JP2005129544A - Cathode-ray tube - Google Patents

Cathode-ray tube Download PDF

Info

Publication number
JP2005129544A
JP2005129544A JP2004371963A JP2004371963A JP2005129544A JP 2005129544 A JP2005129544 A JP 2005129544A JP 2004371963 A JP2004371963 A JP 2004371963A JP 2004371963 A JP2004371963 A JP 2004371963A JP 2005129544 A JP2005129544 A JP 2005129544A
Authority
JP
Japan
Prior art keywords
electrode
focus
cathode
ray tube
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004371963A
Other languages
Japanese (ja)
Inventor
Youn Jin Kim
ヨウン ジン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Philips Displays Korea Co Ltd
Original Assignee
LG Philips Displays Korea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Philips Displays Korea Co Ltd filed Critical LG Philips Displays Korea Co Ltd
Publication of JP2005129544A publication Critical patent/JP2005129544A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/56Correction of beam optics
    • H01J2229/568Correction of beam optics using supplementary correction devices
    • H01J2229/5681Correction of beam optics using supplementary correction devices magnetic
    • H01J2229/5687Auxiliary coils
    • H01J2229/5688Velocity modulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode-ray tube maximizing the action of a VM coil acting in synchronization with the differential signal of a video signal. <P>SOLUTION: In this cathode-ray tube including a cathode 3 to emit an electron beam toward a phosphor screen, an electron gun in which an anode electrode 9 on the screen side and a focus electrode on the cathode side, and the VM 18 coil acting in synchronization with the video signal of a circuit mounted on the neck part of the cathode-ray tube, the focus electrode 8 on which a fixed focus voltage is impressed comprises a set of three or more electrodes continuously disposed, and when the total of the length of the focus electrodes is set as L, and the intervals between the focus electrodes are set as 'g1' and 'g2', 4 mm < L < 30 mm, 0.6 mm < g1 < 1.2 mm, and 0.6 mm < g2 < 1.2 mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は陰極線管に関し、より詳しくは電子ビームのフォーカスに影響を及ぼすスポット径を縮小するために電極の構成及び形状を改善させたカラー陰極線管に関する。   The present invention relates to a cathode ray tube, and more particularly to a color cathode ray tube in which the structure and shape of an electrode are improved in order to reduce the spot diameter that affects the focus of an electron beam.

図1は従来の陰極線管の概略構成図である。
図1を参照すれば、陰極線管用インライン型電子銃には多数の電極が形成される。前記電極は陰極3で発生した電子ビームが一定の強さで制御されてスクリーン17に到達させるために、電子ビーム13の通過経路に対して垂直になるように互いに一定の間隔をおいて位置している。
FIG. 1 is a schematic configuration diagram of a conventional cathode ray tube.
Referring to FIG. 1, a large number of electrodes are formed on an in-line electron gun for a cathode ray tube. The electrodes are positioned at a certain interval so as to be perpendicular to the passage path of the electron beam 13 so that the electron beam generated at the cathode 3 is controlled with a certain intensity and reaches the screen 17. ing.

詳しくは、互いに独立している3個の陰極3、前記陰極から一定距離をおいて配置された3個の陰極3の共通格子である第1電極4、第1電極から一定間隔をおいて配置された第2電極5、第3電極6、第4電極7、第5電極8及び第6電極9の順で構成される。   Specifically, three cathodes 3 that are independent from each other, a first electrode 4 that is a common grid of the three cathodes 3 arranged at a certain distance from the cathode, and a certain distance from the first electrode. The second electrode 5, the third electrode 6, the fourth electrode 7, the fifth electrode 8, and the sixth electrode 9 are configured in this order.

そして、第6電極9の上部には電子銃とチューブを電気的に連結しながら電子銃をチューブのネック部上に固定させる役割を果たすB.S.C11が付着されたシールドカップ10の順に構成されたインライン型電子銃を示す。   The upper part of the sixth electrode 9 is configured in the order of the shield cup 10 to which B.S.C11 is attached, which serves to fix the electron gun on the neck of the tube while electrically connecting the electron gun and the tube. An in-line type electron gun is shown.

電子銃の動作を説明すれば、前記電子銃は陰極3に内蔵されたヒーター2のステムピン1から電子が放出され、前記電子は制御電極の第1電極4により電子ビーム13が制御され、加速電極の第2電極5により電子ビーム13が加速され、第2電極5、第3電極6、第4電極7及び第5電極8の間に形成される先端の集束レンズにより電子ビームが一部集束及び加速される。   Explaining the operation of the electron gun, the electron gun emits electrons from the stem pin 1 of the heater 2 built in the cathode 3, the electrons are controlled by the first electrode 4 of the control electrode, and the electron beam 13 is controlled, and the acceleration electrode The electron beam 13 is accelerated by the second electrode 5, and the electron beam is partially focused and converged by the focusing lens at the tip formed between the second electrode 5, the third electrode 6, the fourth electrode 7 and the fifth electrode 8. Accelerated.

また、偏向ヨークによって発生する非点収差を補償するための4極子レンズを形成するために、主レンズを形成する電極の一部で、フォーカス電極と呼ばれ、偏向信号に同期して可変電圧が印加される第6電極9と、アノード電極と呼ばれる第7電極10とにより、電子ビームは主な集束及び加速を行うことになり、蛍光面16の内側に形成されたシャドウマスク15を通過して蛍光面16に衝突されて発光する。   Also, in order to form a quadrupole lens for compensating astigmatism generated by the deflection yoke, a part of the electrode forming the main lens is called a focus electrode, and a variable voltage is synchronized with the deflection signal. The applied sixth electrode 9 and the seventh electrode 10 called the anode electrode cause the electron beam to be mainly focused and accelerated and pass through the shadow mask 15 formed inside the phosphor screen 16. It strikes the phosphor screen 16 and emits light.

そして、電子銃の外部に電子銃から放出された電子ビーム13をスクリーン17の全体面に偏向させる偏向ヨーク12が位置して画面を具現させる。   A deflection yoke 12 that deflects the electron beam 13 emitted from the electron gun to the entire surface of the screen 17 is positioned outside the electron gun to implement the screen.

そして、従来の電子銃付きの陰極線管のネック部には回路の映像信号と同期して作用するVM(Velocity modulation;以下、コイルという)18が装着されている。前記コイルは本発明の主観点であるスポット径の縮小のために適用されている。   A VM (Velocity modulation; hereinafter referred to as a coil) 18 that operates in synchronization with the video signal of the circuit is mounted on the neck portion of a conventional cathode ray tube with an electron gun. The coil is applied to reduce the spot diameter, which is the main aspect of the present invention.

従来、電子銃の設計特性中の画面上のスポット径に影響を及ぼす要素として、レンズ倍率、空間電荷反撥力及び主レンズの球面収差特性がある。   Conventionally, factors affecting the spot diameter on the screen in the design characteristics of the electron gun include lens magnification, space charge repulsion, and spherical aberration characteristics of the main lens.

上記の特性等の動作をより詳しく説明する。
前記レンズ倍率によるスポット径(Dx)への影響は、基本的な電圧条件と焦点距離及び電子銃の長さなどが確定されている状況なので、電子銃で設計要素として活用できる部分が少なくその効果も微小である。
The operation of the above characteristics will be described in more detail.
The influence of the lens magnification on the spot diameter (D x ) is such that the basic voltage conditions, focal length, and length of the electron gun are determined. The effect is also very small.

前記空間電荷反撥力による影響は電子ビーム内の電子間の互いの反撥及び衝突によるスポット径の拡大現象であり、空間電荷反撥力によるスポット径(Dst)の拡大を低減するには、電子ビームの進行角度(以下、発散角という;α)が大きくなるように設計するのが有利である。 The influence of the space charge repulsive force is a phenomenon of spot diameter expansion due to mutual repulsion and collision between electrons in the electron beam. To reduce the increase of the spot diameter (D st ) due to space charge repulsive force, It is advantageous to design such that the traveling angle (hereinafter referred to as “divergence angle”; α) is large.

前記主レンズの球面収差特性による影響はレンズの近軸を通過した電子と遠軸を通過した電子との間の焦点距離差によるスポット径(Dic)の拡大現像であり、前記空間電荷反撥力とは反対に電子ビームの主レンズに入射する発散角が小さいほど画面上でより小さなスポット径を具現できる。 The influence of the spherical aberration characteristic of the main lens is an expansion development of the spot diameter (D ic ) due to a focal length difference between electrons passing through the paraxial axis and electrons passing through the far axis, and the space charge repulsive force On the contrary, the smaller the divergence angle of the electron beam incident on the main lens, the smaller the spot diameter on the screen.

上記で説明のように、画面上のスポット径(Dt)は一般的に3種類の要素の合算で表現される。 As described above, the spot diameter (D t ) on the screen is generally represented by the sum of three types of elements.

特に、空間電荷反撥力を低減しながら球面収差を低減する方法として、主レンズ径を拡大することが最善である。   In particular, as a method of reducing spherical aberration while reducing space charge repulsion, it is best to enlarge the main lens diameter.

主レンズ径を拡大することで、発散角の大きい電子ビームが入射されても球面収差によるスポットの拡大を低減でき、主レンズ部を通過後の空間電荷反撥力も低減できるので、画面上における小さなスポット具現が可能になる。   By enlarging the main lens diameter, even if an electron beam with a large divergence angle is incident, the expansion of the spot due to spherical aberration can be reduced, and the space charge repulsion after passing through the main lens can also be reduced. Implementation becomes possible.

図2は上記の内容を示す実験結果として、主レンズ径によるスポット径の変化を示す。   FIG. 2 shows a change in the spot diameter depending on the main lens diameter as an experimental result showing the above contents.

図2に示すグラフから分かるように、主レンズ径が大きいほど主レンズ球面収差によるスポット径の拡大が小さくなるため、画面上におけるスポット径を縮小できる。   As can be seen from the graph shown in FIG. 2, the spot diameter on the screen can be reduced because the increase in the spot diameter due to the spherical aberration of the main lens decreases as the main lens diameter increases.

そして、一般的に高電圧が印加される第5電極と偏向信号に同期して可変電圧が印加される第6電極とを通称してフォーカス電極といい、フォーカス電極の長さは電子銃の電圧比(%:フォーカス/高圧)を決定づける重要な要素である。前記第6電極を含ませることにより偏向ヨークの非点数回を補償することがあるが、相対的に高解像度と画面周辺部の鮮明度を向上させる必要性が少ない場合には第6電極を適用しないこともある。   In general, the fifth electrode to which a high voltage is applied and the sixth electrode to which a variable voltage is applied in synchronization with the deflection signal are collectively called a focus electrode, and the length of the focus electrode is the voltage of the electron gun. It is an important factor that determines the ratio (%: focus / high pressure). Inclusion of the sixth electrode may compensate for the astigmatism of the deflection yoke, but the sixth electrode is applied when there is little need to improve the resolution and the sharpness of the screen periphery. Sometimes it doesn't.

主レンズ部の拡大方法として、主レンズ形成電極のホール直径を機構的に拡大する方法と、レンズ補正作用をする静電場制御電極体の深さを深くする方法などが提示された。   As a method of enlarging the main lens portion, a method of mechanically enlarging the hole diameter of the main lens forming electrode, a method of increasing the depth of the electrostatic field control electrode body that performs the lens correcting action, and the like were presented.

しかしながら、機構的に電極のホール直径を拡大するのは、φ29.1mmというネック径の制限要素のためほぼ不可能なので、フォーカス品質の向上にも困難点がある。   However, since it is almost impossible to increase the hole diameter of the electrode mechanically because of the limiting element of the neck diameter of φ29.1 mm, there is a difficulty in improving the focus quality.

したがって、画面上におけるスポット径の低減及び解像度の向上のために、シャーシー(Chassis)に設置される陰極線管を駆動する回路を適切に操作し、画面に電子ビームを走査させる映像信号の微分信号を電子銃付きの陰極線管のネック部に設置されたコイルに同期させて印加する。これにより、電子ビームが偏向ヨークの偏向磁界により均一に偏向される速度で変調することで、画面における解像度及び鮮明度を向上させることができる。   Therefore, in order to reduce the spot diameter on the screen and improve the resolution, the circuit that drives the cathode ray tube installed in the chassis is appropriately operated, and the differential signal of the video signal that scans the electron beam on the screen is obtained. It is applied in synchronization with a coil installed at the neck of a cathode ray tube with an electron gun. As a result, the resolution and sharpness on the screen can be improved by modulating the electron beam at a speed at which it is uniformly deflected by the deflection magnetic field of the deflection yoke.

図3はVMコイルの作動原理を簡略に示している。
こうした回路的な解像度の向上方法を極大化させるには、従来の固定フォーカス電圧が印加される電極の全長が十分に短く、前記コイルの映像信号に同期されて印加される電流による速度変調磁界が效果的に侵入するように充分な間隔が形成されなければならない問題点がある。
FIG. 3 schematically shows the operating principle of the VM coil.
In order to maximize the circuit resolution improvement method, the total length of the electrodes to which the conventional fixed focus voltage is applied is sufficiently short, and the velocity modulation magnetic field generated by the current applied in synchronization with the video signal of the coil is generated. There is a problem that a sufficient interval has to be formed so as to invade effectively.

上記のようにコイルの効果を極大化させるのに従来の電子銃の構造は不適当である。   As described above, the structure of the conventional electron gun is inappropriate for maximizing the effect of the coil.

通常、コイルにより発生する磁界の中心は前記固定されて相対的に高電圧が印加される第5電極の付近に位置するが、設計上必要な電圧比を合せるために電極の長さを長くするのが一般的である。   Normally, the center of the magnetic field generated by the coil is located in the vicinity of the fifth electrode to which a relatively high voltage is applied while being fixed, but the length of the electrode is increased in order to match the voltage ratio necessary for the design. It is common.

電極の長さを長くするのは、小さな部品を連続設置する場合と比べれば、費用節減及び生産工程の単純化という利点がある。   Increasing the length of the electrodes has the advantages of cost savings and simplification of the production process, compared to the case where small parts are continuously installed.

しかし、このような単純化した長い電極による電子銃の構造は、コイルの磁界による速度変調効果を弱化させて解像度の向上を阻害する要素として作用する。   However, such a simplified structure of the electron gun using long electrodes acts as an element that impedes the improvement in resolution by weakening the speed modulation effect due to the magnetic field of the coil.

本発明の目的は従来の問題点を解決するためのもので、固定フォーカス電圧が印加されるフォーカス電極を連続配置した2個以上の電極で構成し、前記固定フォーカス電圧が印加されるフォーカス電極間に適切な間隔を維持させることで、映像信号の微分信号に同期して作用するVMコイルの作用を極大化する電子銃を提供することにある。   An object of the present invention is to solve the conventional problems, and is composed of two or more electrodes in which focus electrodes to which a fixed focus voltage is applied are continuously arranged, and between the focus electrodes to which the fixed focus voltage is applied. It is an object of the present invention to provide an electron gun that maximizes the action of a VM coil that operates in synchronization with a differential signal of a video signal by maintaining an appropriate interval.

本発明によるカラー陰極線管用電子銃は蛍光体スクリーンに向かって電子ビームを放出する陰極と、スクリーン側のアノード電極と、カソード側のフォーカス電極とが含まれる電子銃、及び前記フォーカス電極の位置が磁界の中心になって陰極線管のネック部上に装着されて回路の映像信号と同期して作用するVMコイルが含まれる陰極線管において、固定フォーカス電圧を印加されるフォーカス電極が連続的に配置された2個以上の電極の組からなり、前記フォーカス電極の長さの合計を‘L’とし、前記電極間の間隔の合計を‘g’とすれば、(g×100)/L=5〜30(%)を満たしていることを特徴とする。   An electron gun for a color cathode ray tube according to the present invention includes a cathode that emits an electron beam toward a phosphor screen, an anode electrode on the screen side, and a focus electrode on the cathode side, and the position of the focus electrode is a magnetic field. The focus electrode to which a fixed focus voltage is applied is continuously arranged in a cathode ray tube including a VM coil which is mounted on the neck portion of the cathode ray tube at the center of the tube and operates in synchronization with the video signal of the circuit. When the total length of the focus electrodes is “L” and the total distance between the electrodes is “g”, it is (g × 100) / L = 5-30. (%) Is satisfied.

本発明によれば、画面スポット径の水平方向への大きさを15〜30%縮小して画面の解像度を向上させることができる。   According to the present invention, it is possible to improve the screen resolution by reducing the size of the screen spot diameter in the horizontal direction by 15 to 30%.

上記の条件で試料を製作し評価した結果、画面におけるスポットの大きさは従来の電子銃に対応して水平方向で約15〜30%の縮小効果を持つ。   As a result of producing and evaluating the sample under the above conditions, the spot size on the screen has a reduction effect of about 15 to 30% in the horizontal direction corresponding to the conventional electron gun.

本発明による電子銃の構造が適用されることで、フォーカスに大きい影響を及ぼすスポット径の縮小のために、固定フォーカス電圧が印加されるフォーカス電極の全体長さをそのまま維持しながら2個以上の電極に分割して同じ電圧を印加し、各電極間の間隔を0.6〜1.2mm形成することで、画面スポット径の水平方向への大きさを15〜30%縮小できる。   By applying the structure of the electron gun according to the present invention, in order to reduce the spot diameter that greatly affects the focus, two or more pieces of the focus electrode to which the fixed focus voltage is applied are maintained as they are. By dividing the electrodes into the same voltage and forming an interval between the electrodes of 0.6 to 1.2 mm, the size of the screen spot diameter in the horizontal direction can be reduced by 15 to 30%.

また、少ない費用と短期間に適用可能なので、フォーカスの品質を早期に向上させることができる。   Moreover, since it can be applied in a short period of time with a low cost, the quality of focus can be improved early.

以下、本発明によるカラー陰極線管用電子銃を、添付図面を参照して詳細に説明する。
まず、VMコイルの回路的な解像度向上方法を極大化させるために、VMコイルにより発生する磁界の中心が位置する固定フォーカス電圧を印加されるフォーカス電極の長さを高い電圧比を合せるために長くする必要がある。また、前記VMコイルの映像信号に同期されて印加される電流による速度変調磁界が效果的に侵入するように充分な電極の間隔を形成させるべきである。
Hereinafter, an electron gun for a color cathode ray tube according to the present invention will be described in detail with reference to the accompanying drawings.
First, in order to maximize the circuit resolution improvement method of the VM coil, the length of the focus electrode to which the fixed focus voltage where the center of the magnetic field generated by the VM coil is located is increased in order to match the high voltage ratio. There is a need to. Further, a sufficient electrode interval should be formed so that a velocity modulation magnetic field due to a current applied in synchronization with the video signal of the VM coil can effectively enter.

したがって、本発明の電子銃主レンズ構造は、図1のように従来の電子銃構造と類似している3個の電子ビームに共通の開口部を持つ電極と、3個の電子ビーム通過ホールを持つ板状の静電場制御電極体と、ギャップ状の電極とが積層されて構成され、前記電極らは熔接工程などを通じて電気的に連結しているので、高圧と偏向信号に同期された可変電圧が印加される。   Therefore, the electron gun main lens structure of the present invention includes an electrode having an opening common to three electron beams and three electron beam passage holes similar to the conventional electron gun structure as shown in FIG. The plate-like electrostatic field control electrode body and the gap-like electrode are laminated, and the electrodes are electrically connected through a welding process or the like, so that the variable voltage synchronized with the high voltage and the deflection signal Is applied.

そして、従来にスクリーン側のアノード電極とカソード側のフォーカス電極で構成されたメーン電極のうち、前記フォーカス電極は可変フォーカス電圧を印加する電極と固定フォーカス電極を印加する電極とに分類される。   Of the main electrodes conventionally composed of an anode electrode on the screen side and a focus electrode on the cathode side, the focus electrode is classified into an electrode for applying a variable focus voltage and an electrode for applying a fixed focus electrode.

そのうちで、固定フォーカス電圧を印加する固定フォーカス電極が2個以上に分けて配置されている。   Among them, the fixed focus electrodes for applying the fixed focus voltage are arranged in two or more.

図4の(a)と(b)は従来電子銃の構造図で、図4の(c)は本発明による電子銃の構造図であって、固定フォーカス電圧を印加されるフォーカス電極28が連続配置された電子銃構造である。   4A and 4B are structural diagrams of a conventional electron gun, and FIG. 4C is a structural diagram of an electron gun according to the present invention, in which a focus electrode 28 to which a fixed focus voltage is applied is continuous. It is an arranged electron gun structure.

そして、図4の(d)は本発明による電子銃の構造図であって、可変フォーカス電圧を印加されるフォーカス電極31と、固定フォーカス電圧を印加されるフォーカス電極28とが連続配置されている電子銃の構造を示している。   4D is a structural diagram of the electron gun according to the present invention, in which a focus electrode 31 to which a variable focus voltage is applied and a focus electrode 28 to which a fixed focus voltage is applied are continuously arranged. The structure of the electron gun is shown.

図4の(c)は映像信号が印加される陰極23と、陰極から放出された電子が集まり画面方向に進行するように引き付ける第2電極25と、電子ビームが陰極に印加される一定以上の映像信号に該当する電圧が印加されない場合に電子の放出を止める第1電極24とが配置されており、相対的に高電圧を印加する第3電極26と、相対的に低電圧を印加する第4電極27と、相対的に高い固定電圧を印加するフォーカス電極28a、28b、28cとがある。   FIG. 4 (c) shows a cathode 23 to which a video signal is applied, a second electrode 25 that attracts electrons emitted from the cathode to gather and travel in the screen direction, and a certain level that an electron beam is applied to the cathode. A first electrode 24 that stops emission of electrons when a voltage corresponding to the video signal is not applied is disposed, a third electrode 26 that applies a relatively high voltage, and a first electrode that applies a relatively low voltage. There are four electrodes 27 and focus electrodes 28a, 28b, 28c for applying a relatively high fixed voltage.

そして、高圧が印加される第9電極29によって画面に電子ビームを走査するように主レンズを形成させて陰極線管の画面を形成する。   Then, the main lens is formed so as to scan the electron beam on the screen by the ninth electrode 29 to which a high voltage is applied, thereby forming the screen of the cathode ray tube.

図4の(d)は図4の(c)と同様な構造であり、偏向ヨークの偏向信号に同期されて可変されるフォーカス電圧を印加し、偏向ヨーク磁界によって発生する非点数差を補償するように4極子レンズを形成する第8電極31がさらに配置されている。   4D has the same structure as that of FIG. 4C, and a focus voltage that is varied in synchronization with the deflection signal of the deflection yoke is applied to compensate for the astigmatism difference generated by the deflection yoke magnetic field. Thus, an eighth electrode 31 forming a quadrupole lens is further arranged.

前記第8電極31と高圧の印加される第9電極29とにより、画面に電子ビームを走査するように主レンズを形成させて陰極線管の画面を形成する。   The eighth lens 31 and the ninth electrode 29 to which a high voltage is applied form a main lens so as to scan the screen with an electron beam, thereby forming a screen of a cathode ray tube.

図6は本発明による固定フォーカス電圧を印加するフォーカス電極を持つ電子銃の構造である。   FIG. 6 shows the structure of an electron gun having a focus electrode for applying a fixed focus voltage according to the present invention.

メーン電極はアノード電極29とフォーカス電極28で構成されており、前記フォーカス電極28は可変フォーカス電圧を印加する電極31と固定フォーカス電圧を印加する電極28で構成される。   The main electrode includes an anode electrode 29 and a focus electrode 28, and the focus electrode 28 includes an electrode 31 that applies a variable focus voltage and an electrode 28 that applies a fixed focus voltage.

そのうちで、固定フォーカス電圧を印加するフォーカス電極28を図4c及び図4dのフォーカス電極28a、28b、28cと共に連続2個以上配置し、連続配置したフォーカス電極28の長さの合計Lは4mm以上30mm以下の値を持つ。   Among them, two or more focus electrodes 28 for applying a fixed focus voltage are continuously arranged together with the focus electrodes 28a, 28b and 28c of FIGS. 4c and 4d, and the total length L of the continuously arranged focus electrodes 28 is 4 mm or more and 30 mm. Has the following values:

このとき、前記連続配置したフォーカス電極28間の間隔g1、g2の合計をgとすれば、次式の(g×100)/L=5〜30(%)を満たしているようにする。   At this time, assuming that the total of the gaps g1 and g2 between the focus electrodes 28 arranged continuously is g, the following formula (g × 100) / L = 5 to 30 (%) is satisfied.

上記式を満たしている固定フォーカス電圧を印加されるフォーカス電極28に対する実験結果が図5のグラフに示している。   The experimental results for the focus electrode 28 to which a fixed focus voltage satisfying the above equation is applied are shown in the graph of FIG.

図5は固定フォーカス電圧を印加されるフォーカス電極と映像信号の微分信号に同期して作用するコイルにより画面のスポット径の変化を示す。   FIG. 5 shows changes in the spot diameter of the screen due to the focus electrode to which a fixed focus voltage is applied and a coil that operates in synchronization with the differential signal of the video signal.

図5の(a)は電子銃電極、特にコイルの作用磁界の中心に位置した固定フォーカス電圧を印加されるフォーカス電極の間隔の数、すなわち図4の第5電極28a、第6電極28b及び第7電極28cのように間隔を形成させる数字と、コイルの速度変調磁界による画面スポットの縮小量とを示すグラフであって、その間隔の数が増えるほど効果は増大することが分かる。   FIG. 5A shows the number of intervals of the focus electrodes to which the fixed focus voltage located at the center of the working magnetic field of the electron gun electrode, in particular the coil, is applied, that is, the fifth electrode 28a, the sixth electrode 28b and the fifth electrode in FIG. It is a graph showing numbers for forming intervals like the seven electrodes 28c and the reduction amount of the screen spot by the velocity modulation magnetic field of the coil, and it can be seen that the effect increases as the number of the intervals increases.

図5の(b)はフォーカス電極28間の間隔の長さとコイルの速度変調磁界による画面スポットの縮小量とを表示したもので、約0.6〜1.2mmの間隔を持つ時コイルの効果が極大化することが分かる。   FIG. 5B shows the distance between the focus electrodes 28 and the reduction amount of the screen spot due to the velocity modulation magnetic field of the coil. The effect of the coil when the distance is about 0.6 to 1.2 mm. It can be seen that is maximized.

また、図5の(c)は電子銃の全長とコイルの速度変調磁界の関係をグラフで示したもので、陰極線管に挿入された電子銃に比例する区間があることが分かる。   FIG. 5C is a graph showing the relationship between the total length of the electron gun and the velocity modulation magnetic field of the coil. It can be seen that there is a section proportional to the electron gun inserted into the cathode ray tube.

したがって、前記のような図5のデータを分析してみれば、フォーカス電極28間の間隔の数は1個以上なべきであり、フォーカス電極28間の間隔の広さは0.6〜1.2mm水準が最も効果的であり、電子銃の全長は長いほど有利であるが、一定水準を越えればその効果が大きくない。   Therefore, if the data of FIG. 5 is analyzed, the number of intervals between the focus electrodes 28 should be one or more, and the width of the interval between the focus electrodes 28 is 0.6 to 1. The 2 mm level is the most effective, and the longer the total length of the electron gun, the more advantageous, but the effect is not great if it exceeds a certain level.

一般的な陰極線管の概略図である。It is the schematic of a common cathode ray tube. 主レンズ径によるスポット径の変化を示すグラプである。It is a graph which shows the change of the spot diameter by the main lens diameter. VMコイルの作動原理を示す図である。It is a figure which shows the operating principle of VM coil. 従来の電子銃の構造と本発明による電子銃の構造とを比較して説明する図である。It is a figure which compares and demonstrates the structure of the conventional electron gun, and the structure of the electron gun by this invention. 固定フォーカス電圧を印加されるフォーカス電極と映像信号の微分信号に同期して作用するコイルにより画面のスポット径の変化を説明する図である。It is a figure explaining the change of the spot diameter of a screen by the coil which acts synchronizing with the focus electrode to which a fixed focus voltage is applied, and the differential signal of a video signal. 本発明による電子銃の構造を示す図である。It is a figure which shows the structure of the electron gun by this invention.

符号の説明Explanation of symbols

1 ステムピン
2 ヒーター
3、23 陰極
4、24 第1電極
5、25 第2電極
6、26 第3電極
7、27 第4電極8
8 第5電極
9、29 第6電極
10 シールドカップ
11 B.S.C
12 偏向ヨーク
13 電子ビーム
15 シャドウマスク
16 蛍光面
17 スクリーン
28 フォーカス電極
DESCRIPTION OF SYMBOLS 1 Stem pin 2 Heater 3, 23 Cathode 4, 24 1st electrode 5, 25 2nd electrode 6, 26 3rd electrode 7, 27 4th electrode 8
8 5th electrode 9, 29 6th electrode 10 Shield cup 11 B.S.C
12 Deflection yoke 13 Electron beam 15 Shadow mask 16 Phosphor screen 17 Screen 28 Focus electrode

Claims (1)

蛍光体スクリーンに向かって電子ビームを放出する陰極、スクリーン側のアノード電極とカソード側のフォーカス電極とが含まれる電子銃、及び前記フォーカス電極の位置が磁界の中心になって陰極線管のネック部上に装着されて回路の映像信号と同期して作用するVM(Velocity Modulation)コイルを備える陰極線管において;
前記電子銃は、固定フォーカス電圧を印加される3個のフォーカス電極を備え、
固定フォーカス電圧を印加される前記フォーカス電極の長さの合計が’L’で、固定フォーカス電圧を印加される各フォーカス電極間の間隔が’g1’及び’g2’である時、4mm<L<30mm、0.6mm<g1<1.2mm、及び0.6mm<g2<1.2mmである陰極線管。
A cathode that emits an electron beam toward the phosphor screen, an electron gun that includes an anode electrode on the screen side and a focus electrode on the cathode side, and the neck of the cathode ray tube with the position of the focus electrode being the center of the magnetic field In a cathode ray tube equipped with a VM (Velocity Modulation) coil that is attached to the circuit and operates in synchronization with the video signal of the circuit;
The electron gun includes three focus electrodes to which a fixed focus voltage is applied,
When the total length of the focus electrodes to which the fixed focus voltage is applied is “L” and the distance between the focus electrodes to which the fixed focus voltage is applied is “g1” and “g2”, 4 mm <L < A cathode ray tube with 30 mm, 0.6 mm <g1 <1.2 mm, and 0.6 mm <g2 <1.2 mm.
JP2004371963A 2001-09-14 2004-12-22 Cathode-ray tube Pending JP2005129544A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0056933A KR100426569B1 (en) 2001-09-14 2001-09-14 Electron gun for CRT

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002181524A Division JP2003092071A (en) 2001-09-14 2002-06-21 Electron gun for color cathode-ray tube

Publications (1)

Publication Number Publication Date
JP2005129544A true JP2005129544A (en) 2005-05-19

Family

ID=19714302

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002181524A Withdrawn JP2003092071A (en) 2001-09-14 2002-06-21 Electron gun for color cathode-ray tube
JP2004371963A Pending JP2005129544A (en) 2001-09-14 2004-12-22 Cathode-ray tube

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2002181524A Withdrawn JP2003092071A (en) 2001-09-14 2002-06-21 Electron gun for color cathode-ray tube

Country Status (4)

Country Link
EP (1) EP1294009A3 (en)
JP (2) JP2003092071A (en)
KR (1) KR100426569B1 (en)
CN (1) CN1206695C (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111879B2 (en) * 1986-02-14 1995-11-29 株式会社東芝 Color picture tube device
US6031326A (en) * 1997-04-01 2000-02-29 Hitachi, Ltd. Electron gun with electrode supports
DE69724942D1 (en) * 1997-07-04 2003-10-23 Thomson Tubes & Displays Color picture tube with an in-line electron gun
JPH11135031A (en) * 1997-10-30 1999-05-21 Hitachi Ltd Color cathode-ray tube
KR100339349B1 (en) * 1999-08-07 2002-06-03 구자홍 electron gun in color cathode ray tube
KR100728190B1 (en) * 2001-01-17 2007-06-13 삼성에스디아이 주식회사 Electron gun for cathode ray tube
KR100778497B1 (en) * 2001-05-15 2007-11-22 삼성에스디아이 주식회사 Electron gun for cathode ray tube

Also Published As

Publication number Publication date
KR20030023826A (en) 2003-03-20
CN1206695C (en) 2005-06-15
JP2003092071A (en) 2003-03-28
CN1405830A (en) 2003-03-26
EP1294009A2 (en) 2003-03-19
EP1294009A3 (en) 2004-05-06
KR100426569B1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP2005129544A (en) Cathode-ray tube
JP3739824B2 (en) In-line electron gun for cathode ray tube
US6750601B2 (en) Electron gun for color cathode ray tube
JPH06275212A (en) Electron gun for cathode-ray tube
KR100434321B1 (en) Electron gun for Color CRT
KR100319321B1 (en) Electronic Gun of In-line type in CRT
KR100391372B1 (en) Electronic gun of color cathod ray tube
KR100560887B1 (en) Electron gun for Color Cathode Ray Tube
KR100869098B1 (en) Electron gun for color cathode ray tube
KR100751306B1 (en) Electron gun for color cathode ray tube
KR100332099B1 (en) Electronic Gun of In-Line type in CRT
KR100316106B1 (en) Electronic Gun of In-line type for CRT
KR100618224B1 (en) Electron gun of color cathode ray tube
KR100269395B1 (en) Electron gun for color crt
KR100719529B1 (en) Electron gun for color CPT
KR100774159B1 (en) electron gun for a braun-tube
KR20010018887A (en) electon gun for color cathode ray tube
JP2002203492A (en) Electron gun for cathode-ray tube and cathode-ray tube
KR20020003614A (en) Electron gun assembly for cathode ray tube
KR20000038861A (en) Electric gun for color cathode ray tube
KR20030070996A (en) A Electron gun of Cathode Ray Tube
JPH06162958A (en) Color cathode-ray tube device
JPH11260285A (en) Control method for color crt and electron beam
JPH10199444A (en) Color cathode-ray tube
JP2002124200A (en) Electron gun device and cathode ray tube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219