JP2003092071A - Electron gun for color cathode-ray tube - Google Patents

Electron gun for color cathode-ray tube

Info

Publication number
JP2003092071A
JP2003092071A JP2002181524A JP2002181524A JP2003092071A JP 2003092071 A JP2003092071 A JP 2003092071A JP 2002181524 A JP2002181524 A JP 2002181524A JP 2002181524 A JP2002181524 A JP 2002181524A JP 2003092071 A JP2003092071 A JP 2003092071A
Authority
JP
Japan
Prior art keywords
electrode
focus
electron gun
ray tube
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002181524A
Other languages
Japanese (ja)
Inventor
Youn Jin Kim
ヨウン ジン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Philips Displays Korea Co Ltd
Original Assignee
LG Philips Displays Korea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Philips Displays Korea Co Ltd filed Critical LG Philips Displays Korea Co Ltd
Publication of JP2003092071A publication Critical patent/JP2003092071A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/56Correction of beam optics
    • H01J2229/568Correction of beam optics using supplementary correction devices
    • H01J2229/5681Correction of beam optics using supplementary correction devices magnetic
    • H01J2229/5687Auxiliary coils
    • H01J2229/5688Velocity modulation

Abstract

PROBLEM TO BE SOLVED: To provide an electron gun which maximizes action of a VM coil acting by synchronizing with derivative signals of image signals. SOLUTION: With the electron gun including a cathode 3 emitting electron beams toward a phosphor screen, an anode 9 of the screen side, and focus electrodes 8 of the cathode side, and a cathode-ray tube including a VM coil 18 mounted on a neck of the cathode-ray tube and acting in synchronization with image signals of a circuit, the focus electrodes 8 on which fixed focus voltage is impressed are composed of a set of not less than two electrodes continuously arrayed. Provided the length of the focus electrodes is 'L,' and total of distances of each two electrodes is 'g,' (g×100)/L=5 to 30(%) is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はカラー陰極線管に使
用される電子銃に関し、より詳しくは電子ビームのフォ
ーカスに影響を及ぼすスポット径を縮小するために電極
の構成及び形状を改善させたカラー陰極線管用電子銃に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron gun used for a color cathode ray tube, and more particularly to a color cathode ray tube having an improved electrode structure and shape in order to reduce a spot diameter which affects the focus of an electron beam. Related to electron guns for tubes.

【0002】[0002]

【従来の技術】図1は従来の陰極線管の概略構成図であ
る。図1を参照すれば、陰極線管用インライン型電子銃
には多数の電極が形成される。前記電極は陰極3で発生
した電子ビームが一定の強さで制御されてスクリーン1
7に到達させるために、電子ビーム13の通過経路に対
して垂直になるように互いに一定の間隔をおいて位置し
ている。
2. Description of the Related Art FIG. 1 is a schematic diagram of a conventional cathode ray tube. Referring to FIG. 1, a large number of electrodes are formed on an in-line type electron gun for a cathode ray tube. The electrode 1 controls the electron beam generated at the cathode 3 with a constant intensity and
In order to reach 7, the electron beams 13 are positioned at regular intervals so as to be perpendicular to the passage path of the electron beam 13.

【0003】詳しくは、互いに独立している3個の陰極
3、前記陰極から一定距離をおいて配置された3個の陰
極3の共通格子である第1電極4、第1電極から一定間
隔をおいて配置された第2電極5、第3電極6、第4電
極7、第5電極8及び第6電極9の順で構成される。
More specifically, three cathodes 3 which are independent of each other, a first electrode 4 which is a common grid of the three cathodes 3 which are arranged at a certain distance from the cathodes, and a certain distance from the first electrode The second electrode 5, the third electrode 6, the fourth electrode 7, the fifth electrode 8 and the sixth electrode 9 arranged in this order are configured in this order.

【0004】そして、第6電極9の上部には電子銃とチ
ューブを電気的に連結しながら電子銃をチューブのネッ
ク部上に固定させる役割を果たすB.S.C11が付着さ
れたシールドカップ10の順に構成されたインライン型
電子銃を示す。
A shield cup 10 having a BSC 11 attached to the sixth electrode 9 serves to fix the electron gun on the neck of the tube while electrically connecting the electron gun to the tube. The in-line type electron gun comprised in order of.

【0005】電子銃の動作を説明すれば、前記電子銃は
陰極3に内蔵されたヒーター2のステムピン1から電子
が放出され、前記電子は制御電極の第1電極4により電
子ビーム13が制御され、加速電極の第2電極5により
電子ビーム13が加速され、第2電極5、第3電極6、
第4電極7及び第5電極8の間に形成される先端の集束
レンズにより電子ビームが一部集束及び加速される。
The operation of the electron gun will be described. In the electron gun, electrons are emitted from the stem pin 1 of the heater 2 built in the cathode 3, and the electron beam 13 is controlled by the first electrode 4 of the control electrode. , The electron beam 13 is accelerated by the second electrode 5 of the acceleration electrode, and the second electrode 5, the third electrode 6,
The electron beam is partially focused and accelerated by the focusing lens at the tip formed between the fourth electrode 7 and the fifth electrode 8.

【0006】また、偏向ヨークによって発生する非点収
差を補償するための4極子レンズを形成するために、主
レンズを形成する電極の一部で、フォーカス電極と呼ば
れ、偏向信号に同期して可変電圧が印加される第6電極
9と、アノード電極と呼ばれる第7電極10とにより、
電子ビームは主な集束及び加速を行うことになり、蛍光
面16の内側に形成されたシャドウマスク15を通過し
て蛍光面16に衝突されて発光する。
Also, in order to form a quadrupole lens for compensating the astigmatism generated by the deflection yoke, a part of the electrode forming the main lens is called a focus electrode and is synchronized with the deflection signal. By the sixth electrode 9 to which a variable voltage is applied and the seventh electrode 10 called an anode electrode,
The electron beam mainly focuses and accelerates, passes through the shadow mask 15 formed inside the fluorescent screen 16, collides with the fluorescent screen 16, and emits light.

【0007】そして、電子銃の外部に電子銃から放出さ
れた電子ビーム13をスクリーン17の全体面に偏向さ
せる偏向ヨーク12が位置して画面を具現させる。
A deflection yoke 12 for deflecting the electron beam 13 emitted from the electron gun to the entire surface of the screen 17 is positioned outside the electron gun to embody a screen.

【0008】そして、従来の電子銃付きの陰極線管のネ
ック部には回路の映像信号と同期して作用するVM(Vel
ocity modulation;以下、コイルという)18が装着さ
れている。前記コイルは本発明の主観点であるスポット
径の縮小のために適用されている。
The conventional cathode ray tube equipped with an electron gun has a neck (VM) (Vel) which operates in synchronization with the video signal of the circuit.
18 is attached. The coil is applied for reducing the spot diameter, which is the main aspect of the present invention.

【0009】従来、電子銃の設計特性中の画面上のスポ
ット径に影響を及ぼす要素として、レンズ倍率、空間電
荷反撥力及び主レンズの球面収差特性がある。
Conventionally, lens magnification, space charge repulsion and spherical aberration characteristics of the main lens are factors that influence the spot diameter on the screen in the design characteristics of the electron gun.

【0010】上記の特性等の動作をより詳しく説明す
る。前記レンズ倍率によるスポット径(Dx)への影響
は、基本的な電圧条件と焦点距離及び電子銃の長さなど
が確定されている状況なので、電子銃で設計要素として
活用できる部分が少なくその効果も微小である。
The operation of the above characteristics and the like will be described in more detail. The influence of the lens magnification on the spot diameter (D x ) is such that the basic voltage condition, the focal length, the length of the electron gun, etc. have been determined, so there are few parts that can be utilized as design elements in the electron gun. The effect is also small.

【0011】前記空間電荷反撥力による影響は電子ビー
ム内の電子間の互いの反撥及び衝突によるスポット径の
拡大現象であり、空間電荷反撥力によるスポット径(D
st)の拡大を低減するには、電子ビームの進行角度(以
下、発散角という;α)が大きくなるように設計するのが
有利である。
The influence of the space charge repulsive force is a phenomenon of expanding the spot diameter due to mutual repulsion and collision between electrons in the electron beam, and the spot diameter (D
In order to reduce the expansion of st ), it is advantageous to design so that the traveling angle of the electron beam (hereinafter, referred to as divergence angle; α) becomes large.

【0012】前記主レンズの球面収差特性による影響は
レンズの近軸を通過した電子と遠軸を通過した電子との
間の焦点距離差によるスポット径(Dic)の拡大現像であ
り、前記空間電荷反撥力とは反対に電子ビームの主レン
ズに入射する発散角が小さいほど画面上でより小さなス
ポット径を具現できる。
The influence of the spherical aberration characteristic of the main lens is the expansion development of the spot diameter (D ic ) due to the difference in focal length between the electrons passing through the paraxial axis and the electrons passing through the far axis of the lens. Contrary to the charge repulsion, the smaller the divergence angle of the electron beam incident on the main lens, the smaller the spot diameter can be realized on the screen.

【0013】上記で説明のように、画面上のスポット径
(Dt)は一般的に下記式のように3種類の要素の合算で
表現される。
As explained above, the spot diameter on the screen
(D t ) is generally expressed by the sum of three types of elements as in the following equation.

【0014】特に、空間電荷反撥力を低減しながら球面
収差を低減する方法として、主レンズ径を拡大すること
が最善である。
In particular, it is best to enlarge the diameter of the main lens as a method for reducing the spherical aberration while reducing the space charge repulsion force.

【0015】主レンズ径を拡大することで、発散角の大
きい電子ビームが入射されても球面収差によるスポット
の拡大を低減でき、主レンズ部を通過後の空間電荷反撥
力も低減できるので、画面上における小さなスポット具
現が可能になる。
By enlarging the diameter of the main lens, even if an electron beam with a large divergence angle is incident, the expansion of the spot due to spherical aberration can be reduced, and the space charge repulsive force after passing through the main lens portion can also be reduced. It is possible to realize a small spot in.

【0016】図2は上記の内容を示す実験結果として、
主レンズ径によるスポット径の変化を示す。
FIG. 2 shows the experimental results showing the above contents.
The change in spot diameter depending on the main lens diameter is shown.

【0017】図2に示すグラフから分かるように、主レ
ンズ径が大きいほど主レンズ球面収差によるスポット径
の拡大が小さくなるため、画面上におけるスポット径を
縮小できる。
As can be seen from the graph shown in FIG. 2, the larger the main lens diameter is, the smaller the enlargement of the spot diameter due to the spherical aberration of the main lens is, so that the spot diameter on the screen can be reduced.

【0018】そして、一般的に高電圧が印加される第5
電極と偏向信号に同期して可変電圧が印加される第6電
極とを通称してフォーカス電極といい、フォーカス電極
の長さは電子銃の電圧比(%:フォーカス/高圧)を決定づ
ける重要な要素である。前記第6電極を含ませることに
より偏向ヨークの非点数回を補償することがあるが、相
対的に高解像度と画面周辺部の鮮明度を向上させる必要
性が少ない場合には第6電極を適用しないこともある。
And, in general, a fifth voltage to which a high voltage is applied.
The electrode and the sixth electrode to which a variable voltage is applied in synchronization with the deflection signal are collectively called the focus electrode, and the length of the focus electrode is an important factor that determines the voltage ratio (%: focus / high voltage) of the electron gun. Is. Inclusion of the sixth electrode may compensate astigmatism of the deflection yoke, but the sixth electrode is used when there is little need to improve relatively high resolution and sharpness of the peripheral portion of the screen. Sometimes I don't.

【0019】主レンズ部の拡大方法として、主レンズ形
成電極のホール直径を機構的に拡大する方法と、レンズ
補正作用をする静電場制御電極体の深さを深くする方法
などが提示された。
As a method of enlarging the main lens portion, a method of mechanically enlarging the hole diameter of the main lens forming electrode and a method of increasing the depth of the electrostatic field control electrode body for performing the lens correcting action have been presented.

【0020】[0020]

【本発明が解決しようとする課題】しかしながら、機構
的に電極のホール直径を拡大するのは、φ29.1mm
というネック径の制限要素のためほぼ不可能なので、フ
ォーカス品質の向上にも困難点がある。
However, it is necessary to mechanically expand the hole diameter of the electrode by φ29.1 mm.
Since it is almost impossible because of the limiting factor of the neck diameter, there is a difficulty in improving the focus quality.

【0021】したがって、画面上におけるスポット径の
低減及び解像度の向上のために、シャーシー(Chassis)
に設置される陰極線管を駆動する回路を適切に操作し、
画面に電子ビームを走査させる映像信号の微分信号を電
子銃付きの陰極線管のネック部に設置されたコイルに同
期させて印加する。これにより、電子ビームが偏向ヨー
クの偏向磁界により均一に偏向される速度で変調するこ
とで、画面における解像度及び鮮明度を向上させること
ができる。
Therefore, in order to reduce the spot diameter on the screen and improve the resolution, the chassis (Chassis)
Operate the circuit driving the cathode ray tube installed in
A differential signal of a video signal for scanning an electron beam on a screen is applied in synchronization with a coil installed at the neck of a cathode ray tube with an electron gun. As a result, the electron beam is modulated at a speed at which it is uniformly deflected by the deflection magnetic field of the deflection yoke, so that the resolution and sharpness on the screen can be improved.

【0022】図3はVMコイルの作動原理を簡略に示し
ている。こうした回路的な解像度の向上方法を極大化さ
せるには、従来の固定フォーカス電圧が印加される電極
の全長が十分に短く、前記コイルの映像信号に同期され
て印加される電流による速度変調磁界が效果的に侵入す
るように充分な間隔が形成されなければならない問題点
がある。
FIG. 3 schematically shows the operating principle of the VM coil. In order to maximize such a circuit-like resolution improving method, the total length of the electrodes to which the conventional fixed focus voltage is applied is sufficiently short, and the velocity modulation magnetic field due to the current applied in synchronization with the video signal of the coil is generated. There is a problem that a sufficient space must be formed to effectively invade.

【0023】上記のようにコイルの効果を極大化させる
のに従来の電子銃の構造は不適当である。
The structure of the conventional electron gun is not suitable for maximizing the effect of the coil as described above.

【0024】通常、コイルにより発生する磁界の中心は
前記固定されて相対的に高電圧が印加される第5電極の
付近に位置するが、設計上必要な電圧比を合せるために
電極の長さを長くするのが一般的である。
Normally, the center of the magnetic field generated by the coil is located in the vicinity of the fixed fifth electrode to which a relatively high voltage is applied, but the length of the electrode is adjusted to match the voltage ratio required for design. Is generally long.

【0025】電極の長さを長くするのは、小さな部品を
連続設置する場合と比べれば、費用節減及び生産工程の
単純化という利点がある。
Increasing the length of the electrode has the advantages of cost reduction and simplification of the production process as compared with the case where small parts are continuously installed.

【0026】しかし、このような単純化した長い電極に
よる電子銃の構造は、コイルの磁界による速度変調効果
を弱化させて解像度の向上を阻害する要素として作用す
る。
However, the structure of the electron gun having such a simplified long electrode acts as an element that weakens the speed modulation effect by the magnetic field of the coil and hinders the improvement of resolution.

【0027】本発明の目的は従来の問題点を解決するた
めのもので、固定フォーカス電圧が印加されるフォーカ
ス電極を連続配置した2個以上の電極で構成し、前記固
定フォーカス電圧が印加されるフォーカス電極間に適切
な間隔を維持させることで、映像信号の微分信号に同期
して作用するVMコイルの作用を極大化する電子銃を提
供することにある。
An object of the present invention is to solve the problems of the prior art, in which a focus electrode to which a fixed focus voltage is applied is composed of two or more electrodes arranged in series, and the fixed focus voltage is applied. An object of the present invention is to provide an electron gun that maximizes the action of a VM coil that operates in synchronization with a differential signal of a video signal by maintaining an appropriate distance between focus electrodes.

【0028】[0028]

【課題を解決するための手段】本発明によるカラー陰極
線管用電子銃は蛍光体スクリーンに向かって電子ビーム
を放出する陰極と、スクリーン側のアノード電極と、カ
ソード側のフォーカス電極とが含まれる電子銃、及び前
記フォーカス電極の位置が磁界の中心になって陰極線管
のネック部上に装着されて回路の映像信号と同期して作
用するVMコイルが含まれる陰極線管において、固定フ
ォーカス電圧を印加されるフォーカス電極が連続的に配
置された2個以上の電極の組からなり、前記フォーカス
電極の長さの合計を‘L’とし、前記電極間の間隔の合
計を‘g’とすれば、(g×100)/L=5〜30(%)
を満たしていることを特徴とする。
An electron gun for a color cathode ray tube according to the present invention includes an electron gun that emits an electron beam toward a phosphor screen, an anode electrode on the screen side, and a focus electrode on the cathode side. , And a fixed focus voltage is applied in a cathode ray tube including a VM coil mounted on the neck portion of the cathode ray tube with the position of the focus electrode being the center of the magnetic field and acting in synchronization with the video signal of the circuit. If the focus electrode is composed of a set of two or more electrodes arranged continuously, and the total length of the focus electrodes is'L 'and the total distance between the electrodes is'g', then (g × 100) / L = 5-30 (%)
Is satisfied.

【0029】本発明によれば、画面スポット径の水平方
向への大きさを15〜30%縮小して画面の解像度を向
上させることができる。
According to the present invention, the size of the screen spot diameter in the horizontal direction can be reduced by 15 to 30% to improve the screen resolution.

【0030】[0030]

【発明の実施の形態】以下、本発明によるカラー陰極線
管用電子銃を、添付図面を参照して詳細に説明する。ま
ず、VMコイルの回路的な解像度向上方法を極大化させ
るために、VMコイルにより発生する磁界の中心が位置
する固定フォーカス電圧を印加されるフォーカス電極の
長さを高い電圧比を合せるために長くする必要がある。
また、前記VMコイルの映像信号に同期されて印加され
る電流による速度変調磁界が效果的に侵入するように充
分な電極の間隔を形成させるべきである。
DETAILED DESCRIPTION OF THE INVENTION An electron gun for a color cathode ray tube according to the present invention will be described in detail below with reference to the accompanying drawings. First, in order to maximize the circuit resolution improvement method of the VM coil, the length of the focus electrode, to which a fixed focus voltage at which the center of the magnetic field generated by the VM coil is located, is applied, is increased to match a high voltage ratio. There is a need to.
In addition, a sufficient gap between the electrodes should be formed so that the velocity modulation magnetic field due to the current applied in synchronization with the video signal of the VM coil effectively penetrates.

【0031】したがって、本発明の電子銃主レンズ構造
は、図1のように従来の電子銃構造と類似している3個
の電子ビームに共通の開口部を持つ電極と、3個の電子
ビーム通過ホールを持つ板状の静電場制御電極体と、ギ
ャップ状の電極とが積層されて構成され、前記電極らは
熔接工程などを通じて電気的に連結しているので、高圧
と偏向信号に同期された可変電圧が印加される。
Therefore, the electron gun main lens structure of the present invention is similar to the conventional electron gun structure as shown in FIG. 1 and has electrodes having openings common to three electron beams and three electron beams. It is composed by stacking a plate-shaped electrostatic field control electrode body having a through hole and a gap-shaped electrode, and since the electrodes are electrically connected through a welding process etc., they are synchronized with the high voltage and the deflection signal. Variable voltage is applied.

【0032】そして、従来にスクリーン側のアノード電
極とカソード側のフォーカス電極で構成されたメーン電
極のうち、前記フォーカス電極は可変フォーカス電圧を
印加する電極と固定フォーカス電極を印加する電極とに
分類される。
Of the main electrodes conventionally composed of the anode electrode on the screen side and the focus electrode on the cathode side, the focus electrode is classified into an electrode for applying a variable focus voltage and an electrode for applying a fixed focus electrode. It

【0033】そのうちで、固定フォーカス電圧を印加す
る固定フォーカス電極が2個以上に分けて配置されてい
る。
Among them, the fixed focus electrodes for applying the fixed focus voltage are divided into two or more and arranged.

【0034】図4の(a)と(b)は従来電子銃の構造
図で、図4の(c)は本発明による電子銃の構造図であ
って、固定フォーカス電圧を印加されるフォーカス電極
28が連続配置された電子銃構造である。
FIGS. 4A and 4B are structural views of a conventional electron gun, and FIG. 4C is a structural view of the electron gun according to the present invention, in which a focus electrode to which a fixed focus voltage is applied. 28 is an electron gun structure in which they are continuously arranged.

【0035】そして、図4の(d)は本発明による電子
銃の構造図であって、可変フォーカス電圧を印加される
フォーカス電極31と、固定フォーカス電圧を印加され
るフォーカス電極28とが連続配置されている電子銃の
構造を示している。
FIG. 4D is a structural view of the electron gun according to the present invention, in which a focus electrode 31 to which a variable focus voltage is applied and a focus electrode 28 to which a fixed focus voltage is applied are continuously arranged. The structure of the electron gun is shown.

【0036】図4の(c)は映像信号が印加される陰極
23と、陰極から放出された電子が集まり画面方向に進
行するように引き付ける第2電極25と、電子ビームが
陰極に印加される一定以上の映像信号に該当する電圧が
印加されない場合に電子の放出を止める第1電極24と
が配置されており、相対的に高電圧を印加する第3電極
26と、相対的に低電圧を印加する第4電極27と、相
対的に高い固定電圧を印加するフォーカス電極28a、
28b、28cとがある。
FIG. 4C shows a cathode 23 to which a video signal is applied, a second electrode 25 which attracts electrons emitted from the cathode so as to gather and progress in the screen direction, and an electron beam is applied to the cathode. A first electrode 24 that stops the emission of electrons when a voltage corresponding to a video signal of a certain level or more is not applied is disposed, and a third electrode 26 that applies a relatively high voltage and a relatively low voltage are applied. A fourth electrode 27 for applying and a focus electrode 28a for applying a relatively high fixed voltage,
28b and 28c.

【0037】そして、高圧が印加される第9電極29に
よって画面に電子ビームを走査するように主レンズを形
成させて陰極線管の画面を形成する。
Then, the ninth electrode 29 to which a high voltage is applied forms a main lens so as to scan an electron beam on the screen to form a screen of the cathode ray tube.

【0038】図4の(d)は図4の(c)と同様な構造
であり、偏向ヨークの偏向信号に同期されて可変される
フォーカス電圧を印加し、偏向ヨーク磁界によって発生
する非点数差を補償するように4極子レンズを形成する
第8電極31がさらに配置されている。
FIG. 4D shows a structure similar to that of FIG. 4C, in which a focus voltage which is varied in synchronization with the deflection signal of the deflection yoke is applied and the astigmatic difference generated by the deflection yoke magnetic field is applied. The eighth electrode 31 forming a quadrupole lens is further arranged so as to compensate for

【0039】前記第8電極31と高圧の印加される第9
電極29とにより、画面に電子ビームを走査するように
主レンズを形成させて陰極線管の画面を形成する。
The eighth electrode 31 and the ninth electrode to which a high voltage is applied
With the electrode 29, a main lens is formed on the screen so as to scan the electron beam, and the screen of the cathode ray tube is formed.

【0040】図6は本発明による固定フォーカス電圧を
印加するフォーカス電極を持つ電子銃の構造である。
FIG. 6 shows the structure of an electron gun having a focus electrode for applying a fixed focus voltage according to the present invention.

【0041】メーン電極はアノード電極29とフォーカ
ス電極28で構成されており、前記フォーカス電極28
は可変フォーカス電圧を印加する電極31と固定フォー
カス電圧を印加する電極28で構成される。
The main electrode is composed of an anode electrode 29 and a focus electrode 28.
Is composed of an electrode 31 for applying a variable focus voltage and an electrode 28 for applying a fixed focus voltage.

【0042】そのうちで、固定フォーカス電圧を印加す
るフォーカス電極28を図4c及び図4dのフォーカス
電極28a、28b、28cと共に連続2個以上配置
し、連続配置したフォーカス電極28の長さの合計Lは
4mm以上30mm以下の値を持つ。
Among them, two or more focus electrodes 28 for applying a fixed focus voltage are continuously arranged together with the focus electrodes 28a, 28b and 28c of FIGS. 4c and 4d, and the total length L of the focus electrodes 28 continuously arranged is L. It has a value of 4 mm or more and 30 mm or less.

【0043】このとき、前記連続配置したフォーカス電
極28間の間隔g1、g2の合計をgとすれば、次式の
(g×100)/L=5〜30(%)を満たしているようにす
る。
At this time, if the total of the intervals g1 and g2 between the continuously arranged focus electrodes 28 is g, then
Make sure that (g × 100) / L = 5 to 30 (%) is satisfied.

【0044】上記式を満たしている固定フォーカス電圧
を印加されるフォーカス電極28に対する実験結果が図
5のグラフに示している。
Experimental results for the focus electrode 28 to which a fixed focus voltage satisfying the above expression is applied are shown in the graph of FIG.

【0045】図5は固定フォーカス電圧を印加されるフ
ォーカス電極と映像信号の微分信号に同期して作用する
コイルにより画面のスポット径の変化を示す。
FIG. 5 shows a change in the spot diameter of the screen by the focus electrode to which a fixed focus voltage is applied and the coil which operates in synchronization with the differential signal of the video signal.

【0046】図5の(a)は電子銃電極、特にコイルの
作用磁界の中心に位置した固定フォーカス電圧を印加さ
れるフォーカス電極の間隔の数、すなわち図4の第5電
極28a、第6電極28b及び第7電極28cのように
間隔を形成させる数字と、コイルの速度変調磁界による
画面スポットの縮小量とを示すグラフであって、その間
隔の数が増えるほど効果は増大することが分かる。
FIG. 5A shows the number of intervals between the electron gun electrodes, in particular, the focus electrodes positioned at the center of the working magnetic field of the coil and to which the fixed focus voltage is applied, that is, the fifth electrode 28a and the sixth electrode in FIG. 28b is a graph showing numbers for forming an interval such as 28b and the seventh electrode 28c and the reduction amount of the screen spot due to the velocity modulation magnetic field of the coil, and it can be seen that the effect increases as the number of intervals increases.

【0047】図5の(b)はフォーカス電極28間の間
隔の長さとコイルの速度変調磁界による画面スポットの
縮小量とを表示したもので、約0.6〜1.2mmの間隔
を持つ時コイルの効果が極大化することが分かる。
FIG. 5B shows the length of the space between the focus electrodes 28 and the reduction amount of the screen spot due to the velocity modulation magnetic field of the coil. When the space is about 0.6 to 1.2 mm. It can be seen that the effect of the coil is maximized.

【0048】また、図5の(c)は電子銃の全長とコイ
ルの速度変調磁界の関係をグラフで示したもので、陰極
線管に挿入された電子銃に比例する区間があることが分
かる。
Further, FIG. 5C is a graph showing the relationship between the total length of the electron gun and the velocity modulation magnetic field of the coil, and it can be seen that there is a section proportional to the electron gun inserted in the cathode ray tube.

【0049】したがって、前記のような図5のデータを
分析してみれば、フォーカス電極28間の間隔の数は1
個以上なべきであり、フォーカス電極28間の間隔の広
さは0.6〜1.2mm水準が最も効果的であり、電子銃
の全長は長いほど有利であるが、一定水準を越えればそ
の効果が大きくない。
Therefore, when analyzing the data of FIG. 5 as described above, the number of intervals between the focus electrodes 28 is 1
The number of focus electrodes 28 should be at least 0.6, and the width of the space between the focus electrodes 28 is most effective at a level of 0.6 to 1.2 mm. The longer the total length of the electron gun is, the more advantageous it is. Not very effective.

【0050】[0050]

【発明の効果】上記の条件で試料を製作し評価した結
果、画面におけるスポットの大きさは従来の電子銃に対
応して水平方向で約15〜30%の縮小効果を持つ。
As a result of manufacturing and evaluating the sample under the above conditions, the size of the spot on the screen has a reduction effect of about 15 to 30% in the horizontal direction corresponding to the conventional electron gun.

【0051】本発明による電子銃の構造が適用されるこ
とで、フォーカスに大きい影響を及ぼすスポット径の縮
小のために、固定フォーカス電圧が印加されるフォーカ
ス電極の全体長さをそのまま維持しながら2個以上の電
極に分割して同じ電圧を印加し、各電極間の間隔を0.
6〜1.2mm形成することで、画面スポット径の水平
方向への大きさを15〜30%縮小できる。
By applying the structure of the electron gun according to the present invention, in order to reduce the spot diameter which has a great influence on the focus, the total length of the focus electrode to which the fixed focus voltage is applied is maintained as it is. The same voltage is applied to the electrodes divided into more than one, and the interval between the electrodes is set to 0.
By forming 6 to 1.2 mm, the size of the screen spot diameter in the horizontal direction can be reduced by 15 to 30%.

【0052】また、少ない費用と短期間に適用可能なの
で、フォーカスの品質を早期に向上させることができ
る。
Further, since it is applicable at a low cost and in a short period of time, it is possible to improve the quality of focus at an early stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な陰極線管の概略図である。FIG. 1 is a schematic view of a general cathode ray tube.

【図2】主レンズ径によるスポット径の変化を示すグラ
プである。
FIG. 2 is a graph showing a change in spot diameter depending on the main lens diameter.

【図3】VMコイルの作動原理を示す図である。FIG. 3 is a diagram showing an operating principle of a VM coil.

【図4】従来の電子銃の構造と本発明による電子銃の構
造とを比較して説明する図である。
FIG. 4 is a diagram for comparing and explaining a structure of a conventional electron gun and a structure of an electron gun according to the present invention.

【図5】固定フォーカス電圧を印加されるフォーカス電
極と映像信号の微分信号に同期して作用するコイルによ
り画面のスポット径の変化を説明する図である。
FIG. 5 is a diagram illustrating a change in the spot diameter of a screen by a focus electrode to which a fixed focus voltage is applied and a coil that operates in synchronization with a differential signal of a video signal.

【図6】本発明による電子銃の構造を示す図である。FIG. 6 is a diagram showing the structure of an electron gun according to the present invention.

【符号の説明】[Explanation of symbols]

1…ステムピン 2…ヒーター 3、23…陰極 4、24…第1電極 5、25…第2電極 6、26…第3電極 7、27…第4電極8 8…第5電極 9、29…第6電極 10…シールドカップ 11…B.S.C 12…偏向ヨーク 13…電子ビーム 15…シャドウマスク 16…蛍光面 17…スクリーン 28…フォーカス電極 1… Stem pin 2 ... heater 3, 23 ... Cathode 4, 24 ... First electrode 5, 25 ... Second electrode 6, 26 ... Third electrode 7, 27 ... Fourth electrode 8 8 ... Fifth electrode 9, 29 ... Sixth electrode 10 ... Shield cup 11 ... BSC 12 ... Deflection yoke 13 ... Electron beam 15 ... Shadow mask 16 ... Phosphor screen 17 ... Screen 28 ... Focus electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蛍光体スクリーンに向かって電子ビーム
を放出する陰極と、スクリーン側のアノード電極と、カ
ソード側のフォーカス電極とが含まれる電子銃、及び前
記フォーカス電極の位置が磁界の中心になって陰極線管
のネック部上に装着されて回路の映像信号と同期して作
用するVM(Velocity Modulation)コイルが含まれる陰
極線管において;固定フォーカス電圧を印加される前記
フォーカス電極は連続的に配置された2個以上の電極の
組からなり、 前記フォーカス電極の長さの合計を‘L’とし、前記電
極間の間隔の合計を‘g’とすれば、(g×100)/L=
5〜30(%)を満たしていることを特徴とするカラー陰
極線管用電子銃。
1. An electron gun including a cathode that emits an electron beam toward a phosphor screen, an anode electrode on the screen side, and a focus electrode on the cathode side, and the position of the focus electrode is the center of the magnetic field. In the cathode ray tube including a VM (Velocity Modulation) coil mounted on the neck portion of the cathode ray tube and operating in synchronization with the video signal of the circuit; the focus electrodes to which a fixed focus voltage is applied are continuously arranged. If the total length of the focus electrodes is “L” and the total distance between the electrodes is “g”, the total length of the focus electrodes is (g × 100) / L =
An electron gun for a color cathode ray tube, characterized by satisfying 5 to 30 (%).
【請求項2】 前記Lは4mm<L<30mmを満たして
いることを特徴とする請求項1に記載のカラー陰極線管
用電子銃。
2. The electron gun for a color cathode ray tube according to claim 1, wherein the L satisfies 4 mm <L <30 mm.
【請求項3】 前記gは0.6mm<g<1.2mmを満た
していることを特徴とする請求項1に記載のカラー陰極
線管用電子銃。
3. The electron gun for a color cathode ray tube according to claim 1, wherein the g satisfies 0.6 mm <g <1.2 mm.
【請求項4】 前記フォーカス電極は3個以上の組であ
ることを特徴とする請求項1に記載のカラー陰極線管用
電子銃。
4. The electron gun for a color cathode ray tube according to claim 1, wherein the focus electrodes are a set of three or more.
JP2002181524A 2001-09-14 2002-06-21 Electron gun for color cathode-ray tube Withdrawn JP2003092071A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2001-056933 2001-09-14
KR10-2001-0056933A KR100426569B1 (en) 2001-09-14 2001-09-14 Electron gun for CRT

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004371963A Division JP2005129544A (en) 2001-09-14 2004-12-22 Cathode-ray tube

Publications (1)

Publication Number Publication Date
JP2003092071A true JP2003092071A (en) 2003-03-28

Family

ID=19714302

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002181524A Withdrawn JP2003092071A (en) 2001-09-14 2002-06-21 Electron gun for color cathode-ray tube
JP2004371963A Pending JP2005129544A (en) 2001-09-14 2004-12-22 Cathode-ray tube

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2004371963A Pending JP2005129544A (en) 2001-09-14 2004-12-22 Cathode-ray tube

Country Status (4)

Country Link
EP (1) EP1294009A3 (en)
JP (2) JP2003092071A (en)
KR (1) KR100426569B1 (en)
CN (1) CN1206695C (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111879B2 (en) * 1986-02-14 1995-11-29 株式会社東芝 Color picture tube device
US6031326A (en) * 1997-04-01 2000-02-29 Hitachi, Ltd. Electron gun with electrode supports
DE69724942D1 (en) * 1997-07-04 2003-10-23 Thomson Tubes & Displays Color picture tube with an in-line electron gun
JPH11135031A (en) * 1997-10-30 1999-05-21 Hitachi Ltd Color cathode-ray tube
KR100339349B1 (en) * 1999-08-07 2002-06-03 구자홍 electron gun in color cathode ray tube
KR100728190B1 (en) * 2001-01-17 2007-06-13 삼성에스디아이 주식회사 Electron gun for cathode ray tube
KR100778497B1 (en) * 2001-05-15 2007-11-22 삼성에스디아이 주식회사 Electron gun for cathode ray tube

Also Published As

Publication number Publication date
KR20030023826A (en) 2003-03-20
JP2005129544A (en) 2005-05-19
CN1206695C (en) 2005-06-15
CN1405830A (en) 2003-03-26
EP1294009A2 (en) 2003-03-19
EP1294009A3 (en) 2004-05-06
KR100426569B1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US6339293B1 (en) Cathoderay tube
KR0124038B1 (en) Twin-convex electron-gun
JPH0864151A (en) Electron gun for beam spot distortion prevention
KR970008566B1 (en) Color cathode-ray tube of electron gun
JP2686225B2 (en) Electron gun for color cathode ray tube
JPH07161310A (en) Electron gun for color picture tube
JP3739824B2 (en) In-line electron gun for cathode ray tube
JP2003092071A (en) Electron gun for color cathode-ray tube
US6750601B2 (en) Electron gun for color cathode ray tube
JPH06275212A (en) Electron gun for cathode-ray tube
KR100355446B1 (en) Electron gun for Color cathode ray tube
KR100618224B1 (en) Electron gun of color cathode ray tube
KR100319321B1 (en) Electronic Gun of In-line type in CRT
JP2602254B2 (en) Color picture tube
KR19990086205A (en) Electron gun for colored cathode ray tube
KR100316106B1 (en) Electronic Gun of In-line type for CRT
KR100499939B1 (en) Electron gun for Color CRT
KR100269395B1 (en) Electron gun for color crt
KR100751306B1 (en) Electron gun for color cathode ray tube
KR100560887B1 (en) Electron gun for Color Cathode Ray Tube
KR100332099B1 (en) Electronic Gun of In-Line type in CRT
KR100596234B1 (en) Electron Gun For CRT
KR19990038061A (en) Electron gun for colored cathode ray tube
KR950002739B1 (en) Electron gun for c-crt
KR100869099B1 (en) Electron gun for cathode ray tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040716

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090805