシーケンサ14へアクセスすることにより前記データを容易に入手でき、トリチウムの放出放射能計算の作業性が向上する。また、分析室から所望する運転パラメータを見ることができるので、定期パトロールの回数を減らす等の省力化が可能となる。
Embodiment 4 FIG.
FIG. 8 is a block diagram showing a configuration of a tritium sampler according to Embodiment 4 of the present invention. In FIG. 8, the sequencer 14 is connected to a monitoring device 19 for remotely monitoring a tritium sampler in the field by a transmission cable 18 for transmitting data. The sequencer 14 stores the start date / time and end date / time of sampling and the average water vapor density in the memory 14a. For example, the data can be easily obtained by accessing the sequencer 14 from the analysis room in which the monitoring device 19 is provided. Improves workability in calculating tritium release radioactivity. In addition, since desired operation parameters can be viewed from the analysis room, it is possible to save labor such as reducing the number of regular patrols.

以上この本発明のトリチウムサンプラは、水蒸気密度に基づき試料採取期間の平均水蒸気密度を算出して記録・表示するようにしたので、トリチウムの放出放射能評価の誤差を小さくできるとともに作業性が向上する。
また、サンプリングした空気の圧力を測定して水蒸気密度の圧力補正を行うようにしたので、トリチウムの放出放射能評価の誤差を小さくできる。
また、加圧した空気の圧力と冷却温度を測定し、その測定値に基づきトリチウム捕集機能の診断を行うようにしたので、定期的な見回り点検における点検項目が削減でき、点検の作業性が向上する。
また、前回試料採取の開始日時と終了日時及び平均水蒸気密度を記憶して、遠隔でサンプラの運転状態を監視でき、遠隔でデータを入手できるようにしたので、点検及びトリチウムの放出放射能評価の作業性が向上する。
As described above, the tritium sampler of the present invention calculates and records and displays the average water vapor density during the sampling period based on the water vapor density, so that it is possible to reduce the error in evaluating the released radioactivity of tritium and improve the workability. .
In addition, since the pressure of the water vapor density is corrected by measuring the pressure of the sampled air, the error in the evaluation of the released radioactivity of tritium can be reduced.
In addition, the pressure of the pressurized air and the cooling temperature are measured, and the tritium collection function is diagnosed based on the measured values, so that inspection items in periodic inspections can be reduced, and inspection workability is improved. improves.
In addition, the start date and end date and time of the previous sampling and the average water vapor density were memorized, so that the operation state of the sampler could be monitored remotely, and the data could be obtained remotely. Workability is improved.

この発明の実施の形態1に係わるトリチウムサンプラの構成を示すブロック図である。It is a block diagram which shows the structure of the tritium sampler concerning Embodiment 1 of this invention. この発明の実施の形態1に係わるトリチウムサンプラのシーケンサにおける平均水蒸気密度の計算手順を示すフローチャートである。It is a flowchart which shows the calculation procedure of the average water vapor density in the sequencer of the tritium sampler concerning Embodiment 1 of this invention. この発明に係わるトリチウムサンプラの操作表示装置の表示画面例を示す図である。It is a figure which shows the example of a display screen of the operation display apparatus of the tritium sampler concerning this invention. この発明に係わるトリチウムサンプラの記録計における温度と湿度と平均水蒸気密度の日変化例を模式的に表した図である。It is the figure which represented typically the example of the daily change of the temperature in the tritium sampler recorder concerning this invention, humidity, and an average water vapor density. この発明の実施の形態2に係わるトリチウムサンプラの構成を示すブロック図である。It is a block diagram which shows the structure of the tritium sampler concerning Embodiment 2 of this invention. この発明の実施の形態2に係わるトリチウムサンプラのシーケンサにおける水蒸気密度の圧力補正の計算手順を示すフローチャートである。It is a flowchart which shows the calculation procedure of the pressure correction of the water vapor density in the sequencer of the tritium sampler concerning Embodiment 2 of this invention. この発明の実施の形態3に係わるトリチウムサンプラのトリチウム捕集異常警報出力の演算手順を示すフローチャートである。It is a flowchart which shows the calculation procedure of the tritium collection abnormality alarm output of the tritium sampler concerning Embodiment 3 of this invention. この発明の実施の形態4に係わるトリチウムサンプラの構成を示すブロック図である。It is a block diagram which shows the structure of the tritium sampler concerning Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 吸気ノズル、2 入口弁、3 エアーフィルタ、4 温度計、5 湿度計、6 コンプレッサ、7 冷却装置、8 オートドレン、9 ポリ容器、10 加圧空気圧力計、11 圧力調整弁、12 排気ノズル、13 制御回路、14 シーケンサ、14a メモリ、15 記録計、16 操作表示装置、17 サンプリング空気圧力計、18 伝送ケーブル、19 監視装置。   1 Intake nozzle, 2 Inlet valve, 3 Air filter, 4 Thermometer, 5 Hygrometer, 6 Compressor, 7 Cooling device, 8 Auto drain, 9 Poly container, 10 Pressurized air pressure gauge, 11 Pressure adjusting valve, 12 Exhaust nozzle , 13 control circuit, 14 sequencer, 14a memory, 15 recorder, 16 operation display device, 17 sampling air pressure gauge, 18 transmission cable, 19 monitoring device.

Claims (5)

気体廃棄物内に含まれるトリチウムの放射能濃度を測定する際にトリチウムを捕集するために使用するトリチウムサンプラであって、
トリチウムを含む空気をサンプリングしこのサンプリング空気の採取期間中の所定周期毎の水蒸気密度を測定する手段と、
前記採取期間中の所定周期毎に得られた前記水蒸気密度の平均水蒸気密度を算出する手段と、
前記平均水蒸気密度を記憶する手段と、
前記平均水蒸気密度を記録、表示する手段と、
前記採取期間中のサンプリング空気を加圧しさらに冷却してトリチウムを含む水蒸気を凝縮しトリチウムを水の形で捕集するトリチウム捕集手段と、
を備えたことを特徴とするトリチウムサンプラ。
A tritium sampler used to collect tritium when measuring the radioactive concentration of tritium contained in gaseous waste,
Means for sampling the air containing tritium and measuring the water vapor density at predetermined intervals during the sampling period of the sampling air;
Means for calculating an average water vapor density of the water vapor density obtained at predetermined intervals during the collection period;
Means for storing the average water vapor density;
Means for recording and displaying the average water vapor density;
Tritium collecting means for compressing and further cooling the sampling air during the sampling period to condense water vapor containing tritium and collect tritium in the form of water;
A tritium sampler characterized by comprising:
前記記憶手段が、前記サンプリング空気の温度に対する飽和水蒸気圧の関係を示すテーブルを記憶し、
前記水蒸気密度を測定する手段が、前記サンプリング空気の温度と相対湿度を測定する手段と、前記測定されたサンプリング空気の温度、相対湿度、前記測定されたサンプリング空気の温度における前記テーブルによって得られる飽和水蒸気圧の大気圧との比、に基づき前記サンプリング空気の水蒸気密度を求める手段と、を含む、
ことを特徴とする請求項1に記載のトリチウムサンプラ。
The storage means stores a table indicating a relationship of saturated water vapor pressure to the temperature of the sampling air;
The means for measuring the water vapor density comprises means for measuring the temperature and relative humidity of the sampling air, and the saturation obtained by the table at the measured sampling air temperature, relative humidity, and the measured sampling air temperature. Means for determining the water vapor density of the sampling air based on the ratio of the water vapor pressure to the atmospheric pressure,
The tritium sampler according to claim 1.
前記水蒸気密度を測定する手段が、前記サンプリング空気の加圧前の圧力を測定する手段と、この測定された圧力と所定の標準状態圧力の比により前記水蒸気密度の圧力補正を行う手段と、をさらに備えたことを特徴とする請求項1または2に記載のトリチウムサンプラ。   The means for measuring the water vapor density includes means for measuring a pressure before pressurizing the sampling air, and means for correcting the water vapor density by a ratio of the measured pressure to a predetermined standard state pressure. The tritium sampler according to claim 1 or 2, further comprising: 前記記憶手段が、前記トリチウム捕集手段における加圧空気の圧力と冷却温度のそれぞれの上限値と下限値をさらに記憶し、
前記トリチウム捕集手段における加圧空気の圧力と冷却温度を測定する手段と、
測定された加圧空気の圧力と冷却温度の少なくともいずれかがそれぞれの前記上限値と下限値の間の範囲にない時に警報を発生する手段と、
を備えたことを特徴とする請求項1ないし3のいずれか1項に記載のトリチウムサンプラ。
The storage means further stores an upper limit value and a lower limit value of the pressure of pressurized air and the cooling temperature in the tritium collection means,
Means for measuring the pressure of the pressurized air and the cooling temperature in the tritium collecting means;
Means for generating an alarm when at least one of the measured pressure of the pressurized air and the cooling temperature is not in a range between the respective upper limit value and lower limit value;
The tritium sampler according to any one of claims 1 to 3, further comprising:
前記サンプリング空気の採取期間の開始、終了を指定する手段を備え、
前記記憶手段が、算出された前記平均水蒸気密度に対する指定された試料採取の開始日時と終了日時をさらに記憶し、
前記トリチウムサンプラを遠隔監視し前記記憶手段にアクセス可能な遠隔監視手段をさらに備えたことを特徴とする請求項1ないし4のいずれか1項に記載のトリチウムサンプラ。
Means for designating the start and end of the sampling air sampling period;
The storage means further stores a start date and an end date and time of designated sampling for the calculated average water vapor density;
The tritium sampler according to any one of claims 1 to 4, further comprising a remote monitoring unit capable of remotely monitoring the tritium sampler and accessing the storage unit.
JP2003370877A 2003-10-30 2003-10-30 Tritium sampler Expired - Lifetime JP4376590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370877A JP4376590B2 (en) 2003-10-30 2003-10-30 Tritium sampler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370877A JP4376590B2 (en) 2003-10-30 2003-10-30 Tritium sampler

Publications (2)

Publication Number Publication Date
JP2005134246A true JP2005134246A (en) 2005-05-26
JP4376590B2 JP4376590B2 (en) 2009-12-02

Family

ID=34647755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370877A Expired - Lifetime JP4376590B2 (en) 2003-10-30 2003-10-30 Tritium sampler

Country Status (1)

Country Link
JP (1) JP4376590B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208042A (en) * 2019-06-04 2019-09-06 中国工程物理研究院核物理与化学研究所 It is a kind of biology sample in tissue free water tritium sampler
CN110398771A (en) * 2019-06-26 2019-11-01 浙江国辐环保科技有限公司 A kind of device using tritium in condensation method acquisition air
CN112882083A (en) * 2021-03-01 2021-06-01 中国人民解放军63653部队 High-sensitivity multi-path radioactive gas on-line monitor
CN115015988A (en) * 2022-07-11 2022-09-06 中国工程物理研究院核物理与化学研究所 Tritium remote online monitoring system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101350415B1 (en) * 2012-07-19 2014-01-14 한국전력기술 주식회사 Apparatus for measuring radioactivity of radioactive sampling without particulate sample loss
KR101397960B1 (en) 2012-09-27 2014-07-01 한국표준과학연구원 Apparatus and method for measuring efficiency of tritium sample collector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208042A (en) * 2019-06-04 2019-09-06 中国工程物理研究院核物理与化学研究所 It is a kind of biology sample in tissue free water tritium sampler
CN110398771A (en) * 2019-06-26 2019-11-01 浙江国辐环保科技有限公司 A kind of device using tritium in condensation method acquisition air
CN112882083A (en) * 2021-03-01 2021-06-01 中国人民解放军63653部队 High-sensitivity multi-path radioactive gas on-line monitor
CN112882083B (en) * 2021-03-01 2023-06-13 中国人民解放军63653部队 High-sensitivity multipath radioactive gas on-line monitor
CN115015988A (en) * 2022-07-11 2022-09-06 中国工程物理研究院核物理与化学研究所 Tritium remote online monitoring system
CN115015988B (en) * 2022-07-11 2024-05-24 中国工程物理研究院核物理与化学研究所 Tritium remote on-line monitoring system

Also Published As

Publication number Publication date
JP4376590B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
Andrews et al. CO 2, CO, and CH 4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts
US5485754A (en) Apparatus and method for measuring the air flow component and water vapor component of air/water vapor streams flowing under vacuum
US7739067B2 (en) In-service calibration of temperature measurement devices using plant monitoring system data
JP5666930B2 (en) Weighing device
KR101340145B1 (en) Maintenance expert system for measuring instrument
FR2696565A1 (en) Monitoring levels of radioactivity over an area - using many sampling stations which encode samples for reading by mobile data collector
JP2016525681A (en) How to check the normal functioning of sampling equipment
CN109668607B (en) Method for monitoring tiny leakage of gas meter
CN116222669B (en) Water quality and weight real-time monitoring system and monitoring method of automatic water vending machine
JP4376590B2 (en) Tritium sampler
US3769505A (en) Radioactive halogen monitoring system
AU2021105457A4 (en) Air Quality measuring apparatus use in animal husbandry
JP4682728B2 (en) Incinerator tritium sampler
Cigna Monitoring of Caves Conclusions and Recommendations
TW398051B (en) Method for intelligent data acquisition in a measurement system
Loysen Errors in measurement of working level
CN110780332B (en) System and method for measuring transformation rate of element state T and oxidation state T in environment
JP5734500B2 (en) Weighing device
CN116362582B (en) Activated carbon accumulated adsorption efficiency evaluation method and system based on integration method
JP3550169B2 (en) Dust radiation monitor
JP6892340B2 (en) Radiation monitoring system and radiation monitoring method
JP4881033B2 (en) Neutron detector lifetime determination apparatus, lifetime determination method thereof, and reactor core monitoring apparatus
Smith Use of scattered light particulate monitors with a foundry air recirculation system
Abo-Elmagd Etched-Track Technique in Radon Metrology: Recent Advances and Quality Assurance
Colby et al. Establishing Destruction Efficiency for Hazardous Waste Incinerators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Ref document number: 4376590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term