JP2005129352A - Thermal fuse with resistance - Google Patents

Thermal fuse with resistance Download PDF

Info

Publication number
JP2005129352A
JP2005129352A JP2003363626A JP2003363626A JP2005129352A JP 2005129352 A JP2005129352 A JP 2005129352A JP 2003363626 A JP2003363626 A JP 2003363626A JP 2003363626 A JP2003363626 A JP 2003363626A JP 2005129352 A JP2005129352 A JP 2005129352A
Authority
JP
Japan
Prior art keywords
fuse
temperature
resistance
thermal
thermal fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363626A
Other languages
Japanese (ja)
Other versions
JP2005129352A5 (en
Inventor
Noriyuki Maeda
憲之 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Schott Components Corp
Original Assignee
NEC Schott Components Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Schott Components Corp filed Critical NEC Schott Components Corp
Priority to JP2003363626A priority Critical patent/JP2005129352A/en
Publication of JP2005129352A publication Critical patent/JP2005129352A/en
Publication of JP2005129352A5 publication Critical patent/JP2005129352A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal fuse with resistance in which small size and low cost are realized by selection of the material and components used and simplification of assembly structure in a protection circuit in which a resistance heating element and a thermal fuse element are mounted and arranged on an insulating substrate. <P>SOLUTION: This is the thermal fuse with resistance in which a protection circuit is formed by mutually placing close by and arranging in space a resistance heating element of a chip resistor 8 and a thermal fuse element 10 on one side of a glass epoxy substrate 1, and by fixing by solder at the electrode part of wiring patterns 3-6 of the glass epoxy substrate 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、抵抗発熱素子と所定温度の動作温度を有する温度ヒューズ素子とを絶縁基板に実装して構成した抵抗付き温度ヒュ−ズ、特に、低熱伝導率の絶縁基板とチップタイプ部品とを使用してはんだ固着時の実装配置間隔を狭くした小型化およびローコスト化に好適する保護回路用抵抗付き温度ヒュ−ズに関する。   The present invention uses a resistance temperature fuse in which a resistance heating element and a temperature fuse element having an operating temperature of a predetermined temperature are mounted on an insulating substrate, and in particular, uses an insulating substrate having low thermal conductivity and a chip type component. The present invention relates to a temperature fuse with a resistance for a protective circuit suitable for downsizing and low cost by reducing the mounting arrangement interval at the time of soldering.

一般に温度ヒュ−ズは被保護機器の過電流により生ずる過大発熱など機器環境周辺の異常温度上昇で作動させる保護素子である。一方、ヒューズ抵抗器は、特許文献1に示されるように、機器に生ずる異常信号を検知しこの信号により抵抗発熱させて電流ヒューズを作動させるもので検知・制御回路を含めて保護回路を構成する。携帯情報端末用主電源は、保存特性や耐漏液性に優れた高密度エネルギーのリチウムイオン二次電池が利用されているが、その安全性確保にヒューズ抵抗器の保護回路が使用される。例えば、特許文献2に示されるように、二次電池では過充電および過放電を防止するために復帰型と非復帰型の二重の保護回路を設け、電池の電圧が所定の設定電圧を越えたとき充電電流を遮断する復帰型保護回路と、この復帰型保護回路が何らかの原因で作動せず電池電圧が異常に上昇したとき温度ヒューズを溶断する非復帰型保護回路とで安全性の高い保護装置を構成する。非復帰型保護回路で使用する温度ヒューズは、充電器と電池との間に直列接続した2個の可溶体ヒューズエレメントおよびこれらのヒューズエレメントと熱的に結合する発熱素子の抵抗により構成された抵抗内蔵温度ヒューズである。発熱素子は電池電圧を検知し電池電圧が設定値以上になるとオン信号を出力する電圧検出回路のオン信号で動作するように構成している。このような保護回路に使用する抵抗内蔵温度ヒューズは、例えば、非特許文献1に記載されるように、絶縁セラミック基板の表面側に装着した低融点合金のヒューズ素子と裏面側に薄膜形成した抵抗体とにより構成し、上述する2次電池の非復帰型保護回路として組み込まれ、過充電などの異常を検出した場合、ヒューズ素子と熱結合の抵抗体に通電させることにより発熱を生じ、強制的にヒューズ素子を溶断して回路を遮断させる。保護回路は充放電を制御するMOSFETなどのスイッチング素子を含む専用の制御IC等と共に抵抗内蔵温度ヒューズをマザーボードのプリント基板に搭載して構成され、その際、スイッチング素子を上方側に積み重ねたり、横方側に並置したりして取付けられている。
特開平7−153367号 特開平10−56742号 NEC技報vol.53No.10pp93−96
Generally, the temperature fuse is a protective element that is activated by an abnormal temperature rise around the device environment, such as excessive heat generation caused by an overcurrent of the protected device. On the other hand, as shown in Patent Document 1, the fuse resistor detects an abnormal signal generated in the device, and generates a resistance heat by this signal to operate the current fuse, and constitutes a protection circuit including a detection / control circuit. . As a main power source for portable information terminals, a high-density energy lithium ion secondary battery having excellent storage characteristics and liquid leakage resistance is used, and a protection circuit for a fuse resistor is used to ensure safety. For example, as shown in Patent Document 2, a secondary battery is provided with a double protection circuit of a return type and a non-reset type in order to prevent overcharge and overdischarge, and the battery voltage exceeds a predetermined set voltage. Highly safe protection with a resettable protection circuit that cuts off the charging current and a non-recoverable protection circuit that blows the thermal fuse when the battery voltage rises abnormally when the resettable protection circuit does not operate for some reason Configure the device. The thermal fuse used in the non-recoverable protection circuit is composed of two fusible fuse elements connected in series between the charger and the battery, and a resistance of a heating element that is thermally coupled to these fuse elements. Built-in thermal fuse. The heating element is configured to operate with an on signal of a voltage detection circuit that detects the battery voltage and outputs an on signal when the battery voltage exceeds a set value. As described in Non-Patent Document 1, for example, a resistance built-in thermal fuse used in such a protection circuit includes a low melting point alloy fuse element mounted on the front surface side of an insulating ceramic substrate and a resistance formed in a thin film on the back surface side. And is incorporated as a non-recoverable protection circuit for the secondary battery described above, and when an abnormality such as overcharging is detected, heat is generated by energizing the fuse element and the thermal coupling resistor to force The fuse element is blown to break the circuit. The protection circuit is configured by mounting a built-in resistor thermal fuse on the printed circuit board of the motherboard together with a dedicated control IC including a switching element such as a MOSFET that controls charging / discharging. It is installed side by side.
JP-A-7-153367 JP 10-56742 A NEC Technical Report vol. 53No. 10pp93-96

上述するヒューズ抵抗器は発熱体と電流ヒューズが絶縁層を介して一体に結合されており、介在する絶縁層に関し構造上の複雑さと製造作業上の面倒さが伴っている。すなわち、発熱体と電流ヒューズとが一体構成であるために絶縁層の構造によって遮断特性が大きく影響され、これを避けるためには厳格な製造管理が要求される。一方、セラミック基板を使用して一方の面に単体または2個のヒューズ素子を実装し、他方の面に薄膜抵抗を形成する抵抗内蔵温度ヒューズでは、前述のヒューズ抵抗器の保護回路と同様に介在するセラミック基板への発熱素子の形成などで処理面で必然的に製作工程が複雑化する。加えて、絶縁基板が高価なセラミック材を使用しているのでコスト上昇を招き、且つ基板の熱伝導率の影響もあってはんだ処理対策上、所要する実装面積が広くなっていた。それゆえに、従来の保護回路は小型化とローコスト化が要請される携帯情報機器などへの適用に不利であった。また、温度ヒューズの温度検知感度を高めて高精度で動作させるには、異常過熱のおそれのある能動素子等へ近接して実装配置するのが望まれるものの、取扱上での作業性にも問題が生じていた。   In the above-described fuse resistor, the heating element and the current fuse are integrally coupled via an insulating layer, which is accompanied by structural complexity and troublesome manufacturing work with respect to the interposed insulating layer. That is, since the heating element and the current fuse are integrated, the cutoff characteristic is greatly affected by the structure of the insulating layer, and strict manufacturing control is required to avoid this. On the other hand, with a built-in resistor thermal fuse in which a single or two fuse elements are mounted on one side using a ceramic substrate and a thin film resistor is formed on the other side, it is interposed in the same manner as the protection circuit for the fuse resistor described above. The manufacturing process is inevitably complicated on the processing surface due to the formation of heat generating elements on the ceramic substrate. In addition, since an expensive ceramic material is used for the insulating substrate, the cost is increased, and due to the influence of the thermal conductivity of the substrate, the required mounting area is widened as a countermeasure for the soldering process. Therefore, the conventional protection circuit is disadvantageous for application to portable information devices and the like that are required to be reduced in size and cost. In addition, in order to increase the temperature detection sensitivity of the thermal fuse and operate it with high accuracy, it is desirable to mount it close to active elements that may cause abnormal overheating, but there is also a problem in workability in handling. Has occurred.

したがって、本発明は上述する従来の欠点を解消し、温度ヒューズの機器回路部品への改善された実装構造を提示するために、保護回路としての使用材料や組立て作業の複雑化に伴うコストアップを抑止するものであり、汎用部材の選定と組立構造の簡素化とに着目してローコスト化を図りつつ、上述する諸問題を解消する新規且つ改良された抵抗付き温度ヒューズの提供を目的とするものである。   Therefore, the present invention eliminates the above-mentioned conventional drawbacks and presents an improved mounting structure for a thermal fuse on an equipment circuit component, thereby increasing the cost associated with the material used for the protection circuit and the complexity of the assembly work. The purpose is to provide a new and improved thermal fuse with resistance that solves the above-mentioned problems while reducing costs by focusing on the selection of general-purpose members and the simplification of the assembly structure. It is.

本発明によれば、電極部とスル−ホ−ルを有する配線パタ−ンを形成した絶縁基板と、この絶縁基板の片面に互いに近接の配置空間で抵抗発熱素子と所定温度で動作する温度ヒュ−ズ素子とを具備し、温度ヒューズ素子とリード部材をそれぞれ所定のパタ−ン電極部とはんだ接続した抵抗付き温度ヒューズが提供される。特に、絶縁基板は比較的小さい熱伝導率を有する物質からなり、例えば、プリント板として汎用のガラスエポキシ(ガラス繊維にエポキシを含浸させたもの)やフェノール樹脂を使用して低熱伝導率特性によって搭載素子の高密実装によるはんだ付けを可能にし、小型・集約化を図り、安価な材料と簡素化作業とによってローコスト化を図る。また、実装部品にはチップタイプ部品の抵抗発熱素子と温度ヒューズ素子が使用され、温度ヒューズ素子は必要に応じて低融点合金可溶体を絶縁パッケージにより気密封着して使用され、その結果抵抗値の小さい保護回路を構成することができる。なお、温度ヒューズ素子には低融点可溶合金型温度ヒュ−ズや感温ペレット型温度ヒューズが使用できるほか、回路構成上温度ヒューズ素子を複数個に分割して異なる動作温度の温度ヒューズを使用することもできる。   According to the present invention, an insulating substrate on which a wiring pattern having an electrode portion and a through hole is formed, and a temperature heater that operates at a predetermined temperature with a resistance heating element in an arrangement space close to each other on one side of the insulating substrate. There is provided a thermal fuse with resistance, which includes a thermal element and a thermal fuse element and a lead member soldered to a predetermined pattern electrode portion, respectively. In particular, the insulating substrate is made of a material with a relatively low thermal conductivity. For example, a general-purpose glass epoxy (glass fiber impregnated with epoxy) or phenol resin is used as a printed board with low thermal conductivity characteristics. The device can be soldered by high-density mounting, miniaturized and integrated, and low cost is achieved by using inexpensive materials and simplification work. In addition, chip-type component resistance heating elements and thermal fuse elements are used for the mounting parts, and the thermal fuse elements are used with a low-melting-point alloy fusible material hermetically sealed with an insulating package as required, resulting in resistance values. It is possible to construct a protection circuit having a small size. The temperature fuse element can be a low-melting-point fusible alloy-type temperature fuse or a temperature-sensitive pellet-type temperature fuse. You can also

本発明の抵抗付き温度ヒューズによれば、汎用のガラスエポキシ樹脂基板は従来のセラミック基板や金属リード端子に比べて熱伝導率が2桁程度小さいため、はんだ処理で離間して実装する必要がなく、それゆえに実装密度の高密化が図られて実装基板自体の縮小化・小型化が実現できる。加えて、量産化プロセスにおいては、多数の構成回路を単一シートから切り離す手法により多数取りがなされ製造組立て工程の簡素化・効率化が実現する。また、汎用の自動マウント装着機による組立て作業で完成するプリント配線構造の抵抗付き温度ヒュ−ズであるので簡素化構造で安価に非復帰型保護装置が提供でき、実用的価値が高い。さらに、チップ部品の使用は、いわゆるリードレス化によってリード線分の抵抗値をカットできるので、保護回路の全抵抗値が下げられ、それによって電池のランタイムを引き延し得る等の利点がある。   According to the temperature fuse with resistance of the present invention, a general-purpose glass epoxy resin substrate has a thermal conductivity of about two orders of magnitude smaller than that of a conventional ceramic substrate or metal lead terminal, so there is no need to mount it by soldering. Therefore, the mounting density is increased and the mounting substrate itself can be reduced in size and size. In addition, in the mass production process, a large number of components are separated by a method of separating a large number of component circuits from a single sheet, thereby simplifying and improving the efficiency of the manufacturing and assembling process. In addition, since it is a temperature fuse with resistance of a printed wiring structure that is completed by assembling work using a general-purpose automatic mounting machine, a non-recoverable protection device can be provided at a low cost with a simplified structure, which is highly practical. Further, the use of the chip component has an advantage that the resistance value of the lead wire segment can be cut by so-called leadlessing, so that the total resistance value of the protection circuit can be lowered, thereby extending the runtime of the battery.

本発明の抵抗付き温度ヒューズは、複数個を同時処理するように多数取り可能な絶縁基板が使用され、量産化に対応している。個別的には、単位ユニットの寸法が5x12mm、厚さ1.6mm以下の保護回路用抵抗付き温度ヒューズが提供される。そして、この様なユニットの複数個が絶縁基板上にVカットとかミシン目を入れて同時に製造される。具体的構成において、絶縁樹脂基板、例えば、スルーホール付き電極部と配線パターンを有するガラスエポキシ基板の同一面上に温度ヒューズ素子と抵抗発熱素子とを配線パターンの電極部にはんだ付けすると共に必要な部分にはソルダーレジストを被覆する。各配線パターンは、周知のプリント基板製作手法で処理されたものであり、35μmの銅箔に加えて18μmのスルーホールメッキを施し、マスキングとエッチング処理が施される。特に、回路部品の搭載位置に被覆のソルダーレジストは実装する回路部品とガラスエポキシ基板との接合を良好にし脱落防止に役立つ。本発明の特徴とする保護回路は、抵抗発熱時の熱伝達を考慮した設計基準による配線パターンの電極部ではんだ付けで固着する抵抗発熱素子としてのチップ抵抗と、所定の動作温度を有する温度ヒューズ素子とを搭載して構成され、好ましくはこれら実装部品のはんだ固着後エポキシ樹脂で気密封着して基板からの脱落を防止する。   The thermal fuse with resistance of the present invention uses a large number of insulating substrates so that a plurality of thermal fuses can be processed at the same time, and is suitable for mass production. Individually, there is provided a thermal fuse with a resistance for a protection circuit having a unit unit size of 5 × 12 mm and a thickness of 1.6 mm or less. A plurality of such units are manufactured at the same time by making V-cuts or perforations on the insulating substrate. In a specific configuration, a thermal fuse element and a resistance heating element are soldered to the electrode part of the wiring pattern on the same surface of an insulating resin substrate, for example, a glass epoxy substrate having an electrode part with a through hole and a wiring pattern, and necessary. The part is covered with a solder resist. Each wiring pattern is processed by a well-known printed circuit board manufacturing method, and is subjected to 18 μm through-hole plating in addition to 35 μm copper foil, and masking and etching are performed. In particular, the solder resist covering the circuit component mounting position provides good bonding between the circuit component to be mounted and the glass epoxy substrate, and helps to prevent falling off. The protection circuit as a feature of the present invention includes a chip resistor as a resistance heating element that is fixed by soldering at an electrode portion of a wiring pattern according to a design standard in consideration of heat transfer during resistance heating, and a temperature fuse having a predetermined operating temperature. An element is mounted, and these mounted parts are preferably hermetically sealed with an epoxy resin after soldering of the mounted parts to prevent falling off the board.

本発明の抵抗付き温度ヒューズは、図1に示すように、エポキシ樹脂にガラス繊維を含浸させたガラスエポキシ基板1にスルーホール付き電極部A、B、Cを有する配線パターン3、4および5と基板上での接続用配線パターン6を形成し、絶縁する必要部分にソルダーレジスト7を被覆している。銅箔ランドの配線パターンにはメイン動作回路になる配線パターン3および4とサブ制御回路になる配線パターン5および6があり、これらの配線パターン間にチップ抵抗8と温度ヒューズ素子10が相互に熱的結合状態を維持するよう近接して空間配置され、はんだ固着される。はんだ付けはリフロー処理で実施でき、ほとんどの工程で自動化が適用される。ここで、チップ抵抗8はその抵抗面をガラスエポキシ基板側にして配置され、はんだ処理後エポキシ樹脂で封着固定される。また、温度ヒューズ素子10には低融点可溶合金をセラミックパケージした動作温度134±5℃のものが使用される。配線パターン3、4および5の電極部A、BおよびCはそれぞれの導通スルーホールを介して裏面側でターミナルとなって外部回路に接続される。本発明の着眼点はガラスエポキシ基板等の絶縁樹脂の熱伝導率が一般のセラミック基板に比べて非常に小さく、それにより抵抗発熱素子9と温度ヒューズ素子10とをガラスエポキシ基板1の片面に狭いスペース空間で搭載でき小型化を図りつつ、実装には自動マウンターを利用して作業能率を向上させて工数削減とコストダウンを可能にすることである。具体的にこれらの基板物質の熱伝導率を挙げると、ガラスエポキシが8.4×10-4(Cal/cm・sec・℃)アルミナセラミックが5.0×10-2(Cal/cm・sec・℃)であり、ほぼ2桁の差異がある。また、各物質の比熱は共に約0.2(Cal/g・℃)とほぼ同じ値であるが、同じ体積のものを1℃上昇させるための所要熱量は、比重の小さいガラスエポキシの方が少なくてよい。したがって、本発明はプリント基板として汎用のガラスエポキシ基板の選択、およびその片面搭載の簡素化構造とによって、安価な使用材料と部品搭載の工数低減により、小型でローコストの抵抗付き温度ヒューズが提供される。 As shown in FIG. 1, the thermal fuse with resistance of the present invention has wiring patterns 3, 4 and 5 having electrode portions A, B and C with through holes on a glass epoxy substrate 1 in which glass fiber is impregnated with epoxy resin. A wiring pattern 6 for connection on the substrate is formed, and a solder resist 7 is coated on a necessary portion to be insulated. The wiring patterns of the copper foil land include the wiring patterns 3 and 4 that become the main operation circuit and the wiring patterns 5 and 6 that become the sub-control circuit. The chip resistor 8 and the thermal fuse element 10 are heated between these wiring patterns. Are closely spaced and soldered together to maintain a mechanical connection. Soldering can be performed by reflow processing, and automation is applied in most processes. Here, the chip resistor 8 is disposed with its resistance surface facing the glass epoxy substrate, and is sealed and fixed with an epoxy resin after soldering. As the thermal fuse element 10, an element having an operating temperature of 134 ± 5 ° C. in which a low melting point soluble alloy is ceramic packaged is used. The electrode portions A, B, and C of the wiring patterns 3, 4, and 5 are connected to an external circuit as terminals on the back surface side through the respective conductive through holes. The focus of the present invention is that the thermal conductivity of an insulating resin such as a glass epoxy substrate is much smaller than that of a general ceramic substrate, whereby the resistance heating element 9 and the thermal fuse element 10 are narrow on one side of the glass epoxy substrate 1. It is possible to reduce the man-hours and costs by improving the work efficiency by using an automatic mounter for mounting while reducing the size and mounting in space. Specifically, the thermal conductivity of these substrate materials is 8.4 × 10 −4 (Cal / cm · sec · ° C.) for glass epoxy and 5.0 × 10 −2 (Cal / cm · sec for alumina ceramic).・ ℃), which is almost two orders of magnitude different. The specific heat of each material is about 0.2 (Cal / g · ° C), but the amount of heat required to raise the same volume by 1 ° C is lower for glass epoxy with a lower specific gravity. Less. Therefore, the present invention provides a small-sized and low-cost thermal fuse with resistance by selecting a general-purpose glass epoxy substrate as a printed circuit board and simplifying the mounting on one side, thereby reducing the cost of using materials and reducing the number of steps for mounting components. The

本発明にかかる上記実施形態は、電池パック用充放電制御回路に好適の保護回路を提供するものであり、温度ヒューズ素子10を2つの分割部分12および13から構成される。従来、保護回路のメイン動作回路の温度ヒューズを2分割しその中央にサブ制御回路の発熱用抵抗を接続することは知られているが、この実施例は、図2に示す配線図のように、この手法を利用してヒューズ素子10を直列接続した分割部分12、13から構成し、その両端のスルーホール付き電極部AおよびBをメイン動作回路のターミナルとする。そして、分割部分12、13の中間接続点とスルーホール付き電極部Cとの間にチップ抵抗8を配置構成し、電極部Cをサブ制御回路のターミナルとして保護回路を形成した抵抗付き温度ヒューズを提供する。   The said embodiment concerning this invention provides the protection circuit suitable for the charging / discharging control circuit for battery packs, and the thermal fuse element 10 is comprised from the two division parts 12 and 13. FIG. Conventionally, it is known that the temperature fuse of the main operation circuit of the protection circuit is divided into two and the heating resistance of the sub-control circuit is connected to the center thereof. In this embodiment, as shown in the wiring diagram of FIG. Using this technique, the fuse element 10 is composed of divided portions 12 and 13 connected in series, and electrode portions A and B with through holes at both ends thereof are used as terminals of the main operation circuit. Then, a chip resistor 8 is arranged between the intermediate connection point of the divided portions 12 and 13 and the electrode portion C with through hole, and a resistance temperature fuse having a protection circuit with the electrode portion C as a terminal of the sub-control circuit is formed. provide.

温度ヒューズ素子を分割部分で構成する場合の変形例として、図3に示す別の実施例では、温度ヒューズ素子11は第1および第2の温度ヒューズ部分14、15から構成され、第1の温度ヒューズ部分14をメイン動作回路に接続し、第2の温度ヒューズ部分15と抵抗発熱素子9とをサブ制御回路に接続して保護回路を形成した抵抗付き温度ヒューズが提供される。例えば、メイン動作回路x−y間には温度ヒューズ素子11の第1の温度ヒューズ部分14が接続され、サブ制御回路y−z間には第2の温度ヒューズ部分15が抵抗発熱素子9と直列に接続した配置される。この場合に、溶断温度は第1の温度ヒューズ部分14
が第2の温度ヒューズ部分14より低く設定されており、過熱時の抵抗発熱素子9を第2の温度ヒューズ部分15の作動により保護し安全性を向上させている。すなわち、抵抗発熱素子9を含むサブ制御回路y−z間が異常電圧を検知し、その信号により抵抗発熱素子9が通電して自己発熱を生じさせると、優先して第1の温度ヒューズ部分14を溶断させ、次いで第2の温度ヒューズ部分15を溶断させてサブ制御回路をも遮断させる非復帰型保護装置となる。
As a modification in the case where the thermal fuse element is composed of divided parts, in another embodiment shown in FIG. 3, the thermal fuse element 11 is composed of first and second thermal fuse parts 14 and 15, and the first temperature A resistance thermal fuse is provided in which the fuse portion 14 is connected to the main operating circuit, and the second temperature fuse portion 15 and the resistance heating element 9 are connected to the sub-control circuit to form a protection circuit. For example, the first thermal fuse portion 14 of the thermal fuse element 11 is connected between the main operation circuits xy, and the second thermal fuse portion 15 is connected in series with the resistance heating element 9 between the sub control circuits yz. Arranged connected to. In this case, the fusing temperature is the first thermal fuse portion 14.
Is set lower than the second temperature fuse portion 14, and the resistance heating element 9 during overheating is protected by the operation of the second temperature fuse portion 15 to improve safety. That is, when the abnormal voltage is detected between the sub-control circuits yz including the resistance heating element 9 and the resistance heating element 9 is energized by the signal to cause self-heating, the first temperature fuse portion 14 is given priority. , And then the second thermal fuse portion 15 is blown to provide a non-recoverable protective device that also cuts off the sub-control circuit.

換言すると、温度ヒューズ素子を2分して一方をメイン動作回路に、他方を発熱素子のあるサブ制御回路にそれぞれ配置した保護回路を形成し、メイン動作回路側の温度ヒューズ部分の溶断温度をサブ制御回路側の温度ヒューズ部分の溶断温度より低く設定するものであり、サブ制御回路の安全保護を溶断により実現させる。このように複数個の温度ヒューズ素子やヒューズ素子を分割構成して使用する場合、それぞれの動作温度の違いによってここの回路部分をも保護するなどにより安全確実に作動する保護回路を提供する。   In other words, the temperature fuse element is divided into two, one is formed in the main operation circuit, and the other is formed in the sub-control circuit having the heat generating element, and the fusing temperature of the temperature fuse portion on the main operation circuit side is set to the sub-control circuit. It is set lower than the fusing temperature of the temperature fuse portion on the control circuit side, and the safety protection of the sub control circuit is realized by fusing. Thus, when a plurality of temperature fuse elements or fuse elements are used in a divided configuration, a protection circuit that operates safely and reliably is provided by protecting the circuit portion according to the difference in operating temperature.

温度ヒューズを用いた保護回路の簡素化とローコスト化が図られると共に汎用のプリント基板の利用とはんだ処理技術の適用が可能となって温度ヒューズの保護回路の応用分野を拡大する。   The protection circuit using the thermal fuse can be simplified and the cost can be reduced, and a general-purpose printed circuit board can be used and a soldering technique can be applied to expand the application field of the thermal fuse protection circuit.

本発明に係る実施例の抵抗付き温度ヒューズの正面(a)(b)、側面(c)および背面図(d)である。It is the front (a) (b), side (c), and back view (d) of the thermal fuse with a resistance of the Example which concerns on this invention. 同じく図1の実施例の配線状態を示す回路図である。It is a circuit diagram which similarly shows the wiring state of the Example of FIG. 本発明の別の実施態様である第2実施例の保護回路の回路構成図である。It is a circuit block diagram of the protection circuit of 2nd Example which is another embodiment of this invention.

符号の説明Explanation of symbols

1 ガラスエポキシ基板(絶縁基板)
3、4 メイン動作回路になる配線パターン
5、6 サブ制御回路になる配線パターン
7 ソルダーレジスト
8 チップ抵抗
9 抵抗発熱素子
10、11 温度ヒューズ素子
12、13 分割部分
14 第1温度ヒューズ部分
15 第2温度ヒューズ部分
A、B、C スルーホール付電極部




1 Glass epoxy board (insulating board)
3, 4 Wiring pattern to be the main operation circuit 5, 6 Wiring pattern to be the sub control circuit 7 Solder resist 8 Chip resistor 9 Resistance heating element 10, 11 Thermal fuse element 12, 13 Divided portion 14 First thermal fuse portion 15 Second Thermal fuse part A, B, C Electrode part with through hole




Claims (9)

低熱伝導率の絶縁物質からなる絶縁基板の同一面上に形成した配線パターンを介して、抵抗発熱素子および所定の動作温度を有する温度ヒューズ素子を互いに熱的結合状態を維持するよう配置して回路構成した抵抗付き温度ヒューズ。 A circuit in which a resistance heating element and a temperature fuse element having a predetermined operating temperature are arranged to maintain a thermal coupling state with each other through a wiring pattern formed on the same surface of an insulating substrate made of an insulating material having a low thermal conductivity. Configured thermal fuse with resistance. 前記絶縁基板はガラスエポキシ基板またはフェノール樹脂基板等の熱伝導率の小さい物質であり、前記抵抗発熱素子と前記温度ヒューズ素子は前記配線パターンの各電極部にはんだ固着して狭いスペース空間に配置可能な保護回路を形成したことを特徴とする請求項1に記載の抵抗付き温度ヒューズ。 The insulating substrate is a material having low thermal conductivity, such as a glass epoxy substrate or a phenol resin substrate, and the resistance heating element and the thermal fuse element can be placed in a narrow space by soldering to each electrode portion of the wiring pattern. 2. The resistance thermal fuse according to claim 1, wherein a protective circuit is formed. 前記抵抗発熱素子はチップ抵抗で、その抵抗面側を前記絶縁基板に接して前記電極部にはんだ固着し、前記保護回路を樹脂材で気密封着したことを特徴とする請求項1または2に記載の抵抗付き温度ヒュ−ズ。 3. The resistance heating element according to claim 1, wherein the resistance heating element is a chip resistor, a resistance surface side thereof is in contact with the insulating substrate and soldered to the electrode portion, and the protection circuit is hermetically sealed with a resin material. Temperature fuse with resistance as described. 前記温度ヒューズ素子は低融点可溶合金をセラミックキャップで気密封着した動作温度134±5℃を有する合金型温度ヒューズであって、前記チップ抵抗と近接して空間配置したことを特徴とする請求項3に記載の抵抗付き温度ヒューズ。 The thermal fuse element is an alloy-type thermal fuse having an operating temperature of 134 ± 5 ° C. in which a low-melting-point fusible alloy is hermetically sealed with a ceramic cap, and is disposed in the space in close proximity to the chip resistor. Item 5. A thermal fuse with resistance according to item 3. 前記温度ヒューズ素子は感温ペレットを金属ケース内に収容して気密封着した動作温度134±5℃を有する感温ペレット型温度ヒューズであって、前記チップ抵抗と近接して空間配置したことを特徴とする請求項3に記載の抵抗付き温度ヒューズ。 The temperature fuse element is a temperature-sensitive pellet type temperature fuse having an operating temperature of 134 ± 5 ° C. in which a temperature-sensitive pellet is housed in a metal case and hermetically sealed, and is disposed in the vicinity of the chip resistor. The resistance thermal fuse according to claim 3, wherein 前記抵抗発熱素子は異常信号を検知する制御素子からの電流により自己発熱を生じ、この発熱に感知して前記所定の動作温度で前記温度ヒューズ素子を溶断して主動作回路を遮断する非復帰型保護回路とすることを特徴とする請求項1乃至5に記載の抵抗付き温度ヒュ−ズ。 The resistance heating element generates self-heating due to a current from a control element that detects an abnormal signal, and senses this heat generation to blow the temperature fuse element at the predetermined operating temperature to shut off a main operation circuit. 6. The temperature fuse with resistance according to claim 1, wherein the temperature fuse is provided with a protection circuit. 前記保護回路は電池パック用充放電制御回路であって、この制御回路が検知する異常電圧により前記抵抗発熱素子を自己発熱させ、前記温度ヒューズ素子を所定の動作温度で溶断させることを特徴とする請求項6に記載の抵抗付き温度ヒュ−ズ。 The protection circuit is a charge / discharge control circuit for a battery pack, wherein the resistance heating element is self-heated by an abnormal voltage detected by the control circuit, and the thermal fuse element is blown at a predetermined operating temperature. The temperature fuse with resistance according to claim 6. 前記温度ヒューズ素子はメイン動作回路に接続した第1ヒューズ部分とサブ制御回路に接続した第2ヒューズ部分からなり、各ヒューズ部分の溶断する動作温度を異なる温度に設定し、前記抵抗発熱素子の発熱により異なるタイミングで作動させることを特徴とする請求項7に記載の抵抗付き温度ヒューズ。 The thermal fuse element includes a first fuse portion connected to the main operation circuit and a second fuse portion connected to the sub-control circuit. The operation temperature at which each fuse portion is melted is set to a different temperature, and the heat generation of the resistance heating element is performed. The temperature fuse with resistance according to claim 7, wherein the temperature fuse is operated at different timing. 前記第1ヒューズ部分の溶断する動作温度を前記第2ヒューズ部分の溶断する動作温度より低く設定し、それによりメイン動作回路の遮断とサブ制御回路の遮断とを順次作動させることを特徴とする請求項8に記載の抵抗付き温度ヒュ−ズ。




The operating temperature at which the first fuse portion is blown is set lower than the operating temperature at which the second fuse portion is blown, whereby the main operation circuit and the sub control circuit are sequentially turned off. Item 9. The temperature fuse with resistance according to Item 8.




JP2003363626A 2003-10-23 2003-10-23 Thermal fuse with resistance Pending JP2005129352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363626A JP2005129352A (en) 2003-10-23 2003-10-23 Thermal fuse with resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363626A JP2005129352A (en) 2003-10-23 2003-10-23 Thermal fuse with resistance

Publications (2)

Publication Number Publication Date
JP2005129352A true JP2005129352A (en) 2005-05-19
JP2005129352A5 JP2005129352A5 (en) 2006-11-30

Family

ID=34642883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363626A Pending JP2005129352A (en) 2003-10-23 2003-10-23 Thermal fuse with resistance

Country Status (1)

Country Link
JP (1) JP2005129352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259724A (en) * 2008-04-21 2009-11-05 Sony Chemical & Information Device Corp Protecting element and its manufacturing method
US8472158B2 (en) 2009-09-04 2013-06-25 Cyntec Co., Ltd. Protective device
US9025295B2 (en) 2009-09-04 2015-05-05 Cyntec Co., Ltd. Protective device and protective module
US9129769B2 (en) 2009-09-04 2015-09-08 Cyntec Co., Ltd. Protective device
WO2020194967A1 (en) * 2019-03-27 2020-10-01 三洋電機株式会社 Overcurrent protection element and battery system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259724A (en) * 2008-04-21 2009-11-05 Sony Chemical & Information Device Corp Protecting element and its manufacturing method
US8472158B2 (en) 2009-09-04 2013-06-25 Cyntec Co., Ltd. Protective device
US8675333B2 (en) 2009-09-04 2014-03-18 Cyntec Co., Ltd. Protective device
US9025295B2 (en) 2009-09-04 2015-05-05 Cyntec Co., Ltd. Protective device and protective module
US9129769B2 (en) 2009-09-04 2015-09-08 Cyntec Co., Ltd. Protective device
US9336978B2 (en) 2009-09-04 2016-05-10 Cyntec Co., Ltd. Protective device
WO2020194967A1 (en) * 2019-03-27 2020-10-01 三洋電機株式会社 Overcurrent protection element and battery system
JP7474745B2 (en) 2019-03-27 2024-04-25 三洋電機株式会社 Overcurrent protection devices and battery systems

Similar Documents

Publication Publication Date Title
US6994926B2 (en) Battery pack and method of producing the same
JP5490713B2 (en) Battery pack including PCM using safety member
TWI676199B (en) Protective element and structure
JP6437262B2 (en) Mounting body manufacturing method, thermal fuse element mounting method, and thermal fuse element
TWI395246B (en) Protection element
JP5952673B2 (en) Protective element and battery pack
JPH08161990A (en) Protective element and its manufacture
KR100586128B1 (en) Mounting structure for temperature-sensitive fuse on circuit board
JP2018092892A (en) Protection element
CN109496343B (en) Protection element, circuit module, and method for manufacturing protection element
JP2011151207A (en) Thermal element and battery pack
KR20160106547A (en) Protective element
JP2003217416A (en) Temperature fuse and protective device mounted with the same
JP2005129352A (en) Thermal fuse with resistance
JP4573865B2 (en) Protective device using temperature fuse
JP2010040282A (en) Resistance built-in thermal fuse
KR102475019B1 (en) Circuit board and method for mounting electronic component
JP2006210409A (en) Battery protection module
JP7390825B2 (en) Protection element, battery pack
JP6231323B2 (en) Protective element and protective circuit board using the same
TWI648933B (en) Protecting circuit, battery circuit, protecting element, and driving method of protecting element
JP3154280B2 (en) Rechargeable battery
JP2011249177A (en) Fuse device and circuit board
CN112789703A (en) Protective element
JP7344857B2 (en) protection element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

A621 Written request for application examination

Effective date: 20061018

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Effective date: 20090407

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090605