JP2005133141A - Metal based carbon fiber-reinforced composite material, and production method therefor - Google Patents

Metal based carbon fiber-reinforced composite material, and production method therefor Download PDF

Info

Publication number
JP2005133141A
JP2005133141A JP2003369914A JP2003369914A JP2005133141A JP 2005133141 A JP2005133141 A JP 2005133141A JP 2003369914 A JP2003369914 A JP 2003369914A JP 2003369914 A JP2003369914 A JP 2003369914A JP 2005133141 A JP2005133141 A JP 2005133141A
Authority
JP
Japan
Prior art keywords
metal
carbon
carbon fiber
reinforced composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003369914A
Other languages
Japanese (ja)
Other versions
JP4214034B2 (en
Inventor
Shojiro Ochiai
庄治郎 落合
Eiki Tsushima
栄樹 津島
Nobuyuki Suzuki
信幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AM TECHNOLOGY KK
Fj Composite Kk
Original Assignee
AM TECHNOLOGY KK
Fj Composite Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AM TECHNOLOGY KK, Fj Composite Kk filed Critical AM TECHNOLOGY KK
Priority to JP2003369914A priority Critical patent/JP4214034B2/en
Publication of JP2005133141A publication Critical patent/JP2005133141A/en
Application granted granted Critical
Publication of JP4214034B2 publication Critical patent/JP4214034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal based carbon fiber-reinforced composite material as an industrial member having high elasticity, low thermal expansion and excellent heat resistance and applicable to an extreme environment such as aerospace or to ultraprecise industrial machinery such as a semiconductor and a liquid crystal panel, and to provide a production method therefor. <P>SOLUTION: The metal based carbon fiber-reinforced composite material has a sandwich structure in which an isotropic carbon material having a carbon material produced by molding carbon granulates such as a CIP material, an extruded material, a molded material or a short fiber molded body is used as a core material 2, and skin materials 1 composed of carbon fiber are arranged outside the core material. Further, metal in a molten state is press-fitted to the carbon material under high pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、航空宇宙等の極限環境、あるいは半導体や液晶パネル等の超精密産業機械用途に適用可能な、高弾性、低熱膨張、耐熱性に優れた産業用部材である金属基炭素繊維強化複合材料およびその製造方法に関する。   The present invention is a metal-based carbon fiber reinforced composite that is an industrial member with excellent elasticity, low thermal expansion, and excellent heat resistance, applicable to extreme environments such as aerospace, or ultra-precision industrial machinery applications such as semiconductors and liquid crystal panels. The present invention relates to a material and a manufacturing method thereof.

惑星探査衛星がおかれる宇宙空間では、その惑星探査衛星を構成する使用部材が、高真空、高温、低温、に同時にさらされる。そのような極限環境で、強度、剛性、低熱膨張性を満足し得る材料として、近年、金属基炭素繊維強化複合材料が認知されている。   In the outer space where the planetary exploration satellite is placed, the members that make up the planetary exploration satellite are simultaneously exposed to high vacuum, high temperature, and low temperature. In recent years, metal-based carbon fiber reinforced composite materials have been recognized as materials that can satisfy strength, rigidity, and low thermal expansion in such extreme environments.

この金属基炭素繊維強化複合材料とは、弾性率が高く且つ熱膨張のほとんどない炭素繊維が強化材として使用され、母材にアルミニウム、銅、マグネシウムおよびそれらの合金などが用いられている。(例えば特許文献1参照)。   As this metal-based carbon fiber reinforced composite material, a carbon fiber having a high elastic modulus and almost no thermal expansion is used as a reinforcing material, and aluminum, copper, magnesium and alloys thereof are used as a base material. (For example, refer to Patent Document 1).

また、この金属基炭素繊維強化複合材料は、温度変化に対する寸法安定性、高弾性が必要であることから、半導体製造装置や液晶パネル製造装置、各種ロボットアームなどの用途としても、現在、注目されている。
特開2002−294359(第2頁、図1)
In addition, this metal-based carbon fiber reinforced composite material requires dimensional stability against temperature changes and high elasticity, so it is currently attracting attention for applications such as semiconductor manufacturing equipment, liquid crystal panel manufacturing equipment, and various robot arms. ing.
JP 2002-294359 (2nd page, FIG. 1)

しかしながら、前述したような衛星用途としては、金属材料、炭素繊維強化樹脂複合材料などが用いられているが、熱膨張、真空下での脱ガス特性、弾性率などの欠点があるため、従来、設計が困難であった。   However, for satellite applications as described above, metal materials, carbon fiber reinforced resin composite materials, etc. are used, but due to drawbacks such as thermal expansion, degassing characteristics under vacuum, and elastic modulus, It was difficult to design.

また後述したような産業用途である、半導体製造装置や液晶パネル製造装置などは、従来はアルミナなどのセラミックを主体とした部品で構成されてきたが、半導体の集積化、液晶パネルの大型化に対応した製造装置の大型化、高加工化の面では、加工性、重量、強度面から限界に来ていると言われており、かかる構成材料を、金属基炭素繊維強化複合材料に置き換えようとしている。   In addition, semiconductor manufacturing equipment and liquid crystal panel manufacturing equipment, etc., which are industrial applications as described later, have conventionally been composed of parts mainly made of ceramics such as alumina. In terms of increasing the size and processing capability of the corresponding manufacturing equipment, it is said that it has reached the limit in terms of workability, weight, and strength, and we are trying to replace such constituent materials with metal-based carbon fiber reinforced composite materials. Yes.

このように、最近性能面から注目されている金属基炭素繊維強化複合材料ではあるが、今まではその製造方法が難しく広く普及するまでには至らなかった。
すなわち、従来は、通常強化材となる炭素繊維強化炭素複合材料(以下C/C材と略する)を溶融状態の金属中に浸漬することにより金属成分を含浸させていたが、これによると、金属が溶融する高温状態が必要となるが、アルミニウムのような金属によっては、炭素とカーバイド生成反応が起こるため、均質な複合化が難しい。
As described above, although it is a metal-based carbon fiber reinforced composite material that has recently been attracting attention in terms of performance, its production method has been difficult so far and has not been widely spread.
That is, conventionally, a carbon fiber reinforced carbon composite material (hereinafter abbreviated as C / C material), which is a normal reinforcing material, was impregnated with a metal component by immersing it in a molten metal. Although a high temperature state in which the metal melts is necessary, depending on a metal such as aluminum, a carbon and carbide formation reaction occurs, so that it is difficult to form a homogeneous composite.

そこで、本発明は、従来材料に比較して高弾性、低熱膨張、耐熱性に優れ、且つ目的に応じた材料設計の自由度が高い金属基炭素繊維強化複合材料およびその製造方法を提供することを目的とする。   Therefore, the present invention provides a metal-based carbon fiber reinforced composite material that is excellent in high elasticity, low thermal expansion, and heat resistance as compared with conventional materials and has a high degree of freedom in material design according to the purpose, and a method for producing the same. With the goal.

上記課題を達成するために、本件発明者は、鋭意研究した結果、炭素繊維と等方性炭素材がサンドイッチ構造をなす炭素部材に金属マトリックスを含浸することを知見した。
すなわち、請求項1にかかる金属基炭素繊維強化複合材料は、炭素部分が、等方性炭素材を中央部のコア材とし、外側に炭素繊維を配する3層構造により構成されるサンドイッチ構造をとることを特徴とする。
請求項2にかかる金属基炭素繊維強化複合材料は、請求項1において、前記等方性炭素材が、CIP材、押出材、型込材、短繊維成型体などの炭素粉粒体を成型して製作した炭素材であることを特徴とする。
請求項3にかかる金属基炭素繊維強化複合材料は、請求項1または2において、前記炭素繊維が、織物材、0/90度積層材、一方向積層材、チョップ材およびそれを組み合わせたものであることを特徴とする。
請求項4にかかる金属基炭素繊維強化複合材料は、請求項1〜3の何れか1項において、金属基が、アルミニウム、銅、マグネシウム、およびそれらの合金であることを特徴とする。
請求項5にかかる金属基炭素繊維強化複合材料の製造方法は、炭素部分が、CIP材、押出材、型込材、短繊維成型体などの炭素粉粒体を成型して製作した炭素材を有した等方性炭素材を中央部のコア材とし、外側に炭素繊維を配する3層構造により構成されるサンドイッチ構造とし、前記炭素材に対して金属を溶融状態で高圧で圧入することを特徴とする。
請求項6にかかる金属基炭素繊維強化複合材料の製造方法は、請求項5において、前記炭素繊維が、織物材、0/90度積層材、一方向積層材、チョップ材およびそれを組み合わせたものであることを特徴とする。
請求項7にかかる金属基炭素繊維強化複合材料の製造方法は、請求項5または6において、金属基が、アルミニウム、銅、マグネシウム、およびそれらの合金を用いたことを特徴とする。
In order to achieve the above object, the present inventor has intensively studied, and as a result, has found that the carbon matrix and the isotropic carbon material are impregnated with a metal matrix in a carbon member having a sandwich structure.
That is, the metal-based carbon fiber reinforced composite material according to claim 1 has a sandwich structure in which the carbon portion has a three-layer structure in which an isotropic carbon material is used as a core material in the center and carbon fibers are arranged on the outside. It is characterized by taking.
A metal-based carbon fiber reinforced composite material according to claim 2 is the metal-based carbon fiber reinforced composite material according to claim 1, wherein the isotropic carbon material is formed by molding carbon powder particles such as a CIP material, an extruded material, a molding material, and a short fiber molded body. It is characterized by being made of carbon material.
A metal-based carbon fiber reinforced composite material according to claim 3 is the composite material according to claim 1 or 2, wherein the carbon fiber is a woven material, a 0/90 degree laminated material, a unidirectional laminated material, a chop material, and a combination thereof. It is characterized by being.
The metal-based carbon fiber reinforced composite material according to claim 4 is characterized in that, in any one of claims 1 to 3, the metal group is aluminum, copper, magnesium, and an alloy thereof.
In the method for producing a metal-based carbon fiber reinforced composite material according to claim 5, a carbon material is produced by molding a carbon powder such as a CIP material, an extruded material, a molding material, and a short fiber molded body. It is a sandwich structure composed of a three-layer structure in which an isotropic carbon material having a central core material and carbon fibers are arranged on the outside, and metal is pressed into the carbon material at a high pressure in a molten state. Features.
The method for producing a metal-based carbon fiber reinforced composite material according to claim 6 is the method according to claim 5, wherein the carbon fiber is a woven material, a 0/90 degree laminated material, a unidirectional laminated material, a chop material, and a combination thereof. It is characterized by being.
The method for producing a metal-based carbon fiber reinforced composite material according to claim 7 is characterized in that, in claim 5 or 6, the metal group uses aluminum, copper, magnesium, and alloys thereof.

本発明によれば、炭素繊維と等方性炭素材がサンドイッチ構造をなす炭素部材に金属マトリックスを有効に含浸するため、従来の金属基炭素複合材料の欠点を改善して、高弾性、低熱膨張、耐熱性に優れ、且つ目的に応じた材料設計の自由度が高い高性能な金属基炭素繊維強化複合材料が提供できる。
また、本製造法によれば、金属と炭素がカーバイド生成反応を起こすことなく、金属基炭素繊維強化複合材料が容易に製造でき、したがって、産業界に広く普及することができる。
According to the present invention, a carbon member having a sandwich structure of carbon fibers and an isotropic carbon material is effectively impregnated with a metal matrix, thereby improving the disadvantages of the conventional metal-based carbon composite material, and having high elasticity and low thermal expansion. It is possible to provide a high-performance metal-based carbon fiber reinforced composite material that is excellent in heat resistance and has a high degree of freedom in material design according to the purpose.
Further, according to this production method, the metal-based carbon fiber reinforced composite material can be easily produced without causing a carbide-forming reaction between the metal and carbon, and thus can be widely spread in the industry.

次に本実施の形態にかかる金属基炭素繊維強化複合材料と、その製造方法を説明する。
本実施の形態にかかる金属基炭素繊維強化複合材料は、その炭素部分が中心を形成する中央部のコア材2及びその外周あるいは上下面に配するスキン材1からなり、全体に金属が含浸されている。
Next, a metal-based carbon fiber reinforced composite material according to the present embodiment and a manufacturing method thereof will be described.
The metal-based carbon fiber reinforced composite material according to the present embodiment includes a central core material 2 whose carbon part forms the center and a skin material 1 disposed on the outer periphery or the upper and lower surfaces thereof, and is entirely impregnated with metal. ing.

中央部のコア材2は、各種の等方性炭素材を用いるが、その役割は材料全体の芯材として、また適度な気孔を有するため金属を材料中心まで均一に含浸せしめる役割を持っている。適用し得る等方性炭素材料としては、その製造方法により、型込材、押出材、CIP材、短繊維成型材等がいずれも好適に用いられるが、気孔率、密度、熱膨張係数、強度、価格などの面から型込材、押出材がより好ましい。   The core material 2 in the central portion uses various isotropic carbon materials, and the role thereof is as a core material of the whole material and has a role of uniformly impregnating the metal to the material center because it has appropriate pores. . As the isotropic carbon material that can be applied, depending on its production method, any of molding materials, extruded materials, CIP materials, short fiber molding materials, etc. are preferably used, but porosity, density, thermal expansion coefficient, strength From the viewpoint of price and the like, a molding material and an extruded material are more preferable.

外側に配するスキン材1は、炭素繊維からなり、その用途に応じて織物材、0/90度積層材、一方向材、チョップ材およびそれらを組み合わせたものを使い分けることができる。特に、熱膨張、弾性率の性能設計の観点では、外側の炭素繊維材を選ぶことで材料性能設計の自由度が従来のC/C材に比較して格段に広がっている。   The skin material 1 disposed on the outer side is made of carbon fiber, and a woven material, a 0/90 degree laminated material, a unidirectional material, a chop material, and a combination thereof can be used properly according to the application. In particular, from the viewpoint of performance design of thermal expansion and elastic modulus, the degree of freedom in material performance design is greatly expanded by selecting the outer carbon fiber material compared to conventional C / C materials.

例えば、機械的特性や熱膨張に方向性を持たせる用途に対しては、0/90度積層材や一方向積層材、等方的に特性を出したい場合には織物材やチョップ材を用いることが望ましい。   For example, for applications that give directionality to mechanical properties and thermal expansion, use 0/90 degree laminated materials or unidirectional laminated materials, and use woven materials or chopping materials when isotropic properties are desired. It is desirable.

炭素繊維を等方性炭素に接合する方法として、エポキシ樹脂やフェノール樹脂などの樹脂系接着剤を用いて接着する方法、タールピッチや自己焼結性炭素などの炭素質バインダーを用いた炭素結合による方法、あるいは型枠に填め込み、金属含浸時に接着させるなどの方法がとられる。   As a method of bonding carbon fibers to isotropic carbon, a method of bonding using a resin adhesive such as an epoxy resin or a phenol resin, or a carbon bond using a carbonaceous binder such as tar pitch or self-sintering carbon. A method such as a method or a method of filling in a mold and adhering at the time of metal impregnation is employed.

全体に含浸させた金属、すなわち、マトリックス金属は、前述のように、アルミニウム、銅、マグネシウムおよびそれらの合金などが適用可能だが、溶融温度が低いなどの理由から、アルミニウムがもっとも好ましい。   As described above, aluminum, copper, magnesium and alloys thereof can be applied to the metal impregnated in the whole, that is, matrix metal, but aluminum is most preferable because of its low melting temperature.

その含浸方法として、金型容器内に置いた等方性炭素/炭素繊維複合材をあらかじめ含浸温度まで加熱し、そこへ別に加熱溶融させた金属を流し込む。同時に1cm2あたり500kg以上の圧力をかけ、瞬時に炭素繊維間、等方性炭素細孔内部まで金属を圧入する。 As an impregnation method, an isotropic carbon / carbon fiber composite material placed in a mold container is heated to an impregnation temperature in advance, and separately heated and melted metal is poured therein. At the same time, a pressure of 500 kg or more per 1 cm 2 is applied, and the metal is instantaneously pressed between the carbon fibers and inside the isotropic carbon pores.

この製造方法により、金属と炭素がカーバイド生成反応を起こすことなく、金属基炭素繊維強化複合材料が製造できるが、上記金属含浸方法を可能にしたのは、含浸される炭素材料部分が、等方性炭素材と炭素繊維のサンドイッチ構造を成しているからである。   With this manufacturing method, a metal-based carbon fiber reinforced composite material can be manufactured without causing a carbide-forming reaction between the metal and carbon. However, the metal impregnation method enables the carbon material portion to be impregnated to be isotropic. This is because it has a sandwich structure of carbonaceous material and carbon fiber.

以上、本実施の形態及び本実施例にかかる金属基炭素繊維強化複合材料と、その製造方法を説明したが、上述した実施の形態及び実施例は、本発明の好適な実施の形態の一例を示すものであり、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲内において、種々変形実施が可能である。   The metal-based carbon fiber reinforced composite material and the manufacturing method thereof according to this embodiment and this example have been described above. However, the above-described embodiment and example are examples of the preferred embodiment of the present invention. The present invention is not limited thereto, and various modifications can be made without departing from the scope of the invention.

本実施の形態及にかかる金属基炭素繊維強化複合材料の模式図である。It is a schematic diagram of the metal-based carbon fiber reinforced composite material according to the present embodiment.

符号の説明Explanation of symbols

1 スキン材
2 コア材
1 Skin material 2 Core material

Claims (7)

炭素部分が、等方性炭素材を中央部のコア材とし、外側に炭素繊維を配する3層構造により構成されるサンドイッチ構造をとることを特徴とする、金属基炭素繊維強化複合材料。   A metal-based carbon fiber reinforced composite material characterized in that the carbon portion has a sandwich structure composed of a three-layer structure in which an isotropic carbon material is a core material in the central portion and carbon fibers are arranged on the outside. 前記等方性炭素材が、CIP材、押出材、型込材、短繊維成型体などの炭素粉粒体を成型して製作した炭素材であることを特徴とする、請求項1記載の金属基炭素繊維強化複合材料。   2. The metal according to claim 1, wherein the isotropic carbon material is a carbon material produced by molding carbon powder particles such as a CIP material, an extruded material, a molding material, and a short fiber molded body. Base carbon fiber reinforced composite material. 前記炭素繊維が、織物材、0/90度積層材、一方向積層材、チョップ材およびそれを組み合わせたものであることを特徴とする、請求項1または2記載の金属基炭素繊維強化複合材料。   The metal-based carbon fiber reinforced composite material according to claim 1 or 2, wherein the carbon fiber is a woven material, a 0/90 degree laminated material, a unidirectional laminated material, a chop material and a combination thereof. . 金属基が、アルミニウム、銅、マグネシウム、およびそれらの合金であることを特徴とする、請求項1〜3の何れか1項に記載の金属基炭素繊維強化複合材料。   The metal-based carbon fiber reinforced composite material according to any one of claims 1 to 3, wherein the metal group is aluminum, copper, magnesium, or an alloy thereof. 炭素部分が、CIP材、押出材、型込材、短繊維成型体などの炭素粉粒体を成型して製作した炭素材を有した等方性炭素材を中央部のコア材とし、外側に炭素繊維を配する3層構造により構成されるサンドイッチ構造とし、前記炭素材に対して金属を溶融状態で高圧で圧入することを特徴とする金属基炭素繊維強化複合材料の製造方法。   Isotropic carbon material with carbon material produced by molding carbon powder such as CIP material, extruded material, embedding material, short fiber molding, etc., as the core material in the center, and on the outside A method for producing a metal-based carbon fiber reinforced composite material, characterized by having a sandwich structure composed of a three-layer structure in which carbon fibers are arranged, and pressing a metal into the carbon material in a molten state at a high pressure. 前記炭素繊維が、織物材、0/90度積層材、一方向積層材、チョップ材およびそれを組み合わせたものであることを特徴とする、請求項5記載の金属基炭素繊維強化複合材料の製造方法。   6. The metal-based carbon fiber reinforced composite material according to claim 5, wherein the carbon fiber is a woven material, a 0/90 degree laminated material, a unidirectional laminated material, a chop material and a combination thereof. Method. 金属基が、アルミニウム、銅、マグネシウム、およびそれらの合金を用いたことを特徴とする、請求項5または6記載の金属基炭素繊維強化複合材料の製造方法。   The method for producing a metal-based carbon fiber reinforced composite material according to claim 5 or 6, wherein the metal group is aluminum, copper, magnesium, or an alloy thereof.
JP2003369914A 2003-10-30 2003-10-30 Metal-based carbon fiber reinforced composite material and method for producing the same Expired - Fee Related JP4214034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369914A JP4214034B2 (en) 2003-10-30 2003-10-30 Metal-based carbon fiber reinforced composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369914A JP4214034B2 (en) 2003-10-30 2003-10-30 Metal-based carbon fiber reinforced composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005133141A true JP2005133141A (en) 2005-05-26
JP4214034B2 JP4214034B2 (en) 2009-01-28

Family

ID=34647082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369914A Expired - Fee Related JP4214034B2 (en) 2003-10-30 2003-10-30 Metal-based carbon fiber reinforced composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4214034B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942637B2 (en) 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
CN104120457A (en) * 2014-07-10 2014-10-29 上海大学 Preparing method of metal-carbide-containing multi-layer multi-component composite material
WO2018088045A1 (en) * 2016-11-11 2018-05-17 昭和電工株式会社 Metal-carbon particle composite material and method for manufacturing same
JP2018075617A (en) * 2016-11-11 2018-05-17 昭和電工株式会社 Metal-carbon particle composite material and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862878B (en) * 2017-04-20 2019-04-16 广东科学技术职业学院 A kind of manufacturing method of automobile B-column

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942637B2 (en) 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
CN104120457A (en) * 2014-07-10 2014-10-29 上海大学 Preparing method of metal-carbide-containing multi-layer multi-component composite material
WO2018088045A1 (en) * 2016-11-11 2018-05-17 昭和電工株式会社 Metal-carbon particle composite material and method for manufacturing same
JP2018075617A (en) * 2016-11-11 2018-05-17 昭和電工株式会社 Metal-carbon particle composite material and its manufacturing method
JP2018075802A (en) * 2016-11-11 2018-05-17 昭和電工株式会社 Metal-carbon particle composite and production method of the same

Also Published As

Publication number Publication date
JP4214034B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4348565B2 (en) High thermal conductivity / low thermal expansion composite material and heat dissipation board
JP5335339B2 (en) A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material.
TWI403576B (en) Metal based composites material containing carbon and manufacturing method thereof
US20030024611A1 (en) Discontinuous carbon fiber reinforced metal matrix composite
JP6571000B2 (en) Thermally conductive composite and method for producing the same
CN105803241B (en) A kind of conveyor screw enhancing Metal Substrate or polymer matrix composite and preparation method
JP2006001232A (en) Composite having high heat conduction/low heat expansion and manufacturing process of the same
TW201115796A (en) LED chip bonding body, LED package and method for manufacturing a LED package
US20160059535A1 (en) Conductive bond foils
JP2005002470A (en) High thermal conduction and low thermal expansion composite material, heat radiation substrate, and their production method
JP2004010978A (en) Heat-dissipating material with high thermal conductivity and its manufacturing process
JP2016107485A (en) Composite molding, and production method thereof
CN205075422U (en) Graphite combined material and sheet metal housing
JP4214034B2 (en) Metal-based carbon fiber reinforced composite material and method for producing the same
WO2016205024A1 (en) Electronic device housing utilizing a metal matrix composite
JP4223730B2 (en) Heat sink plate
JPS61114848A (en) Manufacture of metallic group composite material
JPH05175378A (en) Semiconductor device
WO2005053884A1 (en) Metal matrix composite structures
KR101221060B1 (en) Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium
JP2010254484A (en) C/SiC HONEYCOMB COMPOSITE BODY AND METHOD FOR PRODUCING THE SAME
JP6108533B2 (en) High thermal conductive plate
JP2005187301A (en) Carbon fiber-reinforced metal composite material and its manufacturing method
JP2000007456A (en) Highly heat conductive ceramic metal composite material
JP6377452B2 (en) Composite, its manufacturing method, and composite bearing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081014

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111107

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20131107

LAPS Cancellation because of no payment of annual fees