JP2005129773A - Solar cell module and wiring for connecting solar cell element - Google Patents

Solar cell module and wiring for connecting solar cell element Download PDF

Info

Publication number
JP2005129773A
JP2005129773A JP2003364555A JP2003364555A JP2005129773A JP 2005129773 A JP2005129773 A JP 2005129773A JP 2003364555 A JP2003364555 A JP 2003364555A JP 2003364555 A JP2003364555 A JP 2003364555A JP 2005129773 A JP2005129773 A JP 2005129773A
Authority
JP
Japan
Prior art keywords
solar cell
inner lead
surface side
receiving surface
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003364555A
Other languages
Japanese (ja)
Inventor
Noriyasu Kawakita
典保 河北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003364555A priority Critical patent/JP2005129773A/en
Publication of JP2005129773A publication Critical patent/JP2005129773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell module which can reduce an interval between solar cells while avoiding the cracking of solar cell elements and preventing the disconnection of an inner lead from an electrode, and also to provide wiring for connecting the solar cell elements. <P>SOLUTION: The solar cell module includes a plurality of solar cell elements having electrodes on surfaces of light reception and light non-reception sides and electrically connected to one another. An inner lead is provided to each of the light reception and non-reception side electrodes to be extended outwards of the outer peripheral end edge of the solar cell element. A conductive connection member having nearly the same thickness as the solar cell elements is provided between the inner lead connected to the light reception surface side of one solar cell element and the inner lead connected to the light non-reception surface side of another solar cell element adjacent thereto to electrically connect the inner leads. Consequently, when the light reception and non-reception side electrodes of the adjacent solar cell elements are connected by the inner leads, an interval between the adjacent solar cell elements can be prevented from being reduced. Even when the inner leads are bent, stress can be avoided from being applied to between the inner leads and the electrodes or to the outer peripheral end edge of the solar cell element, thus solving the problem of the generation of cracks. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特に複数の太陽電池素子がインナーリードと導電性の接続部材によって接続された太陽電池モジュールおよび、複数の太陽電池素子同士を接続するための太陽電池素子の接続用配線に関する。   The present invention particularly relates to a solar cell module in which a plurality of solar cell elements are connected to an inner lead by a conductive connecting member, and a wiring for connecting solar cell elements for connecting the plurality of solar cell elements to each other.

太陽電池素子は、単結晶シリコン基板や多結晶シリコン基板を用いて作製することが多い。このため太陽電池素子は物理的衝撃に弱く、また野外に太陽電池素子を取り付けた場合、雨等からこれを保護する必要がある。また、太陽電池素子1枚では発生する電気出力が小さいため、複数の太陽電池素子を直並列に接続して実用的な電気出力が取り出せるようにする必要がある。このため複数の太陽電池素子を接続して透光性基板とエチレンビニルアセテート共重合体(EVA)等を主成分とする充填材で封入して太陽電池モジュールを作製することが通常行われている。   Solar cell elements are often manufactured using a single crystal silicon substrate or a polycrystalline silicon substrate. For this reason, a solar cell element is weak to a physical impact, and when a solar cell element is attached outdoors, it is necessary to protect this from rain. Moreover, since the electrical output generated by one solar cell element is small, it is necessary to connect a plurality of solar cell elements in series and parallel so that a practical electrical output can be taken out. For this reason, a solar cell module is usually manufactured by connecting a plurality of solar cell elements and enclosing with a filler mainly composed of a translucent substrate and ethylene vinyl acetate copolymer (EVA). .

図9は従来の太陽電池素子の接続方法の一例を示したものである。1は太陽電池素子、2は受光面側電極、3は非受光面側電極、4はインナーリードを示す。   FIG. 9 shows an example of a conventional method for connecting solar cell elements. 1 is a solar cell element, 2 is a light receiving surface side electrode, 3 is a non-light receiving surface side electrode, and 4 is an inner lead.

太陽電池素子1は、例えば厚み0.3〜0.4mm程度、大きさ100〜150mm角程度の単結晶シリコンや多結晶シリコンで作られている。その両面にはにはそれぞれ出力を取り出すための受光面側電極2および非受光面側電極3が形成される。その形成法としては一般的に低コスト化のため、スクリーン印刷法が用いられ、銀ペーストを太陽電池素子1の表面に印刷し、焼成することによって焼き付けられる。そして、受光面側電極2および非受光面側電極3の表面を、太陽電池素子同士を接続するためにインナーリード4と接続しやすくするため、また太陽電池素子1の長期信頼性を確保するために、半田層(不図示)で被覆されている。一般的にインナーリードは厚さ0.1〜0.3mm程度の銅箔の全面を半田被覆したものを用いている。   The solar cell element 1 is made of, for example, single crystal silicon or polycrystalline silicon having a thickness of about 0.3 to 0.4 mm and a size of about 100 to 150 mm square. On both surfaces, a light receiving surface side electrode 2 and a non-light receiving surface side electrode 3 for taking out outputs are formed. As a forming method, a screen printing method is generally used for cost reduction, and printing is performed by printing a silver paste on the surface of the solar cell element 1 and baking it. And in order to make it easy to connect the surface of the light-receiving surface side electrode 2 and the non-light-receiving surface side electrode 3 with the inner lead 4 in order to connect solar cell elements, and to ensure the long-term reliability of the solar cell element 1. Further, it is covered with a solder layer (not shown). In general, the inner lead is made of a copper foil having a thickness of about 0.1 to 0.3 mm which is coated with solder on the entire surface.

また、図10は太陽電池素子の受光面側および非受光面側に設けられた電極の一例を示す図である。図10(a)に示される受光面側電極2はインナーリード4を取り付けるためのバスバー電極7と集電用のフィンガー電極8からなり、図10(b)に示される非受光面側電極3もバスバー電極7とアルミニウムからなる集電用電極9から構成される。   Moreover, FIG. 10 is a figure which shows an example of the electrode provided in the light-receiving surface side and non-light-receiving surface side of a solar cell element. The light-receiving surface side electrode 2 shown in FIG. 10A includes a bus bar electrode 7 for attaching the inner lead 4 and a finger electrode 8 for current collection, and the non-light-receiving surface side electrode 3 shown in FIG. It comprises a bus bar electrode 7 and a current collecting electrode 9 made of aluminum.

太陽電池素子1同士を直列接続するときは、一の太陽電池素子1の受光面側電極2に取り付けたインナーリード4を隣接する他の太陽電池素子1の非受光面側電極3に接続することにより行う。このインナーリードの接続は半田を加熱して溶融させることにより行っている(特許文献1参照)。
特開1999−312820号公報 特開2001−60710号公報 特開2002−359388号公報
When the solar cell elements 1 are connected in series, the inner lead 4 attached to the light receiving surface side electrode 2 of one solar cell element 1 is connected to the non-light receiving surface side electrode 3 of another adjacent solar cell element 1. To do. The connection of the inner leads is performed by heating and melting the solder (see Patent Document 1).
JP 1999-31820 A JP 2001-60710 A JP 2002-359388 A

この従来の太陽電池モジュールでは、一の太陽電池素子の受光面側から他の太陽電池素子の非受光面側にインナーリード4を引きまわすために、隣接する太陽電池素子1の間隔を2〜5mm程度設ける必要があり、太陽電池モジュールの面積に対する全太陽電池素子面積を高めることができず、ガラス、樹脂、アルミ枠等のモジュール材料の削減ができないため、コスト高の原因の1つとなっていた。   In this conventional solar cell module, in order to draw the inner lead 4 from the light-receiving surface side of one solar cell element to the non-light-receiving surface side of another solar cell element, the interval between adjacent solar cell elements 1 is 2 to 5 mm. The total solar cell element area relative to the area of the solar cell module cannot be increased, and module materials such as glass, resin, and aluminum frame cannot be reduced, which is one of the causes of high costs. .

これを改善するために隣接する太陽電池素子1の間隔を小さくすると、インナーリード4は大きく折曲するためにインナーリード4と受光面側電極2、非受光面側電極3の間に、または太陽電池素子1の外周端縁に応力がかかる。そのためインナーリード4が電極から外れたり、太陽電池素子1の外周端縁が割れたり、この部分からクラックが発生するという問題がある。また、インナーリード4が隣接する太陽電池素子1の外周端縁に接触する可能性も大きくなるため電流がリークする原因となる。   In order to improve this, if the interval between the adjacent solar cell elements 1 is reduced, the inner lead 4 is bent greatly, so that the inner lead 4 and the light receiving surface side electrode 2, the non-light receiving surface side electrode 3, or the sun. Stress is applied to the outer peripheral edge of the battery element 1. Therefore, there is a problem that the inner lead 4 is detached from the electrode, the outer peripheral edge of the solar cell element 1 is cracked, or a crack is generated from this portion. Moreover, since the possibility that the inner lead 4 comes into contact with the outer peripheral edge of the adjacent solar cell element 1 is increased, the current leaks.

また、太陽電池モジュールは通常、野外に設置されるため日々の温度サイクルストレスがかかり、インナーリード4においては折曲している部分に温度ストレスが集中するため、その部分で断線する可能性があり、長期信頼性が得られなかった。   In addition, since the solar cell module is usually installed outdoors, it is subject to daily temperature cycle stress, and the inner lead 4 may be disconnected at the bent portion because the temperature stress is concentrated at the bent portion. Long-term reliability was not obtained.

さらに、近年コスト削減の観点から太陽電池素子1の厚みを薄くしたり、環境問題の観点から電極の半田層の被覆の削減が行われており、それに伴って基板が割れやすくなったり、またインナーリード4が電極から外れやすくなったりするため、インナーリード接続に伴う応力をより小さくすることが望まれていた。   Furthermore, in recent years, the thickness of the solar cell element 1 has been reduced from the viewpoint of cost reduction, and the coating of the solder layer of the electrode has been reduced from the viewpoint of environmental problems. Since the lead 4 is easily detached from the electrode, it has been desired to reduce the stress accompanying the inner lead connection.

また、特許文献2には、導電性金属よりなる接続金具により複数の太陽電池を電気的に接続するとともに機械的にも接続する太陽電池の接続方法により太陽電池素子の間隔を狭くできることが開示されている。しかし、この接続金具を用いた場合、ある程度の応力をかけて太陽電池素子を挟む必要がある。よって、日々の温度サイクルにより金具に必要以上の応力がかかったり、応力が弱くなったりするため、太陽電池素子にクラックがはいったり、接続不良を起こすといった可能性があり、長期信頼性に問題があった。   Further, Patent Document 2 discloses that a solar cell element interval can be narrowed by a solar cell connection method in which a plurality of solar cells are electrically connected by a connection metal fitting made of a conductive metal and also mechanically connected. ing. However, when this connection fitting is used, it is necessary to sandwich the solar cell element by applying a certain amount of stress. As a result, the daily temperature cycle may apply more stress than necessary to the metal fittings or weaken the stress, which may lead to cracks in the solar cell elements and poor connection, resulting in problems with long-term reliability. there were.

さらに、特許文献3には、複数の太陽電池素子をインナーリードで接続した太陽電池モジュールにおいて、太陽電池素子の受光面側電極と非受光面側電極に別々のインナーリードを接続し、一の太陽電池素子の受光面側に接続されたインナーリードと隣接する他の太陽電池素子の非受光面側に接続されたインナーリードを接続することにより、隣同士の太陽電池素子が引っ張り合うことなく太陽電池素子の割れを回避できる技術が開示されている。しかし、この場合においては最低でもどちらか一方のインナーリードを折曲する必要があるため、インナーリードと電極の間に応力がかかることとなり割れやクラックが発生するという問題があった。   Further, in Patent Document 3, in a solar cell module in which a plurality of solar cell elements are connected by inner leads, separate inner leads are connected to the light receiving surface side electrode and the non-light receiving surface side electrode of the solar cell element, and one solar By connecting the inner lead connected to the light receiving surface side of the battery element and the inner lead connected to the non-light receiving surface side of another adjacent solar cell element, the solar cells adjacent to each other are not pulled A technique capable of avoiding element cracking is disclosed. However, in this case, since it is necessary to bend at least one of the inner leads, there is a problem in that stress is applied between the inner lead and the electrode, and cracks and cracks are generated.

本発明はこのような従来技術の問題点に鑑みてなされたものであり、太陽電池素子の割れやクラックを発生させることなく、またインナーリードが電極から外れることなく、太陽電池同士の間隔を小さくすることのできる太陽電池モジュールおよび太陽電池素子の接続用配線を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and does not cause cracking or cracking of the solar cell element, and the interval between the solar cells is reduced without the inner lead being detached from the electrode. An object of the present invention is to provide a solar cell module and a wiring for connecting solar cell elements.

上記目的を達成するために、請求項1にかかる太陽電池モジュールでは、受光面側電極と非受光面側電極とを有する複数の太陽電池素子を電気的に接続してなる太陽電池モジュールであって、前記受光面側電極および前記非受光面側電極には、それぞれに一つずつ接続され前記太陽電池素子の外周端縁よりも外側に延在されてなるインナーリードを備えるとともに、一の太陽電池素子の前記受光面側に接続されたインナーリードと隣接する他の太陽電池素子の前記非受光面側に接続されたインナーリードとの間に、これらの太陽電池素子の厚さと略同一の厚さを有する導電性の接続部材を介在させて、これらのインナーリード同士を相互に電気的に接続している。   In order to achieve the above object, a solar cell module according to claim 1 is a solar cell module formed by electrically connecting a plurality of solar cell elements each having a light receiving surface side electrode and a non-light receiving surface side electrode. Each of the light receiving surface side electrode and the non-light receiving surface side electrode includes an inner lead that is connected to each of the light receiving surface side electrode and the outer peripheral edge of the solar cell element, and one solar cell. Between the inner lead connected to the light receiving surface side of the element and the inner lead connected to the non-light receiving surface side of another adjacent solar cell element, the thickness of these solar cell elements is approximately the same. These inner leads are electrically connected to each other by interposing a conductive connecting member having

また、上記太陽電池モジュールでは、前記接続部材と前記インナーリードとの接続部を、このインナーリードの長手方向で切断したときの幅の最大値が、このインナーリードの厚みより大きいほうが好ましい。   Moreover, in the said solar cell module, it is preferable that the maximum value of the width | variety when the connection part of the said connection member and the said inner lead is cut | disconnected in the longitudinal direction of this inner lead is larger than the thickness of this inner lead.

また、上記太陽電池モジュールでは、前記インナーリードの短手方向で切断したときの前記接続部材の幅の最大値が、このインナーリードの短手方向の幅以上であるほうが好ましい。   In the solar cell module, it is preferable that the maximum value of the width of the connecting member when cut in the short direction of the inner lead is equal to or larger than the width of the inner lead in the short direction.

また、上記太陽電池モジュールでは、前記接続部材と太陽電池素子との間に絶縁部材が介在されているほうが好ましい。   In the solar cell module, it is preferable that an insulating member is interposed between the connection member and the solar cell element.

また、上記太陽電池モジュールでは、前記接続部材とインナーリードとの接続部を絶縁材料で被覆しているほうが好ましい。   Moreover, in the said solar cell module, it is preferable that the connection part of the said connection member and an inner lead is coat | covered with the insulating material.

また、請求項6にかかる太陽電素子の接続用配線では、受光面側電極と非受光面側電極とを有する複数の太陽電池素子を電気的に接続するための太陽電池素子の接続用配線であって、一方の太陽電池素子の受光面側電極に接続される第一のインナーリードと、他方の太陽電池素子の非受光面側電極に接続される第二のインナーリードと、これらの太陽電池素子と略同一の厚みを有する導電性の接続部材と、からなり、前記第一のインナーリードの一端と前記第二のインナーリードの一端との間に前記接続部材を介在させ電気的に接続して一体としてなっている。   According to a sixth aspect of the present invention, there is provided a wiring for connecting solar cell elements for electrically connecting a plurality of solar cell elements having a light receiving surface side electrode and a non-light receiving surface side electrode. A first inner lead connected to the light receiving surface side electrode of one solar cell element, a second inner lead connected to the non-light receiving surface side electrode of the other solar cell element, and these solar cells A conductive connecting member having substantially the same thickness as the element, and electrically connecting the connecting member between one end of the first inner lead and one end of the second inner lead. As one.

また、上記接続用配線では、前記接続部材と前記第一のインナーリードもしくは前記第二のインナーリードとの接続部を、これらのいずれかのインナーリードの長手方向で切断したときの幅の最大値が、そのインナーリードの厚みより大きいほうが好ましい。   In the connection wiring, the maximum value of the width when the connection portion between the connection member and the first inner lead or the second inner lead is cut in the longitudinal direction of any of the inner leads. However, the thickness is preferably larger than the thickness of the inner lead.

また、上記接続用配線では、前記インナーリードの短手方向で切断したときの前記接続部材の幅の最大値が、そのインナーリードの短手方向の幅以上であるほうが好ましい。   In the connection wiring, it is preferable that the maximum value of the width of the connection member when cut in the short direction of the inner lead is equal to or larger than the width of the inner lead in the short direction.

また、上記接続用配線では、前記接続部材の周囲に絶縁部材が被覆されているほうが好ましい。   In the connection wiring, it is preferable that the connection member is covered with an insulating member.

また、上記接続用配線では、前記接続部材と前記第一のインナーリードもしくは前記第二のインナーリードとの接続部を絶縁部材で被覆されているほうが好ましい。   In the connection wiring, it is preferable that a connection portion between the connection member and the first inner lead or the second inner lead is covered with an insulating member.

本発明によれば、太陽電池素子の受光面側電極と非受光面側電極には、それぞれに一つずつ接続され前記太陽電池素子の外周端縁よりも外側に延在されてなるインナーリードを備えるとともに、一の太陽電池素子の前記受光面側に接続されたインナーリードと隣接する他の太陽電池素子の前記非受光面側に接続されたインナーリードとの間に、これらの太陽電池素子の厚さと略同一の厚さを有する導電性の接続部材を介在させて、これらのインナーリード同士を相互に電気的に接続することによって、インナーリードと受光面側電極、非受光面側電極の間に、または太陽電池素子の外周端縁にかかる応力を緩和することができ、そのため、太陽電池素子の割れやクラックを発生させることなく、インナーリードの電極の外れ等の問題を防止することができる。また、隣接する太陽電池素子の間隔を小さくすることができ、太陽電池モジュールの面積に対する全太陽電池素子面積を高めることができ、ガラス、樹脂、アルミ枠等のモジュール材料の削減によるコスト削減が可能である。また、インナーリードの温度サイクルストレスによる断線も防ぐことができ、長期信頼性も向上する。また、前記接続部材の一部に絶縁部材を被覆することによって、接触によるリークの低減にも効果がある。   According to the present invention, the inner lead formed on the light-receiving surface side electrode and the non-light-receiving surface side electrode of the solar cell element is connected to each of the light-receiving surface side electrode and the non-light-receiving surface side electrode. Between the inner leads connected to the light receiving surface side of one solar cell element and the inner leads connected to the non-light receiving surface side of another adjacent solar cell element. By interposing a conductive connecting member having a thickness substantially the same as the thickness and electrically connecting the inner leads to each other, the inner lead and the light receiving surface side electrode and the non-light receiving surface side electrode are connected. In addition, the stress applied to the outer peripheral edge of the solar cell element can be relieved, and therefore, problems such as disengagement of the inner lead electrode can be prevented without causing the solar cell element to crack or crack. It is possible. In addition, the space between adjacent solar cell elements can be reduced, the total solar cell element area relative to the area of the solar cell module can be increased, and the cost can be reduced by reducing module materials such as glass, resin, and aluminum frame. It is. In addition, disconnection due to temperature cycle stress of the inner lead can be prevented, and long-term reliability is improved. In addition, by covering the part of the connecting member with an insulating member, there is an effect in reducing leakage due to contact.

以下、最初に本発明の請求項1にかかる太陽電池モジュールの実施形態について説明する。図1は本発明の太陽電池モジュールにかかる一実施形態を示す断面図である。図1において、1は太陽電池素子、2は受光面側電極、3は非受光面側電極、4はインナーリード、5は導電性の接続部材を示す。   Hereinafter, an embodiment of a solar cell module according to claim 1 of the present invention will be described first. FIG. 1 is a cross-sectional view showing an embodiment of the solar cell module of the present invention. In FIG. 1, 1 is a solar cell element, 2 is a light receiving surface side electrode, 3 is a non-light receiving surface side electrode, 4 is an inner lead, and 5 is a conductive connecting member.

太陽電池素子1は、厚み0.3〜0.4mm程度、大きさ100〜150mm角程度の単結晶シリコンや多結晶シリコン等からなる。この太陽電池素子1内にはn型領域とp型領域があり、n型領域とp型領域との界面部分で半導体接合が形成される。このn型領域はp型のシリコン基板を拡散炉中に配置して、オキシ塩化リン(POCl)中で加熱することによって、シリコン基板の表面部全体にリン原子を拡散させ、厚み0.2〜0.5μm程度に形成する。その後に側面部と底面部の拡散層を除去する。 The solar cell element 1 is made of single crystal silicon, polycrystalline silicon, or the like having a thickness of about 0.3 to 0.4 mm and a size of about 100 to 150 mm square. The solar cell element 1 has an n-type region and a p-type region, and a semiconductor junction is formed at an interface portion between the n-type region and the p-type region. In this n-type region, a p-type silicon substrate is placed in a diffusion furnace and heated in phosphorus oxychloride (POCl 3 ) to diffuse phosphorus atoms over the entire surface of the silicon substrate, resulting in a thickness of 0.2 It is formed to about 0.5 μm. Thereafter, the diffusion layers on the side surface and the bottom surface are removed.

太陽電池素子1の受光面側には、例えば窒化シリコン膜等からなる反射防止膜(不図示)が形成される。このような反射防止膜は例えばプラズマCVD法等で形成される。   An antireflection film (not shown) made of, for example, a silicon nitride film is formed on the light receiving surface side of the solar cell element 1. Such an antireflection film is formed by, for example, a plasma CVD method or the like.

n型領域の表面部分には、受光面側電極2が形成されている。図10(a)に示されるように受光面側電極2は、インナーリード4を接続するためのバスバー電極7とこのバスバー電極7と交差して分岐して形成された集電用のフィンガー電極8とを備えている。バスバー電極7は太陽電池素子1の略全長にわたって2本または3本平行に形成されており、フィンガー電極8はバスバー電極7に交差して複数本が太陽電池素子1の略全長にわたって形成されている。バスバー電極7は例えば2mm程度の幅に形成され、フィンガー電極8は例えば0.2mm程度の幅に形成されている。このような受光面側電極2は例えば銀粉末、ガラスフリット、有機ビヒクルを含有するペーストをスクリーン印刷して700〜800℃程度の温度で焼き付け、全体を半田層で被覆することにより形成される。   A light-receiving surface side electrode 2 is formed on the surface portion of the n-type region. As shown in FIG. 10A, the light-receiving surface side electrode 2 includes a bus bar electrode 7 for connecting the inner lead 4 and a current collecting finger electrode 8 formed by crossing the bus bar electrode 7 and branching. And. Two or three bus bar electrodes 7 are formed in parallel over substantially the entire length of the solar cell element 1, and a plurality of finger electrodes 8 are formed over the entire length of the solar cell element 1 so as to intersect the bus bar electrode 7. . The bus bar electrode 7 is formed with a width of about 2 mm, for example, and the finger electrode 8 is formed with a width of about 0.2 mm, for example. Such a light receiving surface side electrode 2 is formed, for example, by screen-printing a paste containing silver powder, glass frit, and organic vehicle, baking it at a temperature of about 700 to 800 ° C., and covering the whole with a solder layer.

太陽電池素子1の非受光面側には非受光面側電極3が形成されている。図10(b)に示されるように非受光面側電極3もバスバー電極7と、非受光面側全面に形成される集電用電極9とを備えている。   A non-light-receiving surface side electrode 3 is formed on the non-light-receiving surface side of the solar cell element 1. As shown in FIG. 10B, the non-light-receiving surface side electrode 3 also includes a bus bar electrode 7 and a current collecting electrode 9 formed on the entire surface of the non-light-receiving surface.

この非受光面側電極3のバスバー電極7も、例えば銀粉末、ガラスフリット、有機ビヒクルを含有するペーストを、また集電用電極9は、例えばアルミニウム粉末、ガラスフリット、有機ビヒクルを含有するペーストをスクリーン印刷して700〜800℃程度の温度で焼き付け、全体を半田層で被覆することにより形成される。また、非受光面側電極3は上記構造をとらず、受光面側電極2と同様のバスバー電極7とフィンガー電極8とを備えた構造としてもよい。   The bus bar electrode 7 of the non-light-receiving surface side electrode 3 is also made of, for example, a paste containing silver powder, glass frit and organic vehicle, and the current collecting electrode 9 is made of, for example, a paste containing aluminum powder, glass frit and organic vehicle. It is formed by screen printing, baking at a temperature of about 700 to 800 ° C., and covering the whole with a solder layer. Further, the non-light-receiving surface side electrode 3 does not have the above-described structure, and may have a structure including a bus bar electrode 7 and finger electrodes 8 similar to those of the light-receiving surface side electrode 2.

本発明にかかる太陽電池モジュールにおいては、図1に示すように太陽電池素子1の受光面側電極2と非受光面側電極3には、それぞれ受光面側インナーリード4aと非受光面側インナーリード4bの細長形状を有する二種類のインナーリードが一つずつ接続され、これらのインナーリード4(4a、4b)はいずれも太陽電池素子1の外周端縁よりも外側に延在されている。   In the solar cell module according to the present invention, as shown in FIG. 1, the light receiving surface side electrode 2 and the non-light receiving surface side electrode 3 of the solar cell element 1 are respectively provided with a light receiving surface side inner lead 4a and a non-light receiving surface side inner lead. Two kinds of inner leads having a 4b elongated shape are connected one by one, and each of these inner leads 4 (4a, 4b) extends outward from the outer peripheral edge of the solar cell element 1.

また、図1において左の太陽電池素子1の受光面側に接続された受光面側インナーリード4aと、隣接する右の太陽電池素子1の非受光面側に接続された非受光面側インナーリード4bとの間に、インナーリード4が太陽電池素子1の外周端縁から外側に延在されている箇所において、導電性の接続部材5を介在させ、これらの二種類のインナーリード4同士を相互に電気的に接続する。なお、この接続部材5は、太陽電池素子1の厚さとほぼ同一の厚さとなっている。   Further, in FIG. 1, the light receiving surface side inner lead 4a connected to the light receiving surface side of the left solar cell element 1, and the non-light receiving surface side inner lead connected to the non-light receiving surface side of the adjacent right solar cell element 1. 4b, a conductive connecting member 5 is interposed between the inner lead 4 and the outer lead edge of the solar cell element 1, and the two types of inner leads 4 are connected to each other. Electrically connect to The connecting member 5 has substantially the same thickness as the solar cell element 1.

インナーリード4の長さは太陽電池素子の抵抗成分を少なくするために、バスバー電極のほぼ全てに重なるようにした方が好ましい。   In order to reduce the resistance component of the solar cell element, the inner lead 4 is preferably overlapped with almost all the bus bar electrodes.

接続方法としては、例えばホットエアー等の熱溶着により、インナーリード4をバスバー電極全長もしくは複数ポイントで、また接続部材5に貼り付ける。   As a connection method, for example, the inner lead 4 is attached to the connection member 5 at the full length of the bus bar electrode or at a plurality of points by heat welding such as hot air.

本発明においては、このようにインナーリード4を太陽電池素子1と同じ厚みを持つ接続部材5で接続することにより、インナーリード4を折曲することなく太陽電池素子1同士を接続できるため、インナーリード4と受光面側電極2、非受光面側電極3の間に、または太陽電池素子1の外周端縁にかかる応力を緩和することができる。そのため、太陽電池素子の割れやクラックを発生させることなく、インナーリードの電極の外れ等の問題を防止することができる。また、隣接する太陽電池素子1の間隔を小さくすることができ、太陽電池モジュールの面積に対する全太陽電池素子面積を高めることができ、ガラス、樹脂、アルミ枠等のモジュール材料の削減によるコスト削減が可能である。また、インナーリードの温度サイクルストレスによる断線も防ぐことができ、長期信頼性に優れる。   In the present invention, since the inner leads 4 are connected by the connecting member 5 having the same thickness as the solar cell element 1 as described above, the solar cell elements 1 can be connected to each other without bending the inner lead 4. The stress applied between the lead 4 and the light receiving surface side electrode 2 or the non-light receiving surface side electrode 3 or on the outer peripheral edge of the solar cell element 1 can be relaxed. Therefore, problems such as disengagement of the electrode of the inner lead can be prevented without causing cracks or cracks in the solar cell element. Moreover, the space | interval of the adjacent solar cell element 1 can be made small, the total solar cell element area with respect to the area of a solar cell module can be raised, and the cost reduction by reduction of module materials, such as glass, resin, and an aluminum frame, can be carried out. Is possible. Further, disconnection due to temperature cycle stress of the inner lead can be prevented, and the long-term reliability is excellent.

また、接続部材5は隣接する二つの太陽電池素子1の間においてそれぞれの素子の外周端部と平行に配置することが望ましく、これによって、接続部材5と太陽電池素子1とが接触することによる電流リークを低減することができる。   Moreover, it is desirable that the connecting member 5 be disposed between two adjacent solar cell elements 1 in parallel with the outer peripheral end portions of the respective elements, whereby the connecting member 5 and the solar cell element 1 come into contact with each other. Current leakage can be reduced.

受光面側電極2と非受光面側電極3に接続するインナーリード4としては、例えば、その表面全体に20〜70μm程度の半田を被覆した厚さ100〜300μm程度の銅箔を用いることができる。   As the inner lead 4 connected to the light-receiving surface side electrode 2 and the non-light-receiving surface side electrode 3, for example, a copper foil having a thickness of about 100 to 300 μm with the entire surface coated with a solder of about 20 to 70 μm can be used. .

受光面側に接続される受光面側インナーリード4aと非受光面側に接続される非受光面側インナーリード4bの幅は、必ずしも同じ幅にする必要がない。受光面側インナーリード4aの幅は、それ自身により太陽電池素子1の受光面に影を作らないように、バスバー電極の幅以下にすることが望ましく、例えば2mm程度の幅で形成すればよい。これに対して、非受光面側インナーリード4bの幅は、このような問題がないために断面積を大きくして電気抵抗を下げるために幅を広くすることができ、例えば5mm程度の幅で形成でき、また幅を広くすることができるためインナーリードの厚みを薄くすることも可能となる。   The widths of the light receiving surface side inner leads 4a connected to the light receiving surface side and the non-light receiving surface side inner leads 4b connected to the non-light receiving surface side are not necessarily the same. The width of the light receiving surface side inner lead 4a is preferably equal to or less than the width of the bus bar electrode so as not to cause a shadow on the light receiving surface of the solar cell element 1 by itself. On the other hand, the width of the inner lead 4b on the non-light-receiving surface side can be increased to increase the cross-sectional area and reduce the electrical resistance because there is no such problem. For example, the width is about 5 mm. Since it can be formed and the width can be increased, the thickness of the inner lead can be reduced.

導電性の接続部材5の材料としては、特に限定されるものではないが、インナーリード4と違う材料を用いた場合、熱膨張係数の違いからその接続部に応力がかかり、信頼性に問題が生ずる可能性があるため、インナーリード4に銅箔を用いた場合には銅を、銀箔を用いた場合には銀というように、インナーリード4と同じ材料を用いた方が好ましい。また、接続部材5は1種類の材料に限るものではなく、複数種、例えば銅に半田を被覆したものでもよい。   The material of the conductive connection member 5 is not particularly limited. However, when a material different from that of the inner lead 4 is used, stress is applied to the connection portion due to the difference in thermal expansion coefficient, and there is a problem in reliability. Therefore, it is preferable to use the same material as the inner lead 4 such as copper when a copper foil is used for the inner lead 4 and silver when a silver foil is used. Further, the connecting member 5 is not limited to one type of material, and may be a plurality of types, for example, copper coated with solder.

次に、図11を用いて、接続部材5とインナーリード4の大小関係について説明する。   Next, the size relationship between the connecting member 5 and the inner lead 4 will be described with reference to FIG.

まず、接続部材5とインナーリード4との接続部、すなわち図11において、点線で囲った箇所の大きさについては、このインナーリード4の長手方向で切断したときの幅aが、このインナーリード4の厚みcよりも大きいほうが好ましい。この範囲とすることで、インナーリード4と接続部材5の接触面積が大きくなり、部材間の電気抵抗を下げることができる。さらに、またインナーリード4と接続部材5との外れをなくし、作業性も上げることができるという利点がある。具体的には、例えば、接続部材5の幅を0.3〜1.0mm程度に形成することが好ましい。この値よりも小さくすると電気抵抗が上がり、変換効率が低下するという問題がある。なお、接続部材5とインナーリード4との接続部が不規則な形状の場合においては、インナーリード4の長手方向で切断したときの幅の最大値を幅aと見なすものとする。   First, with respect to the size of the connecting portion between the connecting member 5 and the inner lead 4, that is, the size of the portion surrounded by the dotted line in FIG. 11, the width a when cut in the longitudinal direction of the inner lead 4 is the inner lead 4. The thickness c is preferably larger than the thickness c. By setting it as this range, the contact area of the inner lead 4 and the connection member 5 becomes large, and the electrical resistance between members can be lowered. Further, there is an advantage that the inner lead 4 and the connecting member 5 are not detached and the workability can be improved. Specifically, for example, the width of the connection member 5 is preferably formed to be about 0.3 to 1.0 mm. If the value is smaller than this value, there is a problem that the electrical resistance increases and the conversion efficiency decreases. When the connecting portion between the connecting member 5 and the inner lead 4 has an irregular shape, the maximum value of the width when cut in the longitudinal direction of the inner lead 4 is regarded as the width a.

また、インナーリード4の短手方向で切断したときの接続部材5の幅bが、このインナーリード4の短手方向の幅d以上である方が好ましい。この範囲を外れると、後工程、例えばラミネート工程等でインナーリード4の接続部材5と接触していない部分が折れ曲がったりすることによって、インナーリード4が接続部材5から外れる危険性があるが、この範囲とすることにより、インナーリード4の接続部材5からの外れを防止でき、歩留りを向上させることができる。なお、受光面側と非受光面側とでインナーリードの幅が違う場合は広い方のインナーリードの幅に接続部材5の幅を合わせればよい。あるいは、接続部材5の受光面側の幅と非受光面側の幅を各々に対応するインナーリードの幅に対応させてもよい。なお、接続部材5が不規則な形状の場合においては、インナーリード4の短手方向で切断したときの幅の最大値を幅bと見なすものとする。   Further, it is preferable that the width b of the connecting member 5 when cut in the short direction of the inner lead 4 is equal to or larger than the width d of the inner lead 4 in the short direction. If it is out of this range, there is a risk that the inner lead 4 may be detached from the connecting member 5 by bending the portion of the inner lead 4 that is not in contact with the connecting member 5 in a subsequent process, for example, a laminating process. By setting the range, it is possible to prevent the inner lead 4 from coming off from the connecting member 5 and to improve the yield. If the width of the inner lead is different between the light receiving surface side and the non-light receiving surface side, the width of the connecting member 5 may be adjusted to the width of the wider inner lead. Alternatively, the width on the light receiving surface side and the width on the non-light receiving surface side of the connection member 5 may correspond to the width of the inner lead corresponding to each. When the connecting member 5 has an irregular shape, the maximum width when the inner lead 4 is cut in the short direction is regarded as the width b.

図2は、本発明に用いられる接続部材の例を示す斜視図である。接続部材5の形状は太陽電池素子1の厚みと同様の厚みをもっていればよく、例えば(a)のように直方体の形状でもよいし、また(b)のようにインナーリードと接触する形状が楕円状であってもよい。   FIG. 2 is a perspective view showing an example of a connection member used in the present invention. The shape of the connecting member 5 only needs to have the same thickness as that of the solar cell element 1. For example, the connecting member 5 may have a rectangular parallelepiped shape as shown in (a) or an elliptical shape that contacts the inner lead as shown in (b). It may be a shape.

図3に絶縁部材を用いたときの斜視図を示す。このように接続部材5と太陽電池素子1との間に絶縁部材6が介在されるようにすることが好ましい。このとき、絶縁部材6は例えばエポキシ樹脂、アクリル樹脂、EVA樹脂、ガラス、セラミック板、および樹脂板を用い、厚みは100〜500μm程度に形成する。図3(a)に示すように接続部材5の太陽電池素子1と隣接する部分のみに絶縁部材6を設けてもよいし、図3(b)に示すように接続部材5の周りに絶縁部材6を被覆するようにしてもよい。このようにすれば、作業ミス等で接続部材5が隣接する他の太陽電池素子1に接触した際による電流リークを防止することができる。   FIG. 3 shows a perspective view when an insulating member is used. Thus, it is preferable that the insulating member 6 is interposed between the connecting member 5 and the solar cell element 1. At this time, the insulating member 6 is made of, for example, an epoxy resin, an acrylic resin, an EVA resin, glass, a ceramic plate, and a resin plate, and has a thickness of about 100 to 500 μm. As shown in FIG. 3 (a), the insulating member 6 may be provided only in a portion adjacent to the solar cell element 1 of the connecting member 5, or as shown in FIG. 3 (b), the insulating member is provided around the connecting member 5. 6 may be covered. If it does in this way, the current leak at the time of the connection member 5 contacting with the other solar cell element 1 which adjoins by an operation mistake etc. can be prevented.

さらに、接続部材5とインナーリード4との接続部を絶縁材料で被覆することが好ましい。図3(c)に示すように接続部材5とインナーリード4の双方に対して、太陽電池素子1と隣接する部分を被覆してもいいし、図3(d)に示すように接続部材5とインナーリード4の接続部全体を被覆してもよい。このように接続部材5の周りだけでなくインナーリード4との接続部にも絶縁部材を被覆することにより、作業ミスでインナーリード4が隣接する他の太陽電池素子1に接触した際による電流リークを防止する効果をさらに高めることができる。   Furthermore, it is preferable to cover the connecting portion between the connecting member 5 and the inner lead 4 with an insulating material. As shown in FIG.3 (c), you may coat | cover the part adjacent to the solar cell element 1 with respect to both the connection member 5 and the inner lead 4, and as shown in FIG.3 (d), the connection member 5 may be covered. The entire connecting portion of the inner lead 4 may be covered. In this way, the insulating member is covered not only around the connection member 5 but also at the connection portion with the inner lead 4, so that current leakage caused when the inner lead 4 comes into contact with another adjacent solar cell element 1 due to an operation error. It is possible to further enhance the effect of preventing this.

図4に上述した絶縁部材を用いて太陽電池素子を接続した状態を示す。   The state which connected the solar cell element using the insulating member mentioned above in FIG. 4 is shown.

図4(a)は、図3(a)に示す接続部材5を用いて太陽電池素子1を接続した状態を示す断面図である。この場合、接続部材5が、太陽電池素子1と隣接する部分に絶縁部材6が介在されているため、太陽電池素子1と接続部材5とをあらかじめ接触させた状態でインナーリード4を接続することが可能となる。このようにすれば、接続部材5と太陽電池素子1とがあらかじめ接触しているため、接続作業が安易となり、また太陽電池素子1の間隔を詰めて配置することができるので、太陽電池モジュールの面積に対する全太陽電池素子面積を高めることができる。   Fig.4 (a) is sectional drawing which shows the state which connected the solar cell element 1 using the connection member 5 shown to Fig.3 (a). In this case, since the insulating member 6 is interposed between the connecting member 5 and the solar cell element 1, the inner lead 4 is connected with the solar cell element 1 and the connecting member 5 in contact with each other in advance. Is possible. In this way, since the connection member 5 and the solar cell element 1 are in contact with each other in advance, the connection work becomes easy, and the solar cell elements 1 can be arranged close to each other. The total solar cell element area relative to the area can be increased.

図4(b)は、図3(c)に示す接続部材5とインナーリード4を用いて太陽電池素子1を接続した状態を示す断面図である。この場合、接続部材5とインナーリード4の双方に対して、太陽電池素子1と隣接する部分に絶縁部材6が被覆されているため、太陽電池素子1と接続部材と5をあらかじめ接触させた状態でインナーリード4を接続することが可能となる。このようにすれば、接続部材5と太陽電池素子1とがあらかじめ接触しているため、接続作業も安易となり、また太陽電池素子1の間隔を詰めて配置することができるので、太陽電池モジュールの面積に対する全太陽電池素子面積を高めることができる。   FIG. 4B is a cross-sectional view showing a state in which the solar cell element 1 is connected using the connecting member 5 and the inner lead 4 shown in FIG. In this case, since the insulating member 6 is coated on the connection member 5 and the inner lead 4 at a portion adjacent to the solar cell element 1, the solar cell element 1 and the connection member 5 are in contact with each other in advance. Thus, the inner lead 4 can be connected. In this way, since the connecting member 5 and the solar cell element 1 are in contact with each other in advance, the connection work is also easy, and the solar cell elements 1 can be arranged close to each other. The total solar cell element area relative to the area can be increased.

次に、本発明の請求項6にかかる太陽電池素子の接続用配線の実施形態について説明する。   Next, an embodiment of the solar cell element connection wiring according to claim 6 of the present invention will be described.

図5は、本発明の太陽電池素子の接続用配線の実施形態を示す図であり、図5(a)は太陽電池素子の接続用配線の一実施形態の斜視図、図5(b)は(a)によって太陽電池素子を接続したときの断面図である。   FIG. 5 is a diagram showing an embodiment of the connection wiring for solar cell elements of the present invention. FIG. 5 (a) is a perspective view of one embodiment of the connection wiring for solar cell elements, and FIG. It is sectional drawing when a solar cell element is connected by (a).

図5(a)に示されるように、本発明の太陽電池素子の接続用配線17は、第一のインナーリード14aと、第二のインナーリード14bと、それぞれのインナーリードの一端間に介在して電気的に接続させ一体化せしめる導電性の接続部材15と、の3つの部材が組み合わされて構成されている。そして、図5(b)に示すように、第一のインナーリード14aの他端部は、一方の太陽電池素子の受光面側電極2に接続され、第二のインナーリード14bの他端部は他方の太陽電池素子の非受光面側電極3に接続され、これらの太陽電池素子を電気的に接続する。また、導電性の接続部材15は、これらの太陽電池素子と略同一の厚みを有している。   As shown in FIG. 5A, the solar cell element connection wiring 17 of the present invention is interposed between the first inner lead 14a, the second inner lead 14b, and one end of each inner lead. The conductive connecting member 15 that is electrically connected and integrated together is combined with each other. And as shown in FIG.5 (b), the other end part of the 1st inner lead 14a is connected to the light-receiving surface side electrode 2 of one solar cell element, and the other end part of the 2nd inner lead 14b is It is connected to the non-light-receiving surface side electrode 3 of the other solar cell element, and these solar cell elements are electrically connected. Further, the conductive connection member 15 has substantially the same thickness as these solar cell elements.

第一および第二のインナーリード14(14a、14b)としては、例えば、その表面全体に20〜70μm程度の半田を被覆した厚さ100〜300μm程度の銅箔を用いることができる。また、導電性の接続部材15の材料としては、特に限定されるものではないが、上述の第一および第二のインナーリード14と違う材料を用いた場合、熱膨張係数の違いからその接続部に応力がかかり、信頼性に問題が生ずる可能性があるため、インナーリード14に銅箔を用いた場合には銅を、銀箔を用いた場合には銀というように、インナーリード14と同じ材料を用いた方が好ましい。また、接続部材15は1種類の材料に限るものではなく、複数種、例えば銅に半田を被覆した複合材料を用いてもよい。   As the first and second inner leads 14 (14a, 14b), for example, a copper foil having a thickness of about 100 to 300 μm in which the entire surface is coated with a solder of about 20 to 70 μm can be used. Further, the material of the conductive connection member 15 is not particularly limited. However, when a material different from that of the first and second inner leads 14 is used, the connection portion is caused by the difference in thermal expansion coefficient. Since the stress is applied to the surface, there is a possibility that a problem in reliability may occur. Therefore, the same material as the inner lead 14 is used, such as copper when the copper foil is used for the inner lead 14 and silver when the silver foil is used. It is preferable to use Further, the connecting member 15 is not limited to one type of material, and a plurality of types, for example, a composite material in which solder is coated on copper may be used.

このような本発明にかかる太陽電池素子の接続用配線17を作製するための方法としては、例えばホットエアー等の熱溶着によりインナーリード14と接続部材15を接続すればよい。   As a method for manufacturing the solar cell element connection wiring 17 according to the present invention, the inner lead 14 and the connection member 15 may be connected by thermal welding such as hot air.

この太陽電池素子の接続用配線17によって太陽電池素子同士を接続する方法としては、例えば、ホットエアー等の熱溶着により、第一および第二のインナーリード14の端部を各々、接続する太陽電池素子のバスバー電極全長もしくは複数ポイントで接続する。   As a method of connecting the solar cell elements with the connection wiring 17 of the solar cell elements, for example, solar cells that connect the end portions of the first and second inner leads 14 by hot welding such as hot air, respectively. Connect at the full length of the bus bar electrode of the element or at multiple points.

この接続用配線17を用いることによってインナーリードを折曲することなく太陽電池素子同士を接続できるため、第一および第二のインナーリード14と受光面側電極2、非受光面側電極3の間に、または太陽電池素子1の外周端縁にかかる応力を緩和することができる。そのため、太陽電池素子の割れやクラックを発生させることなく、第一および第二のインナーリード14の電極からの外れ等の問題を防止することができる。   Since the solar cell elements can be connected to each other without bending the inner lead by using the connection wiring 17, the first and second inner leads 14, the light receiving surface side electrode 2, and the non-light receiving surface side electrode 3 are connected. In addition, the stress applied to the outer peripheral edge of the solar cell element 1 can be relaxed. Therefore, it is possible to prevent problems such as detachment of the first and second inner leads 14 from the electrode without generating cracks or cracks in the solar cell element.

また、隣接する太陽電池素子1の間隔を小さく詰めて配置することができ、太陽電池モジュールの面積に対する全太陽電池素子面積を高めることができ、ガラス、樹脂、アルミ枠等のモジュール材料の削減によるコスト削減が可能である。さらに、インナーリード14の温度サイクルストレスによる断線も防ぐことができ、長期信頼性に優れる。   Moreover, the space | interval of the adjacent solar cell element 1 can be arrange | positioned closely, the total solar cell element area with respect to the area of a solar cell module can be raised, and by reduction of module materials, such as glass, resin, and an aluminum frame Cost reduction is possible. Furthermore, disconnection due to temperature cycle stress of the inner lead 14 can be prevented, and the long-term reliability is excellent.

また、接続部材15は、第一および第二のインナーリード14を配置するときに、隣接する二つの太陽電池素子の間においてそれぞれの素子の外周端部と平行に配置することが望ましく、このようにすれば、接続部材15と太陽電池素子1との接触による電流リークを低減することにも効果がある。また、本発明における接続部材15は第一および第二のインナーリード14に比べ小さいため、あらかじめこのような接続用配線17を作製しておくことにより作業性が向上するので、より望ましい。   In addition, when the first and second inner leads 14 are disposed, the connecting member 15 is desirably disposed between two adjacent solar cell elements in parallel with the outer peripheral end of each element. If it makes it, it is effective also in reducing the current leak by the contact of the connection member 15 and the solar cell element 1. Further, since the connecting member 15 in the present invention is smaller than the first and second inner leads 14, it is more desirable to prepare the connecting wiring 17 in advance so that the workability is improved.

本発明の太陽電池素子の接続用配線17においても、接続部材15と第一および第二のインナーリードとの大小関係は、上述の図11において説明したものと同様である。すなわち、接続部材15と第一のインナーリード14aもしくは第二のインナーリード14bとの接続部を、これらのいずれかのインナーリード14の長手方向で切断したときの幅が、そのインナーリード14の厚みより大きいほうが好ましい。この範囲とすることで、これらのインナーリード14と接続部材15の接触面積が大きくなり、部材間の電気抵抗を下げることができる。さらに、またこれらのインナーリード14と接続部材15との外れをなくし、作業性も上げることができるという利点がある。具体的には、例えば、接続部材15の幅を0.3〜1.0mm程度に形成することが好ましい。この値よりも幅を小さくすると電気抵抗が上がることとなり変換効率が低下するという問題がある。なお、接続部材15とインナーリード14との接続部が不規則な形状の場合においては、インナーリード14の長手方向で切断したときの幅の最大値を基準と見なすものとする。   Also in the connection wiring 17 of the solar cell element of the present invention, the magnitude relationship between the connection member 15 and the first and second inner leads is the same as that described in FIG. That is, the width when the connecting portion between the connecting member 15 and the first inner lead 14 a or the second inner lead 14 b is cut in the longitudinal direction of any one of the inner leads 14 is the thickness of the inner lead 14. Larger is preferred. By setting it as this range, the contact area of these inner leads 14 and the connection member 15 becomes large, and the electrical resistance between members can be lowered. Furthermore, there is an advantage that the inner lead 14 and the connecting member 15 are not detached and the workability can be improved. Specifically, for example, the width of the connection member 15 is preferably formed to be about 0.3 to 1.0 mm. If the width is made smaller than this value, the electrical resistance increases and there is a problem that the conversion efficiency decreases. In addition, when the connection part of the connection member 15 and the inner lead 14 has an irregular shape, the maximum value of the width when cut in the longitudinal direction of the inner lead 14 is regarded as a reference.

また、本発明の太陽電池素子の接続用配線17において、インナーリード14の短手方向で切断したときの接続部材の幅が、そのインナーリード14の短手方向の幅以上であるほうが好ましい。この範囲を外れると、後工程、例えばラミネート工程等でこれらのインナーリード14の接続部材15と接触していない部分が折れ曲がったりすることによって、インナーリード14が接続部材15から外れる危険性があるが、この範囲とすることにより、インナーリード14が接続部材15からの外れを防止でき、歩留りを向上させることができる。なお、受光面側と非受光面側でインナーリード14の幅が違う場合は広い方のインナーリードの幅に接続部材15の幅を合わせればよい。あるいは、接続部材15の受光面側の幅と非受光面側の幅を各々に対応するインナーリード14の幅に対応させてもよい。なお、接続部材15が不規則な形状の場合においては、インナーリード14の短手方向で切断したときの幅の最大値を基準と見なすものとする。   Further, in the solar cell element connection wiring 17 of the present invention, it is preferable that the width of the connecting member when the inner lead 14 is cut in the short direction is equal to or larger than the width of the inner lead 14 in the short direction. If it is out of this range, there is a risk that the inner lead 14 may be detached from the connecting member 15 by bending the portion of the inner lead 14 that is not in contact with the connecting member 15 in a subsequent process, for example, a laminating process. In this range, the inner lead 14 can be prevented from coming off from the connecting member 15 and the yield can be improved. If the width of the inner lead 14 is different between the light receiving surface side and the non-light receiving surface side, the width of the connecting member 15 may be adjusted to the width of the wider inner lead. Alternatively, the width on the light receiving surface side and the width on the non-light receiving surface side of the connection member 15 may correspond to the width of the inner lead 14 corresponding to each. When the connection member 15 has an irregular shape, the maximum value of the width when the inner lead 14 is cut in the short direction is regarded as a reference.

図6に本発明の太陽電池素子の接続用配線に絶縁部材を設けた例の斜視図を示す。このように本発明にかかる太陽電池素子の接続用配線17においては、接続部材15の周囲や、接続部材15と第一のインナーリード14aもしくは第二のインナーリード14bとの接続部を絶縁部材16が被覆されているほうが好ましい。このとき、絶縁部材16は例えばエポキシ樹脂、アクリル樹脂、EVA樹脂、ガラス、セラミック板、および樹脂板を用い、厚みは100〜500μm程度に形成する。   The perspective view of the example which provided the insulating member in the wiring for connection of the solar cell element of this invention in FIG. 6 is shown. Thus, in the connection wiring 17 of the solar cell element according to the present invention, the insulating member 16 is provided around the connection member 15 and the connection portion between the connection member 15 and the first inner lead 14a or the second inner lead 14b. Is preferably coated. At this time, the insulating member 16 is made of, for example, an epoxy resin, an acrylic resin, an EVA resin, glass, a ceramic plate, and a resin plate and has a thickness of about 100 to 500 μm.

そして、図6(a)に示すように接続部材15の太陽電池素子1と隣接する部分のみを被覆してもいいし、図6(b)に示すように接続部材15の周りに絶縁部材16を被覆してもよい。このようにすれば、作業ミス等で接続部材15が隣接する他の太陽電池素子1に接触した際による電流リークを防止することができる。   Then, as shown in FIG. 6A, only the portion adjacent to the solar cell element 1 of the connecting member 15 may be covered, or the insulating member 16 around the connecting member 15 as shown in FIG. May be coated. If it does in this way, the current leak at the time of the connection member 15 contacting with the other solar cell element 1 which adjoins by an operation mistake etc. can be prevented.

さらに、図6(c)に示すように接続用配線17の接続部材15とインナーリード14の太陽電池素子1と隣接する部分のみを被覆してもいいし、図6(d)に示すように接続用配線17の接続部材15とインナーリード14の接続部全体に絶縁部材を被覆してもよい。このように接続部材15の周りだけでなくインナーリード14の接続部にも絶縁部材を被覆することにより、作業ミスでインナーリード14が隣接する他の太陽電池素子1に接触した際による電流リークを防止する効果をさらに高めることができる。   Further, as shown in FIG. 6 (c), only the portion adjacent to the solar cell element 1 of the connecting member 15 of the connection wiring 17 and the inner lead 14 may be covered, as shown in FIG. 6 (d). The whole connecting portion between the connecting member 15 of the connection wiring 17 and the inner lead 14 may be covered with an insulating member. In this way, by covering the connection part of the inner lead 14 as well as the periphery of the connection member 15 with the insulating member, current leakage caused when the inner lead 14 comes into contact with another adjacent solar cell element 1 due to an operation error is prevented. The effect of preventing can be further enhanced.

図7に上述した絶縁部材を設けた太陽電池素子の接続用配線を用いて太陽電池素子1同士を接続した状態を示す。図7(a)は、図6(a)に示す接続用配線17を用いて太陽電池素子1同士を接続した状態を示す断面図である。この場合、接続部材15に対して、太陽電池素子1と隣接する部分に絶縁部材16が被覆されているため太陽電池素子1と接続用配線17をあらかじめ接触させた状態で、接続用配線17を接続することも可能である。このようにすれば、接続作業が安易となり、また太陽電池素子1の間隔を詰めて配置することができるので、太陽電池モジュールの面積に対する全太陽電池素子面積を高めることができる。   The state which connected the solar cell elements 1 using the wiring for a solar cell element which provided the insulation member mentioned above in FIG. 7 is shown. Fig.7 (a) is sectional drawing which shows the state which connected the solar cell elements 1 using the wiring 17 for a connection shown to Fig.6 (a). In this case, since the insulating member 16 is coated on the connection member 15 at a portion adjacent to the solar cell element 1, the connection wiring 17 is placed in a state where the solar cell element 1 and the connection wiring 17 are in contact with each other in advance. It is also possible to connect. If it does in this way, since a connection operation will become easy and the space | interval of the solar cell element 1 can be arranged close, the total solar cell element area with respect to the area of a solar cell module can be raised.

図7(b)は、図6(c)に示す接続用配線17を用いて太陽電池素子1同士を接続した状態を示す断面図である。この場合、接続用配線17の接続部材15とインナーリード14の双方に対して、太陽電池素子1と隣接する部分に絶縁部材16が被覆されているため太陽電池素子1と接続用配線17をあらかじめ接触させた状態で接続することも可能である。このようにすれば、接続作業も安易となり、また太陽電池素子1の間隔を詰めて配置することができるので、太陽電池モジュールの面積に対する全太陽電池素子面積を高めることができる。   FIG.7 (b) is sectional drawing which shows the state which connected the solar cell elements 1 using the wiring 17 for a connection shown in FIG.6 (c). In this case, since both the connection member 15 and the inner lead 14 of the connection wiring 17 are covered with the insulating member 16 in a portion adjacent to the solar cell element 1, the solar cell element 1 and the connection wiring 17 are connected in advance. It is also possible to connect in contact. If it does in this way, since a connection operation | work will also become easy and the space | interval of the solar cell element 1 can be packed and arrange | positioned, the total solar cell element area with respect to the area of a solar cell module can be raised.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加えることができる。例えば電極形状は上記にとらわれるものではないし、例えば銀等の1種類の材料のみで形成しても構わないし、複数の材料を組み合わせても構わない。   In addition, this invention is not limited to the above-mentioned embodiment, Many corrections and changes can be added to the said embodiment within the scope of the present invention. For example, the electrode shape is not limited to the above, and may be formed of only one kind of material such as silver, or a plurality of materials may be combined.

また、インナーリードとの接続ができれば、電極上に半田を被覆しなくても構わないし、接続方法も例えばホットエアー等の熱溶着に限定されるものではなく、よって、インナーリードと接続部材においても半田で被覆しなくても構わない。接続用配線の作製方法についても同様であり、例えば導電性ペーストを用いて接続してもよい。   Moreover, as long as the connection with the inner lead is possible, the electrode may not be covered with solder, and the connection method is not limited to heat welding such as hot air, and therefore the inner lead and the connection member are also not limited. You do not need to coat with solder. The same applies to the manufacturing method of the connection wiring, and for example, the connection may be made using a conductive paste.

また、絶縁部材で導電性の接続部材を被覆する構造についても、図8に示すように隣接する太陽電池素子の間にすべてに絶縁部材6を介在させて、絶縁部材6の中に接続部材5を埋設し、インナーリードを接続してもよい。   Further, with respect to the structure in which the conductive connecting member is covered with the insulating member, the insulating member 6 is interposed between the adjacent solar cell elements as shown in FIG. May be embedded and the inner leads may be connected.

本発明の太陽電池モジュールを示す断面図である。It is sectional drawing which shows the solar cell module of this invention. (a)、(b)は、本発明の太陽電池モジュールにかかる接続部材の例を示す斜視図である。(A), (b) is a perspective view which shows the example of the connection member concerning the solar cell module of this invention. (a)〜(d)は、本発明の太陽電池モジュールにかかる接続部材に絶縁部材を設けた例と接続する例を示す斜視図である。(A)-(d) is a perspective view which shows the example connected with the example which provided the insulating member in the connection member concerning the solar cell module of this invention. (a)、(b)は、本発明の太陽電池モジュールにかかる絶縁部材を用いて太陽電池素子を接続した状態を示す断面図である。(A), (b) is sectional drawing which shows the state which connected the solar cell element using the insulating member concerning the solar cell module of this invention. (a)は本発明にかかる太陽電池素子の接続用配線の一実施形態の斜視図、(b)は(a)によって太陽電池素子を接続したときの断面図である。(A) is a perspective view of one Embodiment of the wiring for a solar cell element concerning this invention, (b) is sectional drawing when a solar cell element is connected by (a). (a)〜(d)は、本発明の太陽電池素子の接続用配線にかかる絶縁部材を設けた例の斜視図である。(A)-(d) is a perspective view of the example which provided the insulating member concerning the wiring for connection of the solar cell element of this invention. (a)、(b)は、本発明の太陽電池素子の接続用配線にかかる絶縁部材を用いて太陽電池素子を接続した状態を示す断面図である。(A), (b) is sectional drawing which shows the state which connected the solar cell element using the insulating member concerning the wiring for connection of the solar cell element of this invention. (a)は本発明の太陽電池モジュールにかかる絶縁部材を用いて太陽電池素子を接続した状態を示す平面図、(b)はA−A’に沿う断面図である。(A) is a top view which shows the state which connected the solar cell element using the insulating member concerning the solar cell module of this invention, (b) is sectional drawing which follows A-A '. 従来の太陽電池モジュールを示す断面図である。It is sectional drawing which shows the conventional solar cell module. (a)は太陽電池素子の受光面側の電極形状の一例、(b)は太陽電池素子の非受光面側の電極形状の一例を示す図である。(A) is a figure which shows an example of the electrode shape by the side of the light-receiving surface of a solar cell element, (b) is a figure which shows an example of the electrode shape by the side of the non-light-receiving surface of a solar cell element. 本発明の太陽電池モジュールにかかる接続部材とインナーリードの大小関係を説明するための図である。It is a figure for demonstrating the magnitude relationship of the connection member concerning the solar cell module of this invention, and an inner lead.

符号の説明Explanation of symbols

1:太陽電池素子
2:受光面側電極
3:非受光面側電極
4:インナーリード
4a:受光面側インナーリード
4b:非受光面側インナーリード
5:接続部材
6:絶縁部材
7:バスバー電極
8:フィンガー電極
9:集電用電極
14:インナーリード
14a:第一のインナーリード
14b:第二のインナーリード
15:接続部材
16:絶縁部材
17:接続用配線
a:インナーリードの長手方向で切断したときの幅
b:インナーリードの短手方向で切断したときの接続部材の幅
c:インナーリードの厚み
d:インナーリードの短手方向の幅
1: Solar cell element 2: Light receiving surface side electrode 3: Non light receiving surface side electrode 4: Inner lead 4a: Light receiving surface side inner lead 4b: Non light receiving surface side inner lead 5: Connection member 6: Insulating member 7: Bus bar electrode 8 : Finger electrode 9: collecting electrode 14: inner lead 14a: first inner lead 14b: second inner lead 15: connecting member 16: insulating member 17: connecting wire a: cut in the longitudinal direction of the inner lead Width b: width of the connecting member when cut in the short direction of the inner lead c: thickness of the inner lead d: width of the inner lead in the short direction

Claims (10)

受光面側電極と非受光面側電極とを有する複数の太陽電池素子を電気的に接続してなる太陽電池モジュールであって、
前記受光面側電極および前記非受光面側電極には、それぞれに一つずつ接続され前記太陽電池素子の外周端縁よりも外側に延在されてなるインナーリードを備えるとともに、
一の太陽電池素子の前記受光面側に接続されたインナーリードと隣接する他の太陽電池素子の前記非受光面側に接続されたインナーリードとの間に、これらの太陽電池素子の厚さと略同一の厚さを有する導電性の接続部材を介在させて、これらのインナーリード同士を相互に電気的に接続してなる太陽電池モジュール。
A solar cell module formed by electrically connecting a plurality of solar cell elements having a light receiving surface side electrode and a non-light receiving surface side electrode,
The light-receiving surface side electrode and the non-light-receiving surface side electrode are each provided with an inner lead that is connected one by one and extends outward from the outer peripheral edge of the solar cell element,
Between the inner leads connected to the light receiving surface side of one solar cell element and the inner leads connected to the non-light receiving surface side of another adjacent solar cell element, the thickness of these solar cell elements is approximately A solar cell module formed by electrically connecting these inner leads to each other with a conductive connecting member having the same thickness interposed therebetween.
前記接続部材と前記インナーリードとの接続部を、このインナーリードの長手方向で切断したときに、この接続部の幅の最大値が、このインナーリードの厚みより大きい請求項1に記載の太陽電池モジュール。 2. The solar cell according to claim 1, wherein when the connecting portion between the connecting member and the inner lead is cut in the longitudinal direction of the inner lead, the maximum value of the width of the connecting portion is larger than the thickness of the inner lead. module. 前記接続部材を前記インナーリードの短手方向で切断したときに、この接続部材の幅の最大値が、このインナーリードの短手方向の幅以上である請求項1または2に記載の太陽電池モジュール。 3. The solar cell module according to claim 1, wherein when the connection member is cut in the short direction of the inner lead, the maximum value of the width of the connection member is equal to or greater than the width of the inner lead in the short direction. . 前記接続部材と太陽電池素子との間に絶縁部材が介在されてなる請求項1から3のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein an insulating member is interposed between the connection member and the solar cell element. 前記接続部材とインナーリードとの接続部を絶縁材料で被覆してなる請求項1から4のいずれかに記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein a connection portion between the connection member and the inner lead is covered with an insulating material. 受光面側電極と非受光面側電極とを有する複数の太陽電池素子を電気的に接続するための太陽電池素子の接続用配線であって、
一方の太陽電池素子の受光面側電極に接続される第一のインナーリードと、
他方の太陽電池素子の非受光面側電極に接続される第二のインナーリードと、
これらの太陽電池素子と略同一の厚みを有する導電性の接続部材と、からなり、
前記第一のインナーリードの一端と前記第二のインナーリードの一端との間に前記接続部材を介在させ電気的に接続して一体としてなる太陽電池素子の接続用配線。
A solar cell element connection wiring for electrically connecting a plurality of solar cell elements having a light receiving surface side electrode and a non-light receiving surface side electrode,
A first inner lead connected to the light receiving surface side electrode of one solar cell element;
A second inner lead connected to the non-light-receiving surface side electrode of the other solar cell element;
A conductive connecting member having substantially the same thickness as these solar cell elements,
A connection wiring for a solar cell element in which the connection member is interposed between and electrically connected to one end of the first inner lead and one end of the second inner lead.
前記接続部材と前記第一のインナーリードもしくは前記第二のインナーリードとの接続部を、これらのいずれかのインナーリードの長手方向で切断したときの幅の最大値が、そのインナーリードの厚みより大きい請求項6に記載の太陽電池素子の接続用配線。 The maximum value of the width when the connection portion between the connection member and the first inner lead or the second inner lead is cut in the longitudinal direction of any one of these inner leads is greater than the thickness of the inner lead. Wiring for connecting solar cell elements according to claim 6 which is large. インナーリードの短手方向で切断したときの接続部材の幅の最大値が、そのインナーリードの短手方向の幅以上である請求項6または7に記載の太陽電池素子の接続用配線。 The wiring for connecting solar cell elements according to claim 6 or 7, wherein the maximum width of the connecting member when cut in the short direction of the inner lead is equal to or greater than the width of the inner lead in the short direction. 前記接続部材は、その周囲に絶縁部材が被覆されてなる請求項6から8のいずれかに記載の太陽電池素子の接続用配線。 The wiring for connecting solar cell elements according to claim 6, wherein the connection member is covered with an insulating member around the connection member. 前記接続部材と前記第一のインナーリードもしくは前記第二のインナーリードとの接続部を絶縁部材で被覆してなる請求項6から9のいずれかに記載の太陽電池素子の接続用配線。 The wiring for connecting solar cell elements according to any one of claims 6 to 9, wherein a connecting portion between the connecting member and the first inner lead or the second inner lead is covered with an insulating member.
JP2003364555A 2003-10-24 2003-10-24 Solar cell module and wiring for connecting solar cell element Pending JP2005129773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364555A JP2005129773A (en) 2003-10-24 2003-10-24 Solar cell module and wiring for connecting solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364555A JP2005129773A (en) 2003-10-24 2003-10-24 Solar cell module and wiring for connecting solar cell element

Publications (1)

Publication Number Publication Date
JP2005129773A true JP2005129773A (en) 2005-05-19

Family

ID=34643502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364555A Pending JP2005129773A (en) 2003-10-24 2003-10-24 Solar cell module and wiring for connecting solar cell element

Country Status (1)

Country Link
JP (1) JP2005129773A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300403A (en) * 2007-05-29 2008-12-11 Sony Chemical & Information Device Corp Conductor wire and manufacturing method therefor, and solar cell
WO2009011791A2 (en) * 2007-07-17 2009-01-22 Miasole Photovoltaic device with a luminescent down-shifting material
WO2009011780A2 (en) * 2007-07-13 2009-01-22 Miasol Photovoltaic modules with integrated devices
WO2009011790A2 (en) * 2007-07-13 2009-01-22 Miasole Rooftop photovoltaic systems
WO2009019929A1 (en) 2007-08-09 2009-02-12 Mitsubishi Electric Corporation Solar battery panel
JP2010192572A (en) * 2009-02-17 2010-09-02 Shin-Etsu Chemical Co Ltd Solar cell, and solar cell module
JP2011187601A (en) * 2010-03-08 2011-09-22 Fuji Mach Mfg Co Ltd Method and apparatus for manufacturing solar cell module, and solar cell module
US8058752B2 (en) 2009-02-13 2011-11-15 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
WO2012053471A1 (en) * 2010-10-22 2012-04-26 シャープ株式会社 Solar battery cell
JP2012182490A (en) * 2012-05-30 2012-09-20 Sony Chemical & Information Device Corp Manufacturing method for solar cell
WO2013140552A1 (en) * 2012-03-21 2013-09-26 三洋電機株式会社 Solar cell module
US8558102B2 (en) 2009-09-11 2013-10-15 Miasole Rotatable junction box for a solar module
US8586857B2 (en) 2008-11-04 2013-11-19 Miasole Combined diode, lead assembly incorporating an expansion joint
US8951824B1 (en) 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
US9018513B2 (en) 2008-05-15 2015-04-28 Apollo Precision (Kunming) Yuanhong Limited Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US9059351B2 (en) 2008-11-04 2015-06-16 Apollo Precision (Fujian) Limited Integrated diode assemblies for photovoltaic modules
US9061344B1 (en) 2010-05-26 2015-06-23 Apollo Precision (Fujian) Limited Apparatuses and methods for fabricating wire current collectors and interconnects for solar cells
US9620660B2 (en) 2008-03-20 2017-04-11 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Interconnect assembly
KR20170065557A (en) * 2014-09-25 2017-06-13 선파워 코포레이션 Solar cell interconnection
US10026859B2 (en) 2010-10-04 2018-07-17 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Small gauge wire solar cell interconnect
US10056521B2 (en) 2008-03-20 2018-08-21 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Wire network for interconnecting photovoltaic cells
CN109841698A (en) * 2019-01-24 2019-06-04 常州时创能源科技有限公司 Solar battery sheet and its application
EP3525245A4 (en) * 2017-09-27 2019-10-16 Zhejiang Jinko Solar Co., Ltd. Battery piece serial connection assembly
CN112236872A (en) * 2019-05-23 2021-01-15 浙江凯盈新材料有限公司 Solar cell side surface interconnect
CN112234113A (en) * 2019-06-27 2021-01-15 苏州阿特斯阳光电力科技有限公司 Photovoltaic module
CN112349805A (en) * 2019-08-08 2021-02-09 苏州阿特斯阳光电力科技有限公司 Photovoltaic module preparation method
CN117438488A (en) * 2023-12-21 2024-01-23 正泰新能科技股份有限公司 Photovoltaic module and photovoltaic module preparation method

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300403A (en) * 2007-05-29 2008-12-11 Sony Chemical & Information Device Corp Conductor wire and manufacturing method therefor, and solar cell
WO2009011780A2 (en) * 2007-07-13 2009-01-22 Miasol Photovoltaic modules with integrated devices
WO2009011790A2 (en) * 2007-07-13 2009-01-22 Miasole Rooftop photovoltaic systems
WO2009011780A3 (en) * 2007-07-13 2009-04-09 Miasol Photovoltaic modules with integrated devices
WO2009011790A3 (en) * 2007-07-13 2009-04-09 Miasole Rooftop photovoltaic systems
WO2009011791A2 (en) * 2007-07-17 2009-01-22 Miasole Photovoltaic device with a luminescent down-shifting material
WO2009011791A3 (en) * 2007-07-17 2009-04-16 Miasole Photovoltaic device with a luminescent down-shifting material
WO2009019929A1 (en) 2007-08-09 2009-02-12 Mitsubishi Electric Corporation Solar battery panel
US8389849B2 (en) 2007-08-09 2013-03-05 Mitsubishi Electric Corporation Solar battery panel
US9620660B2 (en) 2008-03-20 2017-04-11 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Interconnect assembly
US10056521B2 (en) 2008-03-20 2018-08-21 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Wire network for interconnecting photovoltaic cells
US9018513B2 (en) 2008-05-15 2015-04-28 Apollo Precision (Kunming) Yuanhong Limited Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US8586857B2 (en) 2008-11-04 2013-11-19 Miasole Combined diode, lead assembly incorporating an expansion joint
US9059351B2 (en) 2008-11-04 2015-06-16 Apollo Precision (Fujian) Limited Integrated diode assemblies for photovoltaic modules
US8058752B2 (en) 2009-02-13 2011-11-15 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
US9164525B2 (en) 2009-02-13 2015-10-20 Apollo Precision Fujian Limited Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
JP2010192572A (en) * 2009-02-17 2010-09-02 Shin-Etsu Chemical Co Ltd Solar cell, and solar cell module
US8558102B2 (en) 2009-09-11 2013-10-15 Miasole Rotatable junction box for a solar module
JP2011187601A (en) * 2010-03-08 2011-09-22 Fuji Mach Mfg Co Ltd Method and apparatus for manufacturing solar cell module, and solar cell module
US9061344B1 (en) 2010-05-26 2015-06-23 Apollo Precision (Fujian) Limited Apparatuses and methods for fabricating wire current collectors and interconnects for solar cells
US10026859B2 (en) 2010-10-04 2018-07-17 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Small gauge wire solar cell interconnect
WO2012053471A1 (en) * 2010-10-22 2012-04-26 シャープ株式会社 Solar battery cell
US20130206228A1 (en) * 2010-10-22 2013-08-15 Sharp Kabushiki Kaisha Solar cell
JP5639657B2 (en) * 2010-10-22 2014-12-10 シャープ株式会社 Solar cells
TWI447920B (en) * 2010-10-22 2014-08-01 Sharp Kk Solar cell unit
US9236503B2 (en) 2010-10-22 2016-01-12 Sharp Kabushiki Kaisha Solar cell
US8951824B1 (en) 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
US9647160B2 (en) 2011-04-08 2017-05-09 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Adhesives for attaching wire network to photovoltaic cells
WO2013140552A1 (en) * 2012-03-21 2013-09-26 三洋電機株式会社 Solar cell module
JP2012182490A (en) * 2012-05-30 2012-09-20 Sony Chemical & Information Device Corp Manufacturing method for solar cell
JP2017528919A (en) * 2014-09-25 2017-09-28 サンパワー コーポレイション Solar cell interconnect
KR20170065557A (en) * 2014-09-25 2017-06-13 선파워 코포레이션 Solar cell interconnection
CN110098275B (en) * 2014-09-25 2022-10-21 迈可晟太阳能有限公司 Solar cell interconnect
CN110098275A (en) * 2014-09-25 2019-08-06 太阳能公司 Solar battery interconnection piece
US11923474B2 (en) 2014-09-25 2024-03-05 Maxeon Solar Pte. Ltd. Solar cell interconnection
KR102467187B1 (en) * 2014-09-25 2022-11-14 맥시온 솔라 피티이. 엘티디. Solar cell interconnection
EP3525245A4 (en) * 2017-09-27 2019-10-16 Zhejiang Jinko Solar Co., Ltd. Battery piece serial connection assembly
JP2019533307A (en) * 2017-09-27 2019-11-14 ジョジアン ジンコ ソーラー カンパニー リミテッド Battery cell series module
CN109841698A (en) * 2019-01-24 2019-06-04 常州时创能源科技有限公司 Solar battery sheet and its application
CN112236872B (en) * 2019-05-23 2022-04-19 浙江凯盈新材料有限公司 Solar cell side surface interconnect
CN112236872A (en) * 2019-05-23 2021-01-15 浙江凯盈新材料有限公司 Solar cell side surface interconnect
CN112234113A (en) * 2019-06-27 2021-01-15 苏州阿特斯阳光电力科技有限公司 Photovoltaic module
CN112349805A (en) * 2019-08-08 2021-02-09 苏州阿特斯阳光电力科技有限公司 Photovoltaic module preparation method
CN117438488A (en) * 2023-12-21 2024-01-23 正泰新能科技股份有限公司 Photovoltaic module and photovoltaic module preparation method
CN117438488B (en) * 2023-12-21 2024-03-29 正泰新能科技股份有限公司 Photovoltaic module and photovoltaic module preparation method

Similar Documents

Publication Publication Date Title
JP2005129773A (en) Solar cell module and wiring for connecting solar cell element
US20160260854A1 (en) Solar cell module and method of manufacturing the same
WO2010116973A1 (en) Interconnect sheet, solar cell with interconnect sheet, solar module, and method of producing solar cell with interconnect sheet
US20100243024A1 (en) Solar cell, solar cell module and solar cell system
US20110155203A1 (en) Solar cell module
US20110048492A1 (en) Solar cell and solar cell module
JP2002359388A (en) Solar battery device
JP2015159276A (en) Solar battery element, and solar battery module
JP3683700B2 (en) Solar cell device
JP4299772B2 (en) Solar cell module
US10418503B2 (en) Solar battery module and method for manufacturing solar battery module
CN109560147B (en) Solar cell panel
JP2005191125A (en) Connection tab for connecting solar battery element and solar battery module, and method of manufacturing solar battery module
JP2000340812A (en) Solar battery
JP2014229754A (en) Method for manufacturing solar cell module and solar cell module
JP5014360B2 (en) Solar cell module and solar cell element structure
JP2006278695A (en) Solar cell module
JP2005191116A (en) Inner lead for connecting solar cell element and solar cell module
JP4883891B2 (en) Solar cell module
JP6639589B2 (en) Solar cell module and method of manufacturing solar cell module
US20150243813A1 (en) Solar cell, method for manufacturing the same, and solar cell module
JP2005191201A (en) Inner lead for connecting solar cell element, solar cell module and its production method
JP2005191200A (en) Inner lead for connecting solar cell element, solar cell module and its production method
JP4741538B2 (en) Solar cell module
JP4463135B2 (en) Solar cell module manufacturing method