JP2005131692A - Rolling method - Google Patents

Rolling method Download PDF

Info

Publication number
JP2005131692A
JP2005131692A JP2003372548A JP2003372548A JP2005131692A JP 2005131692 A JP2005131692 A JP 2005131692A JP 2003372548 A JP2003372548 A JP 2003372548A JP 2003372548 A JP2003372548 A JP 2003372548A JP 2005131692 A JP2005131692 A JP 2005131692A
Authority
JP
Japan
Prior art keywords
thickness
rolling
radiation
joint
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372548A
Other languages
Japanese (ja)
Inventor
Nobuo Sakamoto
信夫 坂本
Hidenori Okumura
英典 奥村
Akio Tomioka
章生 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2003372548A priority Critical patent/JP2005131692A/en
Publication of JP2005131692A publication Critical patent/JP2005131692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling method by which the generation of off-gage is minimized by suppressing thickness variation in the joined part after welding, which is caused by the material characteristics such as the thicknesses and the hardness of a preceding material and a succeeding material by automatically detecting the joined part, and the fracture of a sheet is not caused when rolling or at stages after that, in the rolling for continuously rolling a material having the joined part of the preceding material and the succeeding material which are different in the material characteristics from each other. <P>SOLUTION: When rolling the material having the joined part between the preceding material and the succeeding material which are different in the material characteristics from each other in a stage for rolling the sheet 1 by using a rolling stand having at least a pair of rolls 2, by detecting the joined part by providing a means 3 for detecting the joined part before the rolling stand and, controlling the thickness by providing means 7, 8, 9 for controlling the thickness of the sheet 1 at the rolling stand and controlling the thickness by providing means 10, 11 for switching thickness control while tracking a joined position, the rolling is performed so as to have a predetermined thickness by preventing a fluctuation in the plate thickness variation before and after the joined part after rolling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、互いに材料特性が異なる先行材と後行材の接合部を有する材料を接合して連続的に圧延する圧延方法に係り、特に、簡単な設備構成とアルゴリズムにより、接合部の位置を自動的に判定し、接合部を所定の板厚に制御することにより、接合部の板厚変動を最小に抑制することにより、歩留向上と安定操業が得られる圧延方法に関する。     The present invention relates to a rolling method in which materials having joint portions of preceding and following materials having different material properties are joined and continuously rolled, and in particular, the position of the joint is determined by a simple equipment configuration and algorithm. The present invention relates to a rolling method in which yield is improved and stable operation can be obtained by automatically determining and controlling the joint portion to a predetermined plate thickness, thereby minimizing the plate thickness variation of the joint portion.

高価な板材をバッチミルで圧延する場合、歩留低下の大きな要因である板材の先端および後端に発生するオフゲージや品質欠点を最小に抑制する必要がある。そのため、板材の先端および後端に安価な板材を溶接によって接合する方法がとられるが、板材の板厚や硬度、変形抵抗などの材料特性の相違によって、先行材に対する圧下位置などの圧延条件に基づいて後行材をそのまま圧延すると、溶接による接合部の板厚変動が大きく、圧延時あるいはその後の工程において板破断などの発生の原因となり生産性を低下させるという問題点があった。   When an expensive plate material is rolled by a batch mill, it is necessary to minimize off-gauges and quality defects generated at the front and rear ends of the plate material, which are a major factor in yield reduction. For this reason, an inexpensive plate material is joined to the front and rear ends of the plate material by welding, but due to differences in material properties such as plate thickness, hardness, deformation resistance, etc., the rolling conditions such as the rolling position with respect to the preceding material are reduced. On the other hand, when the succeeding material is rolled as it is, there is a problem that the thickness variation of the joint portion due to welding is large, which causes the occurrence of plate breakage at the time of rolling or the subsequent process, and decreases the productivity.

上記の板厚変動の不具合を防止する周知の方法として、接合部前後の両方の圧延スケジュールを予め求めておき、板厚変動や張力変動を抑制しながら連続的に圧延スケジュールを変更していく走間板厚変更技術がある。この場合、材料の接合部の位置検出としては板材に空けられた穴を光学的に検出する方式が一般的である。この方法はタンデム式冷間圧延機に多用されているが、事前に穴あけ加工が必要であり、さらに穴検出器の設置、圧延スケジュール変更のための膨大な計算システムが必要となり、設備投資も大きなものに成らざるを得ない。   As a well-known method for preventing the above-described problems of fluctuations in sheet thickness, it is necessary to obtain both rolling schedules before and after the joint in advance and continuously change the rolling schedule while suppressing fluctuations in sheet thickness and tension. There is a technology to change the thickness of the plate. In this case, a method of optically detecting a hole formed in the plate material is generally used as the position detection of the joint portion of the material. This method is widely used in tandem cold rolling mills, but it requires drilling in advance, and requires a huge calculation system for installing a hole detector and changing the rolling schedule, resulting in a large capital investment. It must be made into a thing.

また、連続的に板材を圧延する工程において材料の接合部を検出する技術については、例えば特許文献1に、先行材の後端と後行材の先端とをフラッシュバット溶接した溶接部に対して2次元距離計を用いて当該溶接部の断面形状を溶接線に沿って連続的に測定し、溶接部のビード残り等によって生じる段差の有無およびその大小を検査することによって溶接部の合否の判定を行うことが開示されているが、断面形状を連続測定するものであり、短時間ではあるが一定の時間を要し、もとより瞬時に溶接部を検出することを目的としたものではない。   In addition, regarding the technique for detecting the joint portion of the material in the process of continuously rolling the plate material, for example, in Patent Document 1, for the welded portion where the rear end of the preceding material and the front end of the following material are flash-butt welded Use a two-dimensional distance meter to continuously measure the cross-sectional shape of the welded portion along the weld line, and determine whether or not the welded portion is acceptable by checking the presence or absence of a step caused by the bead residue of the welded portion and the size thereof. However, it is intended to continuously measure the cross-sectional shape, takes a short time but takes a certain time, and is not intended to detect a welded part instantaneously.

板厚を制御する技術としては、例えば特許文献2に、圧延荷重変動を検出して板厚変動を判定し、圧下操作量を修正するためのミル定数可変制御AGC(Automatic gauge contorol)、残留板厚偏差を解消するための圧下モニターAGC、板厚偏差を板速度に同期して圧延ロールの入側直前までトラッキングし、圧延ロールの回転速度を修正するためのFF(Feed forward)−AGC、圧延ロールの回転速度を操作して張力を変化させて出側の板厚定常偏差を解消させるための出側速度AGCなどの各種のAGCを用いた圧延機において、連続圧延の安定操業の阻害要因となるAGCの異常を推定する方法を開示している。この特許文献2に記載されているように、圧延機には各種のAGCが様々な目的のために配設されているが、先行材と後行材の接合部前後の板厚変動を抑制することを目的として配設されているものはない。   As a technique for controlling the plate thickness, for example, Patent Document 2 discloses a mill constant variable control AGC (Automatic Gauge Control) for detecting a rolling load variation to determine a plate thickness variation and correcting a reduction operation amount, a remaining plate. Roll-down monitor AGC for eliminating thickness deviations, FF (Feed forward) -AGC for correcting rolling roll rotation speed by tracking sheet thickness deviation until just before entering the rolling roll in synchronization with sheet speed In rolling mills using various AGCs such as exit side speed AGC for changing the tension by operating the rotation speed of the roll and eliminating the steady thickness deviation on the exit side, A method for estimating an AGC abnormality is disclosed. As described in Patent Document 2, various types of AGC are arranged for various purposes in the rolling mill, but it suppresses plate thickness fluctuations before and after the joint between the preceding material and the following material. Nothing is arranged for that purpose.

特開平10−006029号公報JP-A-10-006029 特許第3171212号公報Japanese Patent No. 3171212

本発明は、互いに材料特性が異なる先行材と後行材の接合部を有する材料を接合して連続的に圧延する圧延において、接合部を自動的に検出し、接合部前後の材料の板厚、硬度などの材料特性により発生する圧延後の接合部の板厚変動を抑制してオフゲージの発生量を最小にするとともに、圧延時またはその後の工程において板破断を生じることのない圧延方法を提供することを目的とする。     The present invention automatically detects a joint in a rolling process in which a material having a joint between a preceding material and a succeeding material having different material properties is joined and continuously rolled, and the plate thickness of the material before and after the joint. In addition to minimizing the amount of off-gage generated by suppressing fluctuations in the thickness of the joint after rolling due to material properties such as hardness, a rolling method that does not cause sheet breakage during rolling or in subsequent processes is provided. The purpose is to do.

本発明の目的を達成するため、本発明の圧延方法は、少なくとも1対の圧延ロールを有する圧延スタンドを用いて板材を圧延する工程において、互いに材料特性が異なる先行材と後行材の接合部を有する材料を連続搬送しながら圧延する際に、圧延スタンドの前に接合部を検出する手段を設けて接合部を検出し、圧延スタンドにおいて板材の板厚を制御する手段を設けて板厚を制御し、接合位置をトラッキングしながら板厚制御を切替える手段を設けて板厚を制御することにより、圧延後の接合部の前後の板厚変動の発生を防止して所定の板厚になるように圧延することを特徴とする圧延方法(請求項1)であり、
上記(請求項1)の圧延方法において、圧延される材料の接合部を検出する手段として圧延ロールの入側に放射線板厚計を設け、接合部前後の圧延ロールの入側の呼称板厚情報と接合部前後の板材の放射線透過率特性情報と、放射線板厚計にて測定した板厚測定値に基づいて接合部を自動的に検出すること(請求項2)を特徴とし、また
上記(請求項1または2)の圧延方法において、圧延される材料の接合部が、少なくともその下流の圧延ロールを通過する際に、板厚を制御する手段を用いて高ミル定数可変制御を作動させることにより、接合部前後の材料特性に起因する板厚変動の発生を防止して圧延後の先行材の板厚と後行材の板厚が所定の板厚になるように制御すること(請求項3)を特徴とし、さらに
上記(請求項1〜3)の圧延方法において、圧延される材料の接合部が圧延ロールの入側放射線板厚計を通過した直後に、少なくとも入側放射線板厚計を使用しているAGC動作を停止させ、かつ予め設定した先行材の放射線透過率の設定値を後行材の放射線透過率の設定値に切り替えた後、入側放射線板厚計を使用しているAGC動作を再開させる一連の動作を自動的に行うことにより、先行材と後行材の板厚変動を最小にすること(請求項4)、もしくは
圧延される材料の接合部が圧延ロールの出側放射線板厚計を通過した直後に、少なくとも出側放射線板厚計を使用しているAGC動作を停止させ、かつ予め設定した先行材の放射線透過率の設定値を後行材の放射線透過率の設定値に切り替えた後、出側放射線板厚計を使用しているAGC動作を再開させる一連の動作を自動的に行うことにより、先行材と後行材の板厚変動を最小にすること(請求項5)を特徴とする。
In order to achieve the object of the present invention, a rolling method of the present invention is a method for rolling a plate material using a rolling stand having at least one pair of rolling rolls, and joining a preceding material and a subsequent material having different material properties from each other. When rolling while continuously conveying a material having a thickness, a means for detecting the joint is provided in front of the rolling stand to detect the joint, and a means for controlling the thickness of the plate material is provided in the rolling stand. By controlling the plate thickness by controlling and controlling the plate thickness while tracking the bonding position, the occurrence of plate thickness fluctuations before and after the joint after rolling is prevented and the predetermined plate thickness is achieved. A rolling method (Claim 1), characterized in that
In the rolling method of the above (Claim 1), a radiation thickness gauge is provided on the entry side of the rolling roll as means for detecting the joining portion of the material to be rolled, and the nominal thickness information on the entry side of the rolling roll before and after the joining portion. (2) and automatically detecting the joint based on the radiation transmittance characteristic information of the plate material before and after the joint portion and the plate thickness measurement value measured by the radiation plate thickness meter. The rolling method according to claim 1 or 2, wherein when the joint portion of the material to be rolled passes through at least the downstream rolling roll, the high mill constant variable control is operated using means for controlling the plate thickness. Therefore, it is possible to prevent the occurrence of sheet thickness fluctuations due to the material properties before and after the joint and control the sheet thickness of the preceding material after rolling and the sheet thickness of the succeeding material to be a predetermined sheet thickness (claims). 3), and the pressure of the above (Claims 1 to 3) In the method, immediately after the joint portion of the material to be rolled passes through the entry side radiation thickness gauge of the rolling roll, at least the AGC operation using the entry side radiation thickness gauge is stopped, and a preset preceding material By automatically switching a set value of the radiation transmittance of the material to a set value of the radiation transmittance of the following material, and automatically performing a series of operations for resuming the AGC operation using the entry side radiation thickness gauge, Minimize fluctuations in the thickness of the preceding material and the following material (Claim 4), or at least immediately after the joined portion of the material to be rolled passes through the exit radiation thickness gauge of the rolling roll, Stop the AGC operation using the thickness gauge, and switch the radiation transmittance setting value of the preceding material set in advance to the radiation transmittance setting value of the following material, then use the exit radiation thickness meter Series to resume AGC operation By performing the operation automatically, characterized by the thickness variation of the preceding material and the following material to minimize (claim 5).

このように形成されている本発明の圧延方法を用いることにより、材料板厚や材料成分などに起因する材料特性が互いに異なる材料を接合して、その接合部を連続的に通板して圧延する際に、圧延後の接合部前後の板厚変動が抑制される。これにより、圧延後の全長にわたる長手方向の板厚精度が向上するとともに、接合部の圧延時またはその後の工程通板時に板厚変動に起因する板破断の発生を防止でき、連続的に高生産性で板材を生産可能となる。また、本発明の圧延方法は、板材の接合部の位置を圧延ロールの入側に設置した放射線板厚計を利用して自動判定できるため、接合部位置を検出するための穴あけ加工やその検出器を別に設置する必要がなく、安価な設備化が可能である。   By using the rolling method of the present invention formed in this way, materials having different material properties due to material thickness, material composition, etc. are joined, and the joint is continuously passed through and rolled. In doing so, plate thickness fluctuations before and after the joint after rolling are suppressed. This improves the plate thickness accuracy in the longitudinal direction over the entire length after rolling, and prevents the occurrence of plate breakage due to plate thickness fluctuations during rolling of the joint or subsequent process plate-through, resulting in continuous high production. It becomes possible to produce board materials with high performance. Moreover, since the rolling method of the present invention can automatically determine the position of the joint portion of the plate material using a radiation plate thickness meter installed on the entry side of the rolling roll, the drilling process for detecting the joint portion and its detection It is not necessary to install a separate vessel, and inexpensive equipment can be realized.

以下、互いに材料特性が異なる板材の例として、材料成分に起因する放射線透過率が互いに異なる低炭素鋼板とニッケル合金板とを突き合せ溶接にて接合し、その接合部を圧延ロールに連続的に通板して圧延する場合を想定して、図面を参照しながら本発明を説明する。   Hereinafter, as an example of a plate material having different material properties, a low carbon steel plate and a nickel alloy plate having different radiation transmittance due to material components are joined by butt welding, and the joined portion is continuously attached to a rolling roll. The present invention will be described with reference to the drawings on the assumption that the sheet is rolled by rolling.

図1に本発明を適用した圧延機の概念図を示す。本発明の方法は、2スタンド以上の多段スタンドミルにも適用可能であるが、説明を簡略にするためシングルスタンドミルに適用する場合を説明する。板材1は図1において矢印で示すように右から左に向って進行する。圧延ロール2の入側には入側放射線板厚計3、出側には出側放射線板厚計4が設けられており、それぞれ圧延前後の板厚を測定する。ここでは、それぞれの放射線板厚計3および4として、低炭素鋼を基準板として内蔵したX線厚み計を使用した例を示す。圧延ロール2には圧延荷重計5と油圧圧下装置6が備え付けられており、ミル定数可変制御装置7とフィードフォワードAGC装置8とフィードバックAGC装置9の3種類の装置からなる板厚制御装置が装備されている。また、材料接合部判定演算装置10は、接合部前後の材料の呼称板厚と放射線透過率補正係数、入側放射線板厚計3による板厚検出値の情報から接合部を判定する演算装置である。さらに、指令装置11は接合部のミル内の位置をトラッキングしながら、上記3種類の板厚制御装置7、8、9のON/OFF切替および入側および出側の放射線板厚計3、4の放射線透過率設定替えを指令する装置である。   FIG. 1 shows a conceptual diagram of a rolling mill to which the present invention is applied. Although the method of the present invention can be applied to a multi-stage stand mill having two or more stands, a case where it is applied to a single stand mill will be described in order to simplify the description. The plate material 1 proceeds from right to left as indicated by an arrow in FIG. An entrance side radiation thickness meter 3 is provided on the entry side of the rolling roll 2, and an exit side radiation thickness meter 4 is provided on the exit side, and the thickness before and after rolling is measured. Here, an example in which an X-ray thickness meter incorporating low carbon steel as a reference plate is used as each of the radiation plate thickness meters 3 and 4 is shown. The rolling roll 2 is provided with a rolling load meter 5 and a hydraulic pressure reducing device 6, and is equipped with a plate thickness control device comprising three types of devices: a mill constant variable control device 7, a feedforward AGC device 8 and a feedback AGC device 9. Has been. Moreover, the material junction determination operation device 10 is an arithmetic device that determines a junction from information on the nominal plate thickness and the radiation transmittance correction coefficient of the material before and after the junction, and information on the plate thickness detection value by the entrance radiation plate thickness meter 3. is there. Further, the command device 11 tracks the position of the joint in the mill, and switches the ON / OFF of the three types of plate thickness control devices 7, 8, 9 and the radiation plate thickness gauges 3, 4 on the input and output sides. This is a device for instructing to change the radiation transmittance setting.

圧延される板材1は、先行材が低炭素鋼板、後行材がニッケル合金板であり、突合せ溶接接合されて圧延ロール2に連続的に通板されてくる。ここで、先行材と後行材の呼称板厚および先行材と後行材に対する入側放射線板厚計3および出側放射線板厚計4における放射線透過率補正係数は、材料接合部判定演算装置10に事前に入力されている。圧延ロール2には、予め先行材である低炭素鋼板を所定厚みに圧延するための圧下位置が設定されている。先行材を圧延するためのスタンド前後の板厚は入側放射線板厚計3および出側放射線板厚計4に設定され、フィードフォワードAGC装置8およびフィードバックAGC装置9により板厚制御されるが、後行材との溶接接合部が入側放射線板厚計3および出側放射線板厚計4を通過すると、ニッケル合金板は低炭素鋼板よりもX線が透過し難いため、先行材の低炭素鋼板用の放射線透過率に調整された入側および出側の放射線板厚計3、4によっては後行材のニッケル合金板は実板厚と異なる値として検出される。この現象を利用して接合部を自動的に検出するものである。   The sheet material 1 to be rolled is a low carbon steel plate as a preceding material and a nickel alloy plate as a following material, and is continuously butt welded and passed through a rolling roll 2. Here, the nominal thickness of the preceding material and the succeeding material, and the radiation transmittance correction coefficient in the entrance side radiation plate thickness meter 3 and the exit side radiation plate thickness meter 4 for the preceding material and the following material are calculated as a material junction determination calculation device. 10 is entered in advance. The rolling roll 2 is preset with a reduction position for rolling a low-carbon steel plate, which is a preceding material, to a predetermined thickness. The plate thickness before and after the stand for rolling the preceding material is set to the entrance side radiation plate thickness meter 3 and the exit side radiation plate thickness meter 4, and the plate thickness is controlled by the feedforward AGC device 8 and the feedback AGC device 9, When the welded joint with the succeeding material passes through the entry side radiation thickness meter 3 and the exit side radiation thickness meter 4, the nickel alloy plate is less likely to transmit X-rays than the low carbon steel plate. Depending on the radiation thickness gauges 3 and 4 on the entry side and the exit side adjusted to the radiation transmittance for the steel plate, the nickel alloy plate of the succeeding material is detected as a value different from the actual plate thickness. Using this phenomenon, the joint is automatically detected.

次に、この材料接合部の判定アルゴリズムの一例について説明する。測定される材料のマイクロメータなどで測定した実板厚をha、内蔵された基準板にて校正された入側および出側の放射線板厚計3、4で測定された板厚をhmとした場合、入側および出側の放射線板厚計3、4の放射線透過率補正係数αは下記の(1)式で表現される。
α={hm/ha−1} (1)
先行材Aの呼称板厚をh(A)、入側放射線板厚計3の放射線透過率補正係数をα(A)とした場合の先行材Aの板厚検出値をhm(A)とすると、その関係は下記の(2)式で表現される。
hm(A)=h(A) (2)
また、先行材の放射線透過率補正係数α(A)で設定された入側放射線板厚計3にて、呼称板厚h(B)、放射線透過率補正係数α(B)の後行材Bを測定したときの板厚検出値をhm(B)とすると、その関係は下記の(3)式で表現される。
hm(B)=h(B)・{1+α(B)}/{1+α(A)} (3)
一般に、h(A)≠h(B)、α(A)≠α(B)であるため、下記の(4)式の関係になる。
hm(A)≠hm(B) (4)
先行材Aの放射線透過率補正係数α(A)で設定された入側放射線板厚計3を、先行材Aから後行材Bが通過した場合、材料の接合部前後で板厚検出値はhm(A)からhm(B)に変化する。
Next, an example of this material joint determination algorithm will be described. The actual plate thickness measured with a micrometer or the like of the material to be measured is ha, and the plate thickness measured with the radiation side thickness gauges 3 and 4 calibrated with the built-in reference plate is hm. In this case, the radiation transmittance correction coefficient α of the radiation plate thickness gauges 3 and 4 on the entry side and the exit side is expressed by the following equation (1).
α = {hm / ha-1} (1)
When the nominal thickness of the preceding material A is h (A) and the radiation transmittance correction coefficient of the entrance side radiation thickness meter 3 is α (A), the detected thickness of the preceding material A is hm (A). The relationship is expressed by the following equation (2).
hm (A) = h (A) (2)
Further, with the entrance side radiation thickness meter 3 set with the radiation transmittance correction coefficient α (A) of the preceding material, the succeeding material B with the nominal plate thickness h (B) and the radiation transmittance correction coefficient α (B). Assuming that hm (B) is the plate thickness detection value when measuring, the relationship is expressed by the following equation (3).
hm (B) = h (B). {1 + α (B)} / {1 + α (A)} (3)
In general, since h (A) ≠ h (B) and α (A) ≠ α (B), the relationship of the following expression (4) is established.
hm (A) ≠ hm (B) (4)
When the succeeding material B passes from the preceding material A through the entrance side radiation plate thickness meter 3 set by the radiation transmittance correction coefficient α (A) of the preceding material A, the plate thickness detection value is before and after the joining portion of the material. It changes from hm (A) to hm (B).

通常、長手方向で板厚変動があるために、先行材Aも後行材Bそれ自体も板厚変動を伴うが、その変動量に比較して、接合部を挟んだ2つの材料の板厚レベルあるいは放射線透過率の違いに起因して放射線板厚計3にて検出される板厚変化が大きい場合は、その板厚検出値の差を監視しておくことによって、接合部を判定することが可能となる。即ち、先行材Aの放射線透過率補正係数α(A)で設定された入側放射線板厚計3で検出される板厚hm[α(A)]と先行材Aの呼称板厚h(A)の差は下記の(5)式で示される。
|hm[α(A)]−h(A)| (5)
接合部が上記の先行材Aの放射線透過率補正係数α(A)で設定された入側放射線板厚計3を通過する際に検出されると推定される板厚変化は下記の(6)式で示される。
|h(B)・{1+α(B)}/{1+α(A)}−h(A)| (6)
そして(5)式と(6)式を比較して、下記の(7)式
|hm[α(A)]−h(A)|>β・|h(B)・{1+α(B)}/{1+α(A)}−h(A)|(7)
で示す条件が満足した点を材料の接合部と判定する。
(7)式の右辺のβは係数であり、接合部通過時に検出される板厚変化の量は、原理的にはβ=1とした場合の右項と左項が等しくなるはずである。しかしながら、現実には上述した材料の長手方向の板厚変動や測定精度などの影響が存在するために、0<β<1なる範囲でβ値を調整し、接合部検出エラーを防止する最適値を設定する。
Usually, since there is a thickness variation in the longitudinal direction, both the leading material A and the following material B itself are accompanied by a thickness variation. Compared to the variation amount, the thickness of the two materials sandwiching the joint portion When the plate thickness change detected by the radiation plate thickness meter 3 is large due to the difference in level or radiation transmittance, the junction is determined by monitoring the difference in the plate thickness detection value. Is possible. That is, the plate thickness hm [α (A)] detected by the entrance side radiation plate thickness meter 3 set by the radiation transmittance correction coefficient α (A) of the preceding material A and the nominal plate thickness h (A ) Is expressed by the following equation (5).
| Hm [α (A)]-h (A) | (5)
The plate thickness change estimated to be detected when the joint passes through the entrance side radiation plate thickness meter 3 set by the radiation transmittance correction coefficient α (A) of the preceding material A is the following (6). It is shown by the formula.
| H (B) · {1 + α (B)} / {1 + α (A)} − h (A) | (6)
Then, comparing the formulas (5) and (6), the following formula (7) | hm [α (A)] − h (A) |> β · | h (B) · {1 + α (B)} / {1 + α (A)}-h (A) | (7)
The point where the condition indicated by is satisfied is determined as the joint portion of the material.
Β on the right side of the equation (7) is a coefficient, and the amount of change in plate thickness detected when passing through the joint should in principle be the same for the right and left terms when β = 1. However, in reality, there are effects such as the plate thickness variation in the longitudinal direction of the material and the measurement accuracy described above. Therefore, the β value is adjusted in the range of 0 <β <1, and the optimum value for preventing the joint detection error. Set.

次に、材料接合部の板厚変動発生を防止する板厚制御例について説明する。上記の方法により入側放射線板厚計3において材料接合部を検出すると、図2に示すタイミングで入側および出側の放射線板厚計3、4の板厚設定値および放射線透過率補正係数の切替え、板厚制御装置7、8、9による各AGC動作のON/OFFを、指令装置11の指令に基づき、自動的に行う。材料接合部が圧延ロール2および出側放射線板厚計4の位置を通過するタイミングは、指令装置11によりトラッキングされて判断される。材料接合部が入側放射線板厚計3を通過すると、入側放射線板厚計3を利用したフィードフォワードAGC装置8を一旦OFFにし、入側放射線板厚計3の放射線透過率補正係数と板厚設定値を先行材の値から後行材の値に切替える。同時に、ミル定数可変制御装置7による高ミル定数可変制御を作動させる。この制御は材料接合部が少なくとも圧延ロール2を通過し終えるまでは継続する必要があり、これにより接合部前後の材料の板厚差や変形抵抗差などに起因して発生する圧延ロール2の出側板厚変動を最小に抑制する。圧延ロール2の出側呼称板厚(即ち目標板厚)が異なる場合は、それに伴う圧延荷重値を予め求めておき、材料接合部が圧延ロール2を通過するタイミングでミル定数可変制御のロックオン荷重を変更することによって、後行材の先端部も所定の板厚に制御できる。   Next, a plate thickness control example for preventing the occurrence of plate thickness fluctuation at the material joint will be described. When the material junction is detected in the entry side radiation thickness meter 3 by the above method, the thickness setting values and radiation transmittance correction coefficients of the radiation side thickness meters 3 and 4 on the entry side and the exit side are measured at the timing shown in FIG. Switching and ON / OFF of each AGC operation by the plate thickness control devices 7, 8, 9 are automatically performed based on a command from the command device 11. The timing at which the material joint passes through the positions of the rolling roll 2 and the exit side radiation thickness meter 4 is determined by being tracked by the command device 11. When the material junction passes through the entrance side radiation thickness meter 3, the feedforward AGC device 8 using the entrance side radiation thickness meter 3 is turned off once, and the radiation transmittance correction coefficient and the plate of the entrance side radiation thickness meter 3 are turned off. The thickness setting value is switched from the value of the preceding material to the value of the following material. At the same time, the high mill constant variable control by the mill constant variable control device 7 is operated. This control must be continued until at least the material joint has passed through the rolling roll 2, and thus the rolling roll 2 generated due to a difference in sheet thickness or deformation resistance between the material before and after the joint is obtained. Minimizes side plate thickness variation. When the delivery side nominal thickness (that is, the target thickness) of the rolling roll 2 is different, the rolling load value associated therewith is obtained in advance, and the lock on of the mill constant variable control is performed at the timing when the material joint passes the rolling roll 2. By changing the load, the leading end of the succeeding material can be controlled to a predetermined thickness.

出側放射線板厚計4を利用したフィードバックAGC装置9については、材料接合部が圧延ロール2の直下に噛み込まれる時点で一旦OFFにし、材料接合部が出側放射線板厚計4を通過したタイミングで出側放射線板厚計4の板厚設定値および放射線透過率補正係数を先行材の値から後行材の値に切替えるとともに、フィードバックAGC装置9の制御を再開する。このように、図1に示した機器を図2に示した圧延工程および制御切替えに従って運転することにより、低炭素鋼板とニッケル合金板のような材料特性の異なる材料を溶接接合して、圧延機を停止することなく連続して圧延することができる。   The feedback AGC device 9 using the exit side radiation thickness meter 4 is turned off once when the material joint is bitten directly under the rolling roll 2, and the material joint has passed the exit side radiation thickness meter 4. At the timing, the thickness setting value and the radiation transmittance correction coefficient of the outgoing radiation thickness meter 4 are switched from the value of the preceding material to the value of the following material, and the control of the feedback AGC device 9 is resumed. Thus, by operating the apparatus shown in FIG. 1 according to the rolling process and control switching shown in FIG. 2, materials having different material characteristics such as low carbon steel plate and nickel alloy plate are welded and joined. Can be continuously rolled without stopping.

本発明の圧延方法を適用することにより、材料板厚あるいは材料成分に起因する材料特性が互いに異なる材料を接合してその接合部を連続的に通板して圧延しても、接合部の圧延時またはその後の工程通板時に板厚変動に起因する板破断を生じることがなく作業することができる。これにより、高生産性でかつ高歩留が達成できるため、コスト削減に極めて有効である。   By applying the rolling method of the present invention, even if materials having different material properties due to material thickness or material composition are joined and rolled by continuously passing the joint, the joint is rolled. It is possible to work without causing plate breakage due to plate thickness fluctuations at the time of passing the plate during or after the process. As a result, high productivity and high yield can be achieved, which is extremely effective for cost reduction.

本発明を適用した圧延機の一例を示す概念図The conceptual diagram which shows an example of the rolling mill to which this invention is applied 本発明を適用した圧延機の板厚計および制御装置の使用方法の一例を示す概念図The conceptual diagram which shows an example of the usage method of the thickness meter and control apparatus of a rolling mill to which this invention is applied

符号の説明Explanation of symbols

1 : 板材
2 : 圧延ロール
3 : 入側放射線板厚計
4 : 出側放射線板厚計
5 : 圧延荷重計
6 : 油圧圧下装置
7 : ミル定数可変制御装置
8 : フィードフォワードAGC
9 : フィードバックAGC
10 : 材料接合部判定演算装置
11 : 指令装置
1: Sheet material 2: Rolling roll 3: Incoming radiation thickness gauge 4: Outgoing radiation thickness gauge 5: Rolling load meter
6: Hydraulic reduction device
7: Mill constant variable control device
8: Feed forward AGC
9: Feedback AGC
10: Material joint determination calculation device
11: Command device

Claims (5)

少なくとも1対の圧延ロールを有する圧延スタンドを用いて板材を圧延する工程において、互いに材料特性が異なる先行材と後行材の接合部を有する材料を連続搬送しながら圧延する際に、圧延スタンドの前に接合部を検出する手段を設けて接合部を検出し、圧延スタンドにおいて板材の板厚を制御する手段を設けて板厚を制御し、接合位置をトラッキングしながら板厚制御を切替える手段を設けて板厚を制御することにより、圧延後の接合部の前後の板厚変動の発生を防止して所定の板厚になるように圧延することを特徴とする圧延方法。   In the step of rolling a plate material using a rolling stand having at least one pair of rolling rolls, when rolling while continuously conveying a material having a joining portion of a preceding material and a succeeding material having different material properties, A means for detecting the joint by providing a means for detecting the joint before, a means for controlling the thickness of the plate material at the rolling stand by controlling the thickness, and a means for switching the thickness control while tracking the joining position. A rolling method characterized by rolling the sheet so as to have a predetermined sheet thickness by preventing the occurrence of sheet thickness fluctuation before and after the rolled joint by providing and controlling the sheet thickness. 前記圧延される材料の接合部を検出する手段として圧延ロールの入側に放射線板厚計を設け、接合部前後の圧延ロールの入側の呼称板厚情報と接合部前後の板材の放射線透過率特性情報と、放射線板厚計にて測定した板厚測定値に基づいて接合部を自動的に検出することを特徴とする請求項1に記載の圧延方法。   As a means for detecting the joint portion of the material to be rolled, a radiation thickness meter is provided on the entrance side of the rolling roll, the nominal thickness information on the entrance side of the roll before and after the joint portion, and the radiation transmittance of the plate material before and after the joint portion. The rolling method according to claim 1, wherein the joint is automatically detected based on the characteristic information and a thickness measurement value measured by a radiation thickness meter. 圧延される材料の接合部が、少なくともその下流の圧延ロールを通過する際に、前記板厚を制御する手段を用いて高ミル定数可変制御を作動させることにより、接合部前後の材料特性に起因する板厚変動の発生を防止して圧延後の先行材の板厚と後行材の板厚が所定の板厚になるように制御することを特徴とする請求項1または2に記載の圧延方法。   When the joint portion of the material to be rolled passes through at least the downstream roll, the high mill constant variable control is activated using the means for controlling the plate thickness, resulting in the material properties before and after the joint portion. 3. The rolling according to claim 1, wherein the thickness of the preceding material and the thickness of the succeeding material after the rolling are controlled so as to be a predetermined thickness by preventing occurrence of a variation in thickness. Method. 圧延される材料の接合部が圧延ロールの入側放射線板厚計を通過した直後に、少なくとも入側放射線板厚計を使用しているAGC動作を停止させ、かつ予め設定した先行材の放射線透過率の設定値を後行材の放射線透過率の設定値に切り替えた後、入側放射線板厚計を使用しているAGC動作を再開させる一連の動作を自動的に行うことにより、先行材と後行材の板厚変動を最小にすることを特徴とする請求項1〜3のいずれか1項に記載の圧延方法。   Immediately after the joint of the material to be rolled passes through the entry side radiation thickness gauge of the rolling roll, at least the AGC operation using the entry side radiation thickness gauge is stopped and the radiation transmission of the preset preceding material is stopped. After switching the set value of the rate to the set value of the radiation transmittance of the succeeding material, a series of operations for automatically resuming the AGC operation using the entrance side radiation thickness gauge is performed, The rolling method according to any one of claims 1 to 3, wherein the thickness variation of the following material is minimized. 圧延される材料の接合部が圧延ロールの出側放射線板厚計を通過した直後に、少なくとも出側放射線板厚計を使用しているAGC動作を停止させ、かつ予め設定した先行材の放射線透過率の設定値を後行材の放射線透過率の設定値に切り替えた後、出側放射線板厚計を使用しているAGC動作を再開させる一連の動作を自動的に行うことにより、先行材と後行材の板厚変動を最小にすることを特徴とする請求項1〜3のいずれか1項に記載の圧延方法。

Immediately after the joint of the material to be rolled passes through the exit side radiation thickness meter of the rolling roll, at least the AGC operation using the exit side radiation thickness meter is stopped and the radiation transmission of the preset preceding material is stopped. After switching the set value of the rate to the set value of the radiation transmittance of the following material, a series of operations for automatically resuming the AGC operation using the exit side radiation thickness gauge is performed, The rolling method according to any one of claims 1 to 3, wherein the thickness variation of the following material is minimized.

JP2003372548A 2003-10-31 2003-10-31 Rolling method Pending JP2005131692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372548A JP2005131692A (en) 2003-10-31 2003-10-31 Rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372548A JP2005131692A (en) 2003-10-31 2003-10-31 Rolling method

Publications (1)

Publication Number Publication Date
JP2005131692A true JP2005131692A (en) 2005-05-26

Family

ID=34648900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372548A Pending JP2005131692A (en) 2003-10-31 2003-10-31 Rolling method

Country Status (1)

Country Link
JP (1) JP2005131692A (en)

Similar Documents

Publication Publication Date Title
JP4968001B2 (en) Load distribution control device for continuous rolling mill
JP5490701B2 (en) Rolling mill and its operating method
KR100513775B1 (en) Method for controlling strip width in the fgc
JP2010540250A5 (en)
JP2006110627A (en) Method and apparatus for rolling metal sheet
WO2010109637A1 (en) Reference position adjustment and monitoring device
JP2005131692A (en) Rolling method
JP2011088172A (en) Device and method for controlling sheet thickness in cold rolling mill
JP2010274289A (en) Setup method of roll gap in reverse rolling
JP2007185703A (en) Method of rolling control and hot finishing mill
JP6781411B2 (en) Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment
JPS5916528B2 (en) Meandering correction device for rolling mill
JP6943271B2 (en) Welding point tracking correction method and welding point tracking correction device
JP2004243376A (en) Device and method for controlling meandering of strip in tandem mill
KR102479459B1 (en) Plant control device and plant control method
JP5910541B2 (en) Cold rolling equipment and cold rolling method
JP5631233B2 (en) Thickness control method of rolling mill
JPS6195711A (en) Method for controlling sheet camber in thick plate rolling
JP2001269708A (en) Method and device for controlling leveling in hot- rolling mill
JPH09201613A (en) Method for suppressing meanderion of rolled stock in early stage of rolling
JP2760937B2 (en) Hot roll mill thickness control method
JPH05220511A (en) Method for controlling thickness in continuous hot rolling mill
JP5218258B2 (en) Sheet rolling mill and control method thereof
JPS6347522B2 (en)
JP3617227B2 (en) Plate thickness control method for continuous tandem rolling mill.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090729