JP2005126664A - Treating agent for forming thin film and method for forming thin film - Google Patents

Treating agent for forming thin film and method for forming thin film Download PDF

Info

Publication number
JP2005126664A
JP2005126664A JP2004023152A JP2004023152A JP2005126664A JP 2005126664 A JP2005126664 A JP 2005126664A JP 2004023152 A JP2004023152 A JP 2004023152A JP 2004023152 A JP2004023152 A JP 2004023152A JP 2005126664 A JP2005126664 A JP 2005126664A
Authority
JP
Japan
Prior art keywords
thin film
forming
noble metal
sol
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004023152A
Other languages
Japanese (ja)
Inventor
Yoshibumi Maeda
義文 前田
Kazuo Goto
和生 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2004023152A priority Critical patent/JP2005126664A/en
Publication of JP2005126664A publication Critical patent/JP2005126664A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating agent for forming thin film, capable of imparting near infrared light-blocking property and designing property to glass, etc., and a method for forming the thin film. <P>SOLUTION: This method for forming the thin film is provided by applying the treating agent for forming the thin film containing (1) precious metal nanorods, (2) an organometallic compound, (3) a solvent, (4) a viscosity-adjusting agent and (5) a sol-gel reaction catalyst on the surface of a substrate made from the glass, a ceramic or a metal, drying and firing the dried gel film for forming a metal oxide film on the substrate surface by fixing the precious metal nanorods without their cohesion. Thereby, it is possible to develop properties originated from both nanorod's short axis and long axis and to impart the both functions of the designing property and near infrared light-blocking property. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガラス等に近赤外線遮蔽性、意匠性を付与できる薄膜形成用処理剤ならびに薄膜形成方法に関する。   The present invention relates to a thin film forming treatment agent and a thin film forming method capable of imparting near-infrared shielding properties and design properties to glass or the like.

建築物、車両などの窓、室内装飾に使用されているガラスは、意匠性を付与すべく所望の色彩に着色されている。ガラスを着色する方法としては、(イ)球形をした貴金属ナノ粒子を有機金属化合物と共に基材表面に焼き付け耐久性に優れた着色膜を得る方法、(ロ)貴金属錯体と有機金属化合物とを基材表面に焼き付け着色する方法、(ハ)銅、或いは銀化合物を基材表面に塗布、焼成することでイオン交換により着色する方法、等が提案されている。(例えば特許文献1参照)   Glass used for windows of buildings, vehicles, and interior decorations is colored in a desired color so as to impart design properties. As a method for coloring glass, (a) a method of baking spherical noble metal nanoparticles on a substrate surface together with an organic metal compound to obtain a colored film having excellent durability, and (b) a method based on a noble metal complex and an organic metal compound. A method of baking and coloring the surface of the material, (c) a method of coloring by ion exchange by applying and baking copper or a silver compound on the surface of the substrate, and the like have been proposed. (For example, see Patent Document 1)

一方で、冷房負担の軽減と防眩効果を奏する熱線遮蔽ガラスが求められている。また、プラズマディスプレイ装置においては、プラズマ放電に伴って放出される近赤外線が、家電製品のリモコン動作の誤作動を引き起こすことが知られており、プラズマディスプレイパネルの前面ガラスに近赤外線遮蔽性を付与する試みがなされている。ガラスに近赤外線遮蔽機能を持たせる方法としては、(ニ)ITO、ATO等の透明導電材料ナノ粒子を、ゾルゲルガラスを媒質として基材表面に固定する方法、(ホ)スパッタリング法により金属薄膜を基材表面に形成する方法、(ヘ)CVDにより金属酸化物膜を基材表面に形成する方法、等が提案されている。(例えば特許文献2参照)
例えば特許文献2参照)
On the other hand, there is a need for a heat-shielding glass that has a reduced cooling burden and an antiglare effect. Also, in plasma display devices, it is known that near-infrared rays emitted along with plasma discharge cause malfunctions in remote control operations of home appliances, giving near-infrared shielding to the front glass of plasma display panels. Attempts have been made. As a method for giving near-infrared shielding function to glass, (d) a method of fixing transparent conductive material nanoparticles such as ITO and ATO on the surface of a substrate using sol-gel glass as a medium, and (e) a metal thin film by sputtering. There have been proposed a method of forming on the substrate surface, (f) a method of forming a metal oxide film on the substrate surface by CVD, and the like. (For example, see Patent Document 2)
(For example, see Patent Document 2)

また最近では、可視光、近赤外光に対して選択的な吸収機能を有する光学フィルターが知られている。具体的には、透明な基板上にロッド状の金属微粒子を樹脂成分中に分散させた高分子フィルムを積層した光学フィルターであって、ロッドの長軸に起因する可視光、近赤外光の吸収を利用したものである。(例えば特許文献3参照)
特開平08−73240号公報 特開昭10−265718号公報 特開2003−315531号公報
Recently, an optical filter having an absorption function selective to visible light and near infrared light is known. Specifically, it is an optical filter in which a polymer film in which rod-shaped fine metal particles are dispersed in a resin component is laminated on a transparent substrate, and visible light and near infrared light originating from the long axis of the rod. Absorption is used. (For example, see Patent Document 3)
Japanese Patent Laid-Open No. 08-73240 JP-A-10-265718 JP 2003-315531 A

しかし、(イ)〜(ハ)のような着色ガラスでは熱線遮蔽効果を期待することはできず、(ニ)〜(ヘ)のような熱線遮蔽ガラスにあっては求められる意匠性に対応できず、いずれも単一機能しか有さない。   However, it is not possible to expect a heat ray shielding effect with colored glasses such as (A) to (C), and it is possible to meet the required design properties for heat ray shielding glasses such as (D) to (F). Neither has only a single function.

またロッド状の金属微粒子を樹脂成分中に分散した高分子フィルムを積層した光学フィルターでは、ロッド状の金属微粒子を固定している媒質が高分子であるため、環境条件などによって高分子が劣化するといった問題があった。更に、ロッド状の金属微粒子は外部からエネルギーが与えられると安定な形状、即ち球状に変形するため、該光学フィルターに熱エネルギーなどが付与されるとロッドに起因する性能を失ってしまい、改良の余地があった。   In addition, in an optical filter in which a polymer film in which rod-shaped metal fine particles are dispersed in a resin component is laminated, the medium that fixes the rod-shaped metal fine particles is a polymer, so that the polymer deteriorates due to environmental conditions and the like. There was a problem. Furthermore, since the rod-shaped metal fine particles are deformed into a stable shape, that is, spherical when energy is applied from the outside, the performance due to the rod is lost when the thermal energy is applied to the optical filter, and the improvement There was room.

上記問題に鑑みて鋭意研究を重ねた結果、貴金属ナノロッドの持つ単軸に由来する性質と長軸に由来する性質を同時に発現させることで、着色性、熱線遮蔽性に優れ、しかも外部エネルギーによる前記性能の損失を抑制し、環境条件により劣化し難い薄膜形成用処理剤および薄膜形成方法を提供する。   As a result of intensive research in view of the above problems, by simultaneously expressing the properties derived from the single axis and the long axis of the noble metal nanorods, the coloration and heat ray shielding properties are excellent, and the above-mentioned by external energy. Provided are a thin film forming treatment agent and a thin film forming method which suppress performance loss and hardly deteriorate due to environmental conditions.

即ち、本発明は、(1)貴金属ナノロッド、(2)有機金属化合物、(3)溶媒、(4)粘度調製剤、および(5)ゾル−ゲル反応触媒を含有することを特徴とした薄膜形成用処理剤にある。また前記薄膜形成用処理剤で、(1)貴金属ナノロッドが、金、銀、白金、パラジウム、およびそれらの合金からなる群より少なくとも一種選ばれること;(2)有機金属化合物が、チタニウム、ジルコニウム、ハフニウム、およびアルミニウムからなる群より少なくとも一種選ばれる金属を含有すること;(4)粘度調製剤が、ニトロセルロースであること;(5)ゾル−ゲル反応触媒が塩基性触媒であること;塩基性触媒がアミノ化合物であることを特徴とした発明である。   That is, the present invention comprises (1) noble metal nanorods, (2) an organometallic compound, (3) a solvent, (4) a viscosity modifier, and (5) a sol-gel reaction catalyst. In the treatment agent. Further, in the treatment agent for forming a thin film, (1) the noble metal nanorod is selected from the group consisting of gold, silver, platinum, palladium, and alloys thereof; (2) the organometallic compound is titanium, zirconium, Containing at least one metal selected from the group consisting of hafnium and aluminum; (4) the viscosity adjusting agent is nitrocellulose; (5) the sol-gel reaction catalyst is a basic catalyst; The invention is characterized in that the catalyst is an amino compound.

更に本発明は、(1)貴金属ナノロッド、(2)有機金属化合物、(3)溶媒、(4)粘度調製剤、および(5)ゾル−ゲル反応触媒を含有する薄膜形成用処理剤を基板に塗布、乾燥の後、ゲル乾燥膜を焼成することを特徴とした薄膜形成方法である。また前記薄膜形成方法で、(1)貴金属ナノロッドが、金、銀、白金、パラジウム、およびそれらの合金からなる群より少なくとも一種選ばれること;(2)有機金属化合物が、チタニウム、ジルコニウム、ハフニウム、およびアルミニウムからなる群より少なくとも一種選ばれる金属を含有すること;(4)粘度調製剤が、ニトロセルロースであること;(5)ゾル−ゲル反応触媒が塩基性触媒であること;塩基性触媒がアミノ化合物であることを特徴とした発明である。   Furthermore, the present invention provides (1) a noble metal nanorod, (2) an organometallic compound, (3) a solvent, (4) a viscosity modifier, and (5) a thin film forming treatment agent containing a sol-gel reaction catalyst. It is a thin film forming method characterized by firing a gel dry film after coating and drying. In the thin film forming method, (1) the noble metal nanorod is selected from the group consisting of gold, silver, platinum, palladium, and alloys thereof; (2) the organometallic compound is titanium, zirconium, hafnium, And (4) the viscosity adjusting agent is nitrocellulose; (5) the sol-gel reaction catalyst is a basic catalyst; the basic catalyst is It is an invention characterized by being an amino compound.

本発明によれば、貴金属ナノロッドを金属酸化物膜中に凝集することなく固定させることで、ナノロッド短軸に由来する性質と長軸に由来する性質を発現せしめ、意匠性、近赤外線遮蔽性の両機能を付与することができる。しかも、処理剤にゾル−ゲル反応触媒を配合することにより、室温近傍にて有機金属化合物の縮重合を促進せしめてリジッドな構造を形成することができるため、その後の焼成において貴金属ナノロッドが熱変形し難い。また、貴金属ナノロッドが固定された薄膜が金属酸化物であることから優れた耐久性を有すると共に、薄膜に外部エネルギーが付与されても貴金属ナノロッドの変形を抑制することができるといった効果がある。さらに、高屈折材料になるように金属酸化物の処理剤配合を設計することで、ナノロッドを固定している膜が高反射率化し、近赤外線遮蔽性、意匠性等をより向上させることができる。   According to the present invention, by fixing the noble metal nanorods in the metal oxide film without agglomerating, the properties derived from the nanorod short axis and the properties derived from the long axis are developed, and the design properties and near infrared shielding properties are improved. Both functions can be provided. In addition, by adding a sol-gel reaction catalyst to the treating agent, it is possible to promote the polycondensation of the organometallic compound near room temperature to form a rigid structure, so that the noble metal nanorods are thermally deformed during subsequent firing. It is hard to do. In addition, since the thin film to which the noble metal nanorods are fixed is a metal oxide, it has excellent durability, and even when external energy is applied to the thin film, it is possible to suppress deformation of the noble metal nanorods. Furthermore, by designing the metal oxide treatment composition so as to be a highly refractive material, the film on which the nanorods are fixed has a high reflectivity, and the near-infrared shielding property, the design property, etc. can be further improved. .

本発明に係る薄膜形成用処理剤は、(1)貴金属ナノロッド、(2)有機金属化合物、(3)溶媒、(4)粘度調製剤、および(5)ゾル−ゲル反応触媒を含有するものであって、該薄膜形成用処理剤をガラス、或いはセラミック、或いは金属等の基板表面に塗布、乾燥の後、ゲル膜を焼成することで貴金属ナノロッドを凝集させることなく固定した金属酸化物薄膜を基板表面に形成することができる。   The treatment agent for forming a thin film according to the present invention contains (1) noble metal nanorods, (2) an organometallic compound, (3) a solvent, (4) a viscosity adjusting agent, and (5) a sol-gel reaction catalyst. The thin film forming treatment agent is applied to the surface of a substrate such as glass, ceramic, or metal, dried, and then the gel film is baked to fix the noble metal nanorods without agglomerating the substrate. It can be formed on the surface.

(1)貴金属ナノロッドは、短軸長2〜30nm、長軸長5〜300nmの円柱状の形態を有し、金、銀、プラチナ、パラジウム等の貴金属、或いはその合金で構成されるが、好ましくは焼成においても酸化され難い金、プラチナである。貴金属ナノロッドとしては、ソフトテンプレート法と呼ばれる化学還元法で作製されたもの、ハードテンプレート法と呼ばれる電解還元法で作製されたものなどが提案されているが、本発明で使用する貴金属ナノロッドは作製方法には限定されずいずれの貴金属ナノロッドも使用できる。また貴金属ナノロッドの性質は構成する金属種、短軸長、長軸長により決定されるため、所望とする特性からこれら要因を選択しなければならない。尚、該貴金属ナノロッドを処理剤中で凝集、沈降することなく安定して存在させるためには、貴金属ナノロッドの長軸長が200nm未満であることが望ましい。   (1) The noble metal nanorod has a cylindrical shape with a minor axis length of 2 to 30 nm and a major axis length of 5 to 300 nm, and is composed of a noble metal such as gold, silver, platinum, palladium, or an alloy thereof. Is platinum, which is not easily oxidized even during firing. As noble metal nanorods, those prepared by a chemical reduction method called a soft template method and those produced by an electrolytic reduction method called a hard template method have been proposed, but the noble metal nanorods used in the present invention are a production method Any noble metal nanorod can be used. Further, since the properties of the noble metal nanorods are determined by the constituent metal species, the short axis length, and the long axis length, these factors must be selected from desired characteristics. In order to allow the noble metal nanorods to exist stably without agglomeration and sedimentation in the treatment agent, it is desirable that the major axis length of the noble metal nanorods is less than 200 nm.

貴金属ナノロッドの短軸に由来する性質とは可視域に吸収を持つことであり、長軸に由来する性質とは可視域以上の長波長域に吸収を持つことである。また貴金属ナノロッドのアスペクト比を変化させることで長軸に由来する吸収波長を可視域から赤外域まで自在に変化できることも、貴金属ナノロッドの優れた性質のひとつである。尚、アスペクト比は1が球であることを示すので、貴金属ナノロッドのアスペクト比は1より大きい必要がある。   The property derived from the short axis of the noble metal nanorod is absorption in the visible region, and the property derived from the long axis is absorption in the long wavelength region that is greater than or equal to the visible region. In addition, one of the excellent properties of noble metal nanorods is that the absorption wavelength derived from the long axis can be freely changed from the visible range to the infrared range by changing the aspect ratio of the noble metal nanorods. Since the aspect ratio indicates that 1 is a sphere, the aspect ratio of the noble metal nanorod needs to be larger than 1.

本発明に使用する(1)貴金属ナノロッドの添加量は、所望とする特性、処理液塗布方法、基材への処理液付着量により適宜決めなければならない。例えば金ナノロッドを使用した処理剤の場合、スクリーン印刷法(紗種:ポリエステル#250)によりガラス基材に塗布し、金ナノロッドの長軸に由来する吸収ピークの吸光度を0.5程度得たいのであれば、処理液中に金ナノロッドを、0.2〜0.4wt%添加すればよい。   The addition amount of (1) noble metal nanorods used in the present invention must be appropriately determined depending on the desired properties, the treatment liquid coating method, and the treatment liquid adhesion amount to the substrate. For example, in the case of a treating agent using gold nanorods, it is desired to obtain an absorbance of the absorption peak derived from the long axis of the gold nanorods by about 0.5 by applying it to the glass substrate by screen printing (type: polyester # 250). If it exists, 0.2 to 0.4 wt% of gold nanorods may be added to the treatment liquid.

(2)有機金属化合物は、(5)ゾル−ゲル反応触媒により縮重合してリジッドな構造を形成し、貴金属ナノロッドの熱による変形を抑制できるものが用いられる。その理由としては、貴金属ナノロッドは熱によりアスペクト比が小さくなる方向に変形するため、焼成前にリジッドな構造を形成してこの変形を抑制し、ナノロッドの長軸に由来する特性を充分に発揮させるためである。この縮重合反応は室温近傍で行われることが望ましいが、少なくとも貴金属ナノロッドが大きく変形しない温度域で行われればよく、その温度域は貴金属ナノロッド種により異なるが、具体的には300℃未満でリジッドな構造を形成することが望ましい。   (2) As the organometallic compound, (5) a polymer that can be polycondensed by a sol-gel reaction catalyst to form a rigid structure and can suppress deformation of noble metal nanorods due to heat is used. The reason for this is that noble metal nanorods are deformed by heat in a direction in which the aspect ratio becomes smaller. Therefore, a rigid structure is formed before firing to suppress this deformation, and the characteristics derived from the long axis of the nanorods are fully exhibited. Because. This condensation polymerization reaction is desirably performed at around room temperature, but it is sufficient that it is performed at least in a temperature range where the noble metal nanorods are not greatly deformed. The temperature range varies depending on the type of noble metal nanorods. It is desirable to form a simple structure.

好ましい(2)有機金属化合物としては、チタニウム、ジルコニウム、ハフニウム、アルミニウムなどの金属のエトキシド、プロポキシド、ブトキシド等のアルコキシド類、アセチルアセトン塩、グリコレート塩等のキレート類、ヒドロキシステアレート、ヒドロキシラクテート等のアシレート類をあげることができる。なかでも、金属種としてチタニウム、アルミニウムなどを有する有機金属化合物や、有機基としてメトキシ基、エトキシ基などを有する有機金属化合物などが、反応性が高く、好ましく用いられる。これらは単独で使用するに限らず、併用することができる。   Preferred (2) organometallic compounds include ethoxides of metals such as titanium, zirconium, hafnium and aluminum, alkoxides such as propoxide and butoxide, chelates such as acetylacetone salt and glycolate salt, hydroxystearate, hydroxylactate, etc. Of the acylates. Among them, an organometallic compound having titanium, aluminum, or the like as a metal species, an organometallic compound having a methoxy group, an ethoxy group, or the like as an organic group has high reactivity and is preferably used. These are not limited to being used alone, but can be used in combination.

本発明に使用する(2)有機金属化合物の添加量は、(1)貴金属ナノロッドに含まれる貴金属原子数(N)に対して(2)有機金属化合物に含まれる金属原子数(M)の割合が、M/N=0.5以上であることが望ましい。M/Nの上限値は、他の添加物の添加量により自ずと制限される。M/Nが0.5未満の場合、焼成時に(1)貴金属ナノロッドが熱変形したり、凝集したりして、本発明の目的とする効果を充分には得られない。   The amount of (2) organometallic compound used in the present invention is the ratio of (1) the number of metal atoms (M) contained in the organometallic compound to (1) the number of noble metal atoms (N) contained in the noble metal nanorods. However, it is desirable that M / N = 0.5 or more. The upper limit of M / N is naturally limited by the amount of other additives. When M / N is less than 0.5, (1) noble metal nanorods are thermally deformed or aggregated during firing, and the intended effect of the present invention cannot be sufficiently obtained.

(3)溶媒は、(1)貴金属ナノロッドを分散でき、(2)有機金属化合物、(4)粘度調製剤を溶解できるものであれば特に限定されるものではないが、また(3)溶媒は基材への処理液塗布方法により適宜選択する必要があり、例えば、メタクレゾール、ジメチルホルムアミド、カルビトール、α−テレピネオール、ジアセトンアルコール、トリエチレングリコール、パラキシレン、トルエンなどの高沸点溶剤が、スクリーン印刷やフレキソ印刷などを利用して各処理液をガラス基板表面に塗布するうえで好ましい。   (3) The solvent is not particularly limited as long as it can disperse (1) noble metal nanorods and (2) an organometallic compound and (4) a viscosity modifier. It is necessary to select appropriately depending on the method of applying the treatment liquid to the substrate, for example, high-boiling solvents such as metacresol, dimethylformamide, carbitol, α-terpineol, diacetone alcohol, triethylene glycol, paraxylene, toluene, It is preferable for applying each processing solution to the surface of the glass substrate by using screen printing or flexographic printing.

本発明に使用する(4)粘度調製剤は、前述の(3)溶媒に可溶であって、処理液塗布方法に適応した粘性を処理液に与えるものであり、焼成時に速やかに分解、揮発する有機高分子を使用することが好ましい。また焼成膜の耐久性を考慮すると、炭素などの焼成後残分ができるだけ少ない化合物を選択することが望ましい。粘性調製剤として具体的には、エチルセルロース、ニトロセルロースなどの熱分解性のセルロース類、ポリ塩化ビニル類、ポリメチルメタクリレートなどのポリアクリル類などの樹脂が挙げられる。中でもニトロセルロースは比較的低温で爆発的に分解、揮発するため、より強固な薄膜を得ることができることから好ましく用いられる。   The (4) viscosity adjusting agent used in the present invention is soluble in the above-mentioned (3) solvent and gives the processing solution a viscosity suitable for the processing solution coating method. It is preferable to use an organic polymer. Considering the durability of the fired film, it is desirable to select a compound such as carbon that has as little residue as possible after firing. Specific examples of the viscosity adjusting agent include resins such as thermally decomposable celluloses such as ethyl cellulose and nitrocellulose, and polyacryls such as polyvinyl chloride and polymethyl methacrylate. Among them, nitrocellulose is preferably used because it can be decomposed and volatilized explosively at a relatively low temperature, and hence a stronger thin film can be obtained.

本発明に使用する(3)溶媒、(4)粘度調製剤の添加量は、処理剤の塗布方法により適宜決定される。   The addition amount of (3) solvent and (4) viscosity modifier used in the present invention is appropriately determined depending on the coating method of the treatment agent.

(5)ゾル−ゲル反応触媒は、(3)溶媒に可溶で、(1)貴金属ナノロッドが変形しない温度域で(2)有機金属化合物を縮重合せしめてリジッドな構造を形成するものが用いられる。例えば酸触媒、塩基触媒などが挙げられるが、酸触媒としては無機酸または有機酸、或いは酸無水物などが用いられる。無機酸としては、塩酸、硝酸、硫酸などがあり、有機酸としては酢酸、シュウ酸、コハク酸、マロン酸、フタル酸、マレイン酸、酒石酸などがある。酸無水物としては、無水酢酸、無水マレイン酸、無水フタル酸などがあげられる。塩基触媒としては、無機塩基または有機塩基などがある。無機塩基としてはアンモニア、水酸化カリウム、水酸化ナトリウムなどがある。有機塩基としては、1級、2級または3級のアミノ化合物が用いられ、特に3級アミンが好適に用いられる。例えば、N,N−ジメチルベンジルアミン、トリブチルアミン、トリ−n−プロピルアミン、トリペンチルアミン、トリプロパルギルアミン、N,N,N−トリメチルエチレンジアミン、トリ−n−ヘキシルアミンなどが利用され得る。そのなかでも、特に、エチレンジアミンが好適である。   (5) The sol-gel reaction catalyst is (3) soluble in a solvent, and (1) in a temperature range in which noble metal nanorods are not deformed. (2) An organic metal compound is polycondensed to form a rigid structure. It is done. For example, an acid catalyst, a base catalyst, and the like can be mentioned. As the acid catalyst, an inorganic acid, an organic acid, or an acid anhydride is used. Examples of inorganic acids include hydrochloric acid, nitric acid, and sulfuric acid, and examples of organic acids include acetic acid, oxalic acid, succinic acid, malonic acid, phthalic acid, maleic acid, and tartaric acid. Examples of the acid anhydride include acetic anhydride, maleic anhydride, and phthalic anhydride. Examples of the base catalyst include inorganic bases and organic bases. Inorganic bases include ammonia, potassium hydroxide, sodium hydroxide and the like. As the organic base, primary, secondary or tertiary amino compounds are used, and tertiary amines are particularly preferably used. For example, N, N-dimethylbenzylamine, tributylamine, tri-n-propylamine, tripentylamine, tripropargylamine, N, N, N-trimethylethylenediamine, tri-n-hexylamine and the like can be used. Among these, ethylenediamine is particularly preferable.

(5)ゾル−ゲル反応触媒の添加量は、所望する加工性や要求特性、また触媒種、有機金属化合物種によって異なるが、有機金属化合物の100質量部に対して0.01〜50質量部の割合で使用されることが望ましい。   (5) The addition amount of the sol-gel reaction catalyst varies depending on the desired processability and required characteristics, and the catalyst species and organometallic compound species, but is 0.01 to 50 mass parts with respect to 100 mass parts of the organometallic compound. It is desirable to be used at a ratio of

上記薄膜形成用処理剤の調製方法は特に限定されないが、例えば、はじめに容器に所定量の(3)溶媒を計りとり、該容器を40〜80℃に設定したウォーターバスにセットする。その後、粘度調製剤(4)を前記容器に加えて15〜30分間攪拌する。さらに貴金属ナノロッド(1)、有機金属化合物(2)、ゾル−ゲル反応触媒(5)を加えて10〜20分間攪拌した後、室温で冷却し、本発明で用いる処理剤を得る。   Although the preparation method of the said thin film formation processing agent is not specifically limited, For example, a predetermined amount of (3) solvent is first measured to a container and this container is set to the water bath set to 40-80 degreeC. Thereafter, the viscosity modifier (4) is added to the container and stirred for 15 to 30 minutes. Further, the precious metal nanorod (1), the organometallic compound (2), and the sol-gel reaction catalyst (5) are added and stirred for 10 to 20 minutes, and then cooled at room temperature to obtain the treating agent used in the present invention.

以上の如く作製された薄膜形成用処理剤は、透明ガラス等の基板上にスプレー、ディップ、ロールコート、スピンコート、フローコート、ナイフコート、グラビア印刷、フレキソ印刷、スクリーン印刷などの方法で塗布する。処理剤の塗布量は、焼成後の膜厚が、10〜500nmになるよう、処理液配合、塗布方法、塗布条件等により調整され、40〜400℃で乾燥した後、得られたゲル乾燥膜を大気雰囲気中で400〜800℃の炉中で焼成し、冷却を経て薄膜を形成できる。尚、薄膜に充分な耐久性を与えるためには、600〜800℃で焼成することが望ましい。   The processing agent for forming a thin film prepared as described above is applied to a substrate such as transparent glass by a method such as spray, dip, roll coating, spin coating, flow coating, knife coating, gravure printing, flexographic printing, or screen printing. . The coating amount of the treatment agent is adjusted by the treatment liquid composition, the coating method, the coating conditions, etc. so that the film thickness after baking is 10 to 500 nm, dried at 40 to 400 ° C., and then the obtained gel dry film Can be baked in a furnace at 400 to 800 ° C. in an air atmosphere and cooled to form a thin film. In addition, in order to give sufficient durability to a thin film, it is desirable to bake at 600-800 degreeC.

焼成の工程前に、ゾル−ゲル反応により(2)有機金属化合物が縮重合したリジッドな構造を形成させることによって、焼成時の貴金属ナノロッドの熱変形を抑制した薄膜を得ることができる。つまり貴金属ナノロッドが大きく変形しない温度域でリジッドな構造を予め形成せしめたゲル乾燥膜を焼成することで、貴金属ナノロッドが熱変形し難いといった効果がある。尚、ハンドリング性を考慮すると、処理剤の作製時にはゲル化せず、乾燥時にゲル化が進行することが望ましい。   By forming a rigid structure in which (2) the organometallic compound is polycondensed by a sol-gel reaction before the firing step, a thin film in which thermal deformation of the noble metal nanorods during firing can be suppressed can be obtained. That is, there is an effect that the noble metal nanorods are hardly thermally deformed by firing the gel dry film in which a rigid structure is formed in advance in a temperature range where the noble metal nanorods are not greatly deformed. In consideration of handling properties, it is desirable that gelation does not occur during the preparation of the treatment agent but progresses during drying.

このようにして得られた薄膜は、貴金属ナノロッドを金属酸化物中に分散して固定された薄膜であって、貴金属ナノロッドの短軸に由来する吸収と、長軸に由来する吸収が確認される。尚、(5)ゾル−ゲル反応触媒を配合しない処理剤を用いた場合、焼成前にリジッドな構造を形成できず、焼成によって貴金属ナノロッドが変形しアスペクト比が減少する、すなわち粒子化するため、得られた薄膜にはロッド形状が損なわれた貴金属微粒子が多く散見される。   The thin film thus obtained is a thin film in which noble metal nanorods are dispersed and fixed in a metal oxide, and absorption derived from the short axis of the noble metal nanorods and absorption derived from the long axis are confirmed. . In addition, (5) when using a treatment agent that does not contain a sol-gel reaction catalyst, a rigid structure cannot be formed before firing, and the noble metal nanorods are deformed by firing and the aspect ratio is reduced, that is, particles are formed. In the obtained thin film, there are many precious metal fine particles whose rod shape is damaged.

尚、この薄膜を用いて光学フィルターを得ることができる。例えば、ガラス等の透明基板上に積層したり、ガラス等の透明基板間に介在させたりすることで、短軸に由来する吸収性能と長軸に由来する吸収性能を有する光学フィルターとなる。この光学フィルターを、建築物、車両等のガラスとして適用する場合は1500nm付近に、プラズマディスプレイ用のフィルターとして適用する場合は800nm付近に吸収特性が発現できるよう構成することが好ましい。   An optical filter can be obtained using this thin film. For example, by laminating on a transparent substrate such as glass or interposing between transparent substrates such as glass, an optical filter having absorption performance derived from the short axis and absorption performance derived from the long axis is obtained. When this optical filter is applied as glass for buildings, vehicles, etc., it is preferable that the optical filter has an absorption characteristic around 1500 nm, and when it is applied as a filter for a plasma display, an absorption characteristic is preferably expressed around 800 nm.

80℃に温度調節されたウォーターバスにプロペラ攪拌機、撹拌容器を設置し、表1に示された配合量に従って、先ず溶媒に粘度調整剤を溶解し、次にナノロッド分散液、有機金属化合物、そして実施例1ではゾル−ゲル反応触媒としてエチレンジアミンを添加、混合した。その後室温まで自然冷却してそれぞれの処理剤を作製した。   Install a propeller stirrer and a stirring vessel in a water bath whose temperature is adjusted to 80 ° C., and first dissolve the viscosity modifier in the solvent according to the blending amount shown in Table 1, then nanorod dispersion, organometallic compound, and In Example 1, ethylenediamine was added and mixed as a sol-gel reaction catalyst. Then, each treatment agent was produced by naturally cooling to room temperature.

表1に示す各処理剤を厚さ3mm×50mm×50mmの透明なガラス基板上にスクリーン印刷法(紗種:ポリエステル#250、パターン:40×30mmベタ、スキージー:ウレタン製硬度70度)により塗布し、150℃の熱風循環式オーブンで5分間乾燥し、大気雰囲気中で600℃のマッフル炉中で10分間焼成し、最後に自然冷却してそれぞれの試料を得た。尚、配合量の単位はwt%である。   Each treatment agent shown in Table 1 was applied on a transparent glass substrate having a thickness of 3 mm × 50 mm × 50 mm by screen printing (type: polyester # 250, pattern: 40 × 30 mm solid, squeegee: urethane hardness 70 degrees). The sample was dried in a hot air circulation oven at 150 ° C. for 5 minutes, baked in a muffle furnace at 600 ° C. in an air atmosphere for 10 minutes, and finally naturally cooled to obtain each sample. The unit of the blending amount is wt%.

金ナノロッドは、ソフトテンプレート法により作製された単軸長10nm、長軸長40nmのものをトルエンに分散した状態で使用した。分散液の金含有量は10wt%である。金ナノ粒子は粒子径3nmのものをトルエンに分散した状態で使用した。分散液の金含有量は5wt%である。   As the gold nanorods, those having a uniaxial length of 10 nm and a major axis length of 40 nm prepared by a soft template method were used in a state of being dispersed in toluene. The gold content of the dispersion is 10 wt%. Gold nanoparticles having a particle diameter of 3 nm were used in a state of being dispersed in toluene. The gold content of the dispersion is 5 wt%.

Figure 2005126664
Figure 2005126664

1.吸収スペクトル特性
得られた試料を近赤外可視分光光度計により、波長1500〜400nmの吸光度を測定した。結果を図1に示す。
1. Absorption spectrum characteristics The obtained sample was measured for absorbance at a wavelength of 1500 to 400 nm with a near infrared visible spectrophotometer. The results are shown in FIG.

実施例1,比較例1ともに二つの吸収ピークが観測され、これらは短波長側が金ナノロッド短軸に由来するピーク、長波長側が金ナノロッド長軸に由来するピークと考えられるが、金ナノロッド長軸に由来するピークが実施例1では670nm、比較例1では590nmに確認されることから、実施例1のほうが金ナノロッド長軸に由来するピークを長波長側に有しており、ロッド的性質を強く残していることが知見された。   In both Example 1 and Comparative Example 1, two absorption peaks were observed, which are considered to be a peak derived from the short axis of the gold nanorod on the short wavelength side and a peak derived from the long axis of the gold nanorod on the long wavelength side. In Example 1 is confirmed at 670 nm, and in Comparative Example 1 at 590 nm, Example 1 has a peak derived from the long axis of the gold nanorod on the long wavelength side, and has a rod-like property. It was found that it remained strong.

2.透過電子顕微鏡像
各試料をフッ酸蒸気にさらした後、水に浸漬して薄膜をガラスから剥離させた。これをカーボンメッシュですくい取って風乾し、透過型電子顕微鏡(TEM)用試料とした。各試料のTEM像を図2(実施例1)、図3(比較例1)に示す。
2. Transmission Electron Microscope Image Each sample was exposed to hydrofluoric acid vapor, and then immersed in water to peel the thin film from the glass. This was scooped with a carbon mesh and air-dried to obtain a sample for a transmission electron microscope (TEM). A TEM image of each sample is shown in FIG. 2 (Example 1) and FIG. 3 (Comparative Example 1).

図3(比較例1)では多数の粒状の金微粒子が観察され、ごく一部にアスペクト比2程度の金ナノロッドが散見された。一方、実施例1ではアスペクト比2〜4程度の金ナノロッドを多数確認できた。これは比較例1では焼成工程において、殆どの金ナノロッドが熱変形して粒子化してしまったものと推察される。   In FIG. 3 (Comparative Example 1), a large number of granular gold fine particles were observed, and gold nanorods with an aspect ratio of about 2 were scattered in a small part. On the other hand, in Example 1, many gold nanorods having an aspect ratio of 2 to 4 were confirmed. This is presumed that in Comparative Example 1, most of the gold nanorods were thermally deformed into particles in the firing step.

本発明にかかる薄膜形成用処理剤および薄膜形成方法は、建築物、車両等のガラスや、プラズマディスプレイ用フィルターに適用される。   The processing agent for thin film formation and the thin film formation method according to the present invention are applied to glass for buildings and vehicles, and filters for plasma displays.

本発明に係る実施例および比較例の吸収スペクトル特性を示す図である。It is a figure which shows the absorption spectrum characteristic of the Example which concerns on this invention, and a comparative example. 実施例の薄膜のTEM像である。It is a TEM image of the thin film of an Example. 比較例の薄膜のTEM像である。It is a TEM image of the thin film of a comparative example.

Claims (12)

(1)貴金属ナノロッド、(2)有機金属化合物、(3)溶媒、(4)粘度調製剤、および(5)ゾル−ゲル反応触媒を含有することを特徴とした薄膜形成用処理剤。   A treating agent for forming a thin film, comprising (1) a noble metal nanorod, (2) an organometallic compound, (3) a solvent, (4) a viscosity adjusting agent, and (5) a sol-gel reaction catalyst. (1)貴金属ナノロッドが、金、銀、白金、パラジウム、およびそれらの合金からなる群より少なくとも一種選ばれる請求項1記載の薄膜形成用処理剤。   (1) The treatment agent for forming a thin film according to claim 1, wherein the noble metal nanorod is selected from the group consisting of gold, silver, platinum, palladium, and alloys thereof. (2)有機金属化合物が、チタニウム、ジルコニウム、ハフニウム、およびアルミニウムからなる群より少なくとも一種選ばれる金属を含有する請求項1または2記載の薄膜形成用処理剤。   (2) The processing agent for forming a thin film according to claim 1 or 2, wherein the organometallic compound contains a metal selected from at least one selected from the group consisting of titanium, zirconium, hafnium, and aluminum. (4)粘度調製剤が、ニトロセルロースである請求項1〜3のいずれか1項に記載の薄膜形成用処理剤。   (4) The viscosity adjusting agent is nitrocellulose, The treatment agent for forming a thin film according to any one of claims 1 to 3. ゾル−ゲル反応触媒が塩基性触媒である請求項1〜4のいずれか1項に記載の薄膜形成用処理剤。   The treatment agent for forming a thin film according to any one of claims 1 to 4, wherein the sol-gel reaction catalyst is a basic catalyst. 塩基性触媒がアミノ化合物である請求項5記載の薄膜形成用処理剤。   The treatment agent for forming a thin film according to claim 5, wherein the basic catalyst is an amino compound. (1)貴金属ナノロッド、(2)有機金属化合物、(3)溶媒、(4)粘度調製剤、および(5)ゾル−ゲル反応触媒を含有する薄膜形成用処理剤を基板に塗布、乾燥の後、ゲル乾燥膜を焼成することを特徴とした薄膜形成方法。   (1) A noble metal nanorod, (2) an organometallic compound, (3) a solvent, (4) a viscosity adjusting agent, and (5) a treatment agent for forming a thin film containing a sol-gel reaction catalyst is applied to a substrate and dried. A method for forming a thin film, comprising firing a gel dry film. (1)貴金属ナノロッドが、金、銀、白金、パラジウム、およびそれらの合金からなる群より少なくとも一種選ばれる請求項7記載の薄膜形成方法。   (1) The thin film forming method according to claim 7, wherein the noble metal nanorod is selected from the group consisting of gold, silver, platinum, palladium, and alloys thereof. (2)有機金属化合物が、チタニウム、ジルコニウム、ハフニウム、およびアルミニウムからなる群より少なくとも一種選ばれる金属を含有する請求項7または8記載の薄膜形成方法。   (2) The thin film forming method according to claim 7 or 8, wherein the organometallic compound contains a metal selected from at least one selected from the group consisting of titanium, zirconium, hafnium, and aluminum. (4)粘度調製剤が、ニトロセルロースである請求項7〜9のいずれか1項に記載の薄膜形成方法。   (4) The viscosity adjusting agent is nitrocellulose, The thin film forming method according to any one of claims 7 to 9. ゾル−ゲル反応触媒が塩基性触媒である請求項7〜10のいずれか1項に記載の薄膜形成方法。   The thin film forming method according to claim 7, wherein the sol-gel reaction catalyst is a basic catalyst. 塩基性触媒がアミノ化合物である請求項11記載の薄膜形成方法。
The thin film forming method according to claim 11, wherein the basic catalyst is an amino compound.
JP2004023152A 2003-09-30 2004-01-30 Treating agent for forming thin film and method for forming thin film Pending JP2005126664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023152A JP2005126664A (en) 2003-09-30 2004-01-30 Treating agent for forming thin film and method for forming thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003342595 2003-09-30
JP2004023152A JP2005126664A (en) 2003-09-30 2004-01-30 Treating agent for forming thin film and method for forming thin film

Publications (1)

Publication Number Publication Date
JP2005126664A true JP2005126664A (en) 2005-05-19

Family

ID=34655747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023152A Pending JP2005126664A (en) 2003-09-30 2004-01-30 Treating agent for forming thin film and method for forming thin film

Country Status (1)

Country Link
JP (1) JP2005126664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515510A (en) * 2008-02-26 2011-05-19 カンブリオス テクノロジーズ コーポレイション Method and composition for screen printing conductive features
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
EP2995703A1 (en) * 2014-09-09 2016-03-16 Christian-Albrechts-Universität zu Kiel Method for the preparation of surfaces dissipation electrodes and semi-finished product for carrying out the method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
JP2011515510A (en) * 2008-02-26 2011-05-19 カンブリオス テクノロジーズ コーポレイション Method and composition for screen printing conductive features
US8815126B2 (en) 2008-02-26 2014-08-26 Cambrios Technologies Corporation Method and composition for screen printing of conductive features
EP2995703A1 (en) * 2014-09-09 2016-03-16 Christian-Albrechts-Universität zu Kiel Method for the preparation of surfaces dissipation electrodes and semi-finished product for carrying out the method
US10177367B2 (en) * 2014-09-09 2019-01-08 Christian-Albrechts-Universitaet Zu Kiel Method for producing surface discharge electrodes and semifinished product for carrying out the method

Similar Documents

Publication Publication Date Title
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
TWI342870B (en)
US20040091731A1 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
JP2004055298A (en) Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP2002294301A (en) Fine metallic particle, method for producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material fitted with transparent electrically conductive film and display
TW539734B (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP2001254072A (en) Preparation process of anti-fogging composition, anti- fogging coating agent and anti-fogging coated film- forming base material
US6569359B2 (en) Transparent conductive layer forming coating liquid containing formamide
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP2000275409A (en) Low-transmission transparent base material, its manufacture, and display device employing the same
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP2005126664A (en) Treating agent for forming thin film and method for forming thin film
JP2003342602A (en) Indium based metal fine particle and its manufacturing method, and coating liquid for forming transparent and conductive film containing indium based metal fine particle, base material provided with transparent and conductive film and display device
JP2000276941A (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2004182929A (en) Coating liquid for forming transparent film, substrate with transparent film and display device
JP2001064540A (en) Transparent, electrically conductive coated film-forming coating liquid, substrate having transparent, electrically conductive coated film and display device
JP2009135098A (en) Coating liquid for translucent conductive film formation, and translucent conductive film
KR101171878B1 (en) Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JP2003012965A (en) Coating liquid for forming clear lowly reflective conductive film, substrate with clear lowly reflective conductive film, and display
JP2004338985A (en) Substrate with heat ray shielding film, and its production method
JP2011121809A (en) Glass composition for masking ink, masking ink, filter substrate and method for manufacturing the filter substrate, and display device
JP2005126310A (en) Treating agent for thin film formation, thin film forming method and optical filter
JP2004338986A (en) Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide
JP2002367428A (en) Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device