JP2005133592A - Variable valve device of internal combustion engine - Google Patents

Variable valve device of internal combustion engine Download PDF

Info

Publication number
JP2005133592A
JP2005133592A JP2003368378A JP2003368378A JP2005133592A JP 2005133592 A JP2005133592 A JP 2005133592A JP 2003368378 A JP2003368378 A JP 2003368378A JP 2003368378 A JP2003368378 A JP 2003368378A JP 2005133592 A JP2005133592 A JP 2005133592A
Authority
JP
Japan
Prior art keywords
intake
valve
variable
exhaust
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368378A
Other languages
Japanese (ja)
Inventor
Shigeteru Shindo
茂輝 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003368378A priority Critical patent/JP2005133592A/en
Publication of JP2005133592A publication Critical patent/JP2005133592A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To improve fail-safe capability at the time of operation fault of an exhaust valve timing varying mechanism 40. <P>SOLUTION: The device is equipped with intake/exhaust valve timing varying mechanisms 30, 40 for varying an intake valve 18 timing and an exhaust valve timing, respectively and an intake operation angle varying mechanism 20 for varying an operation angle/valve lift amount of the intake valve. When detecting the operation fault of the exhaust valve timing varying mechanism 40, at least either of the intake valve timing varying mechanism 30 and intake operation angle varying mechanism 20 is driven and controlled so that an opening time IVO of the intake valve leads a compression upper dead point TDC. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、吸・排気弁の作動中心角の位相をそれぞれ可変とする2つのバルブタイミング可変機構と吸気弁の作動角を可変とする吸気作動角可変機構とを備えた内燃機関の可変動弁装置に関し、特に、排気バルブタイミング可変機構の作動不良時のフェールセーフ技術に関する。   The present invention relates to a variable valve for an internal combustion engine having two valve timing variable mechanisms for making the phase of the operation center angle of the intake and exhaust valves variable and an intake operation angle variable mechanism for making the operation angle of the intake valve variable. More particularly, the present invention relates to a fail-safe technique when an exhaust valve timing variable mechanism malfunctions.

内燃機関の出力・燃費の向上や排気清浄化等を図るために、従来より、吸・排気弁のバルブリフト特性を変更可能な様々な可変動弁機構が提案されている。例えば、特許文献1では、吸気弁又は排気弁にバルブタイミングを可変とするバルブタイミング可変機構を備える内燃機関において、バルブタイミング可変機構の制御系に係る故障を検出した際には、バルブオーバーラップを強制的に小さくして、一定の運転性能を確保するようにしている。   Various variable valve mechanisms that can change the valve lift characteristics of the intake and exhaust valves have been proposed in the past in order to improve the output and fuel consumption of the internal combustion engine, clean the exhaust, and the like. For example, in Patent Document 1, in an internal combustion engine having a variable valve timing mechanism that varies the valve timing of an intake valve or an exhaust valve, when a failure related to a control system of the variable valve timing mechanism is detected, valve overlap is detected. It is forcibly reduced to ensure a certain driving performance.

特許文献2では、内燃機関の異常を検出すると、吸・排気弁のバルブリフト量及び作動角を可変とする作動角可変機構の作動を制御して、バルブオーバーラップを強制的に低減又は解消している。   In Patent Document 2, when an abnormality of the internal combustion engine is detected, the operation of a variable operating angle mechanism that changes the valve lift amount and operating angle of the intake and exhaust valves is controlled to forcibly reduce or eliminate valve overlap. ing.

特許文献3では、吸・排気弁の双方にバルブタイミングを可変とするバルブタイミング可変機構を設け、一方のバルブタイミング可変機構の異常を検出した場合、それぞれのバルブタイミング可変機構を異常時用データを用いて制御している。例えば、異常が検知されたバルブタイミング可変機構を最遅角位置に強制的に固定し、他方のバルブタイミング可変機構を異常時用の作動マップに切り換えて駆動制御する。あるいは、異常検出時には双方のバルブタイミング可変機構を最遅角位置に固定する。
特開平7−139378号公報 特開2000−130196号公報 特開2003−49671号公報
In Patent Document 3, both the intake and exhaust valves are provided with variable valve timing mechanisms that change the valve timing, and when an abnormality in one of the variable valve timing mechanisms is detected, each variable valve timing mechanism is provided with data for abnormal conditions. Use to control. For example, the valve timing variable mechanism in which an abnormality is detected is forcibly fixed at the most retarded position, and the other valve timing variable mechanism is switched to an operation map for an abnormality to control driving. Alternatively, both valve timing variable mechanisms are fixed at the most retarded position when an abnormality is detected.
JP-A-7-139378 JP 2000-130196 A JP 2003-49671 A

内燃機関、特にガソリンエンジンでは、燃費・出力の向上や排気清浄化等を図るために、機関回転数や機関負荷等に応じて吸・排気弁の開閉時期を幅広く調整することが望ましい。そこで、吸・排気弁の双方にそれぞれ作動中心角のクランク角に対する位相、すなわちバルブタイミングを変更可能な吸気バルブタイミング可変機構を設けるとともに、吸気弁の作動角(及びバルブリフト量)の大きさを変更可能な吸気作動角可変機構を併用することが好ましい。このように、2つの吸・排気バルブタイミング可変機構と吸気作動角可変機構とを併用した内燃機関の可変動弁装置において、排気バルブタイミング可変機構の異常や固着等の故障を含む作動不良時のフェールセーフ性については、上記の特許文献1〜3を含め、今まで考慮されていなかった。   In an internal combustion engine, particularly a gasoline engine, it is desirable to widely adjust the opening / closing timings of the intake / exhaust valves in accordance with the engine speed, engine load, and the like in order to improve fuel consumption, output, and exhaust purification. Therefore, both the intake and exhaust valves are provided with an intake valve timing variable mechanism that can change the phase of the operation center angle with respect to the crank angle, that is, the valve timing, and the magnitude of the intake valve operation angle (and the valve lift amount). It is preferable to use a variable intake operating angle variable mechanism in combination. In this way, in the variable valve operating apparatus for an internal combustion engine that uses both the intake / exhaust valve timing variable mechanism and the intake operating angle variable mechanism, in the event of a malfunction, including malfunction of the exhaust valve timing variable mechanism and failure such as sticking. The fail-safe property has not been considered so far, including Patent Documents 1 to 3 described above.

例えば、排気バルブタイミング可変機構の作動不良時に、仮に特許文献1や特許文献2のようにバルブオーバーラップを低減又は解消すると、特に中・高負荷域のような機関運転状態において、バルブオーバーラップによる残留ガスの吸気ポート等の吸気系への吹き返しがなく、この吹き返しによる燃料の霧化促進効果が得られないため、燃焼安定性が低下するおそれがある。本発明は、このような新規な課題に着目してなされたものである。   For example, if the valve overlap is reduced or eliminated as in Patent Document 1 or Patent Document 2 at the time of malfunction of the exhaust valve timing variable mechanism, the valve overlap is caused particularly in an engine operation state such as a middle / high load range. The residual gas is not blown back to the intake system such as the intake port, and the fuel atomization promoting effect by this blow-back cannot be obtained, so that the combustion stability may be lowered. The present invention has been made paying attention to such a new problem.

本発明に係る内燃機関の可変動弁装置は、吸気弁の作動中心角の位相を可変とする吸気バルブタイミング可変機構と、排気弁の作動中心角の位相を可変とする排気バルブタイミング可変機構と、吸気弁の作動角を可変とする吸気作動角可変機構と、を備える。上記排気バルブタイミング可変機構の作動不良を検出する作動不良検出手段を有し、上記排気バルブタイミング可変機構の作動不良が検出された作動不良時には、吸気弁の開時期が上死点よりも進角するように、上記吸気バルブタイミング可変機構及び吸気作動角可変機構の少なくとも一方を駆動制御する。   An internal combustion engine variable valve operating apparatus according to the present invention includes an intake valve timing variable mechanism that varies a phase of an operation center angle of an intake valve, an exhaust valve timing variable mechanism that varies a phase of an operation center angle of an exhaust valve, And an intake operation angle variable mechanism that makes the operation angle of the intake valve variable. A malfunction detecting means for detecting malfunction of the exhaust valve timing variable mechanism, and when the malfunction of the exhaust valve timing variable mechanism is detected, the opening timing of the intake valve is advanced from the top dead center; Thus, at least one of the intake valve timing variable mechanism and the intake operation angle variable mechanism is driven and controlled.

吸・排気弁のそれぞれに適用される2つのバルブタイミング可変機構と吸気作動角可変機構の3つの可変機構を併用しているため、吸・排気弁の開閉時期を機関運転状況に応じて幅広く調整することができ、燃費性能・出力性能及び排気浄化性能等を有効に向上することができる。このような可変動弁装置において、排気バルブタイミング可変機構の作動不良時には、吸気弁の開時期を上死点よりも進角して、積極的にバルブオーバーラップを付与している。このため、残留ガスによる吸気ポート等の吸気系への吹き返しにより、燃料の霧化が促進され、燃焼状態を改善・向上することができる。   Since two variable valve timing mechanisms that are applied to each of the intake and exhaust valves and the three variable mechanisms of the variable intake operating angle are used together, the opening and closing timing of the intake and exhaust valves can be adjusted widely according to the engine operating conditions. It is possible to effectively improve fuel consumption performance, output performance, exhaust purification performance, and the like. In such a variable valve system, when the exhaust valve timing variable mechanism does not operate properly, the valve opening timing is positively given by opening the intake valve from the top dead center. For this reason, the atomization of the fuel is promoted by blowing back to the intake system such as the intake port by the residual gas, and the combustion state can be improved / improved.

以下、本発明の好ましい実施の形態を図面に基づいて詳細に説明する。図1を参照して、この内燃機関では各気筒毎に一対の吸気弁18及び一対の排気弁(図示省略)が設けられる。吸気弁18には、そのバルブリフト特性を変更可能な2種の可変動弁機構、具体的には、クランク角に対する吸気弁18(吸気カムシャフト19)の作動中心角の位相、すなわちバルブタイミングを変更可能な吸気バルブタイミング可変機構である吸気VTC(Valve Timing Control)30と、吸気弁18の作動角及びバルブリフト量を連続的に変更可能な吸気作動角可変機構である吸気VEL(Variable valve Event and Lift)20と、が適用されている。排気弁には、その作動中心角の位相、すなわち排気弁のバルブタイミングを変更可能な排気バルブタイミング可変機構である排気VTC(Valve Timing Control)40が適用されている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, in this internal combustion engine, a pair of intake valves 18 and a pair of exhaust valves (not shown) are provided for each cylinder. The intake valve 18 has two types of variable valve mechanisms that can change the valve lift characteristics, specifically, the phase of the operation center angle of the intake valve 18 (intake camshaft 19) with respect to the crank angle, that is, the valve timing. An intake VTC (Valve Timing Control) 30 that is a variable intake valve timing variable mechanism, and an intake VEL (Variable valve Event) that is an intake operation angle variable mechanism that can continuously change the operating angle and valve lift amount of the intake valve 18. and Lift) 20 are applied. An exhaust VTC (Valve Timing Control) 40, which is an exhaust valve timing variable mechanism capable of changing the phase of the operation center angle, that is, the valve timing of the exhaust valve, is applied to the exhaust valve.

吸気カムシャフト19は、プーリ又はスプロケットを介してクランクシャフトから回転動力が伝達され、このクランクシャフトの回転に連動して自身の軸回りに回転する。この吸気カムシャフト19には、吸気弁18のバルブリフタ17の上方に、吸気弁18を開閉する揺動カム21が揺動自在に外嵌・支持されている。   The intake camshaft 19 receives rotational power from the crankshaft via a pulley or sprocket, and rotates about its own axis in conjunction with the rotation of the crankshaft. A swing cam 21 that opens and closes the intake valve 18 is externally fitted and supported on the intake cam shaft 19 above the valve lifter 17 of the intake valve 18.

吸気VEL20は、吸気カムシャフト19に偏心して固定又は一体形成された円形の偏心カム23と、吸気カムシャフト19と平行に気筒列方向へ延びる制御軸24と、この制御軸24に偏心して固定又は一体形成された円形の制御カム25と、この制御カム25に揺動可能に外嵌して取り付けられるロッカーアーム26と、このロッカーアーム26の一端と偏心カム23とを連携するリング状の第1リンク27と、ロッカーアーム26の他端と揺動カム21の先端とを連携するロッド状の第2リンク28と、制御軸24の回転角度を変更するアクチュエータとしての電動駆動式のVEL変換デバイス22と、を有している。第1リンク27の一端は偏心カム23に回転可能に外嵌して取り付けられている。   The intake VEL 20 is eccentrically fixed to or integrated with the intake camshaft 19, a circular eccentric cam 23 that is eccentrically fixed to the intake camshaft 19, a control shaft 24 that extends parallel to the intake camshaft 19 in the cylinder row direction, and is eccentrically fixed to the control shaft 24. A circular control cam 25 that is integrally formed, a rocker arm 26 that is swingably fitted to the control cam 25, and a ring-shaped first cam that links one end of the rocker arm 26 and the eccentric cam 23. The link 27, the rod-shaped second link 28 that links the other end of the rocker arm 26 and the tip of the swing cam 21, and the electrically driven VEL conversion device 22 as an actuator that changes the rotation angle of the control shaft 24. And have. One end of the first link 27 is attached to the eccentric cam 23 so as to be rotatably fitted.

クランクシャフトに連動して吸気カムシャフト19が回転すると、偏心カム23に嵌合する第1リンク27の一端が吸気カムシャフト19の軸心に対して回転変位して、この第1リンク27が全体としてほぼ並進作動し、この第1リンク27に連携するロッカーアーム26及び第2リンク28を介して揺動カム21が所定の揺動角度範囲内で揺動する。この揺動カム21がバルブリフタ17を押し下すことにより、吸気弁18が開閉する。   When the intake camshaft 19 rotates in conjunction with the crankshaft, one end of the first link 27 fitted to the eccentric cam 23 is rotationally displaced with respect to the axial center of the intake camshaft 19, and the first link 27 is wholly As a result, the swing cam 21 swings within a predetermined swing angle range via the rocker arm 26 and the second link 28 linked to the first link 27. When the swing cam 21 pushes down the valve lifter 17, the intake valve 18 opens and closes.

そして、VEL変換デバイス22により制御軸24の回転角度を変更すると、ロッカーアーム26の揺動中心となる制御カム25の中心が制御軸24の軸心に対して回転変位し、リンク27,28を介して揺動カム21の初期姿勢(揺動範囲の中心位相)が変化する。これにより、クランク角に対する吸気弁18の作動中心角の位相が略一定のままで、吸気弁18の作動角及びバルブリフト量が連続的に変化する。   When the rotation angle of the control shaft 24 is changed by the VEL conversion device 22, the center of the control cam 25 serving as the rocking center of the rocker arm 26 is rotationally displaced with respect to the axis of the control shaft 24, and the links 27 and 28 are moved. As a result, the initial posture of the swing cam 21 (the center phase of the swing range) changes. As a result, the operation angle of the intake valve 18 and the valve lift amount continuously change while the phase of the operation center angle of the intake valve 18 with respect to the crank angle remains substantially constant.

このような吸気VEL20は、ロッカーアーム26や各リンク27,28が吸気カムシャフト19の周囲に集約されており、コンパクトで機関搭載性に優れている。また、偏心カム23と第1リンク27との軸受部や、制御カム25とロッカーアーム26との軸受部のように、部材間の連結部の多くが面接触となっているため、潤滑が行いやすいことに加え、リターンスプリング等の付勢手段を敢えて必要とせず、耐久性,信頼性にも優れている。更に、実質的に直動式の動弁レイアウトとなっているため、簡素かつコンパクトな構成で回転限界の向上を図ることができる。   In such an intake VEL 20, the rocker arm 26 and the links 27 and 28 are gathered around the intake camshaft 19, so that the intake VEL 20 is compact and has excellent engine mountability. Further, since many of the connecting portions between the members are in surface contact, such as the bearing portion between the eccentric cam 23 and the first link 27 and the bearing portion between the control cam 25 and the rocker arm 26, lubrication is performed. In addition to being easy, it does not require an urging means such as a return spring and is excellent in durability and reliability. Further, since the valve layout is substantially a direct acting type, the rotation limit can be improved with a simple and compact configuration.

吸気VTC30及び排気VTC40は、特開平5−98916号公報等にも開示されているように公知であり、ヘリカルスプラインを利用した形式やベーン形式が良く知られている。簡単に説明すると、吸気VTC30は、クランクシャフトと連動して回転するカムプーリ(又はスプロケット)を含む外部回転体31と、この外部回転体31の内部に収容され、吸気カムシャフト19と一体的に回転する内部回転体と、を有し、油圧駆動式の吸気VTC変換デバイス32により両回転体を互いに回動することにより、クランク角に対する吸気弁の作動中心角(吸気中心角)の位相、すなわち吸気弁のバルブタイミングを進角・遅角するものである。同様に、排気VTC40は、クランクシャフトと連動して回転するカムプーリ(又はスプロケット)を含む外部回転体41と、この外部回転体41の内部に収容され、排気弁を駆動する固定カムが設けられた排気カムシャフト43と一体的に回転する内部回転体と、を有し、油圧式の排気VTC変換デバイス42により両回転体を互いに回動することにより、クランク角に対する排気弁の作動中心角(排気中心角)の位相、すなわち排気弁のバルブタイミングを進角・遅角するものである。両VTC30,40は、図示していないが、共通の油圧ポンプを作動源とする油圧駆動方式である。   The intake VTC 30 and the exhaust VTC 40 are known as disclosed in Japanese Patent Application Laid-Open No. 5-98916 and the like, and a form using a helical spline and a vane form are well known. Briefly, the intake VTC 30 is housed in the external rotator 31 including a cam pulley (or sprocket) that rotates in conjunction with the crankshaft, and rotates inside the external rotator 31 and rotates integrally with the intake camshaft 19. An internal rotary body that rotates, and the two rotary bodies are mutually rotated by a hydraulically driven intake VTC conversion device 32, so that the phase of the operation center angle (intake center angle) of the intake valve with respect to the crank angle, that is, intake air The valve timing of the valve is advanced or retarded. Similarly, the exhaust VTC 40 is provided with an external rotating body 41 including a cam pulley (or sprocket) that rotates in conjunction with the crankshaft, and a fixed cam that is housed inside the external rotating body 41 and drives an exhaust valve. The exhaust camshaft 43 and an internal rotating body that rotates integrally with the exhaust camshaft 43, and by rotating the rotating bodies with each other by the hydraulic exhaust VTC conversion device 42, the exhaust valve operating center angle (exhaust gas) with respect to the crank angle The phase of the central angle), that is, the valve timing of the exhaust valve is advanced or retarded. Although not shown, both VTCs 30 and 40 are of a hydraulic drive system using a common hydraulic pump as an operating source.

エンジンコントロールユニット1は、CPU,ROM,RAM及び入出力インターフェースを備えた周知のデジタルコンピュータであり、後述するような各種制御処理を記憶及び実行する機能を有している。このエンジンコントロールユニット1には、水温センサからの信号2、エアフローメータからの吸入空気量信号3、スロットルセンサからの信号4,クランク角度センサからの信号5、排気通路に設けられる酸素センサからの信号6、回転信号7、油温センサからの信号8、制御軸24の回転角度を検出するVEL角度検出センサ15からの信号11、吸気カムシャフト19の回転角度を検出する吸気カム角度センサ16からの信号12、及び排気カムシャフト43の回転角度を検出する排気カム角度センサ44からの信号45等の車両運転状態を表す様々な検出信号が入力される。これらの信号に基づいて、エンジンコントロールユニット1は、燃料噴射装置、点火装置、VEL変換デバイス22,吸・排気VTC変換デバイス32,42等の各種アクチュエータへそれぞれ制御信号9,10,13,14,46を出力し、その動作を制御する。   The engine control unit 1 is a well-known digital computer having a CPU, ROM, RAM, and an input / output interface, and has a function of storing and executing various control processes as will be described later. The engine control unit 1 includes a signal 2 from a water temperature sensor, an intake air amount signal 3 from an air flow meter, a signal from a throttle sensor 4, a signal 5 from a crank angle sensor, and a signal from an oxygen sensor provided in an exhaust passage. 6, a rotation signal 7, a signal 8 from the oil temperature sensor, a signal 11 from the VEL angle detection sensor 15 that detects the rotation angle of the control shaft 24, and an intake cam angle sensor 16 that detects the rotation angle of the intake cam shaft 19 Various detection signals representing the vehicle operating state such as the signal 12 and the signal 45 from the exhaust cam angle sensor 44 that detects the rotation angle of the exhaust cam shaft 43 are input. Based on these signals, the engine control unit 1 sends control signals 9, 10, 13, 14, to various actuators such as a fuel injection device, an ignition device, a VEL conversion device 22, and intake / exhaust VTC conversion devices 32, 42, respectively. 46 is output and its operation is controlled.

図3は、吸気弁及び排気弁の開閉時期及び開閉期間(作動角)を示すバルブタイミング図である。例えば高回転・高負荷域では、吸気充填効率の向上を図るために、図3(b)に示すように、吸気弁及び排気弁がともに開いている領域、いわゆるバルブオーバーラップ区間BOを大きく設定する。具体的には、図3(a)に示す基準設定状態に比して、排気VTC40による排気弁の排気中心角の位相を遅角側に設定するとともに、吸気VTC30による吸気弁の吸気中心角の位相を進角側に設定し、かつ、吸気VEL20による吸気弁の作動角を大きく設定する。   FIG. 3 is a valve timing chart showing opening / closing timings and opening / closing periods (operating angles) of the intake and exhaust valves. For example, in the high speed / high load range, in order to improve the intake charging efficiency, as shown in FIG. 3B, a region where both the intake valve and the exhaust valve are open, that is, a so-called valve overlap section BO is set large. To do. Specifically, as compared with the reference setting state shown in FIG. 3A, the phase of the exhaust center angle of the exhaust valve by the exhaust VTC 40 is set to the retard side, and the intake center angle of the intake valve by the intake VTC 30 is set. The phase is set to the advance side, and the operating angle of the intake valve by the intake VEL 20 is set to be large.

図4は、本発明の第1実施例に係る吸・排気弁の開閉時期及び開弁期間(作動角)を示すバルブタイミング図であり、図7は、この第1実施例に係る制御の流れを示すフローチャートである。   FIG. 4 is a valve timing diagram showing opening / closing timings and valve opening periods (operating angles) of the intake / exhaust valves according to the first embodiment of the present invention, and FIG. 7 is a flow of control according to the first embodiment. It is a flowchart which shows.

図7を参照して、先ずS(ステップ)11では、機関運転状態に応じて、吸・排気VTC30,40による吸・排気中心角の目標値である目標変換角をそれぞれ決定する。この目標変換角は、クランク角に対する吸・排気カムシャフト19,43の位相差の目標値t1(図2参照)に相当する。S12では、上記VTC30,40の目標変換角に対応する制御信号をVTC変換デバイス32,42へそれぞれ出力し、VTC30,40を目標変換角へ向けて駆動制御する。   Referring to FIG. 7, first, in S (step) 11, a target conversion angle that is a target value of the intake / exhaust center angle by intake / exhaust VTCs 30, 40 is determined in accordance with the engine operating state. This target conversion angle corresponds to the target value t1 (see FIG. 2) of the phase difference between the intake and exhaust camshafts 19 and 43 with respect to the crank angle. In S12, control signals corresponding to the target conversion angles of the VTCs 30 and 40 are output to the VTC conversion devices 32 and 42, respectively, and the drive control of the VTCs 30 and 40 is performed toward the target conversion angle.

S13では、油圧式の変換デバイス42の固着等の理由により排気VTC40が正常に作動しない状態、つまり排気VTC40の異常・故障を含む作動不良を検出する(作動不良検出手段)。例えば、クランク角度センサ信号5と排気カム角度センサ信号45とに基づいて、排気VTC40の実変換角を検出・演算し、この実変換角と上記の目標変換角とを比較して、作動不良の検出・判定を行う。上記の実変換角は、クランク角度センサ信号に対するカム角センサ信号の差t2(図2参照)、つまりクランク角に対するカムシャフトの位相差に相当する。このt2とt1とが一致せず、その差が所定値を越えると、排気VTC40が作動不良であると判断する。なお、警告ランプ等により運転者に排気VTC40が作動不良であることを警告するようにしても良い。   In S13, a state in which the exhaust VTC 40 does not normally operate due to the sticking of the hydraulic conversion device 42 or the like, that is, an operation failure including an abnormality / failure of the exhaust VTC 40 is detected (operation failure detecting means). For example, based on the crank angle sensor signal 5 and the exhaust cam angle sensor signal 45, the actual conversion angle of the exhaust VTC 40 is detected and calculated, and the actual conversion angle is compared with the above-described target conversion angle. Perform detection / judgment. The actual conversion angle corresponds to the cam angle sensor signal difference t2 (see FIG. 2) with respect to the crank angle sensor signal, that is, the camshaft phase difference with respect to the crank angle. If t2 and t1 do not match and the difference exceeds a predetermined value, it is determined that the exhaust VTC 40 is malfunctioning. A warning lamp or the like may warn the driver that the exhaust VTC 40 is malfunctioning.

S13で排気VTC40の作動不良が検出されると、S15へ進み、吸気弁開時期IVOが圧縮上死点TDCよりも進角するように、吸気VTC30及び吸気VEL20の目標作動角を算出する。具体的な目標値の算出方法については個々の実施例によりそれぞれ異なる。例えばこの第1実施例では、図4に示すように、主として電動駆動型で応答性の良い吸気VEL20を大作動角・大バルブリフト側へ変更することにより、IVOをTDCよりも進角させている。S16では、S15で算出した目標作動角に対応する制御信号を吸気VTC変換デバイス32及びVEL変換デバイス22へ出力し、吸気VTC30及び吸気VEL20を目標作動角へ向けて駆動制御する。これらS15及びS16の処理内容が、排気VTC40の作動不良時におけるフェールセーフ処理、つまりフェールセーフ手段を構成している。   If a malfunction of the exhaust VTC 40 is detected in S13, the process proceeds to S15, and target operating angles of the intake VTC 30 and the intake VEL 20 are calculated so that the intake valve opening timing IVO is advanced from the compression top dead center TDC. A specific target value calculation method differs depending on each embodiment. For example, in the first embodiment, as shown in FIG. 4, the IVO is advanced more than the TDC by changing the intake VEL 20 that is mainly electrically driven and has high responsiveness to the large operating angle / large valve lift side. Yes. In S16, a control signal corresponding to the target operating angle calculated in S15 is output to the intake VTC conversion device 32 and the VEL conversion device 22, and the intake VTC 30 and the intake VEL 20 are driven and controlled toward the target operating angle. The processing contents of S15 and S16 constitute fail-safe processing at the time of malfunction of the exhaust VTC 40, that is, fail-safe means.

排気弁閉時期EVCはTDCよりも遅角しているため、吸気弁開時期IVOを圧縮上死点TDCよりも進角することにより、吸気弁と排気弁とが同時に開弁するバルブオーバーラップBO(図3参照)が積極的に付与されることとなる。言い換えるならば、S15,S16では、バルブオーバーラップを積極的に付与するように、IVOをEVCよりも進角させている。   Since the exhaust valve closing timing EVC is retarded from the TDC, the intake valve opening timing IVO is advanced from the compression top dead center TDC so that the intake valve and the exhaust valve are opened simultaneously. (See FIG. 3) is positively given. In other words, in S15 and S16, the IVO is advanced from the EVC so as to positively provide valve overlap.

このように、排気VTC40の作動不良を検出した場合に、吸気VEL20及び吸気VTC30の少なくとも一方を駆動制御して、IVOをTDCよりも進角させて、バルブオーバーラップBOを積極的に付与しているので、バルブオーバーラップBOによる残留ガスの吸気系である吸気ポートへの吹き返しにより燃料の霧化を促進し、その燃焼状態を改善することができる。従って、排気VTC40の作動不良時にも、安定した着火性・燃焼性を得ることができ、始動不良や失火等を回避することができるため、フェールセーフ性が向上する。   As described above, when a malfunction of the exhaust VTC 40 is detected, drive control of at least one of the intake VEL 20 and the intake VTC 30 is performed to advance the IVO from the TDC, and the valve overlap BO is positively applied. Therefore, the atomization of the fuel can be promoted by blowing back the residual gas by the valve overlap BO to the intake port which is the intake system, and the combustion state can be improved. Accordingly, stable ignitability and combustibility can be obtained even when the exhaust VTC 40 is malfunctioning, and start-up failure and misfire can be avoided, so that the fail-safe property is improved.

特に、第1実施例では、図4に示すように、排気VTC40の作動不良が検出された場合に、電動駆動型で応答性の良い吸気VEL20を大作動角・大バルブリフト側へ駆動制御することにより、油圧駆動式の吸気VTC30を敢えて用いることなくバルブオーバーラップBOを解消しているため、応答性・信頼性に優れている。   In particular, in the first embodiment, as shown in FIG. 4, when an operation failure of the exhaust VTC 40 is detected, the electric drive type and responsive intake VEL 20 is driven to the large operating angle / large valve lift side. As a result, the valve overlap BO is eliminated without using the hydraulically driven intake VTC 30, so that the response and reliability are excellent.

図5及び図8は第2実施例のバルブタイミング図及びフローチャートである。図8を参照して、S11〜13までの処理の流れは第1実施例と同様である。S13で排気VTC40の作動不良が検出されると、S14へ進み、クランク角度センサ信号5と排気カム角度センサ信号45とに基づいて、排気VTC40の作動不良位置、すなわち排気弁の作動中心角の位相である排気中心角θを算出する。   5 and 8 are a valve timing chart and a flowchart of the second embodiment. Referring to FIG. 8, the process flow from S11 to S13 is the same as that of the first embodiment. If a malfunction of the exhaust VTC 40 is detected in S13, the process proceeds to S14, and based on the crank angle sensor signal 5 and the exhaust cam angle sensor signal 45, the malfunction position of the exhaust VTC 40, that is, the phase of the operation center angle of the exhaust valve. The exhaust center angle θ is calculated.

続くS15aでは、IVOがTDCよりも進角し、かつ、このIVOのTDCに対する進角量(BTDC)θ’が、EVCのTDCに対する遅角量(ATDC)θ以下となるように、吸気VEL20の吸気作動角の目標値を算出するとともに、吸気VTCの吸気中心角の位相の目標値を算出する。これらの目標値に基づいて、吸気VEL20及び吸気VTC30の作動制御を行う(S16)。   In subsequent S15a, the IVO is advanced from the TDC, and the advance amount (BTDC) θ ′ of the IVO with respect to the TDC is equal to or less than the retard amount (ATDC) θ of the EVC with respect to the TDC. A target value of the intake operation angle is calculated, and a target value of the phase of the intake center angle of the intake VTC is calculated. Based on these target values, the operation control of the intake VEL 20 and the intake VTC 30 is performed (S16).

この第2実施例によれば、排気VTC40の作動不良時に、第1実施例と同様、バルブオーバーラップを付与して、残留ガスの吹き返しによる燃料の霧化促進を行い、燃焼状態を改善・向上できることに加え、IVOの進角量θ’をEVCの遅角量θ以下に制限しているため、オーバーラップのつけ過ぎにより残留ガスが過剰となることを有効に防止することができ、排気VTC40の作動不良時における燃焼安定性が更に向上する。   According to the second embodiment, when the exhaust VTC 40 is malfunctioning, as in the first embodiment, a valve overlap is provided to promote fuel atomization by blowing back residual gas, thereby improving and improving the combustion state. In addition, since the advance amount θ ′ of the IVO is limited to be equal to or less than the retard amount θ of the EVC, it is possible to effectively prevent the residual gas from becoming excessive due to the excessive overlap, and the exhaust VTC 40 The combustion stability at the time of malfunction is further improved.

図6及び図9は第3実施例のバルブタイミング図及びフローチャートである。S11〜S13までの処理は第1実施例と同様である。S13において排気VTC40の作動不良が検出されると、S14以降の処理が実行される。なお、S14の処理(第2実施例参照)は省略しても良い。   6 and 9 are a valve timing chart and a flowchart of the third embodiment. The processes from S11 to S13 are the same as in the first embodiment. If an operation failure of the exhaust VTC 40 is detected in S13, the processing after S14 is executed. Note that the process of S14 (see the second embodiment) may be omitted.

S15bでは、IVOがTDCより進角し、かつ、IVCがほぼBDC、つまりBDCの近傍となるように、吸気VEL20の吸気作動角の目標値を算出するとともに、吸気VTCの吸気中心角の位相の目標値を算出する。これらの目標値に基づいて、吸気VEL20及び吸気VTC30の作動制御を行う(S16)。   In S15b, the target value of the intake operating angle of the intake VEL 20 is calculated so that the IVO is advanced from the TDC and the IVC is approximately BDC, that is, in the vicinity of the BDC, and the phase of the intake central angle of the intake VTC is calculated. Calculate the target value. Based on these target values, the operation control of the intake VEL 20 and the intake VTC 30 is performed (S16).

このような第3実施例によれば、第1実施例と同様の効果が得られることに加え、IVCを略BDCとしているため、圧縮比を高めて燃焼状態をより改善・向上することができる。   According to the third embodiment, in addition to obtaining the same effect as the first embodiment, IVC is substantially BDC, so that the combustion state can be further improved / improved by increasing the compression ratio. .

上述した第1〜第3実施例において、仮に機関負荷が低い低負荷域において、上述したようなバルブオーバーラップを積極的に付与するフェールセーフ処理(図7〜9のS14〜S16の処理)を行うと、残留ガスの吸気系への吹き返しにより、逆に燃焼安定性が低下するおそれがある。従って、好ましくは、低負荷域では、上述したフェールセーフ処理の実行を禁止し、つまりフェールセーフ手段の作動を禁止し、機関負荷が比較的高い中・高負荷域でのみ、フェールセーフ処理を行う。例えば、S13の判定処理において、機関負荷が中・高負荷域であるかを併せて判定し、排気VTC40が作動不良で、かつ、機関負荷が中・高負荷域である場合に限り、以降のフェールセーフ処理を実行すれば良い。   In the first to third embodiments described above, the fail-safe process (the processes of S14 to S16 in FIGS. 7 to 9) that positively applies the valve overlap as described above in a low load region where the engine load is low. If this is done, the combustion stability may be reduced due to the blow back of the residual gas to the intake system. Therefore, preferably, in the low load range, the execution of the failsafe process described above is prohibited, that is, the operation of the failsafe means is prohibited, and the failsafe process is performed only in the middle / high load range where the engine load is relatively high. . For example, in the determination process of S13, it is also determined whether the engine load is in the middle / high load range, and only when the exhaust VTC 40 is malfunctioning and the engine load is in the middle / high load range. A fail-safe process may be executed.

吸気VTC30と排気VTC40とは、共通の動力源である油圧ポンプを利用した同じ油圧駆動方式となっている。従って、排気VTC40の作動不良が発生している状況では、同じ駆動方式である吸気VTC30も同様に作動不良となるおそれがある。特に、上述したように両VTC30,40がともに油圧駆動方式である場合には、エンジンオイル中の異物による油通路の詰まりなど、吸気側、排気側にかかわらず不具合を生じることがあり、両VTC30,40がともに作動不良となり得る。そこで、好ましくは、排気VTC40の作動不良時に、吸気VTC30を初期位置に固定・保持し、吸気VEL20のみを駆動制御して、上述したフェールセーフ処理、つまり、少なくともIVOをTDCよりも進角させる処理を行うようにする。この場合、排気VTC40の作動不良時に、作動不良が検出されている排気VTC40と同じ油圧駆動方式である吸気VTC30を初期位置に固定しているため、仮に吸気VTCを良好に駆動・制御できない状況であってもバルブオーバーラップBOを確実に付与することができ、安定性・信頼性に優れている。   The intake VTC 30 and the exhaust VTC 40 have the same hydraulic drive system using a hydraulic pump that is a common power source. Therefore, in a situation where the malfunction of the exhaust VTC 40 is occurring, the intake VTC 30 that is the same drive method may similarly malfunction. In particular, when both the VTCs 30 and 40 are hydraulically driven as described above, problems such as clogging of the oil passage due to foreign matter in the engine oil may occur regardless of the intake side or the exhaust side. 40 can be malfunctioning. Therefore, preferably, when the exhaust VTC 40 is malfunctioning, the intake VTC 30 is fixed and held at the initial position, and only the intake VEL 20 is driven and controlled, so that the above-described fail-safe process, that is, a process of advancing at least IVO more than TDC. To do. In this case, when the exhaust VTC 40 is malfunctioning, the intake VTC 30, which is the same hydraulic drive system as the exhaust VTC 40 in which malfunction has been detected, is fixed at the initial position, so that the intake VTC cannot be satisfactorily driven and controlled. Even if it exists, valve overlap BO can be provided reliably and it is excellent in stability and reliability.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明はこれらの実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、排気VTCの作動不良時であって、かつ、低負荷域の場合には、上述したバルブオーバーラップを積極的に付与するフェールセーフ処理とは逆に、バルブオーバーラップを低減・解消することにより、燃焼安定性の向上を図るようにしても良い。   As described above, the present invention has been described based on specific embodiments, but the present invention is not limited to these embodiments, and includes various modifications and changes without departing from the spirit of the present invention. It is a waste. For example, when the exhaust VTC is malfunctioning and in a low load range, the valve overlap is reduced and eliminated, contrary to the fail-safe process that positively applies the valve overlap described above. Thus, the combustion stability may be improved.

本発明に係る内燃機関の可変動弁装置を示す概略構成図。1 is a schematic configuration diagram showing a variable valve operating apparatus for an internal combustion engine according to the present invention. 排気バルブタイミング可変機構の作動不良検知を説明するためのタイムチャート。The time chart for demonstrating the malfunctioning detection of an exhaust valve timing variable mechanism. 吸・排気弁の開弁期間及び開閉時期を示すバルブタイミング図。The valve timing diagram which shows the valve opening period and opening / closing timing of an intake / exhaust valve. 本発明の第1実施例に係る吸・排気弁の開弁期間及び開閉時期を示すバルブタイミング図。The valve timing diagram which shows the valve opening period and opening / closing timing of the intake / exhaust valve which concerns on 1st Example of this invention. 本発明の第2実施例に係る吸・排気弁の開弁期間及び開閉時期を示すバルブタイミング図。The valve timing diagram which shows the valve opening period and opening / closing timing of the intake / exhaust valve which concern on 2nd Example of this invention. 本発明の第3実施例に係る吸・排気弁の開弁期間及び開閉時期を示すバルブタイミング図。The valve timing diagram which shows the valve opening period and opening / closing timing of the intake / exhaust valve which concern on 3rd Example of this invention. 上記第1実施例に係る制御の流れを示すフローチャート。The flowchart which shows the flow of control which concerns on the said 1st Example. 上記第2実施例に係る制御の流れを示すフローチャート。The flowchart which shows the flow of control concerning the said 2nd Example. 上記第3実施例に係る制御の流れを示すフローチャート。The flowchart which shows the flow of control which concerns on the said 3rd Example.

符号の説明Explanation of symbols

1…エンジンコントロールユニット(フェールセーフ手段)
20…吸気作動角可変機構(吸気VEL)
30…吸気バルブタイミング可変機構(吸気VTC)
40…排気バルブタイミング可変機構(排気VTC)
1 ... Engine control unit (fail-safe means)
20 ... Variable intake operating angle mechanism (intake VEL)
30 ... Intake valve timing variable mechanism (intake VTC)
40. Exhaust valve timing variable mechanism (exhaust VTC)

Claims (5)

吸気弁の作動中心角の位相を可変とする吸気バルブタイミング可変機構と、
排気弁の作動中心角の位相を可変とする排気バルブタイミング可変機構と、
吸気弁の作動角を可変とする吸気作動角可変機構と、
上記排気バルブタイミング可変機構の作動不良を検出する作動不良検出手段と、
上記排気バルブタイミング可変機構の作動不良が検出された作動不良時に、吸気弁の開時期が上死点よりも進角するように、上記吸気バルブタイミング可変機構及び吸気作動角可変機構の少なくとも一方を駆動制御するフェールセーフ手段と、
を有する内燃機関の可変動弁装置。
An intake valve timing variable mechanism that makes the phase of the operation center angle of the intake valve variable;
An exhaust valve timing variable mechanism that makes the phase of the operation center angle of the exhaust valve variable;
An intake operating angle variable mechanism that makes the operating angle of the intake valve variable;
Malfunction detection means for detecting malfunction of the exhaust valve timing variable mechanism;
When the malfunction of the exhaust valve timing variable mechanism is detected, at least one of the intake valve timing variable mechanism and the intake operation angle variable mechanism is set so that the opening timing of the intake valve is advanced from the top dead center. Fail-safe means for driving control;
A variable valve operating apparatus for an internal combustion engine.
上記フェールセーフ手段は、上記作動不良時に、上死点に対する吸気弁開時期の進角量を、上死点に対する排気弁閉時期の遅角量以下とする請求項1に記載の内燃機関の可変動弁装置。   2. The internal combustion engine according to claim 1, wherein the fail-safe means sets an advance amount of the intake valve opening timing with respect to the top dead center to be equal to or less than a retard amount of the exhaust valve close timing with respect to the top dead center when the malfunction is caused. Variable valve device. 上記フェールセーフ手段は、上記作動不良時に、吸気弁の閉時期を下死点近傍とする請求項1に記載の内燃機関の可変動弁装置。   The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the fail-safe means sets the closing timing of the intake valve in the vicinity of bottom dead center at the time of the malfunction. 機関負荷が低い低負荷域では、上記フェールセーフ手段の作動を禁止する請求項1〜3のいずれかに記載の内燃機関の可変動弁装置。   The variable valve operating apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein operation of the fail-safe means is prohibited in a low load range where the engine load is low. 上記吸気バルブタイミング可変機構及び排気バルブタイミング可変機構が油圧駆動式であり、上記吸気作動角可変機構が電動駆動式であり、
上記フェールセーフ手段は、上記作動不良時に、上記吸気作動角可変機構のみを駆動制御する請求項1に記載の内燃機関の可変動弁装置。
The intake valve timing variable mechanism and the exhaust valve timing variable mechanism are hydraulically driven, and the intake operating angle variable mechanism is electrically driven.
2. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the fail-safe means drives and controls only the intake operation angle variable mechanism when the operation is defective.
JP2003368378A 2003-10-29 2003-10-29 Variable valve device of internal combustion engine Pending JP2005133592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368378A JP2005133592A (en) 2003-10-29 2003-10-29 Variable valve device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368378A JP2005133592A (en) 2003-10-29 2003-10-29 Variable valve device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005133592A true JP2005133592A (en) 2005-05-26

Family

ID=34646057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368378A Pending JP2005133592A (en) 2003-10-29 2003-10-29 Variable valve device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005133592A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303773A (en) * 2007-06-07 2008-12-18 Hitachi Ltd Variable valve system of internal combustion engine
JP2009085069A (en) * 2007-09-28 2009-04-23 Toyota Motor Corp Control device for internal combustion engine
JP2010159682A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Valve operating device of internal combustion engine
JP2013079642A (en) * 2011-09-20 2013-05-02 Hitachi Automotive Systems Ltd Variable valve mechanism control device
KR101305188B1 (en) 2011-12-14 2013-09-12 현대자동차주식회사 Engine that actively varies compressioin expansion ratio

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303773A (en) * 2007-06-07 2008-12-18 Hitachi Ltd Variable valve system of internal combustion engine
JP2009085069A (en) * 2007-09-28 2009-04-23 Toyota Motor Corp Control device for internal combustion engine
JP2010159682A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Valve operating device of internal combustion engine
JP2013079642A (en) * 2011-09-20 2013-05-02 Hitachi Automotive Systems Ltd Variable valve mechanism control device
KR101305188B1 (en) 2011-12-14 2013-09-12 현대자동차주식회사 Engine that actively varies compressioin expansion ratio

Similar Documents

Publication Publication Date Title
US7243625B2 (en) Variable valve control system and method for internal combustion engine
JP3835448B2 (en) Variable valve operating device for internal combustion engine
JP4092490B2 (en) Variable valve operating device for internal combustion engine
JP4336444B2 (en) Variable valve operating device for internal combustion engine
US6615775B2 (en) Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic and phase
US20070095313A1 (en) Internal combustion engine with variable compression ratio and valve characteristics
JP4931740B2 (en) Control device for internal combustion engine
JP2007278272A (en) Variable expansion-ratio engine
JP5316086B2 (en) Control device and control method for internal combustion engine
JP2014037782A (en) Control device of internal combustion engine
JP2005069147A (en) Variable valve system of internal combustion engine
JP2005133592A (en) Variable valve device of internal combustion engine
JP2005188286A (en) Valve lift control device of internal combustion engine
JP4254130B2 (en) Variable valve operating device for internal combustion engine
JP4474058B2 (en) Variable valve operating device for internal combustion engine
JP2007332943A (en) Variable valve system control device of internal combustion engine
JP2002089215A (en) Variable valve system for internal combustion engine
JP4305344B2 (en) Variable valve operating device for internal combustion engine
JP2005083238A (en) Internal combustion engine
JP5310207B2 (en) Valve system for internal combustion engine
JP5020339B2 (en) Variable valve operating device for internal combustion engine
JP5556932B2 (en) Valve system for internal combustion engine
JP4928154B2 (en) Variable valve control device for internal combustion engine
JP2009115058A (en) Internal combustion engine
JPH11247637A (en) Variable valve system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605