JP2005123588A - Light emitting diode luminous source and its manufacturing method - Google Patents

Light emitting diode luminous source and its manufacturing method Download PDF

Info

Publication number
JP2005123588A
JP2005123588A JP2004246944A JP2004246944A JP2005123588A JP 2005123588 A JP2005123588 A JP 2005123588A JP 2004246944 A JP2004246944 A JP 2004246944A JP 2004246944 A JP2004246944 A JP 2004246944A JP 2005123588 A JP2005123588 A JP 2005123588A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light
light wavelength
conversion unit
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004246944A
Other languages
Japanese (ja)
Other versions
JP4896383B2 (en
JP2005123588A5 (en
Inventor
清 ▲高▼橋
Kiyoshi Takahashi
Masanori Shimizu
正則 清水
Tadashi Yano
正 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004246944A priority Critical patent/JP4896383B2/en
Publication of JP2005123588A publication Critical patent/JP2005123588A/en
Publication of JP2005123588A5 publication Critical patent/JP2005123588A5/ja
Application granted granted Critical
Publication of JP4896383B2 publication Critical patent/JP4896383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode luminous source for improving a light extraction efficiency from a light emitting diode element and a phosphor, and for increasing a radiated luminous flux. <P>SOLUTION: The light emitting diode luminous source according to this invention includes at least one light emitting diode element 12 packaged on a principle plane of a substrate 11, and the phosphor for translating a light radiated from the light emitting diode element 12 to a light having a longer wavelength than the radiated light. The light emitting diode luminous source is provided with a light wavelength transformation portion 13 covering at least one part of the light emitting diode element 12. A side face of this light wavelength transformation portion 13 has at least one concave curved surface part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、LED素子からの放射光の少なくとも一部に対して蛍光物質による波長変換を行なうLED光源およびその製造方法に関する。   The present invention relates to an LED light source that performs wavelength conversion with a fluorescent material on at least a part of emitted light from an LED element, and a method for manufacturing the LED light source.

近年、白色LED光源が盛んに研究されている。照明用光源としてLED素子を用いる場合、照明に適した白色を得るために、青色LED素子の周りを黄色に光る蛍光物質で覆うことが行なわれている(例えば特許文献1)。これにより、LEDからの放射光の一部を蛍光物質で波長変換し、合成光として白色の光を取り出すことができる。具体的には、例えば窒化ガリウム(GaN)材料を用いた青色LED素子に、YAG系の蛍光物質を塗布したものがある。この例のLED光源では、青色LED素子から波長450nmの発光が生じ、この光を受けた蛍光物質が黄色(ピーク波長は約550nm)の蛍光を発する。これらの光が混合することにより、白色の光が提供されることになる。   In recent years, white LED light sources have been actively studied. When an LED element is used as a light source for illumination, in order to obtain a white color suitable for illumination, the blue LED element is covered with a fluorescent material that glows yellow (for example, Patent Document 1). Thereby, a part of the emitted light from the LED can be wavelength-converted with the fluorescent material, and white light can be extracted as the synthesized light. Specifically, for example, a blue LED element using a gallium nitride (GaN) material is coated with a YAG fluorescent material. In the LED light source of this example, light emission with a wavelength of 450 nm is generated from the blue LED element, and the fluorescent material receiving this light emits yellow fluorescence (peak wavelength is about 550 nm). By mixing these lights, white light is provided.

本願発明者は、実装基板にLED素子を直接実装することによって、LEDからの熱を直接実装基板に放熱する発明を完成し、特許文献2に開示した。特許文献2に記載されているLED照明光源300の断面図を図3に示す。このLED照明光源では、基板11上に設けられたLED素子12は、蛍光物質を含む円筒状樹脂部60によって覆われている。円筒状樹脂部60は第2の樹脂部61で更に覆われている。円筒状樹脂部60は、光波長変換部として機能し、光62が第2の樹脂部61から外部に放射される。
特許第2998696号明細書 特開2004−172586号公報
The inventor of the present application has completed the invention of directly dissipating heat from the LED to the mounting substrate by mounting the LED element directly on the mounting substrate, and disclosed in Patent Document 2. A cross-sectional view of the LED illumination light source 300 described in Patent Document 2 is shown in FIG. In this LED illumination light source, the LED element 12 provided on the substrate 11 is covered with a cylindrical resin portion 60 containing a fluorescent substance. The cylindrical resin part 60 is further covered with a second resin part 61. The cylindrical resin portion 60 functions as a light wavelength conversion portion, and the light 62 is emitted from the second resin portion 61 to the outside.
Japanese Patent No. 2998696 JP 2004-172586 A

本願発明者が更に検討を進めていくと、蛍光物質を含んだ円筒状樹脂部60の形状を変化させることにより、LED光源から放射される光束が大きく変化することがわかった。   As the inventors of the present application further studied, it was found that the luminous flux emitted from the LED light source changes greatly by changing the shape of the cylindrical resin part 60 containing the fluorescent material.

本願発明の目的とするところは、蛍光物質を含んだ樹脂からなる光波長変換部の形状を調節することにより、LED素子および蛍光物質からの光の取り出し効率を向上させ、光束を増加させたLED光源を提供することにある。   The object of the present invention is to improve the efficiency of extracting light from the LED element and the fluorescent material by adjusting the shape of the light wavelength conversion portion made of the resin containing the fluorescent material, and to increase the luminous flux. It is to provide a light source.

本発明によるLED光源は、基板の主面に実装された少なくとも1つのLED素子と、前記LED素子から放射された光を当該光の波長よりも長い波長の光に変換する蛍光物質を含み、前記LED素子の少なくとも一部を覆う光波長変換部とを備えるLED光源であって、前記光波長変換部の側面は、少なくとも1つの凹状曲面部分を有している。   An LED light source according to the present invention includes at least one LED element mounted on a main surface of a substrate, and a fluorescent material that converts light emitted from the LED element into light having a wavelength longer than the wavelength of the light, An LED light source comprising: a light wavelength conversion unit that covers at least a part of the LED element, wherein a side surface of the light wavelength conversion unit has at least one concave curved surface portion.

好ましい実施形態において、前記光波長変換部の少なくとも一部を覆う透光性部材を備えている。   In a preferred embodiment, a translucent member that covers at least a part of the light wavelength conversion unit is provided.

好ましい実施形態において、前記光波長変換部の前記側面から離隔された反射面と、前記光波長変換部の少なくとも一部を覆う透光性部材とを備え、前記透光性部材の屈折率は前記光波長変換部の屈折率とは異なっている。   In a preferred embodiment, the light wavelength conversion unit includes a reflective surface separated from the side surface and a light transmissive member covering at least a part of the light wavelength conversion unit, and the refractive index of the light transmissive member is It is different from the refractive index of the light wavelength conversion unit.

好ましい実施形態において、前記透光性部材の屈折率は前記光波長変換部の屈折率よりも大きい。   In a preferred embodiment, the refractive index of the translucent member is larger than the refractive index of the light wavelength conversion unit.

好ましい実施形態において、前記透光性部材は、樹脂から形成されており、
前記透光性部材は、前記光波長変換部の前記側面と前記光反射部材の反射面との隙間を埋めている。
In a preferred embodiment, the translucent member is made of resin,
The translucent member fills a gap between the side surface of the light wavelength conversion unit and the reflection surface of the light reflection member.

好ましい実施形態において、前記透光性部材は、レンズとして機能する。   In a preferred embodiment, the translucent member functions as a lens.

好ましい実施形態において、前記光波長変換部は、前記蛍光物質を含有する樹脂から形成されている。   In a preferred embodiment, the light wavelength conversion part is formed of a resin containing the fluorescent material.

好ましい実施形態において、前記基板の主面に垂直な平面によって前記光波長変換部の側面における前記凹部を横切るように切り取った前記光波長変換部の断面は、前記凹部に対応する曲線を含む外形を有しており、前記曲線の曲率半径Rを前記光波長変換部の厚さtで割った値R/tは0.5以上8.5以下の範囲内にある。   In a preferred embodiment, the cross section of the light wavelength conversion unit cut so as to cross the recess on the side surface of the light wavelength conversion unit by a plane perpendicular to the main surface of the substrate has an outer shape including a curve corresponding to the recess. And a value R / t obtained by dividing the curvature radius R of the curve by the thickness t of the light wavelength conversion unit is in the range of 0.5 or more and 8.5 or less.

好ましい実施形態において、前記光波長変換部の前記側面における凹部の深さdを前記光波長変換部の厚さtで割った値d/tは0.03以上0.5以下の範囲内にある。   In a preferred embodiment, a value d / t obtained by dividing the depth d of the concave portion on the side surface of the light wavelength conversion portion by the thickness t of the light wavelength conversion portion is in the range of 0.03 to 0.5. .

好ましい実施形態において、前記光波長変換部の前記側面における凹部の深さdは0.01mm以上0.17mm以下の範囲内にある。   In preferable embodiment, the depth d of the recessed part in the said side surface of the said optical wavelength conversion part exists in the range of 0.01 mm or more and 0.17 mm or less.

好ましい実施形態において、前記光波長変換部は、略円柱形状を有し、前記略円柱形状の側面が前記凹状曲面部分を形成している。   In a preferred embodiment, the light wavelength conversion portion has a substantially cylindrical shape, and the substantially cylindrical side surface forms the concave curved surface portion.

好ましい実施形態において、前記光波長変換部は、略円錐台形状を有し、前記略円錐台形状の側面が前記凹状曲面部分を形成している。   In a preferred embodiment, the light wavelength conversion section has a substantially truncated cone shape, and a side surface of the substantially truncated cone shape forms the concave curved surface portion.

本発明による他のLED光源は、基板の主面に配列された複数のLED素子と、前記複数のLED素子の各々の側面を取り囲む複数の反射面と、前記LED素子から放射された光を当該光の波長よりも長い波長の光に変換する蛍光物質を含み、各々が、対応する各LED素子を覆う複数の光波長変換部と、各々が、対応する光波長変換部を覆う複数の透光性部材とを備えるLED光源であって、各光波長変換部の側面は、少なくとも1つの凹状曲面部分を有し、前記透光性部材は、前記光波長変換部の前記側面と前記光反射部材の反射面との隙間を埋めている。   Another LED light source according to the present invention includes a plurality of LED elements arranged on a main surface of a substrate, a plurality of reflecting surfaces surrounding each side surface of the plurality of LED elements, and light emitted from the LED elements. A plurality of light wavelength conversion units each including a fluorescent material that converts light having a wavelength longer than the wavelength of the light, each covering a corresponding LED element, and a plurality of light transmissions each covering a corresponding light wavelength conversion unit A side surface of each light wavelength conversion unit has at least one concave curved surface portion, and the translucent member includes the side surface of the light wavelength conversion unit and the light reflection member. The gap with the reflective surface is filled.

本発明の印刷用版は、樹脂パターンを基板上に形成するために用いられる印刷用版であって、上面と、下面と、前記上面および下面をつなぐ少なくとも1つの貫通穴とを有するプレート状部材を備え、前記プレート状部材における前記貫通穴の内壁面は、少なくとも前記貫通穴に充填された樹脂が硬化する間、前記貫通穴の中心部に向かって突出した凸状曲面を形成する。   The printing plate of the present invention is a printing plate used for forming a resin pattern on a substrate, and has a top surface, a bottom surface, and at least one through hole connecting the top surface and the bottom surface. The inner wall surface of the through hole in the plate-like member forms a convex curved surface protruding toward the center of the through hole while at least the resin filled in the through hole is cured.

好ましい実施形態において、前記プレート状部材は、外力に応じて柔軟に形状が変化する材料から形成されている。   In a preferred embodiment, the plate-like member is made of a material whose shape changes flexibly according to an external force.

好ましい実施形態において、前記プレート状部材は弾性体から形成されている。   In a preferred embodiment, the plate-like member is formed from an elastic body.

好ましい実施形態において、前記プレート状部材の上面および下面の少なくとも一方と接触するプレートを更に備えている。   In a preferred embodiment, a plate that further contacts at least one of the upper surface and the lower surface of the plate-like member is further provided.

本発明によるLED光源の製造方法は、基板の主面に少なくとも1つのLED素子を実装する工程(A)と、前記LED素子から放射された光を当該光の波長よりも長い波長の光に変換する蛍光物質を含み、前記LED素子の少なくとも一部を覆う光波長変換部を前記基板上に形成する工程(B)とを含むLED光源の製造方法であって、前記工程(B)は、前記光波長変換部の側面に少なくとも1つの凹状曲面部分を形成する工程を含む。   The method of manufacturing an LED light source according to the present invention includes a step (A) of mounting at least one LED element on a main surface of a substrate, and converting light emitted from the LED element into light having a wavelength longer than the wavelength of the light. And a step (B) of forming on the substrate a light wavelength conversion part that includes a fluorescent material that covers at least a part of the LED element, wherein the step (B) includes the step (B), Forming at least one concave curved surface portion on a side surface of the optical wavelength conversion unit.

好ましい実施形態において、前記工程(B)は、前記光波長変換部を構成する材料の孤立パターンを前記基板上に形成する工程(b1)と、前記孤立パターンの側面を変形させて前記凹状曲面部分を形成する工程(b2)とを含む。   In a preferred embodiment, the step (B) includes a step (b1) of forming an isolated pattern of the material constituting the light wavelength conversion unit on the substrate, and a side surface of the isolated pattern is deformed to form the concave curved surface portion. (B2).

本発明のLED光源によれば、蛍光物質を含有する光波長変換部の側面が凹状曲面部分を有しているため、LED素子および蛍光物質からの光の取り出し効率が向上し、光束が増加する。   According to the LED light source of the present invention, since the side surface of the light wavelength conversion portion containing the fluorescent material has a concave curved surface portion, the light extraction efficiency from the LED element and the fluorescent material is improved, and the luminous flux is increased. .

以下、図面を参照しながら本発明によるLED光源の実施形態を説明する。   Hereinafter, embodiments of an LED light source according to the present invention will be described with reference to the drawings.

まず、図1を参照する。図1は、第1の実施形態にかかるLED光源100の断面を示している。   First, refer to FIG. FIG. 1 shows a cross section of an LED light source 100 according to the first embodiment.

図示されているLED光源100は、基板(実装基板)11と、基板11の主面(上面)にフリップチップ状態で実装された青色LED素子12と、LED素子12を覆う光波長変換部13とを備えている。図1では、簡単のため、1個のLED素子12と、このLED素子12の全体を覆う1個の光波長変換部13とを示しているが、現実のLED光源100は、基板11の主面上に2次元アレイ状に配列された複数のLED素子12と、各々が対応する個々のLED素子12を覆う複数の光波長変換部13とを備えていることが好ましい。ただし、本発明のLED光源は、1つの基板上に単一のLED素子および光波長変換部を有するものであってもよいし、また1つの光波長変換部12が複数のLED素子を覆っていても良い。   The illustrated LED light source 100 includes a substrate (mounting substrate) 11, a blue LED element 12 mounted in a flip-chip state on the main surface (upper surface) of the substrate 11, and a light wavelength conversion unit 13 that covers the LED element 12. It has. In FIG. 1, for the sake of simplicity, one LED element 12 and one light wavelength conversion unit 13 that covers the entire LED element 12 are shown. It is preferable to include a plurality of LED elements 12 arranged in a two-dimensional array on the surface and a plurality of light wavelength conversion units 13 each covering the corresponding LED element 12. However, the LED light source of the present invention may have a single LED element and a light wavelength conversion unit on one substrate, and one light wavelength conversion unit 12 covers a plurality of LED elements. May be.

基板11には不図示の配線が設けられており、LED素子12は電極パッドなどを介して基板11上の配線と電気的に接続されている。これにより、点灯回路(不図示)からLED素子12に電流が供給され、LED素子12の発光が引き起こされる。配線を備える基板11は、多層配線基板であってもよい。複数のLED素子12が実装される場合、基板11は、放熱性に優れたメタルコンポジット基板を用いて作製されていることが望ましい。   The substrate 11 is provided with a wiring (not shown), and the LED element 12 is electrically connected to the wiring on the substrate 11 through an electrode pad or the like. Thereby, a current is supplied to the LED element 12 from a lighting circuit (not shown), and the LED element 12 emits light. The substrate 11 provided with wiring may be a multilayer wiring substrate. In the case where a plurality of LED elements 12 are mounted, the substrate 11 is preferably manufactured using a metal composite substrate having excellent heat dissipation.

光波長変換部13は、青色LED素子12から放射される青色光を黄色光に変換する蛍光物質を含む樹脂から形成されている。このような蛍光物質としては、例えば(Y・Sm)3(Al・Ga)512:Ce、(Y0.39Gd0.57Ce0.03Sm0.013Al512などを用いることができる。光波長変換部13を構成する樹脂は、例えばシリコーン樹脂部を主成分として含有しており、その屈折率n1は約1.4である。 The light wavelength conversion unit 13 is formed of a resin containing a fluorescent material that converts blue light emitted from the blue LED element 12 into yellow light. As such a fluorescent material, for example, (Y · Sm) 3 (Al · Ga) 5 O 12 : Ce, (Y 0.39 Gd 0.57 Ce 0.03 Sm 0.01 ) 3 Al 5 O 12 and the like can be used. The resin constituting the light wavelength conversion part 13 contains, for example, a silicone resin part as a main component, and its refractive index n1 is about 1.4.

上述のように、本実施形態では青色光を発するLED素子を使用しているが、本発明のLED光源は、このようなLED素子を用いる場合に限定されず、他の帯域にピーク波長を有するLED素子を用いてもよい。その場合、光波長変換部に含有させる蛍光物質の種類を適宜変更または調整する必要がある。蛍光物質の種類は1つに限定されず、1つの光波長変換部内に複数種類の蛍光物質を混在させてもよい。また、同一基板上に実装された複数のLED素子ごとに異なる種類の蛍光物質を用いても良い。なお、同一基板上にピーク波長の異なる複数種類のLED素子を配列してもよい。   As described above, in this embodiment, an LED element that emits blue light is used. However, the LED light source of the present invention is not limited to the case of using such an LED element, and has a peak wavelength in another band. An LED element may be used. In that case, it is necessary to appropriately change or adjust the type of the fluorescent substance contained in the light wavelength conversion unit. The type of fluorescent material is not limited to one, and a plurality of types of fluorescent materials may be mixed in one light wavelength conversion unit. Moreover, you may use a different kind of fluorescent material for every several LED element mounted on the same board | substrate. A plurality of types of LED elements having different peak wavelengths may be arranged on the same substrate.

本実施形態の主たる特徴点は、光波長変換部13の側面の形状にある。この点について、後に詳細を説明し、ここでは図1に示される他の構成要素を説明する。   The main characteristic point of this embodiment is the shape of the side surface of the light wavelength conversion unit 13. This point will be described in detail later, and the other components shown in FIG. 1 will be described here.

本実施形態のLED光源100では、個々のLED素子12および光変調変換部13から放射された光を受け、その光を基板主面に垂直な方向に偏向するように反射する面(反射面)を有する反射板14が基板11の主面に設けられている。反射板14は、好ましくは複数の開口部を備えた金属プレートであり、個々の開口部の内側面が反射面として機能する。図1では、反射板14の一部が図示されており、反射板14の反射面は放物面形状を有している。反射板14は、例えばアルミニウム(Al)から形成される。   In the LED light source 100 of the present embodiment, a surface (reflecting surface) that receives light emitted from each LED element 12 and the light modulation conversion unit 13 and reflects the light so as to be deflected in a direction perpendicular to the main surface of the substrate. Is provided on the main surface of the substrate 11. The reflection plate 14 is preferably a metal plate having a plurality of openings, and the inner surface of each opening functions as a reflection surface. In FIG. 1, a part of the reflecting plate 14 is illustrated, and the reflecting surface of the reflecting plate 14 has a parabolic shape. The reflector 14 is made of, for example, aluminum (Al).

本実施形態で特徴的な点は、反射板14の反射面が光波長変換部13の側面から離れている点にある。反射板14の反射面と光波長変換部13の側面との間に形成された隙間の大きさは、例えば100μm〜10mmの範囲にある。   A characteristic point in the present embodiment is that the reflection surface of the reflection plate 14 is separated from the side surface of the light wavelength conversion unit 13. The size of the gap formed between the reflection surface of the reflection plate 14 and the side surface of the light wavelength conversion unit 13 is, for example, in the range of 100 μm to 10 mm.

光波長変換部13は、好適には樹脂から形成される透光性部材15で覆われている。なお、「透光性」とは、光を透過し得ることを意味し、完全な透明である必要はない。本実施形態の透光性部材15は凸レンズとして機能し、主としてエポキシ樹脂から構成されている。透光性部材15の屈折率n2は約1.6である(n2>n1)。前述した反射板14の反射面と光波長変換部13の側面との「隙間」は、透光性部材で埋められている。このため、LED素子12または光波長変換部13の内部から発せられた光は、光波長変換部13と透光性部材15との界面を透過してから、反射板14の反射面に到達して反射される。   The light wavelength conversion unit 13 is preferably covered with a translucent member 15 formed from a resin. “Translucent” means that light can be transmitted and does not need to be completely transparent. The translucent member 15 of this embodiment functions as a convex lens and is mainly composed of an epoxy resin. The refractive index n2 of the translucent member 15 is about 1.6 (n2> n1). The “gap” between the reflection surface of the reflection plate 14 and the side surface of the light wavelength conversion unit 13 is filled with a translucent member. For this reason, the light emitted from the inside of the LED element 12 or the light wavelength conversion unit 13 passes through the interface between the light wavelength conversion unit 13 and the translucent member 15 and then reaches the reflection surface of the reflection plate 14. And reflected.

図1に示されている構造は、LED素子12を除いて、直線Aに関して軸対象である。LED素子12は、典型的には直方体の形状を有している。LED素子12は、例えば、厚さ:約60μm、上面:0.3mm×0.3mmのサイズを有している。   The structure shown in FIG. 1 is an axis object with respect to the straight line A, except for the LED element 12. The LED element 12 typically has a rectangular parallelepiped shape. The LED element 12 has, for example, a thickness: about 60 μm and a top surface: 0.3 mm × 0.3 mm.

本実施形態では、LED素子12のフリップチップ実装が行なわれているために、リードワイヤが不要であり、このため、蛍光物質を含む光波長変換部13の形成が容易になる。光波長変換部13の好ましい形成方法については、後述する。   In the present embodiment, since the LED element 12 is flip-chip mounted, a lead wire is unnecessary, and therefore, the formation of the light wavelength conversion unit 13 including a fluorescent material is facilitated. A preferred method of forming the light wavelength conversion unit 13 will be described later.

次に、図1に示すLED光源100の動作を説明する。   Next, the operation of the LED light source 100 shown in FIG. 1 will be described.

LED素子12から放射された光の一部は、光波長変換部13の蛍光物質に吸収され、より波長の長い光(黄色光)として蛍光物質から放射される(波長変換)。この結果、LED素子12から放射された青色光と黄色光とが混ざった光(白色光)が光波長変換部13の表面から外部に出射される。この白色光は、透光性部材15を通ってLED光源100の外部に出射されるため、透光性部材15のレンズ効果により、集光作用を受ける。前述したように、光波長変換部13の表面から出射された光の一部は、隣接するLED素子(不図示)の光波長変換部に吸収されることなく、反射板14で反射されるため、反射板14を設けない場合に比べて光の利用効率(取り出し効率)が向上する。   Part of the light emitted from the LED element 12 is absorbed by the fluorescent material of the light wavelength conversion unit 13 and is emitted from the fluorescent material as light having a longer wavelength (yellow light) (wavelength conversion). As a result, light (white light) in which blue light and yellow light radiated from the LED element 12 are mixed is emitted from the surface of the light wavelength conversion unit 13 to the outside. Since the white light is emitted to the outside of the LED light source 100 through the translucent member 15, the white light is condensed by the lens effect of the translucent member 15. As described above, part of the light emitted from the surface of the light wavelength conversion unit 13 is reflected by the reflecting plate 14 without being absorbed by the light wavelength conversion unit of the adjacent LED element (not shown). The light use efficiency (extraction efficiency) is improved as compared with the case where the reflector 14 is not provided.

以下、図2を参照しながら、光波長変換部13の形状を詳しく説明する。図2は、図1の光波長変換部13を拡大して詳しく示す断面図である。図2では、簡単のため、透光性部材15および反射板14の記載を省略している。   Hereinafter, the shape of the optical wavelength converter 13 will be described in detail with reference to FIG. FIG. 2 is an enlarged cross-sectional view showing the optical wavelength conversion unit 13 of FIG. 1 in detail. In FIG. 2, illustration of the translucent member 15 and the reflecting plate 14 is omitted for simplicity.

図2に示すように、本実施形態の光波長変換部13は、基板11の主面に接する面を底面とする略円錐台形状を有している。本実施形態では、図2に示されるように、光波長変換部13の上面131(基板11に対向する第1樹脂部の面)と、側面132(基板11の主面に接している底面および上面131を除いた面)が、ともに凹状曲面部分を有している。ここで、「凹状」とは、光波長変換部13の表面がLED素子12の位置する方向に窪んである形状を意味している。   As shown in FIG. 2, the light wavelength conversion unit 13 of the present embodiment has a substantially truncated cone shape having a bottom surface that is in contact with the main surface of the substrate 11. In the present embodiment, as shown in FIG. 2, the upper surface 131 (the surface of the first resin portion facing the substrate 11) of the light wavelength conversion unit 13 and the side surface 132 (the bottom surface in contact with the main surface of the substrate 11 and Both surfaces excluding the upper surface 131 have concave curved surfaces. Here, the “concave shape” means a shape in which the surface of the light wavelength conversion unit 13 is recessed in the direction in which the LED element 12 is positioned.

図12は、光波長変換部の側面に形成された凹状曲面部分の形状を規定するパラメータを示している。簡単のため、図12では、概略的には円柱形状を有する光波長変換部の断面が示されており、その上面も平坦である。図12では、凹状曲面部分が無いと仮定した場合の仮想的な側面(以下、「基準面」と称する)の位置を破線Hで示している。本明細書では、凹状曲面部分の表面上において前記基準面から最も離れた点(最深点)と基準面との間の距離dを「凹状曲面部分の深さ」と称することとする。なお、この距離(深さ)dを規定する直線は、上記の最深点を通る直線のうち、基準面Hに垂直な直線(垂線)である。   FIG. 12 shows parameters that define the shape of the concave curved surface portion formed on the side surface of the light wavelength conversion unit. For simplicity, FIG. 12 schematically shows a cross section of a light wavelength conversion portion having a cylindrical shape, and its upper surface is also flat. In FIG. 12, the position of a virtual side surface (hereinafter referred to as “reference surface”) when it is assumed that there is no concave curved surface portion is indicated by a broken line H. In the present specification, a distance d between a point (the deepest point) farthest from the reference surface on the surface of the concave curved surface portion and the reference surface is referred to as a “depth of the concave curved surface portion”. The straight line that defines the distance (depth) d is a straight line (perpendicular) perpendicular to the reference plane H among straight lines passing through the deepest point.

なお、図12には、凹状曲面部分の曲率Rと、光波長変換部の高さtも示されている。これらのパラメータd、R、およびtにより、凹状曲面部分の形状的特徴を表現することができる。   FIG. 12 also shows the curvature R of the concave curved surface portion and the height t of the light wavelength conversion unit. By these parameters d, R, and t, the shape characteristic of the concave curved surface portion can be expressed.

再び図2を参照する。図2に示す光波長変換部13は、その上面131の直径が約0.7mm、底面の直径が約0.8mmである。上面131および側面132の凹部は、それぞれ、図中の点線で示す仮想円錐台の表面から、0.05mmの深さを有している。なお、光波長変換部13は、前述したように、図1の直線Aに関して軸対称の形状を有している。   Refer to FIG. 2 again. The optical wavelength converter 13 shown in FIG. 2 has an upper surface 131 with a diameter of about 0.7 mm and a bottom surface with a diameter of about 0.8 mm. The concave portions of the upper surface 131 and the side surface 132 each have a depth of 0.05 mm from the surface of the virtual truncated cone indicated by the dotted line in the drawing. Note that, as described above, the optical wavelength conversion unit 13 has an axially symmetric shape with respect to the straight line A in FIG.

凹状曲面部分は、典型的には、なだらかな曲面であることが好ましいが、表面に微視的な凹凸(表面粗さRa:約0.2×d以下)が形成されていてもよい。   The concave curved surface portion is typically preferably a gentle curved surface, but microscopic unevenness (surface roughness Ra: about 0.2 × d or less) may be formed on the surface.

図7(a)は、シリコーン樹脂から形成した光波長変換部13の外観を示す写真であり、図7(b)は、シリコーン樹脂から形成した他の光波長変換部13の側面を示す写真である。図7(a)に示す光波長変換部13は、概略円錐台の形状を有しているが、図7(b)に示す光波長変換部13は、概略円柱の形状を有している。いずれの光波長変換部13も、その側面に凹状曲面が形成されている。図7(b)には、光波長変換部の「最低高さ」と「最高高さ」が記載されている。平均厚さが0.5mmを下回る大きさの光波長変換部を樹脂から形成する場合、図7(b)に示すように、樹脂の厚さが場所によって変化し、その結果、基板主面を基準にしたときの光波長変換部の上面の高さにばらつきが生じる場合があるが、このことは特に問題を引き起こさない。   Fig.7 (a) is a photograph which shows the external appearance of the light wavelength conversion part 13 formed from the silicone resin, and FIG.7 (b) is a photograph which shows the side surface of the other light wavelength conversion part 13 formed from the silicone resin. is there. The light wavelength conversion unit 13 illustrated in FIG. 7A has a substantially truncated cone shape, but the light wavelength conversion unit 13 illustrated in FIG. 7B has a substantially cylindrical shape. Each of the optical wavelength converters 13 has a concave curved surface on its side surface. FIG. 7B shows the “minimum height” and “maximum height” of the optical wavelength converter. When the light wavelength conversion part having an average thickness of less than 0.5 mm is formed from a resin, as shown in FIG. 7B, the thickness of the resin varies depending on the location. There may be variations in the height of the upper surface of the light wavelength conversion portion when used as a reference, but this does not cause any particular problem.

このように、本実施形態の光波長変換部13の側面(および上面)には、凹状の曲面が意図的に形成されている。本発明者の実験や計算機シミュレーションによると、この曲面の存在が光の利用効率を高め、光束を増加させることがわかった。   Thus, a concave curved surface is intentionally formed on the side surface (and the top surface) of the light wavelength conversion unit 13 of the present embodiment. According to the inventor's experiment and computer simulation, it has been found that the presence of this curved surface increases the light utilization efficiency and increases the luminous flux.

この曲面を規定するため、図2に示す断面形状の曲率を考える。この曲率は、基板11の主面に垂直な平面によって光波長変換部13の側面(凹部が存在する領域)を横切るように切り取った光波長変換部の断面に基づいて計測される。図2に示される光波長変換部13の断面には、側面の凹状曲面に対応する曲線が現れている。この曲線の曲率半径Rを光波長変換部13の厚さtで割った値R/tは、0.5以上8.5以下の範囲内にあることが好ましい。その理由は、値R/tが8.5を超えて大きくなると、光波長変換部13の側面に凹状曲面を設けていない従来のLED光源との差異が実質的に無くなるからである。また、値R/tが0.5を下まわって小さくなると、光の利用効率が却って小さくなるからである。この値R/tは1.1以上 3.7以下の範囲内にあることが更に好ましい。   In order to define this curved surface, consider the curvature of the cross-sectional shape shown in FIG. This curvature is measured based on a cross section of the light wavelength conversion unit cut so as to cross the side surface (region where the recess exists) of the light wavelength conversion unit 13 by a plane perpendicular to the main surface of the substrate 11. In the cross section of the optical wavelength converter 13 shown in FIG. 2, a curve corresponding to the concave curved surface of the side surface appears. A value R / t obtained by dividing the curvature radius R of the curve by the thickness t of the light wavelength conversion unit 13 is preferably in the range of 0.5 or more and 8.5 or less. The reason is that when the value R / t exceeds 8.5, the difference from the conventional LED light source in which the concave curved surface is not provided on the side surface of the light wavelength conversion unit 13 is substantially eliminated. In addition, when the value R / t decreases below 0.5, the light use efficiency decreases instead. This value R / t is more preferably in the range of 1.1 to 3.7.

なお、光波長変換部13の側面における凹部の深さdを光波長変換部13の厚さtで割った値d/tは0.03以上0.5以下の範囲内にあることが好ましい。厚さtは、LED光源によって桁が変わる程大きく変化しないため、典型的なLED光源では、光波長変換部13の側面に形成される凹部の深さdは、0.01mm以上0.17mm以下の範囲内にあることが好ましい。   In addition, it is preferable that the value d / t which divided the depth d of the recessed part in the side surface of the light wavelength conversion part 13 by the thickness t of the light wavelength conversion part 13 exists in the range of 0.03 or more and 0.5 or less. Since the thickness t does not change so much as the digit changes depending on the LED light source, in a typical LED light source, the depth d of the recess formed on the side surface of the light wavelength conversion unit 13 is 0.01 mm or more and 0.17 mm or less. It is preferable to be within the range.

図2に示す上記の曲線は、完全な円弧である必要はないが、変極点を有しない緩やかな曲線であることが好ましい。ただし、光波長変換部の側面の一部に突起や凹部が形成されていても、全体として凹状の曲面が形成されていれば問題ない。   The above curve shown in FIG. 2 does not have to be a complete arc, but is preferably a gentle curve having no inflection point. However, even if a protrusion or a recess is formed on a part of the side surface of the light wavelength conversion section, there is no problem as long as a concave curved surface is formed as a whole.

(製造方法の実施形態1)
次に、図8(a)から(e)を参照しつつ、本発明によるLED光源を製造する方法の第1の実施形態を説明する。
(Embodiment 1 of manufacturing method)
Next, a first embodiment of a method for producing an LED light source according to the present invention will be described with reference to FIGS.

まず、図8(a)に示すように、LED素子12が実装された基板11の主面に印刷用孔版20を接触させる。印刷用孔版20は、図9に示すように、複数の開口部19が設けられたブレート状の部材である。各開口部19の位置および形状は、基板11上に実装されたLED素子12のうちの対応する素子を取り囲むように形成されている。図9に示す印刷用孔版の開口部19は、円柱形状の空間によって規定されている。   First, as shown in FIG. 8A, the printing stencil 20 is brought into contact with the main surface of the substrate 11 on which the LED elements 12 are mounted. As shown in FIG. 9, the printing stencil 20 is a blade-like member provided with a plurality of openings 19. The positions and shapes of the openings 19 are formed so as to surround corresponding elements among the LED elements 12 mounted on the substrate 11. The opening 19 of the printing stencil shown in FIG. 9 is defined by a cylindrical space.

次に、図8(b)に示すように、蛍光物質を含有する樹脂(蛍光体樹脂)16を印刷用孔版20上に供給し、この蛍光体樹脂16をスキージ17によって押圧しながら印刷用孔版20の上面を走査する。その結果、印刷用孔版20の開口部19の内部は蛍光体樹脂16で埋め込まれる。   Next, as shown in FIG. 8B, a resin (phosphor resin) 16 containing a fluorescent substance is supplied onto the printing stencil 20, and the printing resin stencil is pressed while pressing the phosphor resin 16 with a squeegee 17. The top surface of 20 is scanned. As a result, the inside of the opening 19 of the printing stencil 20 is filled with the phosphor resin 16.

本実施形態では、粘度の高い樹脂材料から蛍光体樹脂16を形成している。このため、図8(c)に示すように印刷用孔版20を基板11から離すと、図8(d)に示すように、基板11上には蛍光体樹脂16からなる樹脂パターン13’が形成される。樹脂パターン13’は、最終的に光波長変換部13となるものであるが、この状態では、その側面に凹状曲面部は形成されていない。   In the present embodiment, the phosphor resin 16 is formed from a resin material having a high viscosity. Therefore, when the printing stencil 20 is separated from the substrate 11 as shown in FIG. 8C, a resin pattern 13 ′ made of the phosphor resin 16 is formed on the substrate 11 as shown in FIG. 8D. Is done. The resin pattern 13 ′ eventually becomes the light wavelength conversion portion 13, but in this state, no concave curved surface portion is formed on the side surface.

次に、本実施形態では、図8(e)に示すように、樹脂パターン13’の側面を押圧部材21で力を加えることにより、樹脂パターン13’の側面を窪ませ、凹状曲面部を形成する。こうして、側面に凹状曲面部を有する光波長変換部13を形成することができる。   Next, in this embodiment, as shown in FIG. 8E, the side surface of the resin pattern 13 ′ is depressed by applying a force to the side surface of the resin pattern 13 ′ with the pressing member 21, thereby forming a concave curved surface portion. To do. In this way, the optical wavelength conversion part 13 having a concave curved surface part on the side surface can be formed.

樹脂パターン13’の側面に力を加えるとき、樹脂パターン13’の上面も変形し、下方に窪んだ凹状曲面が形成される場合がある。本実施形態における樹脂パターン13’の硬化は、印刷用孔版20を基板11から離した後に行っているが、硬化のタイミングや条件は用いる樹脂に応じて最適化される。   When a force is applied to the side surface of the resin pattern 13 ′, the upper surface of the resin pattern 13 ′ may be deformed to form a concave curved surface that is recessed downward. In this embodiment, the resin pattern 13 'is cured after the printing stencil 20 is separated from the substrate 11, but the timing and conditions of the curing are optimized according to the resin used.

(製造方法の実施形態2)
次に、図10(a)から(d)を参照しつつ、本発明によるLED光源を製造する方法の第2の実施形態を説明する。
(Embodiment 2 of manufacturing method)
Next, a second embodiment of a method for manufacturing an LED light source according to the present invention will be described with reference to FIGS. 10 (a) to 10 (d).

まず、図10(a)に示すように、LED素子12が実装された基板11の主面に印刷用孔版120を接触させる。印刷用孔版120の上面は、図9に示す印刷用孔版20と同様の形態を有している。ただし、本実施形態で使用する印刷用孔版120の断面構造は、印刷用孔版20の断面構造とは大きく異なっている。具体的には、印刷用孔版120は、金属などの比較的剛性の高い材料から形成された2枚のプレート121、123と、これらのプレート121、123の間に挟まれた弾力性に富むゴムからなる弾性体層122とを備えている。この印刷用孔版120には、印刷用孔版20と同様に、複数の開口部(貫通孔)19が設けられている。   First, as shown in FIG. 10A, the printing stencil 120 is brought into contact with the main surface of the substrate 11 on which the LED elements 12 are mounted. The upper surface of the printing stencil 120 has the same form as the printing stencil 20 shown in FIG. However, the cross-sectional structure of the printing stencil 120 used in the present embodiment is greatly different from the cross-sectional structure of the printing stencil 20. Specifically, the printing stencil 120 includes two plates 121 and 123 formed of a relatively rigid material such as metal, and a rubber having high elasticity sandwiched between the plates 121 and 123. And an elastic body layer 122 made of Similar to the printing stencil 20, the printing stencil 120 is provided with a plurality of openings (through holes) 19.

次に、図10(b)に示すように、蛍光体樹脂16を印刷用孔版120上に供給し、この蛍光体樹脂16をスキージ17によって押圧しながら印刷用孔版120の上面を走査する。このとき、印刷用孔版120には縦方向に圧力を印加することにより、弾性体層122が厚さ方向に圧縮され、それによって各開口部19の側面を開口部の中心側に向けて凸状に押し出す。その状態で開口部19内に蛍光体樹脂16を供給し、印刷用孔版120の開口部19の内部を蛍光体樹脂16で埋め込む。   Next, as shown in FIG. 10B, the phosphor resin 16 is supplied onto the printing stencil 120, and the upper surface of the printing stencil 120 is scanned while pressing the phosphor resin 16 with the squeegee 17. At this time, by applying pressure in the longitudinal direction to the printing stencil 120, the elastic body layer 122 is compressed in the thickness direction, whereby the side surface of each opening 19 is convex toward the center of the opening. Extrude into. In this state, the phosphor resin 16 is supplied into the opening 19, and the inside of the opening 19 of the printing stencil 120 is embedded with the phosphor resin 16.

本実施形態でも、粘度の高い樹脂材料(シリコーンを主成分とする樹脂)から蛍光体樹脂16を形成しているため、図10(c)および(e)に示すようにして基板11から印刷用孔版120を離すと、基板11上には側面に凹状曲面が形成された光波長変換部13が形成される。   Also in this embodiment, since the phosphor resin 16 is formed from a resin material having a high viscosity (a resin mainly composed of silicone), printing is performed from the substrate 11 as shown in FIGS. 10 (c) and 10 (e). When the stencil 120 is released, the light wavelength conversion section 13 having a concave curved surface formed on the side surface is formed on the substrate 11.

本実施形態では、図11(a)および(b)に示すように、中間層としてゴムなどの弾性体から形成された層(部材)を有する印刷用孔版120を用い、圧力の印加によって開口部の形状を変形し、それによって凹状曲面部を側面に有する光波長変換部を形成しているが、本発明は、このような場合に限定されない。例えば、図11(c)および(d)に示すように、剛性が相対的に高いプレート121を弾性体層122の上面側のみに設けた2層構造の印刷用孔版125を用いてもよい。   In this embodiment, as shown in FIGS. 11A and 11B, a printing stencil 120 having a layer (member) formed of an elastic body such as rubber is used as an intermediate layer, and an opening is formed by applying pressure. However, the present invention is not limited to such a case. For example, as shown in FIGS. 11C and 11D, a two-layer printing stencil 125 in which a plate 121 having relatively high rigidity is provided only on the upper surface side of the elastic layer 122 may be used.

また、プレート121を弾性体層122の下面側のみに設けた2層構造の印刷用孔版や、弾性体層122のみからなる印刷用孔版を用いても良い。更に、弾性体層122の代わりに、内部に流体を保持して変形しやすくした構造物や、他の変形しやすい材料を用いて印刷用孔版を形成してもよい。なお、本実施形態1および2で用いた樹脂は、熱硬化性を有するものであるが、上記の加工工程後に加熱処理(例えば120℃で1時間保持する熱処理)を行なうことによって硬化させることができる。その後、レンズ樹脂は、例えばトランスファーモールド加工によって成型される。   Alternatively, a printing stencil having a two-layer structure in which the plate 121 is provided only on the lower surface side of the elastic layer 122, or a printing stencil having only the elastic layer 122 may be used. Further, instead of the elastic body layer 122, a printing stencil may be formed using a structure that is easily deformed by holding a fluid therein or other easily deformable material. In addition, although resin used in this Embodiment 1 and 2 has thermosetting property, it can be hardened by performing heat processing (for example, heat processing hold | maintained at 120 degreeC for 1 hour) after said process process. it can. Thereafter, the lens resin is molded by, for example, transfer molding.

なお、本発明における光波長変換部の形成方法は、上述した実施形態に係る方法に限定されない。   In addition, the formation method of the light wavelength conversion part in this invention is not limited to the method which concerns on embodiment mentioned above.

以下、本発明のLED光源および従来のLED光源から放射される光束について、行なった計算機シミュレーションを説明する。   Hereinafter, computer simulations performed on the light beams emitted from the LED light source of the present invention and the conventional LED light source will be described.

図3は、従来のLED光源の構成を示している。図3に示すLED照明光源300において、円筒状樹脂部60以外の構成要素は、図1に示す本実施形態のLED照明光源100の構成要素と同様の構造を有している。この円筒状樹脂部60が、本実施形態における光波長変換部13と大きく異なる点は表面の形状にある。すなわち、従来の円筒状樹脂部60は、基板11と接する面を底面とする円筒形状を有しており、その上面および側面には凹状曲面部分が形成されていない。なお、円筒形状の側面は、「曲面」であるが、凸状であって凹状ではない。   FIG. 3 shows the configuration of a conventional LED light source. In the LED illumination light source 300 shown in FIG. 3, the components other than the cylindrical resin portion 60 have the same structure as the components of the LED illumination light source 100 of the present embodiment shown in FIG. The cylindrical resin portion 60 is greatly different from the light wavelength conversion portion 13 in the present embodiment in the shape of the surface. That is, the conventional cylindrical resin portion 60 has a cylindrical shape with the bottom surface as the surface in contact with the substrate 11, and no concave curved surface portion is formed on the top and side surfaces thereof. The cylindrical side surface is a “curved surface”, but is convex and not concave.

<シミュレーション結果1>
LED光源100から放射される光束を計算機によるシミュレーションで求めた。シミューションの条件は、以下の通りである。
<Simulation result 1>
The luminous flux emitted from the LED light source 100 was obtained by computer simulation. The conditions for the simulation are as follows.

(シミュレーション条件)
・基板11の反射率:0.5
・反射板14の反射率:0.82
・光波長変換部13から単位表面積あたり同じで、均一な光束が全方向に放射される。
・光波長変換部13の屈折率n1:1.4
・透光性部材15の屈折率n2:1.6
・透光性部材15:半球形状
・透光性部材15の透過率:96%/mm
・光波長変換部13の表面からの総光線数は20万本(第1樹脂部を光源と仮定)
(Simulation conditions)
-Reflectance of substrate 11: 0.5
-Reflectance of reflector 14: 0.82
A uniform and uniform light beam is emitted in all directions from the light wavelength conversion unit 13 per unit surface area.
-Refractive index n1: 1.4 of the optical wavelength converter 13
-Refractive index n2 of translucent member 15: 1.6
Translucent member 15: hemispherical shape Transmissivity of translucent member 15: 96% / mm
-The total number of light rays from the surface of the light wavelength conversion unit 13 is 200,000 (assuming the first resin part is a light source)

また、光波長変換部13には、以下の4種類の形状を付与した。   Moreover, the following four types of shapes were given to the light wavelength conversion unit 13.

形状番号1:略円錐台形状の上面と側面の両方に凹状曲面を有する形状(図2に示す形状)
形状番号2:略円錐台形状の上面131だけが凹状曲面を有する形状(不図示)
形状番号3:略円錐台形状の側面132だけが凹状曲面を有する形状(不図示)
形状番号4(比較例):凹無しの円錐台形状(図3に示す円筒状樹脂部60を円錐台形状に変更した構造に相当する)。
Shape number 1: a shape having a concave curved surface on both the upper surface and the side surface of the substantially truncated cone shape (the shape shown in FIG. 2)
Shape number 2: a shape in which only the substantially truncated cone-shaped upper surface 131 has a concave curved surface (not shown)
Shape number 3: a shape in which only the substantially frustoconical side surface 132 has a concave curved surface (not shown)
Shape number 4 (comparative example): a truncated conical shape (corresponding to a structure in which the cylindrical resin portion 60 shown in FIG. 3 is changed to a truncated cone shape).

以上の条件でLED光源100から放射される光束を計算した。計算によって得られた光束の値は、形状番号4で示される比較例の光束を100として規格化した。規格化後の光束を以下の表1に示す。   The luminous flux emitted from the LED light source 100 was calculated under the above conditions. The value of the luminous flux obtained by the calculation was normalized with the luminous flux of the comparative example indicated by the shape number 4 as 100. The normalized luminous flux is shown in Table 1 below.

表1からわかるように、光波長変換部の上面または側面に凹状曲面部を形成することにより、光束が増加する。光束は、凹状曲面部を光波長変換部の上面に形成することによって3%増加し、光波長変換部の側面に形成することによって4%向上する。光波長変換部の上面および側面の両方に凹状曲面部を形成すると、10%もの光束向上効果を得ることができる。   As can be seen from Table 1, the light flux increases by forming a concave curved surface portion on the upper surface or side surface of the light wavelength conversion portion. The luminous flux is increased by 3% by forming the concave curved surface portion on the upper surface of the light wavelength conversion portion, and is improved by 4% by forming it on the side surface of the light wavelength conversion portion. When the concave curved surface portion is formed on both the upper surface and the side surface of the light wavelength conversion portion, an effect of improving the luminous flux by 10% can be obtained.

<シミュレーション結果2>
次に、上記のシミュレーションを行なった条件と略同様の条件のもと、光波長変換部13内に仮想的な発光点を規定し、その発光点から等方的に放射された光が形成するLED光源の光束を計算した。計算によって得られた光束の値は、形状番号4で示される比較例の光束を100として規格化した。
<Simulation result 2>
Next, a virtual light emitting point is defined in the light wavelength conversion unit 13 under substantially the same conditions as the above simulation conditions, and light isotropically emitted from the light emitting point is formed. The luminous flux of the LED light source was calculated. The value of the luminous flux obtained by the calculation was normalized with the luminous flux of the comparative example indicated by the shape number 4 as 100.

(シミュレーションの条件)
・光線数は各発光点で20万本
・計算した発光点は、図4に示すように、光波長変換部13の中心と光波長変換部13の側面側近傍との2箇所
・その他の条件は、シミュレーション結果1と同じ。
(Simulation conditions)
・ The number of light rays is 200,000 at each light emitting point. ・ The calculated light emitting points are two places, the center of the light wavelength conversion unit 13 and the vicinity of the side surface side of the light wavelength conversion unit 13, as shown in FIG. Is the same as simulation result 1.

シミュレーション結果を表2に示す。   The simulation results are shown in Table 2.

表2から、光波長変換部13内のどの位置に仮想的な発光点が存在しても、光波長変換部13の側面および上面の何れか一つの面に凹状曲面部を形成することにより、光束増大効果の得られることがわかる。   From Table 2, by forming a concave curved surface portion on any one of the side surface and the upper surface of the light wavelength conversion portion 13 regardless of the position where the virtual light emission point exists in the light wavelength conversion portion 13, It can be seen that a luminous flux increasing effect can be obtained.

<シミュレーション結果の分析>
以下、上記のシミュレーション結果を考察する。
<Analysis of simulation results>
Hereinafter, the simulation results will be considered.

光波長変換部13(n1=1.41)から放射された光が、透光性部材15(屈折率n2=1.55)に入射する場合、すなわち、n1<n2 ・・・(式1)が成立する場合、臨界角は存在せず、全反射は存在しない。したがって、光波長変換部13からの放射光はすべて、透光性部材15内に透過するので、光波長変換部13と透光性部材15との界面での光のロスはないと考えられる。   When the light emitted from the light wavelength converter 13 (n1 = 1.41) is incident on the translucent member 15 (refractive index n2 = 1.55), that is, n1 <n2 (Expression 1) If is true, there is no critical angle and there is no total reflection. Therefore, all the emitted light from the light wavelength conversion unit 13 is transmitted through the translucent member 15, so it is considered that there is no loss of light at the interface between the light wavelength conversion unit 13 and the translucent member 15.

本実施形態のように光波長変換部13と透光性部材15との界面に凹状曲面が形成されている場合、その界面でレンズ効果が発生する。このため、光波長変換部13から放出された光の集光性が高まり、透光性部材15内での迷光が減少する結果、光束が増加するのではないかと考える。透光性部材15の迷光が減ると、透光性部材15からの光取り出し効率が向上し、結果としてLED光源からの光束が増えるからである。   When a concave curved surface is formed at the interface between the light wavelength conversion unit 13 and the translucent member 15 as in the present embodiment, a lens effect occurs at the interface. For this reason, the condensing property of the light emitted from the light wavelength conversion unit 13 is enhanced, and the stray light in the translucent member 15 is reduced. As a result, the luminous flux is increased. This is because when the stray light of the translucent member 15 is reduced, the light extraction efficiency from the translucent member 15 is improved, and as a result, the luminous flux from the LED light source is increased.

以上のように、光波長変換部13の側面に凹状曲面部を形成することにより、光の取り出し効率が向上するという効果を得ることができる。   As described above, by forming the concave curved surface portion on the side surface of the light wavelength conversion portion 13, it is possible to obtain an effect that the light extraction efficiency is improved.

なお、本実施形態では、屈折率がn1<n2の関係を満足しているが、n1>n2の関係を満足する場合でも、光波長変換部の側面に形成した凹状曲面により、光取り出し効率の向上効果が得られる。ただし、この場合は、臨界角が存在するため、n1とn2の比を考慮して、光波長変換部13および透光性部材15の形状を最適化することが好ましい。   In this embodiment, the refractive index satisfies the relationship of n1 <n2, but even when the relationship of n1> n2 is satisfied, the light extraction efficiency is improved by the concave curved surface formed on the side surface of the light wavelength conversion unit. Improvement effect is obtained. However, in this case, since a critical angle exists, it is preferable to optimize the shapes of the light wavelength conversion unit 13 and the translucent member 15 in consideration of the ratio of n1 and n2.

本実施形態は、光波長変換部13が略円錐台形状を有しているが、光波長変換部13の形状は、このような形状に限定されず、側面に凹状曲面が形成されていれば、光取り出し効率向上の効果を得ることができる。   In the present embodiment, the light wavelength conversion unit 13 has a substantially truncated cone shape, but the shape of the light wavelength conversion unit 13 is not limited to such a shape, and a concave curved surface is formed on the side surface. The effect of improving the light extraction efficiency can be obtained.

なお、LED素子12の中心から蛍光物質を含んだ光波長変換部13の端までの基板11に略平行な距離が略等しい場合、光波長変換部13内での蛍光物質による波長変換が略均一に行なわれるため、蛍光物質からの放射光が均一となり、LED光源100からの放射光の色ムラを低減することがもできる。このような光波長変換部13の形状の例を図5および図6に示す。図5および図6では、簡単のため、透光性部材15および反射板14の記載を省略している。   When the distance from the center of the LED element 12 to the end of the light wavelength conversion unit 13 containing the fluorescent material is substantially equal to the substrate 11, the wavelength conversion by the fluorescent material in the light wavelength conversion unit 13 is substantially uniform. Therefore, the emitted light from the fluorescent material becomes uniform, and the color unevenness of the emitted light from the LED light source 100 can be reduced. Examples of the shape of the light wavelength conversion unit 13 are shown in FIGS. In FIG. 5 and FIG. 6, the description of the translucent member 15 and the reflecting plate 14 is omitted for simplicity.

図5(a)は、LED光源500の上面概略図であり、図5(b)は、LED光源500の側面概略図である。LED光源500における光波長変換部13は、略円柱形状を有しているが、その上面および側面に凹状曲面部が形成されている。   FIG. 5A is a schematic top view of the LED light source 500, and FIG. 5B is a schematic side view of the LED light source 500. The light wavelength conversion unit 13 in the LED light source 500 has a substantially cylindrical shape, but a concave curved surface portion is formed on the upper surface and side surfaces thereof.

図6(a)は、LED光源600の上面概略図であり、図6(b)は、LED光源600の側面概略図である。LED光源900における光波長変換部13は、略四角錘台の形状を有しているが、その斜辺の角は丸められている。光波長変換部13の上面および側面には、凹状曲面部が形成されている。   FIG. 6A is a schematic top view of the LED light source 600, and FIG. 6B is a schematic side view of the LED light source 600. The light wavelength conversion unit 13 in the LED light source 900 has a substantially square frustum shape, but the corners of the hypotenuse are rounded. A concave curved surface portion is formed on the upper surface and side surfaces of the optical wavelength conversion portion 13.

本発明の光波長変換部の基本形状は、上述した形状に限定されず、例えば、略五角錘台、略六角錐台であってもよい。なお、いずれの場合でも、光波長変換部13の略底面の略中心部にLED素子12が配置されることが好ましい。   The basic shape of the light wavelength conversion unit of the present invention is not limited to the shape described above, and may be, for example, a substantially pentagonal frustum or a substantially hexagonal frustum. In any case, it is preferable that the LED element 12 is disposed at a substantially central portion of a substantially bottom surface of the light wavelength conversion unit 13.

一般に、光波長変換部13の表面積のうち、凹状曲面部の面積比率が大きいほど、光の取り出し効率が上昇する。このため、光波長変換部13の全表面のうち、より広い領域に凹状曲面が形成されることが好ましい。   In general, the larger the area ratio of the concave curved surface portion of the surface area of the light wavelength conversion portion 13, the higher the light extraction efficiency. For this reason, it is preferable that a concave curved surface is formed in a wider area among the entire surface of the light wavelength conversion unit 13.

透光性部材15は、凸レンズとして機能しているが、透光性部材15は、種々の用途に応じて必要とされる光学的な機能を発揮する形状であれば、他の形状を有していてもよい。   The translucent member 15 functions as a convex lens, but the translucent member 15 has other shapes as long as it has an optical function required for various uses. It may be.

本実施形態では、反射板14を基板11の主面に設けているが、反射面を基板の主面に直接的に形成してもよい。反射構造は、光束の指向性を高められるものであれば、任意である。   In the present embodiment, the reflecting plate 14 is provided on the main surface of the substrate 11, but the reflecting surface may be formed directly on the main surface of the substrate. The reflection structure is arbitrary as long as the directivity of the light beam can be improved.

本実施形態では、シリコーン樹脂を主成分とする樹脂材料から光波長変換部13を形成し、エポキシ樹脂を主成分とする樹脂材料からまた透光性部材15を形成しているが、他の材料から光波長変換部13および透光性部材15を形成してもよい。   In the present embodiment, the light wavelength conversion unit 13 is formed from a resin material containing silicone resin as a main component, and the translucent member 15 is formed from a resin material containing epoxy resin as a main component. Alternatively, the light wavelength conversion unit 13 and the translucent member 15 may be formed.

色ムラを少なくするためには、LED素子12の中心と光波長変換部13の中心とを一致させることが好ましい。光の取り出し効率を向上させ、LED光源から放射される光のムラを更に少なくするためには、LED素子12の中心、光波長変換部13の中心、反射板14の開口部の中心、および透光性部材15の中心の全てを一致させることが好ましい。   In order to reduce color unevenness, it is preferable to match the center of the LED element 12 with the center of the light wavelength conversion unit 13. In order to improve the light extraction efficiency and further reduce the unevenness of the light emitted from the LED light source, the center of the LED element 12, the center of the light wavelength converter 13, the center of the opening of the reflector 14, and the transmission It is preferable to match all of the centers of the optical members 15.

本発明のLED光源は、光取り出し効率が高く、照明器具その他の各種装置における光源として有用である。   The LED light source of the present invention has high light extraction efficiency and is useful as a light source in lighting equipment and other various devices.

本発明の好ましい実施形態にかかるLED光源100の概略断面図である。It is a schematic sectional drawing of the LED light source 100 concerning preferable embodiment of this invention. LED光源100が備える光波長変換部13を拡大した断面図である。It is sectional drawing to which the light wavelength conversion part 13 with which the LED light source 100 is provided was expanded. 従来のLED光源300を示す概略断面図である。It is a schematic sectional drawing which shows the conventional LED light source 300. シミュレーション結果を求める際の発光点の位置を示す概略図である。It is the schematic which shows the position of the light emission point at the time of calculating | requiring a simulation result. (a)は、光波長変換部13の形状の一例を示す上面図であり、(b)は、その断面図である。(A) is a top view which shows an example of the shape of the light wavelength conversion part 13, (b) is the sectional drawing. (a)は、光波長変換部13の形状の他の例を示す上面図であり、(b)は、その断面図である。(A) is a top view which shows the other example of the shape of the light wavelength conversion part 13, (b) is the sectional drawing. (a)および(b)は、それぞれ、樹脂から形成された光波長変換部13の具体例を示す写真である。(A) And (b) is a photograph which shows the specific example of the light wavelength conversion part 13 formed from resin, respectively. (a)から(e)は、本発明によるLED光源を製造する方法の第1の実施形態を示す工程断面図である。(A)-(e) is process sectional drawing which shows 1st Embodiment of the method of manufacturing the LED light source by this invention. 本発明の実施形態で好適に用いられる印刷用孔版を示す上面図である。It is a top view which shows the stencil for printing used suitably by embodiment of this invention. (a)から(d)は、本発明によるLED光源を製造する方法の第2の実施形態を示す工程断面図である。(A)-(d) is process sectional drawing which shows 2nd Embodiment of the method of manufacturing the LED light source by this invention. (a)および(b)は、図10(a)に示す印刷用孔版120の構成および動作を示す断面図であり、(c)および(d)は、他の印刷用孔版125の構成および動作を示す断面図である。(A) And (b) is sectional drawing which shows the structure and operation | movement of the printing stencil 120 shown to Fig.10 (a), (c) and (d) are the structure and operation | movement of the other printing stencil 125. FIG. 光波長変換部における凹状曲面部の形状を規定するパラメータを模式的に示す図である。It is a figure which shows typically the parameter which prescribes | regulates the shape of the concave curved surface part in a light wavelength conversion part.

符号の説明Explanation of symbols

11 基板
12 LED素子
13 光波長変換部
13’ 樹脂パターン
14 反射板
15 透光性部材
20 印刷用孔版
60 円筒形樹脂部
120 印刷用孔版
125 印刷用孔版


DESCRIPTION OF SYMBOLS 11 Board | substrate 12 LED element 13 Light wavelength conversion part 13 'Resin pattern 14 Reflector 15 Translucent member 20 Printing stencil 60 Cylindrical resin part 120 Printing stencil 125 Printing stencil


Claims (19)

基板の主面に実装された少なくとも1つのLED素子と、
前記LED素子から放射された光を当該光の波長よりも長い波長の光に変換する蛍光物質を含み、前記LED素子の少なくとも一部を覆う光波長変換部と、
を備えるLED光源であって、
前記光波長変換部の側面は、少なくとも1つの凹状曲面部分を有している、LED光源。
At least one LED element mounted on the main surface of the substrate;
A light wavelength converter that includes a fluorescent material that converts light emitted from the LED element into light having a wavelength longer than the wavelength of the light, and covers at least a part of the LED element;
An LED light source comprising:
The side surface of the light wavelength conversion unit is an LED light source having at least one concave curved surface portion.
前記光波長変換部の少なくとも一部を覆う透光性部材を備えている請求項1に記載のLED光源。   The LED light source of Claim 1 provided with the translucent member which covers at least one part of the said light wavelength conversion part. 前記光波長変換部の前記側面から離隔された反射面と、
前記光波長変換部の少なくとも一部を覆う透光性部材と、
を備え、
前記透光性部材の屈折率は前記光波長変換部の屈折率とは異なっている、請求項2に記載のLED光源。
A reflective surface spaced from the side surface of the light wavelength conversion unit;
A translucent member covering at least a part of the light wavelength conversion unit;
With
The LED light source according to claim 2, wherein a refractive index of the translucent member is different from a refractive index of the light wavelength conversion unit.
前記透光性部材の屈折率は前記光波長変換部の屈折率よりも大きい、請求項3に記載のLED光源。   The LED light source according to claim 3, wherein a refractive index of the translucent member is larger than a refractive index of the light wavelength conversion unit. 前記透光性部材は、樹脂から形成されており、
前記透光性部材は、前記光波長変換部の前記側面と前記反射面との隙間を埋めている、請求項4に記載のLED光源。
The translucent member is made of resin,
The LED light source according to claim 4, wherein the translucent member fills a gap between the side surface of the light wavelength conversion unit and the reflection surface.
前記透光性部材は、レンズとして機能する請求項3から5の何れかに記載のLED光源。   The LED light source according to claim 3, wherein the translucent member functions as a lens. 前記光波長変換部は、前記蛍光物質を含有する樹脂から形成されている請求項1に記載のLED光源。   The LED light source according to claim 1, wherein the light wavelength conversion unit is formed of a resin containing the fluorescent material. 前記基板の主面に垂直な平面によって前記光波長変換部の側面における前記凹部を横切るように切り取った前記光波長変換部の断面は、前記凹部に対応する曲線を含む外形を有しており、
前記曲線の曲率半径Rを前記光波長変換部の厚さtで割った値R/tは0.5以上8.5以下の範囲内にある、請求項1から7のいずれかに記載のLED光源。
The cross section of the light wavelength conversion unit cut out across the recess on the side surface of the light wavelength conversion unit by a plane perpendicular to the main surface of the substrate has an outer shape including a curve corresponding to the recess,
The LED according to any one of claims 1 to 7, wherein a value R / t obtained by dividing a curvature radius R of the curve by a thickness t of the light wavelength conversion unit is in a range of 0.5 or more and 8.5 or less. light source.
前記光波長変換部の前記側面における凹部の深さdを前記光波長変換部の厚さtで割った値d/tは0.03以上0.5以下の範囲内にある、請求項1から6のいずれかに記載のLED光源。   The value d / t obtained by dividing the depth d of the concave portion on the side surface of the light wavelength conversion portion by the thickness t of the light wavelength conversion portion is in the range of 0.03 or more and 0.5 or less. The LED light source according to any one of 6. 前記光波長変換部の前記側面における凹部の深さdは0.01mm以上0.17mm以下の範囲内にある、請求項9に記載のLED光源。   The LED light source according to claim 9, wherein a depth d of the concave portion on the side surface of the light wavelength conversion unit is in a range of 0.01 mm to 0.17 mm. 前記光波長変換部は、略円柱形状を有し、前記略円柱形状の側面が前記凹状曲面部分を形成している、請求項1に記載のLED光源。   The LED light source according to claim 1, wherein the light wavelength conversion unit has a substantially cylindrical shape, and the side surface of the substantially cylindrical shape forms the concave curved surface portion. 前記光波長変換部は、略円錐台形状を有し、前記略円錐台形状の側面が前記凹状曲面部分を形成している、請求項1に記載のLED光源。   The LED light source according to claim 1, wherein the light wavelength conversion unit has a substantially truncated cone shape, and a side surface of the substantially truncated cone shape forms the concave curved surface portion. 基板の主面に配列された複数のLED素子と、
前記複数のLED素子の各々の側面を取り囲む複数の反射面と、
前記LED素子から放射された光を当該光の波長よりも長い波長の光に変換する蛍光物質を含み、各々が、対応する各LED素子を覆う複数の光波長変換部と、
各々が、対応する光波長変換部を覆う複数の透光性部材と、
を備えるLED光源であって、
各光波長変換部の側面は、少なくとも1つの凹状曲面部分を有し、
前記透光性部材は、前記光波長変換部の前記側面と前記反射面との隙間を埋めている、LED光源。
A plurality of LED elements arranged on the main surface of the substrate;
A plurality of reflective surfaces surrounding each side surface of the plurality of LED elements;
Including a fluorescent material that converts light emitted from the LED element into light having a wavelength longer than the wavelength of the light, and a plurality of light wavelength conversion units each covering the corresponding LED element;
A plurality of translucent members each covering a corresponding light wavelength converter;
An LED light source comprising:
The side surface of each light wavelength converter has at least one concave curved surface portion,
The translucent member is an LED light source that fills a gap between the side surface of the light wavelength conversion unit and the reflection surface.
樹脂パターンを基板上に形成するために用いられる印刷用版であって、
上面と、下面と、前記上面および下面をつなぐ少なくとも1つの貫通穴とを有するプレート状部材を備え、
前記プレート状部材における前記貫通穴の内壁面は、少なくとも前記貫通穴に充填された樹脂が硬化する間、前記貫通穴の中心部に向かって突出した凸状曲面を形成する、印刷用版。
A printing plate used for forming a resin pattern on a substrate,
A plate-like member having an upper surface, a lower surface, and at least one through hole connecting the upper surface and the lower surface;
The printing plate, wherein the inner wall surface of the through hole in the plate-shaped member forms a convex curved surface that protrudes toward the center of the through hole while at least the resin filled in the through hole is cured.
前記プレート状部材は、外力に応じて柔軟に形状が変化する材料から形成されている、請求項14に記載の印刷用版。   The printing plate according to claim 14, wherein the plate-like member is formed of a material whose shape changes flexibly according to an external force. 前記プレート状部材は弾性体から形成されている、請求項15に記載の印刷用版。   The printing plate according to claim 15, wherein the plate-like member is formed of an elastic body. 前記プレート状部材の上面および下面の少なくとも一方と接触するプレートを更に備えている、請求項15または16に記載の印刷用版。   The printing plate according to claim 15 or 16, further comprising a plate in contact with at least one of an upper surface and a lower surface of the plate-like member. 基板の主面に少なくとも1つのLED素子を実装する工程(A)と、前記LED素子から放射された光を当該光の波長よりも長い波長の光に変換する蛍光物質を含み、前記LED素子の少なくとも一部を覆う光波長変換部を前記基板上に形成する工程(B)とを含むLED光源の製造方法であって、
前記工程(B)は、前記光波長変換部の側面に少なくとも1つの凹状曲面部分を形成する工程を含む、LED光源の製造方法。
A step (A) of mounting at least one LED element on the main surface of the substrate; and a fluorescent material that converts light emitted from the LED element into light having a wavelength longer than the wavelength of the light, A step (B) of forming an optical wavelength conversion part covering at least a part on the substrate, and a manufacturing method of an LED light source,
The said process (B) is a manufacturing method of an LED light source including the process of forming at least 1 concave curved surface part in the side surface of the said light wavelength conversion part.
前記工程(B)は、
前記光波長変換部を構成する材料の孤立パターンを前記基板上に形成する工程(b1)と、
前記孤立パターンの側面を変形させて前記凹状曲面部分を形成する工程(b2)と、
を含む、請求項18に記載の製造方法。


The step (B)
A step (b1) of forming an isolated pattern of the material constituting the light wavelength conversion portion on the substrate;
A step (b2) of deforming a side surface of the isolated pattern to form the concave curved surface portion;
The manufacturing method of Claim 18 containing this.


JP2004246944A 2003-09-25 2004-08-26 LED light source and manufacturing method thereof Expired - Fee Related JP4896383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246944A JP4896383B2 (en) 2003-09-25 2004-08-26 LED light source and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003333211 2003-09-25
JP2003333211 2003-09-25
JP2004246944A JP4896383B2 (en) 2003-09-25 2004-08-26 LED light source and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2005123588A true JP2005123588A (en) 2005-05-12
JP2005123588A5 JP2005123588A5 (en) 2008-03-21
JP4896383B2 JP4896383B2 (en) 2012-03-14

Family

ID=34622009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246944A Expired - Fee Related JP4896383B2 (en) 2003-09-25 2004-08-26 LED light source and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4896383B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052436A (en) * 2005-08-19 2007-03-01 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Electronic flash, imaging device and method for producing flash of light having rectangular radiation pattern
JP2007123905A (en) * 2005-10-27 2007-05-17 Lg Innotek Co Ltd Light emitting diode element, its manufacturing method, and its anchoring structure
JP2007234968A (en) * 2006-03-02 2007-09-13 Nichia Chem Ind Ltd Light emitting device and manufacturing method of same
JP2009289816A (en) * 2008-05-27 2009-12-10 Kyocera Corp Light emitting device, and lighting system
JP2010010474A (en) * 2008-06-27 2010-01-14 Kyocera Corp Light emitting device
JP2010183061A (en) * 2009-01-08 2010-08-19 Showa Denko Kk Light-emitting device and lighting system
JP2011014555A (en) * 2009-06-30 2011-01-20 Nichia Corp Light-emitting device
US7884380B2 (en) 2007-06-06 2011-02-08 Epistar Corporation Semiconductor light emitting device
JP2011035029A (en) * 2009-07-30 2011-02-17 Kyocera Corp Light-emitting device
JP2013084702A (en) * 2011-10-07 2013-05-09 Fujifilm Corp Semiconductor light emitting element and manufacturing method of the same
JP2014063832A (en) * 2012-09-20 2014-04-10 Stanley Electric Co Ltd Semiconductor light-emitting device and manufacturing method of the same
US9312452B2 (en) 2010-10-22 2016-04-12 Osram Opto Semiconductors Gmbh Method for producing a conversion lamina and conversion lamina
CN110808326A (en) * 2018-08-06 2020-02-18 日亚化学工业株式会社 Light emitting device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031548A (en) * 1998-07-09 2000-01-28 Stanley Electric Co Ltd Surface mount light-emitting diode and its manufacture
JP2001196640A (en) * 2000-01-12 2001-07-19 Sharp Corp Side light emitting led device and its manufacturing method
JP2001298216A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Surface-mounting semiconductor light-emitting device
JP2003152229A (en) * 2001-11-16 2003-05-23 Rohm Co Ltd Semiconductor light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031548A (en) * 1998-07-09 2000-01-28 Stanley Electric Co Ltd Surface mount light-emitting diode and its manufacture
JP2001196640A (en) * 2000-01-12 2001-07-19 Sharp Corp Side light emitting led device and its manufacturing method
JP2001298216A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Surface-mounting semiconductor light-emitting device
JP2003152229A (en) * 2001-11-16 2003-05-23 Rohm Co Ltd Semiconductor light emitting device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383874B1 (en) 2005-08-19 2014-04-10 인텔렉추얼디스커버리 주식회사 Electronic flash, imaging device and method for producing a flash of light having a rectangular radiation pattern
JP2007052436A (en) * 2005-08-19 2007-03-01 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Electronic flash, imaging device and method for producing flash of light having rectangular radiation pattern
KR101383872B1 (en) 2005-08-19 2014-04-22 인텔렉추얼디스커버리 주식회사 Electronic flash, imaging device and method for producing a flash of light having a rectangular radiation pattern
JP2007123905A (en) * 2005-10-27 2007-05-17 Lg Innotek Co Ltd Light emitting diode element, its manufacturing method, and its anchoring structure
US8343784B2 (en) 2005-10-27 2013-01-01 Lg Innotek Co., Ltd. Light emitting diode device, manufacturing method of the light emitting diode device and mounting structure of the light emitting diode device
JP2007234968A (en) * 2006-03-02 2007-09-13 Nichia Chem Ind Ltd Light emitting device and manufacturing method of same
USRE47892E1 (en) 2007-06-06 2020-03-03 Epistar Corporation Semiconductor light emitting device
US7884380B2 (en) 2007-06-06 2011-02-08 Epistar Corporation Semiconductor light emitting device
US8148196B2 (en) 2007-06-06 2012-04-03 Epistar Corporation Semiconductor light emitting device
JP2009289816A (en) * 2008-05-27 2009-12-10 Kyocera Corp Light emitting device, and lighting system
JP2010010474A (en) * 2008-06-27 2010-01-14 Kyocera Corp Light emitting device
JP2010183061A (en) * 2009-01-08 2010-08-19 Showa Denko Kk Light-emitting device and lighting system
JP2011014555A (en) * 2009-06-30 2011-01-20 Nichia Corp Light-emitting device
JP2011035029A (en) * 2009-07-30 2011-02-17 Kyocera Corp Light-emitting device
US9312452B2 (en) 2010-10-22 2016-04-12 Osram Opto Semiconductors Gmbh Method for producing a conversion lamina and conversion lamina
US9691946B2 (en) 2010-10-22 2017-06-27 Osram Opto Semiconductors Gmbh Method for producing a conversion lamina and conversion lamina
US10164157B2 (en) 2010-10-22 2018-12-25 Osram Opto Semiconductors Gmbh Method for producing a conversion lamina and conversion lamina
JP2013084702A (en) * 2011-10-07 2013-05-09 Fujifilm Corp Semiconductor light emitting element and manufacturing method of the same
JP2014063832A (en) * 2012-09-20 2014-04-10 Stanley Electric Co Ltd Semiconductor light-emitting device and manufacturing method of the same
CN110808326A (en) * 2018-08-06 2020-02-18 日亚化学工业株式会社 Light emitting device and method for manufacturing the same
CN110808326B (en) * 2018-08-06 2024-04-05 日亚化学工业株式会社 Light emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
JP4896383B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
US7397177B2 (en) LED lamp and method for manufacturing the same
JP5903672B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4896383B2 (en) LED light source and manufacturing method thereof
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
EP2528122A1 (en) Light emitting device
JP2011060967A (en) Illumination device
JP2010514187A (en) Light emitting device having tangible wavelength converter
EP2565947A2 (en) Light-emitting device and illumination device using same
KR20140006971A (en) A light emitting module, a lamp, a luminaire and a display device
JP2012234906A (en) Light-emitting device and luminaire using the same
KR102307214B1 (en) Led module with uniform phosphor illumination
JP2010225791A (en) Semiconductor light emitting device
US20100327294A1 (en) Led package structure for increasing light-emitting efficiency and controlling light-projecting angle and method for manufacturing the same
JP3138795U (en) Semiconductor light emitting device and planar light source using semiconductor light emitting device
JP2008147610A (en) Light emitting device
JP2006278675A (en) Semiconductor light-emitting device
JP2010129202A (en) Led illuminating device
JP2007123576A (en) Light emitting device and illumination apparatus
KR101653395B1 (en) Multi-chip led package
JP2009206228A (en) Side emission type light emitting device and manufacturing method thereof, and lighting device
JP2013125808A (en) Light-emitting module
KR20160040384A (en) Light emitting device
JP5942263B2 (en) Light emitting module and illumination light source using the light emitting module
JP2005197423A (en) Led light source
JP5187749B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4896383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees