JP2005126254A - Method and apparatus for forming tubular matter made of carbon element - Google Patents

Method and apparatus for forming tubular matter made of carbon element Download PDF

Info

Publication number
JP2005126254A
JP2005126254A JP2003361071A JP2003361071A JP2005126254A JP 2005126254 A JP2005126254 A JP 2005126254A JP 2003361071 A JP2003361071 A JP 2003361071A JP 2003361071 A JP2003361071 A JP 2003361071A JP 2005126254 A JP2005126254 A JP 2005126254A
Authority
JP
Japan
Prior art keywords
voltage
forming
substrate
cylindrical material
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003361071A
Other languages
Japanese (ja)
Other versions
JP3987017B2 (en
Inventor
Yuji Awano
祐二 粟野
Morio Yumura
守雄 湯村
Yukinori Ochiai
幸徳 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fujitsu Ltd
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, NEC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fujitsu Ltd
Priority to JP2003361071A priority Critical patent/JP3987017B2/en
Publication of JP2005126254A publication Critical patent/JP2005126254A/en
Application granted granted Critical
Publication of JP3987017B2 publication Critical patent/JP3987017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize formation of a carbon nanotube in a high yield with an excellent mass productivity, by enabling selective formation of a carbon nanotube with a semiconductive nature. <P>SOLUTION: After a carbon nanotube 21 is grown between electrodes 14a and 14b through crosslinking, a voltage V<SB>2</SB>is applied between the electrodes 14a and 14b by a voltage-applying mechanism 3. Here, the value of the voltage V<SB>2</SB>is one that cuts and breaks a carbon nanotube with a metallic nature (in this case, corresponds to a current density of ≥1,000,000 A per unit cm<SP>2</SP>applied through the carbon nanotube) and leaves the carbon nanotube with the semiconductive nature intact. This enables selective formation of the carbon nanotube 23 with the semiconductive nature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素元素からなる円筒形物質である、いわゆるカーボンナノチューブの形成方法及びその形成装置に関する。   The present invention relates to a method for forming a so-called carbon nanotube, which is a cylindrical material made of carbon element, and an apparatus for forming the same.

炭素系自己組織的材料であるカーボンナノチューブ(Carbon Nano Tube:CNT)は、多くの魅力的な物性から注目を集めている。カーボンナノチューブは、炭素原子を6角形(6員環と呼ばれる)に結合させたグラフィンシートを筒状にした構造体であり、筒状のねじれ方(カイラリティと呼ぶ)に依存して、電気伝導特性が金属的性質から半導体的性質まで変化する。直径は最小で0.4nm、長さ数mmまで長いものも報告されている。またこの構造は自己組織的に形成されるため、寸法ゆらぎが少ないことが特徴である。チューブ両端は、5員環を含むことによって閉じる。   Carbon Nano Tube (CNT), which is a carbon-based self-organizing material, has attracted attention because of its many attractive physical properties. A carbon nanotube is a structure in which a graphene sheet in which carbon atoms are bonded in a hexagonal shape (called a six-membered ring) is formed into a cylindrical shape, and its electric conduction characteristics depend on the cylindrical twisting method (called chirality). Varies from metallic to semiconducting properties. It has been reported that the minimum diameter is 0.4 nm and the length is several millimeters. Further, since this structure is formed in a self-organized manner, it is characterized by little dimensional fluctuation. The tube ends are closed by including a five-membered ring.

カーボンナノチューブの形成方法として、従来ではアーク放電法やレーザーアブレーション法が主流だったが、最近では純度と量産性から化学的気相成長法(CVD法)の研究が盛んになってきている。カーボンナノチューブのエレクトロニクス応用を考える場合、その電気伝導特性を揃えることが重要である。しかしながら、カイラリティ制御は極めて難しく、未だにその手段は見出されていない現況にある。   Conventionally, arc discharge methods and laser ablation methods have been mainstream as methods for forming carbon nanotubes, but recently, chemical vapor deposition (CVD) has been actively studied because of its purity and mass productivity. When considering the application of carbon nanotubes in electronics, it is important to align the electrical conductivity characteristics. However, chirality control is extremely difficult, and no means has yet been found.

Science, Vol. 292, Issue 5517, April 27, 2001(図1)Science, Vol. 292, Issue 5517, April 27, 2001 (Figure 1) 松本、粟野:Solid-State Device and Materials (SSDM) 2002(図4)Matsumoto, Kanno: Solid-State Device and Materials (SSDM) 2002 (Figure 4)

量産性や実用化には不向きな方法ではあるが、カーボンナノチューブを用いたトランジスタ試作に成功した例が報告されている(非特許文献1参照)。ここでは、レーザーアブレーション法によって予めカーボンナノチューブを作製し、これを液体分散して電極上に塗布する。その結果、偶然2つの電極(最終的にソース/ドレイン電極となる)に跨るカーボンナノチューブを見出し、トランジスタのチャネルとする。その際、カイラリティ制御はされていないため、チャネルには半導体的性質のものも金属的性質のものも混在している。そこで、2つの電極間に過電流を流し、抵抗差を利用して金属的性質のカーボンナノチューブのみを切断する方法を提案している。この方法によれば、半導体的なナノチューブのみが最終的に残る。しかしながら、この方法では、分散塗布や過電流による選択的切断を使うため、トランジスタの歩留りは極めて低く、実用的な手法とは言い難い。   Although it is not suitable for mass production and practical application, an example of successful trial manufacture of a transistor using carbon nanotubes has been reported (see Non-Patent Document 1). Here, carbon nanotubes are prepared in advance by a laser ablation method, and this is liquid-dispersed and applied onto the electrodes. As a result, a carbon nanotube straddling two electrodes (which will eventually become source / drain electrodes) is found and used as a transistor channel. At that time, since chirality control is not performed, the channel has both a semiconductor property and a metal property. Therefore, a method has been proposed in which an overcurrent is passed between the two electrodes and only the carbon nanotubes having metallic properties are cut using a resistance difference. According to this method, only semiconducting nanotubes finally remain. However, in this method, since selective cutting by dispersion coating or overcurrent is used, the yield of transistors is extremely low and it is difficult to say that it is a practical method.

そこで本発明は、半導体的性質のカーボンナノチューブを選択的に形成することを可能とし、高い歩留りをもって量産性に優れた炭素元素からなる円筒形物質の形成方法及びその形成装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a cylindrical material made of a carbon element that is capable of selectively forming carbon nanotubes having semiconducting properties and is excellent in mass production with a high yield, and an apparatus for forming the same. And

本発明の炭素元素からなる円筒形物質の形成方法は、基板上に金属領域を形成する工程と、化学的気相成長法により、前記金属領域において炭素元素からなる円筒形物質を成長させる工程と、前記金属領域に、金属的性質の前記円筒形物質を破壊し、且つ半導体的性質の前記円筒形物質を非破壊の状態に残す程度の電圧を印加する工程とを含む。   The method for forming a cylindrical material made of carbon element according to the present invention includes a step of forming a metal region on a substrate, and a step of growing a cylindrical material made of carbon element in the metal region by chemical vapor deposition. Applying a voltage to the metal region so as to destroy the cylindrical material having a metallic property and leaving the cylindrical material having a semiconducting property in a non-destructive state.

本発明の炭素元素からなる円筒形物質の形成装置は、化学的気相成長法により炭素元素からなる円筒形物質を形成する形成装置であって、表面に金属領域が設けられてなる基板を載置固定する基板保持手段と、前記基板保持手段を収納するチャンバーと、前記基板保持手段に載置固定された前記基板の前記金属領域に電圧を印加する電圧印加手段とを含み、前記金属領域において前記円筒形物質を成長させた後、前記電圧印加手段により前記金属領域に、金属的性質の前記円筒形物質を破壊し、且つ半導体的性質の前記円筒形物質を非破壊の状態に残す程度の電圧を印加する。   The apparatus for forming a cylindrical substance made of carbon element according to the present invention is a forming apparatus for forming a cylindrical substance made of carbon element by a chemical vapor deposition method, on which a substrate having a metal region on its surface is mounted. A substrate holding means for placing and fixing; a chamber for storing the substrate holding means; and a voltage applying means for applying a voltage to the metal region of the substrate placed and fixed on the substrate holding means. After the cylindrical material is grown, the cylindrical material having a metallic property is destroyed in the metal region by the voltage applying means, and the cylindrical material having a semiconducting property is left in a non-destructive state. Apply voltage.

本発明によれば、半導体的性質のカーボンナノチューブを選択的に形成することが可能となり、高い歩留りをもって量産性に優れたカーボンナノチューブの形成が実現する。   According to the present invention, carbon nanotubes having semiconducting properties can be selectively formed, and the formation of carbon nanotubes with high yield and excellent mass productivity can be realized.

−本発明の基本骨子−
本発明者は、半導体的性質のカーボンナノチューブのみを選択的に形成するため、CVD法を利用すれば良いことに想到した。CVD法により、半導体的・金属的を問わず単にカーボンナノチューブを形成する手法としては、以下のものが案出されている(非特許文献2参照)。ここでは、予めパターニングした触媒金属を用い、2つの触媒金属パターン間に電圧を加え、CVD法によるカーボンナノチューブの成長中に電界を発生させる。この電界によりカーボンナノチューブは電圧方向に成長して、やがて2つの金属間を架橋する。
-Basic outline of the present invention-
The present inventor has conceived that a CVD method may be used to selectively form only carbon nanotubes having semiconducting properties. The following method has been devised as a method for simply forming carbon nanotubes by CVD, regardless of whether it is semiconductor or metallic (see Non-Patent Document 2). Here, a pre-patterned catalytic metal is used, a voltage is applied between the two catalytic metal patterns, and an electric field is generated during the growth of carbon nanotubes by the CVD method. This electric field causes the carbon nanotubes to grow in the voltage direction and eventually bridges the two metals.

本発明では、このCVD法を利用してカーボンナノチューブを成長させた後、2つの金属間に所定電圧、具体的には金属的性質のカーボンナノチューブを破壊し、且つ半導体的性質のカーボンナノチューブを非破壊の状態に残す程度の電圧を印加する。この場合、成長したカーボンナノチューブが金属的性質のものであれば当該電圧印加により破壊(切断)し、消失する。他方、カーボンナノチューブが半導体的性質のものであれば、当該電圧が印加されても破壊されず、残存する。   In the present invention, after carbon nanotubes are grown by using this CVD method, a predetermined voltage between two metals, specifically, carbon nanotubes having metallic properties are destroyed, and carbon nanotubes having semiconducting properties are not removed. A voltage is applied so as to leave the state of destruction. In this case, if the grown carbon nanotube has a metallic property, it is destroyed (cut) by the voltage application and disappears. On the other hand, if the carbon nanotube has semiconducting properties, it remains without being broken even when the voltage is applied.

そして、1)CVD法によるカーボンナノチューブの成長工程、及び2)前記電圧の印加工程からなる一連の工程を繰り返し行う。カーボンナノチューブは成長時間で本数が増えることはないと考えられることから、全ての一対の金属間に半導体的性質のカーボンナノチューブのみが架橋成長する。即ち、本発明の形成装置(CVD装置)を用いてカーボンナノチューブを作製すれば、金属的性質のカーボンナノチューブは言わば淘汰され、CVDチャンバーから取り出した基板では、半導体的性質のカーボンナノチューブのみが得られることになる。   Then, a series of steps consisting of 1) a carbon nanotube growth step by CVD and 2) the voltage application step is repeated. Since it is considered that the number of carbon nanotubes does not increase with the growth time, only carbon nanotubes having a semiconducting property are cross-linked and grown between all pairs of metals. That is, if carbon nanotubes are produced using the forming apparatus (CVD apparatus) of the present invention, carbon nanotubes having metallic properties can be said to be obtained, and only carbon nanotubes having semiconducting properties can be obtained from a substrate taken out from the CVD chamber. It will be.

−本発明を適用した具体的な実施形態−
以下、本発明を適用したカーボンナノチューブの形成装置及びこれを用いた形成方法について、図面を参照しながら詳細に説明する。
-Specific embodiment to which the present invention is applied-
Hereinafter, a carbon nanotube forming apparatus to which the present invention is applied and a forming method using the same will be described in detail with reference to the drawings.

(カーボンナノチューブの形成装置の構成)
図1は、本実施形態によるカーボンナノチューブの形成装置の概略構成を示す模式図である。
この形成装置は、基板11を載置固定する基板ホルダー1と、基板ホルダー1を収納し、内部でCVD法によりカーボンナノチューブが形成されるCVDチャンバー2と、基板ホルダー1に載置固定された基板11に電圧を印加する電圧印加機構3と、急速な昇温及び降温を可能とする加熱機構4とを備えて構成されている。
(Configuration of carbon nanotube formation device)
FIG. 1 is a schematic diagram showing a schematic configuration of a carbon nanotube forming apparatus according to the present embodiment.
This forming apparatus includes a substrate holder 1 for mounting and fixing a substrate 11, a CVD chamber 2 in which the substrate holder 1 is housed and carbon nanotubes are formed by a CVD method, and a substrate mounted and fixed on the substrate holder 1. 11 includes a voltage applying mechanism 3 that applies a voltage to the heater 11, and a heating mechanism 4 that enables rapid temperature increase and decrease.

基板11は、導電性基体12上に絶縁膜13が形成されており、この絶縁膜13の表面に一対の電極14a,14bが複数設けられてなり、電極14a,14b間にカーボンナノチューブが形成されることになる。電極14a,14bは、好ましくはCVD法によるカーボンナノチューブの成長時に触媒として作用する金属材料、例えばFe,Co,Ni等の遷移金属又はこれらを含む合金等から形成されるものである。   In the substrate 11, an insulating film 13 is formed on a conductive base 12, and a plurality of pairs of electrodes 14a and 14b are provided on the surface of the insulating film 13, and carbon nanotubes are formed between the electrodes 14a and 14b. Will be. The electrodes 14a and 14b are preferably formed from a metal material that acts as a catalyst during the growth of carbon nanotubes by CVD, for example, a transition metal such as Fe, Co, Ni, or an alloy containing these.

基板ホルダー1は、載置固定された基板11を急冷するための冷却機構15と、基板11の導電性基体12にバックゲート電圧VBGを印加するための電圧印加機構16とを備えて構成されている。 The substrate holder 1 includes a cooling mechanism 15 for rapidly cooling the substrate 11 placed and fixed, and a voltage application mechanism 16 for applying a back gate voltage VBG to the conductive base 12 of the substrate 11. ing.

CVDチャンバー2は、その内部を所定の真空状態に調節する真空排気系17と、内部にCVD法によるカーボンナノチューブの成長のためのソースガスを供給する原料供給系18とを備えて構成されている。   The CVD chamber 2 includes an evacuation system 17 that adjusts the inside thereof to a predetermined vacuum state, and a raw material supply system 18 that supplies a source gas for growing carbon nanotubes by a CVD method. .

電圧印加機構3は、端子が一対の電極14a,14bに接続されるように設けられており、電極14a,14b間に電極電圧VEを供給するものであり、少なくとも電極電圧VEとして、電極14a,14b間にカーボンナノチューブを架橋形成するために必要な電圧V1と、金属的性質のカーボンナノチューブを切断破壊する程度の値であり、且つ半導体的性質のカーボンナノチューブを非破壊の状態に残す程度の電圧V2とを選択的に印加できるように構成されている。 Voltage applying mechanism 3, the terminal pair of electrodes 14a, is provided so as to be connected to 14b, it is intended to supply the electrode voltage V E electrode 14a, between 14b, as at least the electrode voltage V E, the electrode The voltage V 1 required to form a cross-linked carbon nanotube between 14a and 14b, and a value that is sufficient to cut and destroy the carbon nanotube having metallic properties, and leaving the carbon nanotube having semiconducting properties in a non-destructive state. A voltage V 2 of a certain level can be selectively applied.

加熱機構4は、基板1の急速な昇温及び降温を可能とする構造、ここでは熱フィラメントを用いた通電過熱法による構造を採用するため、基板11の上方に設けられる熱フィラメント19と、この熱フィラメント19にフィラメント電圧VFを印加するための電圧印加機構20とを備えて構成されている。 The heating mechanism 4 employs a structure that allows rapid heating and cooling of the substrate 1, here, a structure based on an energization overheating method using a hot filament, and therefore, a heating filament 19 provided above the substrate 11, It is constituted by a voltage applying mechanism 20 for applying a filament voltage V F to the hot filament 19.

(カーボンナノチューブの形成方法)
以下、上述した構成の形成装置を用いたカーボンナノチューブの形成方法について説明する。
図2は、本実施形態に供される基板電極の形成方法を示す概略断面図であり、図3は、本実施形態によるカーボンナノチューブの形成方法を工程順に示す模式図である。このカーボンナノチューブは、典型的な一例としてはトランジスタのチャネルとして機能するものであり、カーボンナノチューブが架橋形成される一対の電極がソース/ドレインとなる。
(Method for forming carbon nanotubes)
Hereinafter, a method of forming a carbon nanotube using the forming apparatus having the above-described configuration will be described.
FIG. 2 is a schematic cross-sectional view illustrating a method for forming a substrate electrode provided in the present embodiment, and FIG. 3 is a schematic diagram illustrating a method for forming a carbon nanotube according to the present embodiment in the order of steps. As a typical example, the carbon nanotube functions as a channel of a transistor, and a pair of electrodes on which the carbon nanotube is formed as a bridge serves as a source / drain.

先ず、導電性基体12上にシリコン酸化膜等の絶縁膜13を形成した後、絶縁膜13上に電極形状の開口32を有するレジストパターン31を形成する(図2(a))。そして、全面に触媒金属、例えばFe33を成膜し(図2(b))、リフトオフ法によりレジストパターン31を除去し、開口32の形状に倣った一対の電極14a,14bを複数パターン形成する。   First, an insulating film 13 such as a silicon oxide film is formed on the conductive substrate 12, and then a resist pattern 31 having electrode-shaped openings 32 is formed on the insulating film 13 (FIG. 2A). Then, a catalyst metal, for example, Fe33 is formed on the entire surface (FIG. 2B), the resist pattern 31 is removed by a lift-off method, and a plurality of patterns of a pair of electrodes 14a and 14b that follow the shape of the opening 32 are formed.

続いて、電極14a,14bの形成された基板1を形成装置のCVDチャンバー2内に搬入し、基板ホルダー1上に載置固定する。そして、CVDチャンバー2内を真空排気系17により真空排気した後に、基板温度THを成長温度Tgrowthとし、原料供給系18によりソースガスとして例えばCH4ガスをCVDチャンバー2内に導入し、電圧印加機構3により電極14a,14b間にカーボンナノチューブを架橋形成するために必要な電圧V1を印加して、加熱機構4の電圧印加機構20をオンにして熱フィラメント19による通電過熱を開始する。これにより、電極14a,14b間に生じた電位差V1に沿ってカーボンナノチューブ21が成長し始める(図3(a))。 Subsequently, the substrate 1 on which the electrodes 14 a and 14 b are formed is carried into the CVD chamber 2 of the forming apparatus, and placed and fixed on the substrate holder 1. Then, after the inside of the CVD chamber 2 is evacuated by the evacuation system 17, the substrate temperature T H is set as the growth temperature T growth and, for example, CH 4 gas is introduced into the CVD chamber 2 as the source gas by the raw material supply system 18. The voltage V 1 necessary for bridging the carbon nanotubes between the electrodes 14 a and 14 b is applied by the application mechanism 3, the voltage application mechanism 20 of the heating mechanism 4 is turned on, and energization overheating by the hot filament 19 is started. As a result, the carbon nanotubes 21 begin to grow along the potential difference V 1 generated between the electrodes 14a and 14b (FIG. 3A).

続いて、カーボンナノチューブ21が電極14a,14b間に架橋成長し終えた後、加熱機構4の電圧印加機構20をオフとし、基板ホルダー1の冷却機構15を作動させ、基板1を急速に冷却する(基板温度TH=Tlow)。この他、ガスの急速流入によってCVDチャンバー内を急冷させても良い。基板温度が低下することにより、カーボンナノチューブを構成する半導体中の真性キャリアが減り、金属との抵抗差が生じる(図3(b))。 Subsequently, after the carbon nanotubes 21 have been crosslinked and grown between the electrodes 14a and 14b, the voltage application mechanism 20 of the heating mechanism 4 is turned off, the cooling mechanism 15 of the substrate holder 1 is activated, and the substrate 1 is rapidly cooled. (Substrate temperature T H = T low ). In addition, the inside of the CVD chamber may be rapidly cooled by a rapid inflow of gas. As the substrate temperature is lowered, intrinsic carriers in the semiconductor constituting the carbon nanotubes are reduced, and a resistance difference from the metal is generated (FIG. 3B).

そして、カーボンナノチューブ21の形成された電極14a,14b間に電圧印加機構3により電極14a,14b間に金属的性質のカーボンナノチューブを切断破壊する程度の値(ここでは、カーボンナノチューブを通して流す電流密度が単位cm2当たり100万アンペア以上)であり、且つ半導体的性質のカーボンナノチューブを非破壊の状態に残す程度の電圧V2を印加する。更にこのとき、基板ホルダー1の電圧印加機構16により基板11の導電性基体12にバックゲート電圧VBGを印加する。これによって、半導体的状態のカーボンナノチューブ内のキャリアを空乏化させることができる。バックゲート電圧は、半導体的状態のカーボンナノチューブの抵抗がカーボンナノチューブと電極との接触抵抗に比べて十分大きな抵抗値となるように調節する。 Then, the voltage application mechanism 3 between the electrodes 14a and 14b on which the carbon nanotubes 21 are formed has a value that cuts and breaks the carbon nanotubes having metallic properties between the electrodes 14a and 14b (here, the current density flowing through the carbon nanotubes is in cm is a 2 per million amperes), and applied level of the voltage V 2 to leave the carbon nanotubes semiconductor properties in non-destructive condition. Further, at this time, the back gate voltage V BG is applied to the conductive base 12 of the substrate 11 by the voltage application mechanism 16 of the substrate holder 1. As a result, the carriers in the carbon nanotube in the semiconductor state can be depleted. The back gate voltage is adjusted so that the resistance of the carbon nanotube in the semiconductor state has a sufficiently large resistance value as compared with the contact resistance between the carbon nanotube and the electrode.

このとき、電極14a,14b間に形成されたカーボンナノチューブ21が金属的性質のもの(カーボンナノチューブ22)であれば、電圧V2の印加により切断破壊される(図3(c))。他方、カーボンナノチューブ21が半導体的性質のもの(カーボンナノチューブ23)であれば、電圧V2を印加しても非破壊の状態で残存することになる(図3(d))。 At this time, if one electrode 14a, the carbon nanotubes 21 formed between 14b is metallic properties (carbon nanotubes 22) are cut destroyed by application of a voltage V 2 (Figure 3 (c)). On the other hand, if the carbon nanotube 21 has semiconducting properties (carbon nanotube 23), it remains in a non-destructive state even when the voltage V 2 is applied (FIG. 3 (d)).

図3(a),(b)に示した一連の工程の後、再び当該一連の工程を1回又は複数回繰り返す。カーボンナノチューブは成長時間で本数が増えることはないと考えられることから、全ての金属14a,14b間に半導体的性質のカーボンナノチューブ23のみが架橋成長することになる。   After the series of steps shown in FIGS. 3A and 3B, the series of steps is repeated once or a plurality of times. Since it is considered that the number of carbon nanotubes does not increase with the growth time, only the carbon nanotubes 23 having semiconducting properties are crosslinked and grown between all the metals 14a and 14b.

以上説明したように、本実施形態によれば、半導体的性質のカーボンナノチューブを選択的に形成することが可能となり、高い歩留りをもって量産性に優れたカーボンナノチューブの形成が実現する。   As described above, according to the present embodiment, carbon nanotubes having semiconducting properties can be selectively formed, and formation of carbon nanotubes with high yield and excellent mass productivity can be realized.

以下、本発明の諸態様を付記としてまとめて記載する。   Hereinafter, various aspects of the present invention will be collectively described as supplementary notes.

(付記1)基板上に金属領域を形成する工程と、
化学的気相成長法により、前記金属領域において炭素元素からなる円筒形物質を成長させる工程と、
前記金属領域に、金属的性質の前記円筒形物質を破壊し、且つ半導体的性質の前記円筒形物質を非破壊の状態に残す程度の電圧を印加する工程と
を含むことを特徴とする炭素元素からなる円筒形物質の形成方法。
(Appendix 1) forming a metal region on a substrate;
A step of growing a cylindrical substance made of carbon element in the metal region by chemical vapor deposition;
Applying a voltage to the metal region such that the cylindrical material having a metallic property is destroyed and the cylindrical material having a semiconducting property is left in a non-destructive state. A method for forming a cylindrical material comprising:

(付記2)一連の前記各工程を複数回繰り返し実行することを特徴とする付記1に記載の炭素元素からなる円筒形物質の形成方法。   (Supplementary note 2) The method for forming a cylindrical substance composed of a carbon element according to supplementary note 1, wherein the series of steps are repeated a plurality of times.

(付記3)前記基板に設けられた一対の前記金属領域を用いることを特徴とする付記1又は2に記載の炭素元素からなる円筒形物質の形成方法。   (Appendix 3) A method for forming a cylindrical substance made of a carbon element according to appendix 1 or 2, wherein the pair of metal regions provided on the substrate is used.

(付記4)前記金属領域は、化学的気相成長法による前記円筒形物質の成長時に触媒として作用する金属材料からなることを特徴とする付記1〜3のいずれか1項に記載の炭素元素からなる円筒形物質の形成方法。   (Appendix 4) The carbon element according to any one of appendices 1 to 3, wherein the metal region is made of a metal material that acts as a catalyst when the cylindrical substance is grown by chemical vapor deposition. A method for forming a cylindrical material comprising:

(付記5)前記金属領域に印加する電圧は、前記円筒形物質を通して流す電流密度が単位cm2当たり100万アンペア以上となる値であり、且つ前記円筒形物質を非破壊の状態に残す程度の値であることを特徴とする付記1〜4のいずれか1項に記載の炭素元素からなる円筒形物質の形成方法。 (Supplementary Note 5) The voltage applied to the metal region is such that the current density flowing through the cylindrical material is 1 million amperes per cm 2 or more, and the cylindrical material is left in a non-destructive state. The method for forming a cylindrical substance made of a carbon element according to any one of appendices 1 to 4, wherein the value is a value.

(付記6)化学的気相成長法による前記円筒形物質の成長時に、熱フィラメントにより前記基板の温度上昇及び温度下降を急速に行う通電過熱法を併用することを特徴とする付記1〜5のいずれか1項に記載の炭素元素からなる円筒形物質の形成方法。   (Supplementary note 6) In the growth of the cylindrical substance by the chemical vapor deposition method, an energization superheating method in which the temperature of the substrate is rapidly increased and decreased by a hot filament is used in combination. A method for forming a cylindrical material comprising a carbon element according to any one of the above items.

(付記7)化学的気相成長法による前記円筒形物質の成長時に、前記金属領域間に前記円筒形物質を成長させるに足る電圧を印加することを特徴とする付記1〜6のいずれか1項に記載の炭素元素からなる円筒形物質の形成方法。   (Appendix 7) Any one of appendices 1 to 6, wherein a voltage sufficient to grow the cylindrical substance is applied between the metal regions during the growth of the cylindrical substance by a chemical vapor deposition method. A method for forming a cylindrical substance comprising the carbon element described in the item.

(付記8)化学的気相成長法により炭素元素からなる円筒形物質を形成する形成装置であって、
表面に金属領域が設けられてなる基板を載置固定する基板保持手段と、
前記基板保持手段を収納するチャンバーと、
前記基板保持手段に載置固定された前記基板の前記金属領域に電圧を印加する電圧印加手段と
を含み、
前記金属領域において前記円筒形物質を成長させた後、前記電圧印加手段により前記金属領域に、金属的性質の前記円筒形物質を破壊し、且つ半導体的性質の前記円筒形物質を非破壊の状態に残す程度の電圧を印加することを特徴とする炭素元素からなる円筒形物質の形成装置。
(Appendix 8) A forming apparatus for forming a cylindrical substance made of a carbon element by chemical vapor deposition,
A substrate holding means for mounting and fixing a substrate having a metal region on the surface;
A chamber for storing the substrate holding means;
Voltage applying means for applying a voltage to the metal region of the substrate mounted and fixed on the substrate holding means,
After the cylindrical material is grown in the metal region, the cylindrical material having a metallic property is destroyed in the metal region by the voltage application means, and the cylindrical material having a semiconducting property is not destroyed. An apparatus for forming a cylindrical substance made of carbon element, which is characterized by applying a voltage to the extent that it remains in the substrate.

(付記9)前記円筒形物質を成長させた後、前記電圧を印加する一連の工程を複数回繰り返し実行することを特徴とする付記8に記載の炭素元素からなる円筒形物質の形成装置。   (Supplementary note 9) The apparatus for forming a cylindrical substance composed of a carbon element according to supplementary note 8, wherein after the cylindrical substance is grown, a series of steps of applying the voltage is repeated a plurality of times.

(付記10)前記基板には、一対の前記金属領域が設けられていることを特徴とする付記8又は9に記載の炭素元素からなる円筒形物質の形成装置。   (Additional remark 10) The said substance is provided with a pair of said metal area | region, The formation apparatus of the cylindrical substance consisting of the carbon element of Additional remark 8 or 9 characterized by the above-mentioned.

(付記11)前記金属領域は、化学的気相成長法による前記円筒形物質の成長時に触媒として作用する金属材料からなることを特徴とする付記8〜10のいずれか1項に記載の炭素元素からなる円筒形物質の形成装置。   (Appendix 11) The carbon element according to any one of appendices 8 to 10, wherein the metal region is made of a metal material that acts as a catalyst during the growth of the cylindrical substance by chemical vapor deposition. A cylindrical material forming apparatus comprising:

(付記12)前記電圧印加手段により前記金属領域に印加する電圧は、前記円筒形物質を通して流す電流密度が単位cm2当たり100万アンペア以上となる値であり、且つ前記円筒形物質を非破壊の状態に残す程度の値であることを特徴とする付記8〜11のいずれか1項に記載の炭素元素からなる円筒形物質の形成装置。 (Supplementary Note 12) The voltage applied to the metal region by the voltage application means is a value at which a current density flowing through the cylindrical material is 1 million amperes or more per unit cm 2 , and the cylindrical material is non-destructive. The apparatus for forming a cylindrical substance made of a carbon element according to any one of appendices 8 to 11, wherein the apparatus is a value that remains in a state.

(付記13)前記チャンバー内に設けられた熱フィラメントを含み、
前記熱フィラメントは、化学的気相成長法による前記円筒形物質の成長時に、通電過熱法により前記基板の温度上昇及び温度下降を急速に行うものであることを特徴とする付記8〜12のいずれか1項に記載の炭素元素からなる円筒形物質の形成装置。
(Supplementary note 13) including a hot filament provided in the chamber,
Any one of appendices 8 to 12, wherein the hot filament rapidly raises and lowers the temperature of the substrate by energizing superheating when the cylindrical substance is grown by chemical vapor deposition. An apparatus for forming a cylindrical substance comprising the carbon element according to claim 1.

(付記14)前記電圧印加手段は、化学的気相成長法による前記円筒形物質の成長時に、前記金属領域間に前記円筒形物質を成長させるに足る電圧を印加することを特徴とする付記8〜13のいずれか1項に記載の炭素元素からなる円筒形物質の形成装置。   (Supplementary note 14) The supplementary note 8, wherein the voltage applying means applies a voltage sufficient to grow the cylindrical substance between the metal regions during the growth of the cylindrical substance by chemical vapor deposition. A forming apparatus for a cylindrical substance made of the carbon element according to any one of ˜13.

(付記15)前記基板保持手段は、載置固定された基板を急冷するための冷却機構を有することを特徴とする付記8〜14のいずれか1項に記載の炭素元素からなる円筒形物質の形成装置。   (Additional remark 15) The said board | substrate holding means has a cooling mechanism for rapidly cooling the board | substrate mounted and fixed, The cylindrical substance consisting of the carbon element of any one of Additional remarks 8-14 characterized by the above-mentioned. Forming equipment.

本実施形態によるカーボンナノチューブの形成装置の概略構成を示す模式図である。1 is a schematic diagram illustrating a schematic configuration of a carbon nanotube forming apparatus according to an embodiment. 本実施形態に供される基板電極の形成方法を示す概略断面図である。It is a schematic sectional drawing which shows the formation method of the board | substrate electrode provided to this embodiment. 本実施形態によるカーボンナノチューブの形成方法を工程順に示す模式図である。It is a schematic diagram which shows the formation method of the carbon nanotube by this embodiment in order of a process.

符号の説明Explanation of symbols

1 基板ホルダー
2 CVDチャンバー
3,16,20 電圧印加機構
4 加熱機構
11 基板
12 導電性基体
13 絶縁膜
14a,14b 電極
15 冷却機構
17 真空排気系
18 原料供給系
19 熱フィラメント
21 カーボンナノチューブ
22 金属的性質のカーボンナノチューブ
23 半導体的性質のカーボンナノチューブ
31 レジストパターン
32 開口
33 Fe
DESCRIPTION OF SYMBOLS 1 Substrate holder 2 CVD chamber 3, 16, 20 Voltage application mechanism 4 Heating mechanism 11 Substrate 12 Conductive substrate 13 Insulating film 14a, 14b Electrode 15 Cooling mechanism 17 Vacuum exhaust system 18 Raw material supply system 19 Heat filament 21 Carbon nanotube 22 Metallic Carbon nanotubes 23 of nature Carbon nanotubes 31 of semiconductor nature Resist pattern 32 Opening 33 Fe

Claims (5)

基板上に金属領域を形成する工程と、
化学的気相成長法により、前記金属領域において炭素元素からなる円筒形物質を成長させる工程と、
前記金属領域に、金属的性質の前記円筒形物質を破壊し、且つ半導体的性質の前記円筒形物質を非破壊の状態に残す程度の電圧を印加する工程と
を含むことを特徴とする炭素元素からなる円筒形物質の形成方法。
Forming a metal region on the substrate;
A step of growing a cylindrical substance made of carbon element in the metal region by chemical vapor deposition;
Applying a voltage to the metal region such that the cylindrical material having a metallic property is destroyed and the cylindrical material having a semiconducting property is left in a non-destructive state. A method for forming a cylindrical material comprising:
一連の前記各工程を複数回繰り返し実行することを特徴とする請求項1に記載の炭素元素からなる円筒形物質の形成方法。   2. The method for forming a cylindrical material comprising a carbon element according to claim 1, wherein the series of steps are repeatedly performed a plurality of times. 前記基板に設けられた一対の前記金属領域を用いることを特徴とする請求項1又は2に記載の炭素元素からなる円筒形物質の形成方法。   3. The method for forming a cylindrical material comprising a carbon element according to claim 1, wherein a pair of the metal regions provided on the substrate is used. 化学的気相成長法による前記円筒形物質の成長時に、前記金属領域間に前記円筒形物質を成長させるに足る電圧を印加することを特徴とする請求項1〜3のいずれか1項に記載の炭素元素からなる円筒形物質の形成方法。   4. The voltage according to claim 1, wherein a voltage sufficient to grow the cylindrical material is applied between the metal regions when the cylindrical material is grown by chemical vapor deposition. 5. A method for forming a cylindrical material composed of carbon elements. 化学的気相成長法により炭素元素からなる円筒形物質を形成する形成装置であって、
表面に金属領域が設けられてなる基板を載置固定する基板保持手段と、
前記基板保持手段を収納するチャンバーと、
前記基板保持手段に載置固定された前記基板の前記金属領域に電圧を印加する電圧印加手段と
を含み、
前記金属領域において前記円筒形物質を成長させた後、前記電圧印加手段により前記金属領域に、金属的性質の前記円筒形物質を破壊し、且つ半導体的性質の前記円筒形物質を非破壊の状態に残す程度の電圧を印加することを特徴とする炭素元素からなる円筒形物質の形成装置。
A forming apparatus for forming a cylindrical material composed of carbon element by chemical vapor deposition,
A substrate holding means for mounting and fixing a substrate having a metal region on the surface;
A chamber for storing the substrate holding means;
Voltage applying means for applying a voltage to the metal region of the substrate mounted and fixed on the substrate holding means,
After the cylindrical material is grown in the metal region, the cylindrical material having a metallic property is destroyed in the metal region by the voltage application means, and the cylindrical material having a semiconducting property is not destroyed. An apparatus for forming a cylindrical substance made of carbon element, which is characterized by applying a voltage to the extent that it remains in the substrate.
JP2003361071A 2003-10-21 2003-10-21 Method and apparatus for forming carbon nanotube Expired - Lifetime JP3987017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361071A JP3987017B2 (en) 2003-10-21 2003-10-21 Method and apparatus for forming carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361071A JP3987017B2 (en) 2003-10-21 2003-10-21 Method and apparatus for forming carbon nanotube

Publications (2)

Publication Number Publication Date
JP2005126254A true JP2005126254A (en) 2005-05-19
JP3987017B2 JP3987017B2 (en) 2007-10-03

Family

ID=34641182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361071A Expired - Lifetime JP3987017B2 (en) 2003-10-21 2003-10-21 Method and apparatus for forming carbon nanotube

Country Status (1)

Country Link
JP (1) JP3987017B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214688A (en) * 2007-03-02 2008-09-18 Ulvac Japan Ltd Thermal cvd system and film deposition method
JP2009200282A (en) * 2008-02-22 2009-09-03 Nippon Telegr & Teleph Corp <Ntt> Carbon nanotube element
JP2009234845A (en) * 2008-03-26 2009-10-15 Ulvac Japan Ltd Substrate for growing carbon nanotube, its producing method and method for producing carbon nanotube
JP2009234844A (en) * 2008-03-26 2009-10-15 Ulvac Japan Ltd Substrate for growing carbon nanotube, its producing method and method for producing carbon nanotube
JP2009283303A (en) * 2008-05-22 2009-12-03 Keio Gijuku Carbon nanotube light-emitting element and method of manufacturing the same
WO2011081364A1 (en) * 2009-12-28 2011-07-07 Korea University Research And Business Foundation Method and device for cnt length control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214688A (en) * 2007-03-02 2008-09-18 Ulvac Japan Ltd Thermal cvd system and film deposition method
JP2009200282A (en) * 2008-02-22 2009-09-03 Nippon Telegr & Teleph Corp <Ntt> Carbon nanotube element
JP2009234845A (en) * 2008-03-26 2009-10-15 Ulvac Japan Ltd Substrate for growing carbon nanotube, its producing method and method for producing carbon nanotube
JP2009234844A (en) * 2008-03-26 2009-10-15 Ulvac Japan Ltd Substrate for growing carbon nanotube, its producing method and method for producing carbon nanotube
JP2009283303A (en) * 2008-05-22 2009-12-03 Keio Gijuku Carbon nanotube light-emitting element and method of manufacturing the same
WO2011081364A1 (en) * 2009-12-28 2011-07-07 Korea University Research And Business Foundation Method and device for cnt length control
US9126836B2 (en) 2009-12-28 2015-09-08 Korea University Research And Business Foundation Method and device for CNT length control
US10077191B2 (en) 2009-12-28 2018-09-18 Korea University Research And Business Foundation Devices for carbon nanotube length control

Also Published As

Publication number Publication date
JP3987017B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4777619B2 (en) Method of forming wiring of semiconductor device using carbon nanotube and semiconductor device manufactured by the method
JP4592675B2 (en) Phase change memory using carbon nanotube and method of manufacturing the same
Li et al. All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes
JP4436821B2 (en) Single-wall carbon nanotube array growth apparatus and single-wall carbon nanotube array growth method
JP4984498B2 (en) Functional element and manufacturing method thereof
US20100327247A1 (en) Method and system of using nanotube fabrics as joule heating elements for memories and other applications
JP2007031239A (en) Break-down method for metallic carbon nanotube, production methods for aggregate and film of semiconducting carbon nanotube, break-down method for semiconducting carbon nanotube, production methods for aggregate and thin film of metallic carbon nanotube, production method for electronic device, production method for carbon nanotube aggregate, and selective reaction methods for metallic and semiconducting carbon nanotubes
JP2006120730A (en) Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method
JP3987017B2 (en) Method and apparatus for forming carbon nanotube
KR20190082534A (en) Apparatus for growing graphene using Joule heating and Manufacturing method thereof
JP2005272271A (en) Method for producing carbon nanotube and method for manufacturing semiconductor device
TW201315276A (en) Heating device comprising carbon nanotube and manufacturing method thereof
EP2262726B1 (en) System and method for low-power nanotube growth using direct resistive heating
KR20130114523A (en) Apparatus for growing graphene using joule heating
JP4501339B2 (en) Method for manufacturing pn junction element
JP2006306704A (en) Method of forming carbon film and carbon film
JP2007536189A (en) Production of carbon nanotubes
KR100829573B1 (en) Electronic device, field effect transistor, and method of fabricating the same
JP2005343744A (en) Method for producing carbon nanotube semiconductor and carbon nanotube semiconductor
JP2005243667A (en) Heat treatment equipment
JP4190569B2 (en) Carbon nanotube growth method
KR102018576B1 (en) Apparatus for growing graphene using Joule heating
JPH0891816A (en) Purifying method of carbon single tube
JP4059795B2 (en) Carbon nanotube growth method
JPWO2005038080A1 (en) NOZZLE WITH NANO-SIZE HEATER, ITS MANUFACTURING METHOD, AND MICRO THIN FILM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Ref document number: 3987017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term