JP2005133158A - Decarburized layer depth estimating method, decarburized layer depth control method, and steel rolling method - Google Patents

Decarburized layer depth estimating method, decarburized layer depth control method, and steel rolling method Download PDF

Info

Publication number
JP2005133158A
JP2005133158A JP2003370968A JP2003370968A JP2005133158A JP 2005133158 A JP2005133158 A JP 2005133158A JP 2003370968 A JP2003370968 A JP 2003370968A JP 2003370968 A JP2003370968 A JP 2003370968A JP 2005133158 A JP2005133158 A JP 2005133158A
Authority
JP
Japan
Prior art keywords
steel material
layer depth
decarburized layer
temperature
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003370968A
Other languages
Japanese (ja)
Inventor
Hiroaki Chano
宏昭 茶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003370968A priority Critical patent/JP2005133158A/en
Publication of JP2005133158A publication Critical patent/JP2005133158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decarburized layer depth estimating method capable of estimating the depth of a decarburized layer in a heat-treated rolled steel by obtaining the depth by a formula for estimation, a method for controlling the depth of the decarburized layer on the surface of the rolled steel, and a steel rolling method for controlling the temperature of a heating furnace based on the estimated depth of the decarburized layer on the surface of the rolled steel. <P>SOLUTION: A charged steel is heat-treated in a heating furnace 1 under the conditions of the steel temperature T, and the heating time t at the steel temperature T. The heat-treated charged steel is transported to a rolling mill 2 and rolled, and drawn as a rolled steel. A decarburized layer generated in the heating furnace is observed as the decarburized layer depth (Dm) in the rolled steel after the rolling, and the decarburized layer depth (Dm) is approximated by the formula of estimation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼片を加熱し圧延する際に鋼表面に生じる脱炭層の深さを予測する脱炭層深さ予測方法、この脱炭層深さ予測方法により予測した圧延鋼材の鋼表面の脱炭層深さ予測値に基づいて加熱炉の温度を制御して圧延鋼材の鋼表面の脱炭層深さを制御する方法及び圧延鋼材の鋼表面の脱炭層深さ予測値に基づいて加熱炉の温度を制御する鋼材の圧延方法に関する。特に、鋼表面の脱炭層について厳しい管理が要求される中高炭素鋼、浸炭鋼、高速度鋼などの棒鋼及び線材の脱炭層深さ予測方法、脱炭層深さ制御方法及び鋼材の圧延方法に関する。   The present invention relates to a decarburization layer depth prediction method for predicting a depth of a decarburization layer generated on a steel surface when a steel slab is heated and rolled, and a decarburization layer on a steel surface of a rolled steel material predicted by the decarburization layer depth prediction method. A method of controlling the temperature of the decarburization layer on the surface of the rolled steel by controlling the temperature of the heating furnace based on the predicted depth value and the temperature of the heating furnace based on the predicted value of the decarburization layer depth on the steel surface of the rolled steel The present invention relates to a steel rolling method to be controlled. In particular, the present invention relates to a method for predicting a decarburized layer depth of a steel bar and a wire rod, such as medium-high carbon steel, carburized steel, and high-speed steel, for which strict control is required for a decarburized layer on a steel surface, a decarburized layer depth control method, and a steel material rolling method.

鋼材を圧延する前の前処理として鋼材(送入鋼材)を加熱する加熱処理の工程において、送入鋼材の表面に脱炭層が発生し、圧延後における鋼材(圧延鋼材)の表面にも脱炭層として残存する。脱炭層は鋼材の表面部分の炭素が酸化されることにより炭酸ガスとなって鋼材の表面から抜け出ることにより発生するものである。脱炭層の存在により所期の硬度が得られない、疲れ強さが低下するなど鋼材の機械的性質に大きく影響する。   In the heat treatment process of heating the steel (feed steel) as a pre-treatment before rolling the steel, a decarburized layer is generated on the surface of the incoming steel, and the decarburized layer is also formed on the surface of the steel (rolled steel) after rolling. Remain as The decarburized layer is generated when carbon on the surface portion of the steel material is oxidized to form carbon dioxide gas and escape from the surface of the steel material. Due to the presence of the decarburized layer, the desired hardness cannot be obtained, and the fatigue strength is greatly reduced.

脱炭層の影響を低減するために脱炭層の研究が進められ、例えば、脱炭層を評価する方法などが提案されている(例えば、特許文献1、2参照)。また、脱炭層の発生を抑制する方法として、脱炭層の発生が促進されるA1変態点の温度以上の温度での加熱時間を短くする加熱方法、最高加熱温度を極力低減する加熱方法、圧延処理工程へ送り出す鋼材の温度を低減する加熱方法などが知られている。   In order to reduce the influence of the decarburized layer, research on the decarburized layer is advanced, and for example, methods for evaluating the decarburized layer have been proposed (for example, refer to Patent Documents 1 and 2). Moreover, as a method for suppressing the generation of the decarburized layer, a heating method for shortening the heating time at a temperature equal to or higher than the temperature of the A1 transformation point at which the generation of the decarburized layer is promoted, a heating method for reducing the maximum heating temperature as much as possible, a rolling process A heating method for reducing the temperature of the steel material sent to the process is known.

しかし、従来の加熱方法では、加熱炉の中にある鋼材が、圧延処理後の圧延鋼材となった場合にどの程度の脱炭層を生じるのか予測することは困難であった。通常は、圧延鋼材をサンプリングして、脱炭試験(脱炭層深さの測定)の結果に基づいて、加熱温度、加熱時間、取出し温度などを経験的に設定し、圧延鋼材での脱炭層の深さを制御(抑制)しているに過ぎなかった。
特開2002−5921号公報 特開2002−22733号公報
However, in the conventional heating method, it has been difficult to predict how much decarburization layer is produced when the steel material in the heating furnace becomes the rolled steel material after the rolling treatment. Usually, rolling steel is sampled, and the heating temperature, heating time, extraction temperature, etc. are set empirically based on the results of the decarburization test (decarburization layer depth measurement). The depth was only controlled (suppressed).
JP 2002-5921 A JP 2002-22733 A

上述したように従来の加熱方法では、圧延鋼材のサンプリングにより脱炭層の深さを求めて、その結果に基づいて、加熱処理条件を制御して、脱炭層の深さを制御(抑制)することから、送入鋼材の鋼材温度、加熱時間、圧延前後の鋼材の大きさ、加熱処理前の脱炭層の深さ、加熱処理工程において生じるスケール生成量の影響などを考慮した即時制御(加熱処理時における加熱条件の制御)が困難であるという問題があった。   As described above, in the conventional heating method, the depth of the decarburized layer is obtained by sampling the rolled steel material, and based on the result, the heat treatment condition is controlled to control (suppress) the depth of the decarburized layer. From the control of the steel material temperature, the heating time, the size of the steel material before and after rolling, the depth of the decarburized layer before the heat treatment, the influence of the amount of scale generated in the heat treatment process, etc. There is a problem that it is difficult to control the heating conditions.

本発明は、斯かる問題に鑑みてなされたものであり、即時制御を可能とすべく、加熱処理時の鋼材温度及び加熱時間により定まる脱炭層深さと、圧延処理の前後での鋼材の大きさの変化(圧延前後における大きさの比)と、所定値を有する補正係数との積を圧延鋼材での脱炭層の深さとする予測式を用い、圧延鋼材での脱炭層深さを容易、正確に予測できる脱炭層深さ予測方法を提供することを目的とする。   The present invention has been made in view of such a problem, and in order to enable immediate control, the decarburization layer depth determined by the steel material temperature and the heating time during the heat treatment, and the size of the steel material before and after the rolling treatment. The decarburization layer depth in rolled steel can be easily and accurately determined using a prediction formula that takes the product of the change in size (ratio of size before and after rolling) and the correction coefficient having a predetermined value as the depth of decarburization layer in rolled steel. An object of the present invention is to provide a method for predicting the depth of decarburized layer.

さらに、本発明は、圧延可能な加熱温度を確保した状態で、圧延鋼材の脱炭層の深さを仕様値以下に収めることができる脱炭層深さ制御方法及び鋼材の圧延方法を提供することを目的とする。   Furthermore, the present invention provides a decarburization layer depth control method and a steel material rolling method capable of keeping the depth of the decarburization layer of the rolled steel material below the specification value in a state in which the heating temperature capable of rolling is ensured. Objective.

第1発明に係る脱炭層深さ予測方法は、送入鋼材をA1変態点以上の温度で加熱処理及び圧延処理することにより形成される圧延鋼材における脱炭層の深さを予測する脱炭層深さ予測方法において、加熱処理時の鋼材温度及び加熱時間を含む演算項の値と、圧延前後における大きさの比と、所定値を有する補正係数との積を脱炭層の深さを予測する予測式とし、前記補正係数は圧延鋼材の大きさの関数として予め求めておくことを特徴とする。   The decarburized layer depth prediction method according to the first aspect of the present invention is a decarburized layer depth for predicting the depth of a decarburized layer in a rolled steel material formed by heating and rolling the incoming steel material at a temperature equal to or higher than the A1 transformation point. In the prediction method, the prediction formula for predicting the depth of the decarburized layer is the product of the value of the calculation term including the steel material temperature and the heating time during the heat treatment, the ratio of the size before and after rolling, and the correction coefficient having a predetermined value. The correction coefficient is obtained in advance as a function of the size of the rolled steel material.

第1発明にあっては、加熱炉における加熱処理時の鋼材温度及び加熱時間から求めた演算項の値と、圧延処理による大きさの比と、所定値を有する補正係数(脱炭係数)との積を圧延鋼材(圧延後の鋼材)での脱炭層の深さの予測式(予測値)とし、補正係数は圧延鋼材の大きさの関数として予め求めておくこととしたので、圧延処理後のサンプリングによらずに加熱処理時に併行して圧延鋼材の脱炭層深さを容易、正確に予測できる脱炭層深さ予測方法を提供することができる。   In the first invention, the value of the calculation term obtained from the steel material temperature and the heating time during the heat treatment in the heating furnace, the ratio of the size by the rolling treatment, and the correction coefficient (decarburization coefficient) having a predetermined value, Is the prediction formula (predicted value) of the decarburized layer depth in the rolled steel (rolled steel), and the correction factor is determined in advance as a function of the size of the rolled steel. Therefore, it is possible to provide a decarburization layer depth prediction method capable of easily and accurately predicting the decarburization layer depth of the rolled steel material in parallel with the heat treatment regardless of the sampling.

第2発明に係る脱炭層深さ予測方法は、第1発明において、前記加熱処理をする加熱炉を複数の加熱ゾーンに区分し、加熱ゾーン別に前記演算項を適用して計算した値の合計を前記演算項の値とすることを特徴とする。   The decarburized layer depth prediction method according to the second invention is the first invention, wherein the heating furnace for performing the heat treatment is divided into a plurality of heating zones, and the sum of the values calculated by applying the calculation terms for each heating zone is calculated. The value of the operation term is used.

第2発明にあっては、加熱をする加熱炉を複数の加熱ゾーンに区分し、加熱ゾーン別に演算項を適用して計算した値の合計を演算項の値とすることとしたので、加熱炉での加熱状況(加熱プロフィール)に応じてより正確で精密に圧延鋼材での脱炭層深さを予測できる脱炭層深さ予測方法を提供することができる。   In the second invention, the heating furnace to be heated is divided into a plurality of heating zones, and the sum of the values calculated by applying the calculation terms for each heating zone is set as the value of the calculation term. It is possible to provide a decarburization layer depth prediction method capable of predicting the decarburization layer depth in a rolled steel material more accurately and precisely in accordance with the heating condition (heating profile).

第3発明に係る脱炭層深さ予測方法は、第1発明又は第2発明において、前記予測式に、送入鋼材の脱炭層深さに起因する圧延鋼材の脱炭層深さへの影響分と加熱処理時に生じるスケール層による脱炭層深さの変動分とを加算することを特徴とする。   The decarburized layer depth prediction method according to the third aspect of the present invention is the first or second aspect of the present invention, wherein the prediction formula includes the influence on the decarburized layer depth of the rolled steel material due to the decarburized layer depth of the incoming steel material. The variation of the decarburized layer depth due to the scale layer generated during the heat treatment is added.

第3発明にあっては、圧延前から存在する送入鋼材の脱炭層深さに起因する圧延鋼材での脱炭層深さへの影響分と加熱処理時に生じるスケール層による脱炭層深さの変動分とを予測式に加算することとしたので、より正確で精密に圧延鋼材での脱炭層深さを予測できる脱炭層深さ予測方法を提供することができる。   In the third invention, the influence of the decarburization layer depth on the rolled steel material due to the decarburization layer depth of the incoming steel material existing before rolling and the variation of the decarburization layer depth due to the scale layer generated during the heat treatment Therefore, it is possible to provide a decarburization layer depth prediction method capable of predicting the decarburization layer depth in the rolled steel material more accurately and precisely.

なお、本発明における「鋼材の大きさ」は主に圧延鋼材にあっては圧延方向、また送入鋼材にあっては圧延される方向に垂直な断面の大きさのことであり、断面積や断面寸法、すなわち角鋼片における角寸や、板鋼における幅や厚み、丸鋼片や丸鋼における直径(半径)などにより代表させることができる。また、断面形状の影響をなくすという意味で断面積の平方根などにより代表させることもできる。また、第1発明〜第3発明において、予測式を適用する鋼材温度はA1変態点の温度以上の場合とすればよい。脱炭反応は主にA1変態点の温度以上で生じることから、十分な精度で迅速な脱炭層深さの予測ができる。   The “size of steel material” in the present invention is mainly the size of the cross section perpendicular to the rolling direction in the case of rolled steel materials and the direction of rolling in the case of infeed steel materials. It can be represented by a cross-sectional dimension, that is, an angular dimension in a square steel slab, a width and thickness in a plate steel, a diameter (radius) in a round steel slab or round steel, and the like. It can also be represented by the square root of the cross-sectional area in order to eliminate the influence of the cross-sectional shape. In the first to third inventions, the steel material temperature to which the prediction formula is applied may be equal to or higher than the temperature of the A1 transformation point. Since the decarburization reaction mainly occurs at a temperature equal to or higher than the temperature of the A1 transformation point, the decarburization layer depth can be predicted quickly with sufficient accuracy.

また、補正係数は、圧延鋼材の脱炭層の深さの実測値を予測式に適用して逆算して予め求めておくこととすれば、より正確で精密に圧延鋼材での脱炭層深さを予測できる脱炭層深さ予測方法を提供することができる。   In addition, if the correction coefficient is calculated in advance by applying the actual measurement value of the decarburized layer depth of the rolled steel to the prediction formula, the decarburized layer depth in the rolled steel material can be calculated more accurately and accurately. A decarburized layer depth prediction method that can be predicted can be provided.

また、補正係数は、圧延鋼材の大きさが所定値以上の場合は定数であり、所定値未満の場合は圧延鋼材の大きさに比例して減少する一次関数として簡単な式で定義することとすれば、予測式の計算を簡便にでき、より簡単で迅速に圧延鋼材での脱炭層深さを予測できる脱炭層深さ予測方法を提供することができる。   In addition, the correction coefficient is a constant when the size of the rolled steel is greater than or equal to a predetermined value, and when it is less than the predetermined value, it is defined by a simple equation as a linear function that decreases in proportion to the size of the rolled steel. By doing so, it is possible to provide a decarburization layer depth prediction method that can easily calculate the prediction formula, and can more easily and quickly predict the decarburization layer depth in the rolled steel material.

第4発明に係る脱炭層深さ制御方法は、第1発明〜第3発明のいずれかの脱炭層深さ予測方法に基づいて予測した圧延鋼材の脱炭層深さを仕様値と比較し、予測した脱炭層深さが仕様値より小さい場合には、脱炭層深さが仕様値以下となる範囲内において鋼材温度が目標鋼材温度となるように加熱炉の温度を制御し、予測した脱炭層深さが仕様値より大きい場合には、鋼材温度が目標鋼材温度の下限値以上の範囲内において脱炭層深さが仕様値以下となるように加熱炉の温度を制御することにより圧延鋼材の脱炭層の深さを制御することを特徴とする。   The decarburized layer depth control method according to the fourth aspect of the present invention compares the decarburized layer depth of the rolled steel material predicted based on the decarburized layer depth predictive method of any of the first to third aspects of the invention with a specification value, and predicts it. If the decarburized layer depth is smaller than the specified value, the furnace temperature is controlled so that the steel temperature becomes the target steel temperature within the range where the decarburized layer depth is less than the specified value, and the predicted decarburized layer depth is Is larger than the specification value, the decarburization layer of the rolled steel material is controlled by controlling the temperature of the heating furnace so that the decarburization layer depth is not more than the specification value within the range where the steel material temperature is not less than the lower limit value of the target steel material temperature. The depth is controlled.

第4発明にあっては、予測した圧延鋼材の脱炭層深さを仕様値と比較する。予測した脱炭層深さが仕様値より小さい場合には、脱炭層深さが仕様値以下を維持できる範囲内において鋼材温度が目標鋼材温度(圧延が可能な鋼材温度)となるように加熱炉の温度を制御し、予測した脱炭層深さが仕様値より大きい場合には、鋼材温度が目標鋼材温度の下限値以上の範囲内において脱炭層深さが仕様値以下となるように加熱炉の温度を制御することとしたので、圧延可能な加熱温度を確保した状態で、圧延鋼材の脱炭層の深さを仕様値以下に制御することができる脱炭層深さ制御方法を提供することができる。   In the fourth invention, the predicted decarburized layer depth of the rolled steel material is compared with the specification value. If the predicted decarburized layer depth is smaller than the specified value, the furnace temperature is adjusted so that the steel material temperature becomes the target steel material temperature (the steel material temperature that can be rolled) within the range where the decarburized layer depth can be maintained below the specified value. When the temperature is controlled and the predicted decarburized layer depth is greater than the specified value, the furnace temperature is set so that the decarburized layer depth is less than the specified value within the range where the steel material temperature is equal to or higher than the lower limit of the target steel temperature. Therefore, it is possible to provide a decarburization layer depth control method capable of controlling the depth of the decarburization layer of the rolled steel material to be equal to or lower than the specification value while ensuring a heating temperature at which rolling is possible.

第4発明にあっては、さらに目標鋼材温度の下限値は加熱後の圧延が可能な最低温度により規定されることとすれば、圧延可能な加熱温度(鋼材温度)を確実に維持した状態で、圧延鋼材の脱炭層の深さを仕様値以下に制御(抑制)することができる脱炭層深さ制御方法を提供することができる。   In the fourth invention, if the lower limit value of the target steel material temperature is further defined by the lowest temperature at which rolling after heating is possible, the heating temperature at which rolling is possible (steel material temperature) is reliably maintained. It is possible to provide a decarburized layer depth control method capable of controlling (suppressing) the depth of the decarburized layer of the rolled steel material to be equal to or lower than the specification value.

第5発明に係る鋼材の圧延方法は、加熱炉にて送入鋼材をA1変態点以上に加熱処理した後、圧延処理する鋼材の圧延方法であって、圧延鋼材の脱炭層深さを予測し、予測した圧延鋼材の脱炭層深さを仕様値と比較し、予測した脱炭層深さが仕様値より小さい場合には、脱炭層深さが仕様値以下となる範囲内において鋼材温度が目標鋼材温度となるように加熱炉の温度を制御し、予測した脱炭層深さが仕様値より大きい場合には、鋼材温度が目標鋼材温度の下限値以上の範囲内において脱炭層深さが仕様値以下となるように加熱炉の温度を制御することを特徴とする。   A steel material rolling method according to a fifth aspect of the present invention is a steel material rolling method in which a steel material to be rolled is subjected to heat treatment after heating the incoming steel material to the A1 transformation point or higher in a heating furnace, and the decarburized layer depth of the rolled steel material is predicted. Compare the predicted decarburized layer depth of the rolled steel with the specification value.If the predicted decarburized layer depth is smaller than the specified value, the steel material temperature should be within the range where the decarburized layer depth is less than the specified value. If the temperature of the furnace is controlled so that the temperature is the same, and the predicted decarburized layer depth is greater than the specified value, the decarburized layer depth is below the specified value within the range where the steel material temperature is equal to or higher than the lower limit of the target steel material temperature. The temperature of the heating furnace is controlled so that

第5発明にあっては、圧延鋼材の脱炭層深さを予測し、予測した圧延鋼材の脱炭層深さを仕様値と比較し、予測した脱炭層深さが仕様値より小さい場合には、脱炭層深さが仕様値以下となる範囲内において鋼材温度が目標鋼材温度となるように加熱炉の温度を制御し、予測した脱炭層深さが仕様値より大きい場合には、鋼材温度が目標鋼材温度の下限値以上の範囲内において脱炭層深さが仕様値以下となるように加熱炉の温度を制御することとしたので、圧延可能な加熱温度を確保した状態で、圧延鋼材の脱炭層の深さを仕様値以下に制御することができる鋼材の圧延方法を提供することができる。   In the fifth invention, the decarburization layer depth of the rolled steel material is predicted, the predicted decarburization layer depth of the rolled steel material is compared with the specification value, and when the predicted decarburization layer depth is smaller than the specification value, The furnace temperature is controlled so that the steel temperature becomes the target steel temperature within the range where the decarburized layer depth is not more than the specified value.If the predicted decarburized layer depth is larger than the specified value, the steel temperature is the target. Since the temperature of the heating furnace is controlled so that the depth of the decarburized layer is not more than the specified value within the range of the lower limit value of the steel material temperature, the decarburized layer of the rolled steel material in a state where the heating temperature capable of rolling is ensured. It is possible to provide a method of rolling steel that can control the depth of the steel to a specification value or less.

本発明にあっては、加熱処理時の鋼材温度及び加熱時間により定まる脱炭層深さと、圧延処理の前後での鋼材の大きさの変化(大きさの比)と、所定値を有する補正係数との積を圧延鋼材での脱炭層の深さとする予測式を用いて圧延鋼材での脱炭層の深さを容易、正確、精密に予測することができる。   In the present invention, the decarburized layer depth determined by the steel material temperature and the heating time during the heat treatment, the change in size of the steel material before and after the rolling treatment (size ratio), and the correction coefficient having a predetermined value. The depth of the decarburized layer in the rolled steel material can be predicted easily, accurately, and accurately using a prediction formula in which the product of is the depth of the decarburized layer in the rolled steel material.

本発明にあっては、予測式を用いて予測した圧延鋼材での脱炭層深さを仕様値と比較して、比較結果の状況に応じて加熱処理の条件(加熱温度の制御による脱炭層深さの抑制制御に必要な鋼材温度の確保)を適宜設定でき、圧延可能な加熱温度を確保した状態で、圧延鋼材の脱炭層の深さを仕様値以下に収めることができる脱炭層深さの制御ができる。   In the present invention, the decarburized layer depth in the rolled steel material predicted using the prediction formula is compared with the specification value, and the heat treatment conditions (decarburized layer depth by controlling the heating temperature) are determined according to the situation of the comparison result. Of the decarburization layer depth that can keep the depth of the decarburization layer of the rolled steel below the specified value in a state where the heating temperature capable of rolling is ensured. Can control.

以下、本発明をその実施の形態を示す図面に基づいて説明する。   Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof.

<実施の形態1>
図1は鋼材温度が単一の場合の脱炭層深さ予測方法の概念を示す説明図である。送入鋼材は加熱炉1で鋼材温度T(絶対温度K)、鋼材温度Tでの加熱時間t(分)の条件で加熱処理をされる。加熱処理をされた送入鋼材は圧延装置2に搬送され、圧延処理をされ圧延後は圧延鋼材(製品)として抽出される。加熱炉で発生した脱炭層は圧延後の圧延鋼材において脱炭層深さDm(mm)として観測され、この脱炭層深さDm(mm)は式(1)で近似して表すものとする。
Dm=k(a/A)(√t)exp(−Q/RT)・・・(1)
ただし、
Dm(mm):脱炭層深さ
T(絶対温度K):加熱炉1での送入鋼材の鋼材温度
t(分):鋼材温度Tでの加熱時間
Q(cal/mol):炭素の拡散の活性化エネルギ
R(1.987cal/(mol・K)):ガス定数
a:圧延鋼材の大きさ(例えば丸鋼の場合の直径a(mm)など)
A:送入鋼材の大きさ(例えば角鋼片の場合の角寸A(mm)など)
a/A:圧延前後における大きさの比
Q/RT:8787/T
k:補正係数(mm/√分)
<Embodiment 1>
FIG. 1 is an explanatory diagram showing a concept of a decarburized layer depth prediction method when the steel material temperature is single. The incoming steel material is heated in the heating furnace 1 under the conditions of the steel material temperature T (absolute temperature K) and the heating time t (minute) at the steel material temperature T. The heat-treated incoming steel material is conveyed to the rolling device 2, subjected to the rolling treatment, and extracted as a rolled steel material (product) after rolling. The decarburized layer generated in the heating furnace is observed as a decarburized layer depth Dm (mm) in the rolled steel material after rolling, and this decarburized layer depth Dm (mm) is approximated by the expression (1).
Dm = k (a / A) (√t) exp (−Q / RT) (1)
However,
Dm (mm): Decarburized layer depth T (absolute temperature K): Steel material temperature of the incoming steel material in the heating furnace 1 t (min): Heating time at the steel material temperature T Q (cal / mol): Carbon diffusion Activation energy R (1.987 cal / (mol · K)): gas constant a: size of rolled steel (for example, diameter a (mm) in the case of round steel)
A: Size of incoming steel (for example, square dimension A (mm) in the case of a square steel piece)
a / A: Ratio of sizes before and after rolling Q / RT: 8787 / T
k: Correction coefficient (mm / √min)

つまり、圧延鋼材での脱炭層深さは、加熱処理時の鋼材温度T及び加熱時間tを式中に含む演算項((√t)exp(−Q/RT))と、圧延鋼材の大きさaと送入鋼材の大きさAとの比により定まる大きさの比a/Aと、所定値を有する補正係数kとの積により近似される。この近似式を圧延後の圧延鋼材での脱炭層の深さを予測する予測式とする。このとき、補正係数は圧延鋼材の大きさAの関数として予め特定しておく。なお、各値の単位は適宜変更することができ、その場合には、補正係数kの値を適宜変更することにより調整できる。また、鋼材温度としては脱炭層の発生しやすい温度、つまり、A1変態点(鋼材の場合には723℃)の温度以上の場合に適用することにより、十分な精度で、簡便な予測ができる。なお、ここでの計算は全てコンピュータにより行うことで迅速な処理ができ、加熱処理において鋼材温度を制御する場合には特に有効である。このようなコンピュータによる計算の特徴は以下の計算においても同様に得られる。   That is, the depth of the decarburized layer in the rolled steel material includes the calculation term ((√t) exp (−Q / RT)) including the steel material temperature T and the heating time t during the heat treatment, and the size of the rolled steel material. It is approximated by the product of the ratio a / A of the size determined by the ratio of a to the size A of the incoming steel material and the correction coefficient k having a predetermined value. This approximate expression is a prediction expression for predicting the depth of the decarburized layer in the rolled steel material after rolling. At this time, the correction coefficient is specified in advance as a function of the size A of the rolled steel material. The unit of each value can be changed as appropriate, and in that case, it can be adjusted by changing the value of the correction coefficient k as appropriate. In addition, the steel material temperature can be easily predicted with sufficient accuracy by applying the steel material temperature to a temperature at which a decarburized layer is easily generated, that is, a temperature equal to or higher than the temperature of the A1 transformation point (723 ° C. in the case of a steel material). Note that all calculations here can be performed quickly by a computer, which is particularly effective when the steel material temperature is controlled in the heat treatment. Such characteristics of calculation by the computer can be similarly obtained in the following calculation.

上述したとおり、式(1)において、鋼材温度T、鋼材温度Tでの加熱時間t、炭素の拡散の活性化エネルギQ、ガス定数R、圧延鋼材の大きさa、送入鋼材の大きさA、補正係数kをそれぞれ代入すれば、加熱処理及び圧延処理の工程を経た後の圧延鋼材での脱炭層深さDmを予測することができる。補正係数kは予め加熱炉1について求めているから圧延鋼材の脱炭層深さをサンプリングによらずに容易、正確に予測できる。なお、本発明における「鋼材の大きさ」は主に圧延鋼材にあっては圧延方向、また送入鋼材にあっては圧延される方向に垂直な断面の大きさのことであり、断面積や断面寸法、すなわち角鋼片における角寸や、板鋼における幅や厚み、丸鋼片や丸鋼における直径(半径)などにより代表させることができる。また、断面形状の影響をなくすという意味で断面積の平方根などにより代表させることもできる。   As described above, in the formula (1), the steel material temperature T, the heating time t at the steel material temperature T, the carbon diffusion activation energy Q, the gas constant R, the rolled steel material size a, and the incoming steel material size A If the correction coefficient k is substituted, the decarburized layer depth Dm in the rolled steel after the heat treatment and rolling treatment steps can be predicted. Since the correction coefficient k is obtained in advance for the heating furnace 1, the depth of the decarburized layer of the rolled steel can be predicted easily and accurately without sampling. The “size of steel material” in the present invention is mainly the size of the cross section perpendicular to the rolling direction in the case of rolled steel materials and the direction of rolling in the case of infeed steel materials. It can be represented by a cross-sectional dimension, that is, an angular dimension in a square steel slab, a width and thickness in a plate steel, a diameter (radius) in a round steel slab or round steel, and the like. It can also be represented by the square root of the cross-sectional area in order to eliminate the influence of the cross-sectional shape.

<実施の形態2>
図2は鋼材温度を複数に設定した場合の脱炭層深さ予測方法の概念を示す説明図である。加熱炉1の内部で鋼材温度Tが変化する状況に応じて複数の(加熱)ゾーンZi(i=1〜N)に区分して、各ゾーンに式(1)の演算項を適用する状態を示す。すなわち、ゾーンZiでの脱炭層深さは式(2)で示される。
Dmi=k(a/A)(√ti)exp(−Q/RTi)・・・(2)
Ti(絶対温度K):加熱炉1のゾーンZiでの送入鋼材の鋼材温度
ti(分):鋼材温度Tiでの加熱時間
<Embodiment 2>
FIG. 2 is an explanatory diagram showing a concept of a decarburized layer depth prediction method when a plurality of steel material temperatures are set. According to the situation in which the steel material temperature T changes in the heating furnace 1, it is divided into a plurality of (heating) zones Zi (i = 1 to N), and a state in which the operation term of the expression (1) is applied to each zone. Show. That is, the decarburized layer depth in the zone Zi is expressed by the formula (2).
Dmi = k (a / A) (√ti) exp (−Q / RTi) (2)
Ti (absolute temperature K): Steel material temperature of the incoming steel material in zone Zi of heating furnace 1 ti (min): Heating time at steel material temperature Ti

式(2)はゾーン別に脱炭層深さを求める点を除いて、基本的には式(1)と同様である。k(a/A)の部分は式(1)と同一であり、演算項((√ti)exp(−Q/RTi))の部分が異なる。式(2)で求めた各ゾーンの脱炭層深さ(ゾーンZ1の脱炭層深さ:Dm1、ゾーンZ2の脱炭層深さ:Dm2、・・・ゾーンZiの脱炭層深さ:Dmi、・・・ゾーンZNの脱炭層深さ:DmN)を合計したものを圧延鋼材での脱炭層深さDmとする。すなわち、ゾーンZiがN個に区分された場合には、脱炭層深さDmは式(3)が予測式となる。
Dm=Dm1+Dm2+・・・+Dmi+・・・+DmN・・・(3)
なお、実際の計算ではk(a/A)の部分は共通であるから、演算項((√ti)exp(−Q/RTi))の部分のみを合計したものに、k(a/A)を乗じて計算すれば良い。
Equation (2) is basically the same as Equation (1) except that the decarburized layer depth is obtained for each zone. The part of k (a / A) is the same as that of Formula (1), and the part of the calculation term ((√ti) exp (−Q / RTi)) is different. Decarburized layer depth of each zone determined by equation (2) (Decarburized layer depth of zone Z1: Dm1, Decarburized layer depth of zone Z2: Dm2, ... Decarburized layer depth of zone Zi: Dmi, ... -The sum of the zone ZN decarburization layer depth: DmN) is defined as the decarburization layer depth Dm of the rolled steel material. That is, when the zone Zi is divided into N, the decarburized layer depth Dm is a predictive formula (3).
Dm = Dm1 + Dm2 + ... + Dmi + ... + DmN (3)
In the actual calculation, the k (a / A) portion is common, and therefore k (a / A) is the sum of only the calculation term ((√ti) exp (−Q / RTi)) portions. Multiply by

上述したとおり、式(2)において、加熱炉1の各ゾーンにおける鋼材温度Ti、鋼材温度Tiでの加熱時間tiをそれぞれ代入して合計すれば、加熱処理及び圧延処理後の圧延鋼材での脱炭層深さDmを予測することができる。補正係数kは予め加熱炉1について求めているから圧延鋼材の脱炭層深さをサンプリングによらずに容易、正確に予測できる。さらに、加熱炉1での加熱状況(加熱プロフィール)に応じてより正確で精密に圧延鋼材での脱炭層深さを予測できる。   As described above, in Formula (2), if the steel material temperature Ti in each zone of the heating furnace 1 and the heating time ti at the steel material temperature Ti are respectively substituted and summed, the removal in the rolled steel material after the heat treatment and the rolling treatment is performed. The coal bed depth Dm can be predicted. Since the correction coefficient k is obtained in advance for the heating furnace 1, the depth of the decarburized layer of the rolled steel can be predicted easily and accurately without sampling. Furthermore, the decarburized layer depth in the rolled steel material can be predicted more accurately and accurately according to the heating state (heating profile) in the heating furnace 1.

<実施の形態3>
圧延鋼材での脱炭層深さには、加熱処理により発生した脱炭層だけでなく、送入鋼材が加熱処理される前に既に有する脱炭層、さらには加熱処理により表面に生じたスケール層による脱炭層減少分も影響する。送入鋼材が加熱処理される前に既に有する脱炭層深さDbに起因する圧延鋼材の脱炭層深さへの影響分は圧延処理における大きさの比(a/A)を用いて圧延鋼材での脱炭層深さDmbとして式(4)で表すことができる。また、スケール層による脱炭層深さの変動分Dmsはスケールロス比αを用いて式(5)として求めることができる。
Dmb=(a/A)Db・・・(4)
Dms=−(a/A)Db√(1−α)・・・(5)
<Embodiment 3>
The depth of the decarburized layer in the rolled steel material includes not only the decarburized layer generated by the heat treatment, but also the decarburized layer already present before the incoming steel material is heat-treated, and further the decarburized layer generated on the surface by the heat treatment. Coal seam reduction will also have an effect. The influence on the decarburization layer depth of the rolled steel material due to the decarburization layer depth Db already possessed before the incoming steel material is heat-treated is the ratio of the size in the rolling process (a / A). The decarburized layer depth Dmb can be expressed by the formula (4). Further, the variation Dms in the depth of the decarburized layer due to the scale layer can be obtained as Equation (5) using the scale loss ratio α.
Dmb = (a / A) Db (4)
Dms = − (a / A) Db√ (1−α) (5)

したがって、加熱処理により発生した圧延鋼材での脱炭層深さDm(式(3))に式(4)(5)を加算したものが、圧延鋼材での脱炭層深さDの予測式となり、式(6)として示すことができる。
D=Dm+Dmb+Dms・・・(6)
Therefore, what added Formula (4) (5) to the decarburized layer depth Dm (Formula (3)) in the rolled steel materials which generate | occur | produced by heat processing becomes the prediction formula of the decarburized layer depth D in rolled steel materials, It can be shown as equation (6).
D = Dm + Dmb + Dms (6)

上述したとおり、式(6)において、加熱処理により発生した圧延鋼材での脱炭層深さDmに、送入鋼材の脱炭層深さDb(加熱処理の前から既に存在する脱炭層深さ)に起因する圧延後の脱炭層深さDmbに換算した値を加算し、さらに加熱処理時に生じるスケール層による圧延鋼材での脱炭層深さの変動分Dms(スケール層による減少分)を加算したものを予測式とすることにより正確で精密に圧延鋼材での脱炭層深さを予測できる。なお、脱炭層深さDmb、脱炭層深さの変動分Dmsが脱炭層深さDmに比較して小さく無視できる場合には式(6)はD=Dmのような簡略化した予測式とすることもできる。   As described above, in Formula (6), the decarburized layer depth Dm of the rolled steel material generated by the heat treatment is set to the decarburized layer depth Db of the incoming steel material (the decarburized layer depth already present before the heat treatment). Add the value converted to the decarburized layer depth Dmb after rolling, and add the variation Dms of the decarburized layer depth in the rolled steel due to the scale layer generated during the heat treatment (decrease by the scale layer) By using the prediction formula, the depth of the decarburized layer in the rolled steel can be predicted accurately and precisely. When the decarburized layer depth Dmb and the variation Dms of the decarburized layer depth are small compared with the decarburized layer depth Dm and can be ignored, Equation (6) is a simplified prediction formula such as D = Dm. You can also.

<実施の形態4>
図3は補正係数の決定方法を説明するためのグラフである。横軸は圧延鋼材の大きさa(例えば丸鋼の直径)を任意スケールで相対的に示し、縦軸は補正係数kを任意スケールで相対的に示す。圧延鋼材の大きさaは上述のとおり、丸鋼や板鋼に応じ様々なもので代表することができ、その場合補正係数kの値が異なる値になることはいうまでもない。補正係数は式(6)の予測式に予め確定している数値を代入し、圧延鋼材の脱炭層深さ(予測式である式(6)のDに対応)の実測値から逆算して求めたものである。グラフ上黒丸で示すものが実測値から求めた個別の補正係数であり、実線で示すものが補正係数kの近似式である。実測値から求めた個別の補正係数は加熱炉の炉特性により定まるので、加熱炉ごとに求める。計算した全ての補正係数kの上限を示す近似式を算出して、その近似式を補正係数kとして採用する。
<Embodiment 4>
FIG. 3 is a graph for explaining a correction coefficient determination method. The horizontal axis shows the relative size a (for example, the diameter of the round steel) of the rolled steel material on an arbitrary scale, and the vertical axis shows the correction coefficient k relatively on the arbitrary scale. As described above, the size a of the rolled steel material can be represented by various materials depending on the round steel or the plate steel. In this case, it goes without saying that the value of the correction coefficient k is different. The correction coefficient is obtained by substituting a predetermined value for the prediction formula of formula (6) and back-calculating from the measured value of the decarburized layer depth of the rolled steel (corresponding to D of formula (6) which is the prediction formula). It is a thing. The black circles on the graph indicate individual correction coefficients obtained from actual measurement values, and the solid lines indicate approximate expressions for the correction coefficient k. Since the individual correction coefficient obtained from the actual measurement value is determined by the furnace characteristics of the heating furnace, it is obtained for each heating furnace. An approximate expression indicating the upper limit of all the calculated correction coefficients k is calculated, and the approximate expression is adopted as the correction coefficient k.

全ての補正係数kの上限を示す近似式(補正係数kの最大値)を予測式としての式(6)における補正係数kとして採用することにより、脱炭層深さを予測式で算出する値以下に確実に抑制できる。ここで求めた補正係数のグラフからは、例えば、圧延鋼材の大きさが70(例えば直径(mm))という所定値以上の場合には補正係数kは22.4という固定値(定数)となる。また、圧延鋼材の大きさが70という所定値より小さい場合には、補正係数kは59.85−0.54aで示される。つまり、圧延鋼材の大きさaが所定値未満の場合は圧延鋼材の大きさaに比例して減少する一次関数である。補正係数kを定数と一次関数という簡単な特性式により定義することにより、予測式の計算をより簡便にでき、より簡単で迅速に圧延鋼材での脱炭層深さを予測できる。なお、全ての補正係数kの上限を示す近似式としたが、多少の誤差が許容される場合には例えば95%程度の補正係数kが含まれる近似式にすることも可能である。   By adopting an approximate expression (maximum value of the correction coefficient k) indicating the upper limit of all the correction coefficients k as the correction coefficient k in the expression (6) as a prediction expression, the decarburized layer depth is equal to or less than the value calculated by the prediction expression. Can be reliably suppressed. From the graph of the correction coefficient obtained here, for example, when the size of the rolled steel material is not less than a predetermined value of 70 (for example, diameter (mm)), the correction coefficient k is a fixed value (constant) of 22.4. . Further, when the size of the rolled steel material is smaller than a predetermined value of 70, the correction coefficient k is represented by 59.85-0.54a. That is, when the size a of the rolled steel material is less than a predetermined value, it is a linear function that decreases in proportion to the size a of the rolled steel material. By defining the correction coefficient k by a simple characteristic formula of a constant and a linear function, the calculation of the prediction formula can be made simpler, and the decarburization layer depth in the rolled steel can be predicted more easily and quickly. Although an approximate expression indicating the upper limit of all the correction coefficients k is used, an approximate expression including, for example, about 95% of the correction coefficient k can be used if some errors are allowed.

<実施の形態5>
図4は加熱炉を複数のゾーンに区分した場合のゾーン区分と、各ゾーンでの鋼材温度及び加熱時間との関係を示す。同図(a)は加熱炉1のゾーン区分状態を、(b)は各ゾーン(Zi)での加熱時間tiと鋼材温度Tiを示す。加熱炉1は加熱領域1aと均熱領域1bとで構成される。送入鋼材は搬送経路1cに沿って搬送され、ゾーン(Zi)において設定された鋼材温度(Ti)で、設定された加熱時間(ti)の間加熱処理される。ここでは加熱領域1aはゾーンZ1〜3に区分され、均熱領域1bはゾーンZ4〜6に区分されている。ゾーンZ1で鋼材温度T1、加熱時間t1、ゾーンZ2で鋼材温度T2、加熱時間t2、・・・ゾーンZ6で鋼材温度T6、加熱時間t6として示す。各ゾーンZiでの鋼材温度Tiは最も影響の大きい高い方の温度(出口側の温度)を適用する。また、加熱時間tiは、加熱処理に続いて行われる圧延処理における圧延能率を参酌して算出する。なお、鋼材温度Tiは適宜の手段により加熱炉1において測定できるが、鋼材の加熱炉送入前温度及び加熱炉における温度条件などから予測することもできる。
<Embodiment 5>
FIG. 4 shows the relationship between the zone division when the heating furnace is divided into a plurality of zones, and the steel material temperature and heating time in each zone. FIG. 4A shows the zone division state of the heating furnace 1, and FIG. 4B shows the heating time ti and the steel material temperature Ti in each zone (Zi). The heating furnace 1 includes a heating region 1a and a soaking region 1b. The incoming steel material is transported along the transport path 1c, and is heated at the steel material temperature (Ti) set in the zone (Zi) for the set heating time (ti). Here, the heating area 1a is divided into zones Z1 to Z3, and the soaking area 1b is divided into zones Z4 to 6. In the zone Z1, the steel material temperature T1, the heating time t1, the zone Z2 as the steel material temperature T2, the heating time t2, and the zone Z6 as the steel material temperature T6 and the heating time t6. The steel material temperature Ti in each zone Zi is the higher temperature (exit side temperature) having the greatest influence. The heating time ti is calculated in consideration of the rolling efficiency in the rolling process performed after the heating process. The steel material temperature Ti can be measured in the heating furnace 1 by an appropriate means, but can also be predicted from the temperature before feeding the steel material into the heating furnace and the temperature condition in the heating furnace.

鋼材温度Ti及び加熱時間tiを上述した予測式である式(6)に適用し、圧延鋼材の脱炭層深さDを計算して予測する。予測式の計算は加熱鋼材1本毎に行うことでより正確な計算ができる。計算結果(予測値)を圧延鋼材の脱炭層深さと比較する。予測した脱炭層深さDが仕様値Dspecより小さい場合には、脱炭層深さDが仕様値Dspec以下となる範囲内において加熱炉の出口での鋼材温度(T6)が目標鋼材温度となるように加熱炉1の温度を制御(例えば昇温制御)する。昇温制御により脱炭層深さDが仕様値Dspecより大きくなると予測される場合には、脱炭層深さDが仕様値Dspecに納まるように再度加熱炉1の温度を制御(例えば降温制御)する。つまり、加熱処理の最中に圧延鋼材の脱炭層深さを予測式に基づいて計算予測することにより、脱炭層深さDを仕様値Dspecと比較しながら、脱炭層深さDが仕様値Dspecに納まるように加熱炉1の温度を制御することにより、圧延鋼材の脱炭層深さDを制御できる。   The steel material temperature Ti and the heating time ti are applied to Equation (6), which is the prediction equation described above, and the decarburized layer depth D of the rolled steel material is calculated and predicted. The calculation of the prediction formula can be performed more accurately by performing it for each heated steel material. The calculation result (predicted value) is compared with the decarburized layer depth of the rolled steel material. When the predicted decarburized layer depth D is smaller than the specification value Dspec, the steel material temperature (T6) at the outlet of the heating furnace becomes the target steel material temperature within a range where the decarburized layer depth D is equal to or less than the specified value Dspec. The temperature of the heating furnace 1 is controlled (for example, temperature rise control). When it is predicted that the decarburization layer depth D is larger than the specification value Dspec by the temperature increase control, the temperature of the heating furnace 1 is again controlled (for example, temperature decrease control) so that the decarburization layer depth D falls within the specification value Dspec. . That is, by calculating and predicting the decarburized layer depth of the rolled steel material based on the prediction formula during the heat treatment, the decarburized layer depth D is compared with the specified value Dspec while the decarburized layer depth D is compared with the specified value Dspec. By controlling the temperature of the heating furnace 1 so as to be within the range, the decarburized layer depth D of the rolled steel material can be controlled.

また、予測した脱炭層深さDが仕様値Dspecより大きい場合には、加熱炉の出口での鋼材温度(T6)が目標鋼材温度の下限値(圧延処理可能な最低温度以上の値として適宜規定(設定)される)以上の範囲内において脱炭層深さDが仕様値Dspec以下となるように加熱炉1の温度を制御(例えば降温制御)する。鋼材温度(T6)が目標鋼材温度の下限値以下においても脱炭層深さDが仕様値Dspecを越える場合には、目標鋼材温度の下限値を維持するように加熱炉1の温度を制御する。   Further, when the predicted decarburized layer depth D is larger than the specification value Dspec, the steel material temperature (T6) at the outlet of the heating furnace is appropriately defined as a lower limit value of the target steel material temperature (a value equal to or higher than the minimum temperature that can be rolled). The temperature of the heating furnace 1 is controlled (for example, temperature drop control) so that the decarburized layer depth D is equal to or less than the specification value Dspec within the above range. Even when the steel material temperature (T6) is equal to or lower than the lower limit value of the target steel material temperature, when the decarburized layer depth D exceeds the specification value Dspec, the temperature of the heating furnace 1 is controlled so as to maintain the lower limit value of the target steel material temperature.

上述した加熱処理工程での処理中に圧延鋼材の脱炭層深さDを予測して、その結果に応じて加熱炉1の温度を制御することにより、圧延鋼材の脱炭層深さDを制御できる脱炭層深さ制御方法とすることができる。ここでは区分数を6として説明したが、コンピュータの処理能力(計算能力)の範囲内でさらに細分化して計算することができる。細分化するほど精度は向上するが、必要以上の精度は不要であるから製品使用などを考慮して適当な区分数を決定する。   By predicting the decarburized layer depth D of the rolled steel during the heat treatment process described above, and controlling the temperature of the heating furnace 1 according to the result, the decarburized layer depth D of the rolled steel can be controlled. A decarburized layer depth control method can be used. Although the number of divisions has been described here as six, it can be further subdivided and calculated within the range of computer processing capability (calculation capability). The accuracy improves as the data is subdivided, but the accuracy more than necessary is unnecessary, so the appropriate number of divisions is determined in consideration of product use.

図5は実施の形態5における脱炭層深さ制御方法を適用した場合の脱炭層不良品の発生状況を示すグラフである。横軸は圧延月であり、実施の形態5における脱炭層深さ制御方法を適用した後の月を1〜3として示し、適用前の月を−1〜−3として示す。適用前の不良品発生量は−3の月で40、−2の月で92、−1の月で25であったのが、適用後は不良品発生量がほぼ0となった。   FIG. 5 is a graph showing the state of occurrence of defective decarburized layer when the decarburized layer depth control method in the fifth embodiment is applied. A horizontal axis is a rolling month, the month after applying the decarburization layer depth control method in Embodiment 5 is shown as 1-3, and the month before application is shown as -1-3. The amount of defective products before application was 40 in the month of -3, 92 in the month of -2, and 25 in the month of -1, but the amount of defective products generated was almost 0 after application.

鋼材温度が単一の場合の脱炭層深さ予測方法の概念を示す説明図である。It is explanatory drawing which shows the concept of the decarburization layer depth prediction method in case steel material temperature is single. 鋼材温度を複数に設定した場合の脱炭層深さ予測方法の概念を示す説明図である。It is explanatory drawing which shows the concept of the decarburization layer depth prediction method at the time of setting steel material temperature to multiple. 補正係数の決定方法を説明するためのグラフである。It is a graph for demonstrating the determination method of a correction coefficient. 加熱炉を複数のゾーンに区分した場合のゾーン区分と、各ゾーンでの鋼材温度及び加熱時間との関係を示す。The relationship between the zone division | segmentation at the time of dividing a heating furnace into a some zone, the steel material temperature in each zone, and heating time is shown. 実施の形態5における脱炭層深さ制御方法を適用した場合の脱炭層不良品の発生状況を示すグラフである。It is a graph which shows the generation | occurrence | production condition of the decarburized layer defect product at the time of applying the decarburized layer depth control method in Embodiment 5. FIG.

符号の説明Explanation of symbols

1 加熱炉
2 圧延装置
A 送入鋼材の大きさ
a 圧延鋼材の大きさ
T 鋼材温度
Ti ゾーンZiでの鋼材温度
t 加熱時間
ti 鋼材温度Tiでの加熱時間
Zi ゾーン(i=1〜N)
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Rolling apparatus A Size of incoming steel materials a Size of rolled steel materials T Steel material temperature Ti Steel material temperature in zone Zi t Heating time ti Heating time in steel material temperature Ti Zi zone (i = 1 to N)

Claims (5)

送入鋼材をA1変態点以上の温度で加熱処理及び圧延処理することにより形成される圧延鋼材における脱炭層の深さを予測する脱炭層深さ予測方法において、
加熱処理時の鋼材温度及び加熱時間を含む演算項の値と、圧延前後における大きさの比と、所定値を有する補正係数との積を脱炭層の深さを予測する予測式とし、
前記補正係数は圧延鋼材の大きさの関数として予め求めておくことを特徴とする脱炭層深さ予測方法。
In the decarburization layer depth prediction method for predicting the depth of the decarburization layer in the rolled steel formed by heat-treating and rolling the incoming steel at a temperature equal to or higher than the A1 transformation point,
The prediction formula for predicting the depth of the decarburized layer is the product of the value of the calculation term including the steel material temperature and the heating time during the heat treatment, the ratio of the size before and after rolling, and the correction coefficient having a predetermined value,
The decarburized layer depth prediction method, wherein the correction coefficient is obtained in advance as a function of the size of the rolled steel material.
前記加熱処理をする加熱炉を複数の加熱ゾーンに区分し、加熱ゾーン別に前記演算項を適用して計算した値の合計を前記演算項の値とすることを特徴とする請求項1記載の脱炭層深さ予測方法。   The heating furnace for performing the heat treatment is divided into a plurality of heating zones, and a sum of values calculated by applying the calculation terms for each heating zone is set as the value of the calculation terms. Coal seam depth prediction method. 前記予測式に、送入鋼材の脱炭層深さに起因する圧延鋼材の脱炭層深さへの影響分と加熱処理時に生じるスケール層による脱炭層深さの変動分とを加算することを特徴とする請求項1又は2記載の脱炭層深さ予測方法。   The prediction formula is characterized by adding the influence on the decarburization layer depth of the rolled steel due to the decarburization layer depth of the incoming steel material and the fluctuation of the decarburization layer depth due to the scale layer generated during the heat treatment. The decarburized layer depth prediction method according to claim 1 or 2. 請求項1乃至3のいずれかに記載した脱炭層深さ予測方法に基づいて予測した圧延鋼材の脱炭層深さを仕様値と比較し、
予測した脱炭層深さが仕様値より小さい場合には、脱炭層深さが仕様値以下となる範囲内において鋼材温度が目標鋼材温度となるように加熱炉の温度を制御し、
予測した脱炭層深さが仕様値より大きい場合には、鋼材温度が目標鋼材温度の下限値以上の範囲内において脱炭層深さが仕様値以下となるように加熱炉の温度を制御する
ことにより圧延鋼材の脱炭層の深さを制御することを特徴とする脱炭層深さ制御方法。
The decarburized layer depth of the rolled steel material predicted based on the decarburized layer depth predicting method according to any one of claims 1 to 3 is compared with a specification value,
When the predicted decarburized layer depth is smaller than the specification value, the temperature of the heating furnace is controlled so that the steel material temperature becomes the target steel material temperature within the range where the decarburized layer depth is not more than the specified value.
If the predicted decarburized layer depth is greater than the specified value, the temperature of the heating furnace is controlled so that the decarburized layer depth is below the specified value within the range where the steel material temperature is not less than the lower limit of the target steel material temperature. A decarburization layer depth control method characterized by controlling the depth of a decarburization layer of rolled steel.
加熱炉にて送入鋼材をA1変態点以上に加熱処理した後、圧延処理する鋼材の圧延方法であって、圧延鋼材の脱炭層深さを予測し、予測した圧延鋼材の脱炭層深さを仕様値と比較し、予測した脱炭層深さが仕様値より小さい場合には、脱炭層深さが仕様値以下となる範囲内において鋼材温度が目標鋼材温度となるように加熱炉の温度を制御し、予測した脱炭層深さが仕様値より大きい場合には、鋼材温度が目標鋼材温度の下限値以上の範囲内において脱炭層深さが仕様値以下となるように加熱炉の温度を制御することを特徴とする鋼材の圧延方法。   This is a rolling method of steel material that is subjected to rolling treatment after heating the incoming steel material to the A1 transformation point or higher in a heating furnace, predicting the decarburized layer depth of the rolled steel material, and predicting the decarburized layer depth of the rolled steel material. When the predicted decarburized layer depth is smaller than the specified value compared to the specification value, the furnace temperature is controlled so that the steel material temperature becomes the target steel temperature within the range where the decarburized layer depth is less than the specified value. When the predicted decarburized layer depth is larger than the specified value, the temperature of the heating furnace is controlled so that the decarburized layer depth is not more than the specified value within the range where the steel material temperature is not less than the lower limit value of the target steel material temperature. A method for rolling steel.
JP2003370968A 2003-10-30 2003-10-30 Decarburized layer depth estimating method, decarburized layer depth control method, and steel rolling method Pending JP2005133158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370968A JP2005133158A (en) 2003-10-30 2003-10-30 Decarburized layer depth estimating method, decarburized layer depth control method, and steel rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370968A JP2005133158A (en) 2003-10-30 2003-10-30 Decarburized layer depth estimating method, decarburized layer depth control method, and steel rolling method

Publications (1)

Publication Number Publication Date
JP2005133158A true JP2005133158A (en) 2005-05-26

Family

ID=34647809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370968A Pending JP2005133158A (en) 2003-10-30 2003-10-30 Decarburized layer depth estimating method, decarburized layer depth control method, and steel rolling method

Country Status (1)

Country Link
JP (1) JP2005133158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832751A (en) * 2010-06-08 2010-09-15 天津大学 Device and method for measuring decarburization thickness of steel based on hollow-core sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832751A (en) * 2010-06-08 2010-09-15 天津大学 Device and method for measuring decarburization thickness of steel based on hollow-core sensor

Similar Documents

Publication Publication Date Title
Santofimia et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
WO2022054500A1 (en) System for predicting material characteristic value, and method for producing metal sheet
Kukhar et al. Designing of induction heaters for the edges of pre-rolled wide ultrafine sheets and strips correlated with the chilling end-effect
JP2006508803A (en) Method for process control or process adjustment of equipment for metal forming, cooling and / or heat treatment
US20230321706A1 (en) Steel strip and method of producing same
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
KR102075245B1 (en) Prediction apparatus for iron loss reduction of electric steel sheet
JP2005133158A (en) Decarburized layer depth estimating method, decarburized layer depth control method, and steel rolling method
WO1994009175A1 (en) Method of continuously carburizing metal strip
JP7201092B2 (en) Vacuum carburizing treatment method and carburized part manufacturing method
JP4396237B2 (en) Steel material heat treatment apparatus and steel material manufacturing method
JPH0737645B2 (en) Decarburization suppression method for high carbon chrome bearing steel
JP5749416B2 (en) Steel material heat treatment apparatus and steel material manufacturing method
JP2017057447A (en) Production facility and production method for high tensile strength steel plate
JP6729181B2 (en) Shape correction method and shape correction device for steel sheet
KR20110072088A (en) Method of roll force prediction in cold rolling of stainless steels
JP3028995B2 (en) Method for continuous carburization of metal strip and sheet temperature control
WO2024203155A1 (en) Steel-strip plate temperature prediction method, steel- strip plate temperature control method, steel-strip manufacturing method, and method for generating steel -strip plate temperature prediction model
CN110199036A (en) For manufacturing the dynamic adjusting method of heat-treated steel plate
JP3705686B2 (en) Method of heating copper or copper alloy slab
KR20200040925A (en) High formability dual phase steel
JP2001181744A (en) Method for preventing variation of width in continuous annealing equipment
RU2413007C1 (en) Procedure for production of strips of electro-technical isotropic steel with improved properties