JP2005126556A - Rubber composition and tire obtained by using the same - Google Patents

Rubber composition and tire obtained by using the same Download PDF

Info

Publication number
JP2005126556A
JP2005126556A JP2003363044A JP2003363044A JP2005126556A JP 2005126556 A JP2005126556 A JP 2005126556A JP 2003363044 A JP2003363044 A JP 2003363044A JP 2003363044 A JP2003363044 A JP 2003363044A JP 2005126556 A JP2005126556 A JP 2005126556A
Authority
JP
Japan
Prior art keywords
weight
rubber
less
silica
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363044A
Other languages
Japanese (ja)
Inventor
Toshiaki Matsuo
俊朗 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2003363044A priority Critical patent/JP2005126556A/en
Publication of JP2005126556A publication Critical patent/JP2005126556A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition having excellent processability and reduced rolling resistance characteristics, and a tire using the same for a tread. <P>SOLUTION: The rubber composition comprises a rubber component which comprises at least 50 wt% of a solution polymerization styrene-butadiene rubber having its molecular weight increased by coupling, at most 40 wt% of a natural rubber and at most 40 wt% of a butadiene rubber and contains 1-12 wt% of a low-molecular weight butadiene rubber having a weight-average molecular weight of at most 10,000 and being terminally modified with a functional group selected from the group consisting of a carboxy group, a vinyl group and a hydroxy group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ゴム組成物およびそれを用いたタイヤに関し、とりわけ加工性および転がり抵抗低減効果に優れたゴム組成物、およびそれをトレッドに用いたタイヤに関する。   The present invention relates to a rubber composition and a tire using the rubber composition, and more particularly to a rubber composition excellent in processability and rolling resistance reduction effect, and a tire using the rubber composition in a tread.

従来、タイヤの転がり抵抗を低減させるために、ゴム成分として、溶液重合スチレンブタジエンゴム(S−SBR)を用い、S−SBRの分子量を高く設定し、分子量分布をシャープにすることが行なわれてきた。また、シリカを補強剤として配合することにより、さらなる低燃費化が図られるようになった。しかし、シリカを配合すると、転がり抵抗の低減とウェットグリップ性能の向上を両立できるが、ゴム練り中にポリマーと結合してゲルを作りやすい。ゲルが生成されると、シリカの分散性が低下するので、押出しゴム生地が悪化するという工程上の問題が多発し、生産性が大きく低下する。   Conventionally, in order to reduce the rolling resistance of tires, solution-polymerized styrene butadiene rubber (S-SBR) is used as a rubber component, the molecular weight of S-SBR is set high, and the molecular weight distribution has been sharpened. It was. Further, by adding silica as a reinforcing agent, further reduction in fuel consumption has been achieved. However, when silica is blended, it is possible to achieve both reduction in rolling resistance and improvement in wet grip performance, but it is easy to form a gel by combining with a polymer during rubber kneading. When the gel is formed, the dispersibility of the silica is lowered, so that the process problem that the extruded rubber fabric is deteriorated frequently occurs, and the productivity is greatly lowered.

この問題を解決するために、低分子量のポリマーやオイルを多く用いることで、ゴム生地を改善できることが知られているが、オイルを多く用いると、オイルが抜けていくことで走行末期に硬くなったり、早期の摩耗状態が悪化したりと、種々の問題点があった。   In order to solve this problem, it is known that the rubber fabric can be improved by using a large amount of low molecular weight polymer or oil. However, if a large amount of oil is used, it will become hard at the end of the run due to the loss of oil. There were various problems such as deterioration of the early wear state.

また、低分子量のポリマーを混練りする方法、たとえば液状のスチレン−ブタジエンゴム(SBR)を混練りの際に後入れで添加する方法が検討されているが、低分子量のSBRは粘ちょうな液体であるため、加工性の悪化や混入による転がり抵抗の増大が生じるという問題があった。   In addition, a method of kneading a low molecular weight polymer, for example, a method of adding liquid styrene-butadiene rubber (SBR) after kneading at the time of kneading has been studied, but low molecular weight SBR is a viscous liquid. Therefore, there is a problem that the rolling resistance increases due to deterioration of workability and mixing.

末端変性またはカップリングされたゴム成分と充填剤を使用し、ゴム組成物の性質を改善することも知られている(特許文献1〜4参照)。しかし、これらの技術によると、加工性、および転がり抵抗の低減効果が充分ではなかった。   It is also known to improve the properties of rubber compositions by using terminally modified or coupled rubber components and fillers (see Patent Documents 1 to 4). However, according to these techniques, the workability and the effect of reducing rolling resistance are not sufficient.

特開平10−87887号公報Japanese Patent Laid-Open No. 10-87887 特開2000−273245号公報JP 2000-273245 A 特開2000−344944号公報JP 2000-344944 A 特開2002−322319号公報JP 2002-322319 A

本発明は、優れた加工性および転がり抵抗低減効果を有するゴム組成物、およびそれをトレッドに用いたタイヤを提供することを目的とする。   An object of the present invention is to provide a rubber composition having excellent processability and rolling resistance reduction effect, and a tire using the rubber composition.

本発明は、カップリングにより高分子化された溶液重合スチレン−ブタジエンゴム50重量%以上、天然ゴム40重量%以下およびブタジエンゴム40重量%以下からなり、重量平均分子量が10000以下の低分子量ブタジエンゴム1〜12重量%を含むゴム成分、ならびに、チッ素吸着比表面積が100m2/g以上200m2/g未満のシリカ、およびチッ素吸着比表面積が145m2/g以上であり、かつセチルトリメチルアンモニウムブロマイド吸着比表面積(m2/g)がヨウ素吸着量(mg/g)に対して1.2倍以上であるカーボンブラックからなり、シリカとカーボンブラックの合計含有量に対してシリカを60重量%以上およびカーボンブラックを40重量%以下含有するゴム組成物に関する。 The present invention relates to a low molecular weight butadiene rubber having a weight average molecular weight of 10,000 or less, comprising 50% by weight or more of solution-polymerized styrene-butadiene rubber polymerized by coupling, 40% by weight or less of natural rubber and 40% by weight or less of butadiene rubber. A rubber component containing 1 to 12% by weight, silica having a nitrogen adsorption specific surface area of 100 m 2 / g or more and less than 200 m 2 / g, and a nitrogen adsorption specific surface area of 145 m 2 / g or more, and cetyltrimethylammonium It consists of carbon black whose bromide adsorption specific surface area (m 2 / g) is 1.2 times or more of iodine adsorption amount (mg / g), and 60% by weight of silica with respect to the total content of silica and carbon black The present invention relates to a rubber composition containing 40% by weight or less of carbon black.

前記低分子量ブタジエンゴムがカルボキシル基、ビニル基、水酸基からなる群より選ばれた官能基で末端変性されたものである
また、本発明は、前記ゴム組成物からなるトレッドを有するタイヤに関する。
The low-molecular-weight butadiene rubber is terminal-modified with a functional group selected from the group consisting of a carboxyl group, a vinyl group, and a hydroxyl group. The present invention also relates to a tire having a tread composed of the rubber composition.

本発明によれば、超低分子量(10000以下)のBRを混合することにより、混合時や押出し時のゴム生地を改善することができる。さらに、その超低分子量BRを末端変性することにより、シリカとの反応性を高め、混練り時の加工性の悪化を改善し、タイヤに用いた際の転がり抵抗の増大を抑えることができる。   According to the present invention, by mixing ultra-low molecular weight (10,000 or less) BR, the rubber fabric at the time of mixing and extrusion can be improved. Furthermore, terminal modification of the ultra-low molecular weight BR can increase the reactivity with silica, improve the deterioration of workability during kneading, and suppress the increase in rolling resistance when used in a tire.

本発明のゴム組成物は、ゴム成分および補強剤からなる。   The rubber composition of the present invention comprises a rubber component and a reinforcing agent.

本発明では、ゴム成分として、溶液重合スチレン−ブタジエンゴム(S−SBR)を用いる。S−SBRのスチレン単位量は5〜45重量%、ビニル単位量は20〜65重量%であることが好ましい。スチレン単位量が5重量%未満でビニル単位量が65重量%をこえると加硫速度が遅くなり、タイヤ製造時の生産性が劣り、また、タイヤの性能としてもチッピングなどが生じることにより耐摩耗性が劣る傾向がある。また、スチレン単位量が45重量%をこえ、ビニル単位量が20重量%未満ではゴムの発熱が大きくなり、転がり抵抗が低減されない傾向がある。   In the present invention, solution-polymerized styrene-butadiene rubber (S-SBR) is used as the rubber component. The amount of styrene units in S-SBR is preferably 5 to 45% by weight, and the amount of vinyl units is preferably 20 to 65% by weight. When the styrene unit amount is less than 5% by weight and the vinyl unit amount exceeds 65% by weight, the vulcanization speed becomes slow, the productivity at the time of tire production is inferior, and the tire performance also causes wear resistance due to chipping. Tend to be inferior. On the other hand, when the styrene unit amount exceeds 45% by weight and the vinyl unit amount is less than 20% by weight, the heat generated by the rubber tends to increase, and the rolling resistance tends not to be reduced.

本発明に使用するS−SBRとしては、SnやSiでカップリングされて高分子量化されたものが用いられる。S−SBRの分子量を高くし、さらに、シリカと反応し得るように末端変性することにより、ポリマーとしての転がり抵抗を低減することができる。   As the S-SBR used in the present invention, one having a high molecular weight coupled with Sn or Si is used. Rolling resistance as a polymer can be reduced by increasing the molecular weight of S-SBR and further modifying the terminal so that it can react with silica.

S−SBRのカップリング方法は、常法に従って、たとえば、S−SBRの分子鎖末端のアルカリ金属(Liなど)またはアルカリ土類金属(Mgなど)を、たとえばハロゲン化スズまたはハロゲン化ケイ素と反応させることによって得ることができる。   The coupling method of S-SBR is performed by, for example, reacting an alkali metal (such as Li) or alkaline earth metal (such as Mg) at the molecular chain end of S-SBR with, for example, tin halide or silicon halide. Can be obtained.

前記S−SBRの含有量は、ゴム成分中に50重量%以上、好ましくは60〜90重量%、より好ましくは60〜80重量%である。前記S−SBRの含有量が50重量%未満ではタイヤのグリップ性能、特に湿潤路面でのグリップ性能と転がり抵抗低減効果とのバランスが劣る傾向があり、90重量%をこえると湿潤路面でグリップ性能が、夏場は問題ないが、冬場の氷雪上において劣る傾向がある。   The S-SBR content in the rubber component is 50% by weight or more, preferably 60 to 90% by weight, more preferably 60 to 80% by weight. If the S-SBR content is less than 50% by weight, there is a tendency that the balance between the grip performance of the tire, particularly the grip performance on the wet road surface and the rolling resistance reducing effect, is poor, and if the content exceeds 90% by weight, the grip performance on the wet road surface tends to be poor. However, there is no problem in summer, but it tends to be inferior on ice and snow in winter.

本発明では、ゴム成分として、さらに、天然ゴム(NR)を用いる。NRの含有量は、ゴム成分中に40重量%以下、好ましくは20重量%以下である。NRの含有量が40重量%をこえると転がり抵抗は低減されるが,ウェットグリップ性能が劣る。   In the present invention, natural rubber (NR) is further used as the rubber component. The content of NR is 40% by weight or less, preferably 20% by weight or less in the rubber component. When the NR content exceeds 40% by weight, rolling resistance is reduced, but wet grip performance is inferior.

本発明では、ゴム成分として、さらに、ブタジエンゴム(BR)を用いる。BRの含有量は、ゴム成分中に40重量%以下、好ましくは20重量%以下である。NRの含有量が40重量%をこえると、低温時、特に0℃付近のウェットグリップ性能は問題ないが、常温以上におけるドライグリップ性能およびウェットグリップ性能が劣る。   In the present invention, butadiene rubber (BR) is further used as the rubber component. The content of BR is 40% by weight or less, preferably 20% by weight or less in the rubber component. When the NR content exceeds 40% by weight, there is no problem with wet grip performance at low temperatures, particularly around 0 ° C., but dry grip performance and wet grip performance at room temperature or higher are inferior.

本発明においては、前記BRの全てまたは一部を、重量平均分子量が10000以下の低分子量BRとする。前記S−SBRの配合によって押出し生地が悪化するため、低分子量のBRを混合することにより生地の特性を改善する。   In the present invention, all or part of the BR is a low molecular weight BR having a weight average molecular weight of 10,000 or less. Since the extruded dough deteriorates due to the blending of the S-SBR, the properties of the dough are improved by mixing low molecular weight BR.

前記低分子量BRの重量平均分子量は10000以下、好ましくは1000〜10000、より好ましくは1000〜4000、さらに好ましくは1500〜3500である。BRの重量平均分子量が10000をこえると、BRが粘ちょうになりすぎて、重合が困難であり、低分子BRの生産性が劣る。また、1000未満では、タイヤの転がり抵抗が低減されない傾向がある。   The low molecular weight BR has a weight average molecular weight of 10,000 or less, preferably 1000 to 10,000, more preferably 1000 to 4000, and further preferably 1500 to 3500. When the weight average molecular weight of BR exceeds 10,000, BR becomes too viscous, polymerization is difficult, and productivity of low-molecular BR is inferior. Moreover, if it is less than 1000, there exists a tendency for the rolling resistance of a tire not to be reduced.

さらに、前記BRは、転がり抵抗の増大を極力抑えるために、末端変性してシリカとの反応性を向上させることが好ましい。シリカとの反応性を向上させるためにBRの分子鎖末端に導入する官能基としては、シリカと反応しやすい点で、ビニル基、アミノ基、カルボキシル基などが用いられる。これらの官能基は、BRの分子鎖の両末端に導入されることが好ましい。   Furthermore, in order to suppress the increase in rolling resistance as much as possible, the BR is preferably terminal-modified to improve the reactivity with silica. As a functional group introduced into the molecular chain terminal of BR in order to improve the reactivity with silica, a vinyl group, an amino group, a carboxyl group, or the like is used because it easily reacts with silica. These functional groups are preferably introduced at both ends of the molecular chain of BR.

前記低分子量BRの含有量は、ゴム成分中に1〜12重量%、好ましくは3〜10重量%、より好ましくは5〜8重量%である。前記BRの含有量が1重量%未満では生地の改良が充分でなく、12重量%をこえるとタイヤの転がり抵抗が低減されない。   The content of the low molecular weight BR is 1 to 12% by weight, preferably 3 to 10% by weight, more preferably 5 to 8% by weight in the rubber component. If the BR content is less than 1% by weight, the fabric is not sufficiently improved, and if it exceeds 12% by weight, the rolling resistance of the tire is not reduced.

つぎに、本発明では、補強剤としてシリカを用いる。前記ゴム成分に対して補強剤としてのシリカを多く用いることは、従来のカーボンブラック配合用のポリマーにシリカを用いることよりも効果的である。カーボンブラックと比較してシリカはウェットグリップ性能と転がり抵抗低減効果のバランスが良く、ポリマーの分子鎖末端などの変性による効果が生じやすい。したがって、シリカとカーボンブラックの比率は、シリカの比率を多くする必要がある。   Next, in the present invention, silica is used as a reinforcing agent. Using a large amount of silica as a reinforcing agent for the rubber component is more effective than using silica in a conventional polymer for blending carbon black. Compared to carbon black, silica has a better balance between wet grip performance and rolling resistance reduction effect, and is more likely to have effects due to modification of polymer molecular chain ends and the like. Therefore, the ratio of silica to carbon black needs to be increased.

本発明で使用するシリカは、チッ素吸着比表面積(N2SA)が100〜200m2/g、とくには110〜180m2/gであることが好ましい。N2SAが100m2/g未満では補強性が劣る傾向があり、200m2/g未満をこえると工場でのゴム練り時に粘度が大きく、カップリング剤が多量に必要となり、コストがかかる傾向がある。 Silica used in the present invention, nitrogen adsorption specific surface area (N 2 SA) is preferably 100 to 200 m 2 / g, in particular a 110~180m 2 / g. If N 2 SA is less than 100 m 2 / g, the reinforcing property tends to be inferior, and if it exceeds less than 200 m 2 / g, the viscosity tends to be high when rubber is kneaded in the factory, and a large amount of coupling agent is required, which tends to be costly. is there.

さらに、本発明では、補強剤としてカーボンブラックを用いる。従来よりカーボンブラックをシリカと併用する場合には、シリカの電気抵抗が大きいことを考慮して、表面積の大きな(粒子径の小さな)カーボンブラックを用いることが多い。この場合、転がり抵抗の増大が懸念されるので、分子鎖末端との反応性を高くするためにカーボンブラックの表面活性を高くして(セチルトリメチルアンモニウムブロマイド吸着比表面積/ヨウ素吸着量の比を大きくして)、転がり抵抗値を低くする必要がある。   Furthermore, in the present invention, carbon black is used as a reinforcing agent. Conventionally, when carbon black is used in combination with silica, carbon black having a large surface area (small particle diameter) is often used in consideration of the large electric resistance of silica. In this case, since there is a concern about an increase in rolling resistance, the surface activity of carbon black is increased in order to increase the reactivity with the molecular chain end (the ratio of cetyltrimethylammonium bromide adsorption specific surface area / iodine adsorption amount is increased). Therefore, it is necessary to reduce the rolling resistance value.

本発明で使用するカーボンブラックのチッ素吸着比表面積(N2SA)は、145m2/g以上、好ましくは160〜220m2/g、より好ましくは170〜190m2/gである。N2SAが145m2/g未満ではカーボンブラックの比率を下げた時の電気導電性が劣り、ドライグリップ性能の低下が大きくなり、220m2/gをこえると転がり抵抗が低減されない、または練りゴムの粘度が上昇しすぎる傾向がある。 Nitrogen adsorption specific surface area of carbon black used in the present invention (N 2 SA) is, 145m 2 / g or more, preferably 160~220m 2 / g, more preferably 170~190m 2 / g. If N 2 SA is less than 145 m 2 / g, the electrical conductivity when the ratio of carbon black is lowered is inferior and the dry grip performance is greatly deteriorated. If it exceeds 220 m 2 / g, rolling resistance is not reduced, or kneaded rubber There is a tendency for the viscosity of to increase too much.

前記カーボンブラックのセチルトリメチルアンモニウムブロマイド(CTAB)吸着比表面積は、140〜200m2/gであることが好ましい。CTAB吸着比表面積が140m2/g未満では、カーボンブラックの比率を下げた時の電気導電性が劣り、ドライグリップ性能の低下が大きくなり、200m2/gをこえると、転がり抵抗が低減されない、または練りゴムの粘度が上昇しすぎる傾向がある。 The carbon black preferably has a cetyltrimethylammonium bromide (CTAB) adsorption specific surface area of 140 to 200 m 2 / g. When the CTAB adsorption specific surface area is less than 140 m 2 / g, the electrical conductivity when the ratio of carbon black is lowered is inferior and the dry grip performance is greatly deteriorated. When the CTAB adsorption specific surface area exceeds 200 m 2 / g, the rolling resistance is not reduced. Or the viscosity of kneaded rubber tends to increase too much.

前記カーボンブラックのヨウ素吸着量(IA)は、140〜200mg/gであることが好ましい。IAが140mg/g未満では、カーボンブラックの比率を下げた時の電気導電性が劣り、ドライグリップ性能の低下が大きくなり、200mg/gをこえると、転がり抵抗が低減されない、または練りゴムの粘度が上昇しすぎる傾向がある。   The iodine adsorption amount (IA) of the carbon black is preferably 140 to 200 mg / g. If the IA is less than 140 mg / g, the electrical conductivity when the ratio of carbon black is lowered is inferior and the dry grip performance is greatly reduced. If the ratio exceeds 200 mg / g, the rolling resistance is not reduced, or the viscosity of the kneaded rubber Tend to rise too much.

前記CTAB(m2/g)とIA(mg/g)との比(CTAB/IA比)は、1.1以上、好ましくは1.15〜1.29、より好ましくは1.18〜1.25である。CTAB/IA比が1.1未満では転がり抵抗の低減効果とドライグリップ性能のバランスが悪くなり、カーボンブラックの生産性が大きく劣る傾向がある。 The ratio of CTAB (m 2 / g) to IA (mg / g) (CTAB / IA ratio) is 1.1 or more, preferably 1.15 to 1.29, more preferably 1.18 to 1. 25. If the CTAB / IA ratio is less than 1.1, the balance between the rolling resistance reduction effect and the dry grip performance is poor, and the productivity of carbon black tends to be greatly inferior.

前記シリカの含有量は、シリカとカーボンブラックの合計含有量に対して60重量%以上、好ましくは60〜80重量%である。また、前記カーボンブラックの含有量は、シリカとカーボンブラックの合計含有量に対して40重量%以下、好ましくは20〜35重量%である。シリカの含有量が60重量%未満で、カーボンブラックの含有量が40重量%をこえると、転がり抵抗が低減されない。   The content of the silica is 60% by weight or more, preferably 60 to 80% by weight with respect to the total content of silica and carbon black. The carbon black content is 40% by weight or less, preferably 20 to 35% by weight, based on the total content of silica and carbon black. If the content of silica is less than 60% by weight and the content of carbon black exceeds 40% by weight, the rolling resistance is not reduced.

前記ゴム成分と補強剤を混練りする際には、ゴム成分とシリカとの反応を効率よく行なうため、混練り機(バンバリーミキサーなど)中での反応温度を高く設定することが好ましい。具体的には、160℃以上、とくには160〜180℃に設定することが好ましい。反応温度が160℃未満ではシリカとカップリング剤の反応が完結しにくい傾向があり、180℃をこえると練りゴムの粘度が上昇しすぎる傾向がある。   When kneading the rubber component and the reinforcing agent, it is preferable to set a high reaction temperature in a kneading machine (Banbury mixer or the like) in order to efficiently react the rubber component and silica. Specifically, it is preferably set to 160 ° C. or higher, particularly 160 to 180 ° C. If the reaction temperature is less than 160 ° C, the reaction between the silica and the coupling agent tends to be difficult to complete, and if it exceeds 180 ° C, the viscosity of the kneaded rubber tends to increase too much.

この場合、シリカ用のカップリング剤を従来のSi69(1分子中に硫黄原子4個)などからSi266(1分子中に硫黄原子2個含む、高純度)などに変更して、耐熱性を向上させたうえで混練りすることが望ましい。また、シランカップリング剤は、シリカに対して2〜12重量%使用することが好ましい。シランカップリング剤が2重量%未満ではシリカの性能を充分に引き出せずに、ウェットグリップ性能および耐摩耗性が劣る傾向があり、12重量%をこえるとカップリング剤が過多でコスト高になり、摩耗が劣る傾向がある。   In this case, the coupling agent for silica is changed from conventional Si69 (four sulfur atoms in one molecule) to Si266 (two sulfur atoms in one molecule, high purity), etc. to improve heat resistance. It is desirable to knead after mixing. Moreover, it is preferable to use 2-12 weight% of silane coupling agents with respect to a silica. If the silane coupling agent is less than 2% by weight, the performance of the silica is not sufficiently brought out and the wet grip performance and wear resistance tend to be inferior. If the silane coupling agent exceeds 12% by weight, the coupling agent is excessive and the cost is increased. Wear tends to be inferior.

このようにして得られる本発明のゴム組成物は、トルエン膨潤度が180〜320%、とくには220〜310%であることが好ましい。トルエン膨潤度が180%未満ではゴムの耐久性が劣り、耐摩耗性が悪化する傾向があり、320%をこえるとドライグリップ性能や転がり抵抗の低減効果が劣る傾向がある。ここで、トルエン膨潤度は、一辺が5mm程度に調整されたゴムの立方体を、トルエン中に24時間浸漬したのち、浸漬後と浸漬前の重量比率を測定することにより求められる。   The rubber composition of the present invention thus obtained preferably has a toluene swelling degree of 180 to 320%, particularly 220 to 310%. If the toluene swelling degree is less than 180%, the durability of the rubber tends to be inferior and the wear resistance tends to deteriorate, and if it exceeds 320%, the dry grip performance and the rolling resistance reduction effect tend to be inferior. Here, the degree of toluene swelling is determined by immersing a rubber cube whose side is adjusted to about 5 mm in toluene for 24 hours, and then measuring the weight ratio after immersion and before immersion.

本発明のゴム組成物は、転がり抵抗が低減されているため、タイヤトレッドに好適に用いられる。   Since the rolling resistance is reduced, the rubber composition of the present invention is suitably used for tire treads.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定させるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these.

以下に実施例および比較例で用いた材料をまとめて説明する。
NR:RSS♯3
ポリマーA:旭化成(株)製のSBR E15(エポキシ基でカップリングしたS−SBR、スチレン単位量:23重量%、ビニル単位量:64重量%、末端基:なし)
ポリマーB:宇部興産(株)製のハイカーCTB(分子量:4800、末端基:カルボキシル基)
ポリマーC:Sertomer Company Inc.製のライコン100(液状SBR)
ポリマーD:日本ゼオン(株)製のリキッドBR、POLYOIL130
シリカ:ローディア社製の115GR(N2SA:115m2/g)
カーボンブラックN134:三菱化学(株)製のSAF(N2SA:145m2/g、CTAB吸着比表面積:136m2/g、IA:142mg/g)
アロマオイル:出光興産(株)製のAH40
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤CBS:鶴見化学工業(株)製のノクセラーCZ−G
加硫促進剤DPG:住友化学工業(株)製のソクソシールD
The materials used in the examples and comparative examples will be described together below.
NR: RSS # 3
Polymer A: SBR E15 manufactured by Asahi Kasei Corporation (S-SBR coupled with an epoxy group, styrene unit amount: 23% by weight, vinyl unit amount: 64% by weight, end group: none)
Polymer B: Hiker CTB manufactured by Ube Industries, Ltd. (molecular weight: 4800, end group: carboxyl group)
Polymer C: Sertomer Company Inc. Ricon 100 (liquid SBR)
Polymer D: Liquid BR, POLYOIL130 manufactured by Nippon Zeon Co., Ltd.
Silica: 115GR manufactured by Rhodia (N 2 SA: 115 m 2 / g)
Carbon black N134: SAF manufactured by Mitsubishi Chemical Corporation (N 2 SA: 145 m 2 / g, CTAB adsorption specific surface area: 136 m 2 / g, IA: 142 mg / g)
Aroma oil: AH40 made by Idemitsu Kosan Co., Ltd.
Sulfur: Powder sulfur vulcanization accelerator made by Tsurumi Chemical Co., Ltd. CBS: Noxeller CZ-G made by Tsurumi Chemical Co., Ltd.
Vulcanization accelerator DPG: Soxoseal D manufactured by Sumitomo Chemical Co., Ltd.

実施例1〜2および比較例1〜3
表1の配合にしたがって、硫黄および加硫促進剤以外の材料を、バンバリーミキサー(神戸製鋼所(株)の270F)を用いて160℃で1分間混練りした。さらに、硫黄および加硫促進剤を加えて120℃で1.5分間混練りした。つぎに、得られたゴム組成物を250kPa、180℃の条件で加硫した。得られた加硫ゴムについて、以下の試験を実施した。試験結果を表1に示す。
Examples 1-2 and Comparative Examples 1-3
In accordance with the formulation shown in Table 1, materials other than sulfur and a vulcanization accelerator were kneaded at 160 ° C. for 1 minute using a Banbury mixer (270F, Kobe Steel). Furthermore, sulfur and a vulcanization accelerator were added and kneaded at 120 ° C. for 1.5 minutes. Next, the obtained rubber composition was vulcanized under the conditions of 250 kPa and 180 ° C. The following tests were performed on the obtained vulcanized rubber. The test results are shown in Table 1.

(ゴム硬度)
調製したゴム組成物の硬度(Hs)を、25℃でJIS−A硬度計で測定した。
(Rubber hardness)
The hardness (Hs) of the prepared rubber composition was measured with a JIS-A hardness meter at 25 ° C.

(損失正接)
(株)岩本製作所製のVES−F−3を用いて、周波数10Hz、初期歪み10%、動歪み2%で60℃における損失正接(tanδ)を測定した。このtanδ値が小さいほど発熱しにくい。
(Loss tangent)
Using a VES-F-3 manufactured by Iwamoto Seisakusho, loss tangent (tan δ) at 60 ° C. was measured at a frequency of 10 Hz, an initial strain of 10%, and a dynamic strain of 2%. The smaller the tan δ value, the less heat is generated.

(練り生地)
120℃にて押し出し、トレッドを作製し、目視にて判断することにより、練り生地の状態を3段階で評価した。
○:滑らかな生地
△:サメ肌状の生地
×:でこぼこを多数有する生地
(Kneaded dough)
Extrusion was performed at 120 ° C., a tread was prepared, and the state of the kneaded dough was evaluated in three stages by visual judgment.
○: Smooth fabric △: Shark-like fabric ×: Fabric with many bumps

Figure 2005126556
Figure 2005126556

Claims (3)

カップリングにより高分子化された溶液重合スチレン−ブタジエンゴム50重量%以上、天然ゴム40重量%以下およびブタジエンゴム40重量%以下からなり、重量平均分子量が10000以下の低分子量ブタジエンゴム1〜12重量%を含むゴム成分、ならびに、チッ素吸着比表面積が100m2/g以上200m2/g未満のシリカ、およびチッ素吸着比表面積が145m2/g以上であり、かつセチルトリメチルアンモニウムブロマイド吸着比表面積(m2/g)がヨウ素吸着量(mg/g)に対して1.2倍以上であるカーボンブラックからなり、該シリカと該カーボンブラックの合計含有量に対してシリカを60重量%以上およびカーボンブラックを40重量%以下含有するゴム組成物。 Solution polymerized styrene-butadiene rubber polymerized by coupling 50% by weight or more, natural rubber 40% by weight or less, and butadiene rubber 40% by weight or less, low molecular weight butadiene rubber having a weight average molecular weight of 10,000 or less 1 to 12 weights %, A silica having a nitrogen adsorption specific surface area of 100 m 2 / g or more and less than 200 m 2 / g, and a nitrogen adsorption specific surface area of 145 m 2 / g or more, and a cetyltrimethylammonium bromide adsorption specific surface area (M 2 / g) is composed of carbon black that is 1.2 times or more with respect to the iodine adsorption amount (mg / g), and 60% by weight or more of silica with respect to the total content of the silica and the carbon black; A rubber composition containing 40% by weight or less of carbon black. 前記低分子量ブタジエンゴムがカルボキシル基、ビニル基、水酸基からなる群より選ばれた官能基で末端変性されたものである請求項1記載のゴム組成物。 2. The rubber composition according to claim 1, wherein the low molecular weight butadiene rubber is terminal-modified with a functional group selected from the group consisting of a carboxyl group, a vinyl group and a hydroxyl group. 請求項1または2記載のゴム組成物からなるトレッドを有するタイヤ。 A tire having a tread comprising the rubber composition according to claim 1.
JP2003363044A 2003-10-23 2003-10-23 Rubber composition and tire obtained by using the same Pending JP2005126556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363044A JP2005126556A (en) 2003-10-23 2003-10-23 Rubber composition and tire obtained by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363044A JP2005126556A (en) 2003-10-23 2003-10-23 Rubber composition and tire obtained by using the same

Publications (1)

Publication Number Publication Date
JP2005126556A true JP2005126556A (en) 2005-05-19

Family

ID=34642479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363044A Pending JP2005126556A (en) 2003-10-23 2003-10-23 Rubber composition and tire obtained by using the same

Country Status (1)

Country Link
JP (1) JP2005126556A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126604A (en) * 2003-10-24 2005-05-19 Sumitomo Rubber Ind Ltd Rubber composition and tire obtained by using the same
WO2007034898A1 (en) * 2005-09-22 2007-03-29 Kuraray Co., Ltd. Rubber composition and crosslinked object
JP2008120940A (en) * 2006-11-14 2008-05-29 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2009126988A (en) * 2007-11-27 2009-06-11 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2009126987A (en) * 2007-11-27 2009-06-11 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2009161648A (en) * 2008-01-04 2009-07-23 Sumitomo Rubber Ind Ltd Rubber composition for tire and tire using the same
JP2013177539A (en) * 2011-10-12 2013-09-09 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire
US10457798B2 (en) 2017-08-30 2019-10-29 The Goodyear Tire & Rubber Company Pneumatic tire having tread with hydroxy-terminated polybutadiene

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281550A (en) * 1990-03-29 1991-12-12 Toyo Tire & Rubber Co Ltd Tire for passenger car
JPH0665419A (en) * 1992-08-17 1994-03-08 Japan Synthetic Rubber Co Ltd Rubber composition
JPH0693136A (en) * 1992-09-09 1994-04-05 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JPH06256577A (en) * 1993-03-04 1994-09-13 Tokai Carbon Co Ltd Rubber composition
JPH07109384A (en) * 1993-10-12 1995-04-25 Sumitomo Rubber Ind Ltd Rubber composition for base tread and tire using the same
JPH08127672A (en) * 1994-11-01 1996-05-21 Yokohama Rubber Co Ltd:The Tread rubber composition for tire
JPH1036561A (en) * 1996-07-22 1998-02-10 Toyo Tire & Rubber Co Ltd Rubber composition for tire
JPH1160816A (en) * 1997-08-07 1999-03-05 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2002114874A (en) * 2000-10-05 2002-04-16 Sumitomo Rubber Ind Ltd Modified diene-based rubber composition
JP2002322319A (en) * 2001-04-26 2002-11-08 Nippon Zeon Co Ltd Low molecular weight diene polymer and rubber composition
JP2003268041A (en) * 2002-03-15 2003-09-25 Nippon Zeon Co Ltd Diene-based rubber, method for producing the rubber, rubber composition, method for producing the composition, and cross-linked product

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281550A (en) * 1990-03-29 1991-12-12 Toyo Tire & Rubber Co Ltd Tire for passenger car
JPH0665419A (en) * 1992-08-17 1994-03-08 Japan Synthetic Rubber Co Ltd Rubber composition
JPH0693136A (en) * 1992-09-09 1994-04-05 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JPH06256577A (en) * 1993-03-04 1994-09-13 Tokai Carbon Co Ltd Rubber composition
JPH07109384A (en) * 1993-10-12 1995-04-25 Sumitomo Rubber Ind Ltd Rubber composition for base tread and tire using the same
JPH08127672A (en) * 1994-11-01 1996-05-21 Yokohama Rubber Co Ltd:The Tread rubber composition for tire
JPH1036561A (en) * 1996-07-22 1998-02-10 Toyo Tire & Rubber Co Ltd Rubber composition for tire
JPH1160816A (en) * 1997-08-07 1999-03-05 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2002114874A (en) * 2000-10-05 2002-04-16 Sumitomo Rubber Ind Ltd Modified diene-based rubber composition
JP2002322319A (en) * 2001-04-26 2002-11-08 Nippon Zeon Co Ltd Low molecular weight diene polymer and rubber composition
JP2003268041A (en) * 2002-03-15 2003-09-25 Nippon Zeon Co Ltd Diene-based rubber, method for producing the rubber, rubber composition, method for producing the composition, and cross-linked product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126604A (en) * 2003-10-24 2005-05-19 Sumitomo Rubber Ind Ltd Rubber composition and tire obtained by using the same
WO2007034898A1 (en) * 2005-09-22 2007-03-29 Kuraray Co., Ltd. Rubber composition and crosslinked object
JP2008120940A (en) * 2006-11-14 2008-05-29 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2009126988A (en) * 2007-11-27 2009-06-11 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2009126987A (en) * 2007-11-27 2009-06-11 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2009161648A (en) * 2008-01-04 2009-07-23 Sumitomo Rubber Ind Ltd Rubber composition for tire and tire using the same
JP2013177539A (en) * 2011-10-12 2013-09-09 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire
US10457798B2 (en) 2017-08-30 2019-10-29 The Goodyear Tire & Rubber Company Pneumatic tire having tread with hydroxy-terminated polybutadiene

Similar Documents

Publication Publication Date Title
JP4138729B2 (en) Rubber composition and tire comprising the same
JP4783356B2 (en) Rubber composition
JP4883172B2 (en) Rubber composition for tire
JP5495153B2 (en) Rubber composition and pneumatic tire using the same
JP4813845B2 (en) Rubber composition for pneumatic tire and pneumatic tire
JP2005126604A (en) Rubber composition and tire obtained by using the same
JP4455907B2 (en) Rubber composition for pneumatic tire and pneumatic tire
JP5904233B2 (en) Rubber composition for tire tread
JP2009126907A (en) Rubber composition
JP6287324B2 (en) Rubber composition for studless tire and studless tire
JP2013227375A (en) Tire rubber composition
JP2006249403A (en) Rubber composition and tyre having tread using the same
JP2013036025A (en) Rubber composition for tires
JP5831300B2 (en) Rubber composition for tire tread
JP2008019334A (en) Rubber composition for tire tread
JP3363539B2 (en) Rubber composition for tire tread
JP2011094013A (en) Rubber composition for tread, and studless tire
JP2005146115A (en) Tire tread rubber composition
JP5860684B2 (en) Method for producing rubber composition for tire tread
JP2018177905A (en) Rubber composition and tire
JP2005126556A (en) Rubber composition and tire obtained by using the same
EP3317308A1 (en) Copolymer end-functionalized with functional silane, compositions thereof and related processes
JP2006063209A (en) Rubber composition for tire
JPH0776634A (en) Rubber composition for tire tread
JP4405874B2 (en) Rubber composition and tire using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427