JP2005121246A - Freezer - Google Patents

Freezer Download PDF

Info

Publication number
JP2005121246A
JP2005121246A JP2003353538A JP2003353538A JP2005121246A JP 2005121246 A JP2005121246 A JP 2005121246A JP 2003353538 A JP2003353538 A JP 2003353538A JP 2003353538 A JP2003353538 A JP 2003353538A JP 2005121246 A JP2005121246 A JP 2005121246A
Authority
JP
Japan
Prior art keywords
compressor
supercooling
valve
temperature
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003353538A
Other languages
Japanese (ja)
Other versions
JP3986487B2 (en
Inventor
Keisuke Tanaka
啓介 田中
Eiji Kamiyoshi
英次 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003353538A priority Critical patent/JP3986487B2/en
Publication of JP2005121246A publication Critical patent/JP2005121246A/en
Application granted granted Critical
Publication of JP3986487B2 publication Critical patent/JP3986487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezer enlarging a capacity adjusting range of a compressor, and capable of preventing a damage accident and an abnormal drop of its delivery temperature. <P>SOLUTION: The freezer 1A is provided with a refrigerant circulation passage I interposed with the capacity-adjustable oil injection type compressor 11, an oil recovery unit 12, a condenser 13, a supercooler 14, a main expansion valve 16, and an evaporator 17. A branch passage II branching from the refrigerant circulation passage I and passing through an opening/closing valve 23 for supercooling and an expansion valve 24 for supercooling passes through the supercooler 14, and the branch passage II is communicated with an intermediate pressure part of the compressor 11. A control part 22 is provided for carrying out control of controlling a rotational frequency of a motor 18 for the compressor via an inverter 21, closing the opening/closing valve 23 for supercooling when the rotational frequency in a dropping process reaches a first threshold that is larger than a value causing an abnormal phenomenon in the oil recovery unit 12, and opening the opening/closing valve 23 for supercooling when the rotational frequency in a rising process reaches a second threshold that is larger than the first threshold not causing punching of opening/closing change-over of the opening/closing valve 23 for supercooling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、容量調整可能な油冷式圧縮機及び過冷却器を用いた冷凍装置に関するものである。   The present invention relates to a capacity-adjustable oil-cooled compressor and a refrigeration apparatus using a supercooler.

従来、容量調整可能な油冷式圧縮機及び過冷却器を用いた冷凍装置は公知である(例えば、特許文献1参照。)
特開2003−021089号公報
Conventionally, a refrigeration apparatus using an oil-cooled compressor and a supercooler with adjustable capacity is known (see, for example, Patent Document 1).
JP 2003-021089 A

特許文献1に記載の冷凍装置は、容量調整可能な油冷式圧縮機に続いて、油回収器、凝縮器、過冷却器、主膨張弁及び蒸発器が介設された冷媒循環流路を備え、上記過冷却器には、上記冷媒循環流路における上記凝縮器と上記過冷却器との間の部分から分岐し、過冷却用膨張弁を経由した分岐流路が通過し、この分岐流路は上記圧縮機の中間圧力部に通じるように設けられた冷凍装置が開示されている。そして、この冷凍装置では、過冷却器を使用した状態下で、圧縮機駆動用モータの回転数をインバータを介して制御することにより上記容量調整が行われるようになっている。   The refrigeration apparatus described in Patent Document 1 includes a refrigerant circulation channel in which an oil recovery unit, a condenser, a supercooler, a main expansion valve, and an evaporator are provided following an oil-cooled compressor capable of adjusting capacity. The subcooler is branched from a portion between the condenser and the supercooler in the refrigerant circulation flow path, and a branch flow path via a supercooling expansion valve passes through the branch flow. A refrigerating apparatus is disclosed in which the passage is provided so as to communicate with the intermediate pressure portion of the compressor. In this refrigeration apparatus, the capacity adjustment is performed by controlling the rotation speed of the compressor driving motor through an inverter under the condition of using the supercooler.

圧縮機の容量調整には、上記以外に、圧縮機内におけるガス圧縮空間の容積を変えるピストン弁、スライド弁或いはリフト弁が用いられることもあり、これらの弁による容量調整は、上記ガス圧縮空間の容積が最大である全負荷容量の場合を100%とすると、100〜50%の間で容量調整が行われていた。ところが、近年、この容量調整の範囲をより拡大したいという要求の高まりとともに、上記インバータを用いた容量調整が注目されるようになってきた。このため、上記ピストン弁、スライド弁或いはリフト弁による容量調整の範囲外である50%以下の容量調整がインバータによりなされるようになり、以下に述べる新たな問題が生じてきた。   For the capacity adjustment of the compressor, in addition to the above, a piston valve, a slide valve, or a lift valve that changes the volume of the gas compression space in the compressor may be used. Assuming that the total load capacity with the maximum volume is 100%, capacity adjustment was performed between 100% and 50%. However, in recent years, with the increasing demand for expanding the capacity adjustment range, capacity adjustment using the inverter has been attracting attention. For this reason, capacity adjustment of 50% or less, which is outside the range of capacity adjustment by the piston valve, slide valve or lift valve, has been made by the inverter, and a new problem described below has arisen.

上述した従来の冷凍装置の場合、容量調整中も過冷却器の使用が続けられており、容量調整の結果、過冷却器の負荷が低下することにより、この過冷却器に使用された中間圧力部への戻りガスの温度が低下し、圧縮機の吐出温度も低下してゆく。そして、これに伴い、油回収器内の油中に多量の冷媒が溶解し、油回収器内に回収した油のフォーミングや異常な油面上昇が引き起こされ、圧縮機の損傷事故を招くという問題が生じる。
本発明は、斯かる従来の問題をなくすことを課題としてなされたもので、圧縮機の容量調整範囲を拡大しつつ、圧縮機の吐出温度の異常低下、圧縮機の損傷事故の発生防止を可能とした冷凍装置を提供しようとするものである。
In the case of the conventional refrigeration apparatus described above, the use of the subcooler is continued during the capacity adjustment, and as a result of the capacity adjustment, the load on the subcooler decreases, so that the intermediate pressure used for this subcooler is reduced. The temperature of the return gas to the section decreases, and the discharge temperature of the compressor also decreases. Along with this, a large amount of refrigerant dissolves in the oil in the oil collector, causing the oil collected in the oil collector to form or abnormally rise in the oil level, resulting in a compressor damage accident. Occurs.
The present invention has been made in order to eliminate such a conventional problem, and it is possible to prevent an abnormal decrease in the discharge temperature of the compressor and the occurrence of a compressor damage accident while expanding the capacity adjustment range of the compressor. It is intended to provide a refrigeration apparatus.

上記課題を解決するために、本発明は、容量調整可能な油冷式圧縮機に続いて、少なくとも油回収器、凝縮器、過冷却器、主膨張弁及び蒸発器が介設された冷媒循環流路を備え、上記過冷却部には、上記冷媒循環流路における上記凝縮器と上記主膨張弁との間の部分から分岐し、過冷却用開閉弁、過冷却用膨張弁を経由した分岐流路が通過し、この分岐流路は上記圧縮機の中間圧力部に通じるように設けられた冷凍装置において、上記圧縮機を駆動するモータの回転数をインバータを介して制御する制御部であって、低下過程にある上記回転数が第1閾値に達すると上記過冷却用開閉弁を閉じる一方、上昇過程にある上記回転数が上記第1閾値よりも大きい第2閾値に達すると上記過冷却用開閉弁を開く制御をする制御部を設けた構成とした。   In order to solve the above-described problems, the present invention provides a refrigerant circulation in which at least an oil recovery unit, a condenser, a supercooler, a main expansion valve, and an evaporator are interposed after an oil-cooled compressor capable of adjusting capacity. A flow path, and the subcooling section branches from a portion between the condenser and the main expansion valve in the refrigerant circulation flow path, and branches via a supercooling on-off valve and a supercooling expansion valve In the refrigeration system provided so as to communicate with the intermediate pressure part of the compressor, the branch flow path is a control unit that controls the rotation speed of the motor that drives the compressor via an inverter. When the rotational speed in the lowering process reaches the first threshold value, the supercooling on-off valve is closed. On the other hand, when the rotational speed in the rising process reaches the second threshold value larger than the first threshold value, the supercooling is stopped. The control part that controls to open the on-off valve is provided.

また、本発明は、容量調整可能な油冷式圧縮機に続いて、少なくとも油回収器、凝縮器、過冷却器、主膨張弁及び蒸発器が介設された冷媒循環流路を備え、上記過冷却器には、上記冷媒循環流路における上記凝縮器と上記主膨張弁との間の部分から分岐し、過冷却用開閉弁、過冷却用膨張弁を経由した分岐流路が通過し、この分岐流路は上記圧縮機の中間圧力部に通じるように設けられた冷凍装置において、上記圧縮機の吐出圧力を検出する圧力検出器と、上記圧縮機の吐出温度を検出する温度検出器と、上記圧縮機を駆動するモータの回転数をインバータを介して制御する制御部であって、上記圧力検出器から検出圧力を示す圧力信号及び上記温度検出器から検出温度を示す温度信号を受けて、上記吐出圧力に対応する吐出圧力飽和温度を求めるとともに、吐出温度から上記吐出圧力飽和温度を差し引いた温度差を求め、減少過程にある上記温度差が第1閾値に達すると、上記過冷却用開閉弁を閉じる一方、増大過程にある上記温度差が上記第1閾値よりも大きい第2閾値に達すると上記過冷却用開閉弁を開く制御をする制御部とを設けた構成とした。   Further, the present invention includes a refrigerant circulation passage in which at least an oil recovery unit, a condenser, a supercooler, a main expansion valve, and an evaporator are interposed following an oil-cooled compressor capable of adjusting capacity. The subcooler branches from a portion between the condenser and the main expansion valve in the refrigerant circulation flow path, and a branch flow path through the supercooling on-off valve and the supercooling expansion valve passes through. In the refrigeration apparatus provided so that the branch flow path communicates with the intermediate pressure portion of the compressor, a pressure detector that detects the discharge pressure of the compressor, and a temperature detector that detects the discharge temperature of the compressor A control unit for controlling the rotational speed of a motor for driving the compressor via an inverter, receiving a pressure signal indicating a detected pressure from the pressure detector and a temperature signal indicating a detected temperature from the temperature detector; The discharge pressure saturation temperature corresponding to the above discharge pressure The temperature difference obtained by subtracting the discharge pressure saturation temperature from the discharge temperature is obtained. When the temperature difference in the decreasing process reaches the first threshold value, the overcooling on-off valve is closed while the temperature difference in the increasing process is closed. When the temperature difference reaches a second threshold value that is larger than the first threshold value, a control unit is provided that controls to open the supercooling on-off valve.

さらに、本発明は、上記発明の構成に加えて、上記第1閾値が、上記油回収器内での異常現象を引き起こし始める値よりも大きい構成とした。   Furthermore, in addition to the structure of the said invention, this invention set it as the structure whose said 1st threshold value is larger than the value which begins to cause the abnormal phenomenon in the said oil recovery device.

さらに、本発明は、上記発明の構成に加えて、上記第2閾値が、上記過冷却用開閉弁の開閉切換えのハンチングが生じることのない程度に、上記第1閾値よりも大きい構成とした。   Furthermore, in addition to the configuration of the present invention, the present invention has a configuration in which the second threshold value is larger than the first threshold value to such an extent that hunting for opening / closing switching of the overcooling on / off valve does not occur.

上記構成からなる本発明に斯かる冷凍装置によれば、圧縮機の容量を拡大し、特に50%以下の容量調整時においても、圧縮機の吐出温度の異常低下は生じず、油回収器内に回収した油のフォーミングや異常な油面上昇の発生及びこれに伴う圧縮機の損傷事故の発生防止が可能になるという効果を奏する。
また、これに加えて、圧縮機の吐出圧力及び吐出温度に基づく制御の採用により、過冷却器の能力を極限まで生かした圧縮機の容量調整が可能になるという効果を奏する。
According to the refrigeration apparatus according to the present invention having the above-described configuration, the capacity of the compressor is increased, and even when the capacity is adjusted to 50% or less, an abnormal drop in the discharge temperature of the compressor does not occur. In addition, it is possible to prevent the occurrence of the formation of the recovered oil, the occurrence of an abnormal oil level rise, and the accompanying damage accident of the compressor.
In addition, by adopting control based on the discharge pressure and discharge temperature of the compressor, there is an effect that the capacity of the compressor can be adjusted by making the best use of the capacity of the subcooler.

次に、本発明の一実施形態を図面にしたがって説明する。
図1は、本発明に係る冷凍装置1Aを示し、冷凍装置1Aは、容量調整可能な油冷式圧縮機11に続いて、油回収器12、凝縮器13、過冷却器14、主開閉弁15、主膨張弁16及び蒸発器17が介設された冷媒循環流路Iを備えている。圧縮機11は、例えばスクリュ圧縮機であり、これを駆動するモータ18と電源19との間にはインバータ21が介設されている。そして、モータ18の回転数はインバータ21を介して制御部22により制御される。過冷却器14には、冷媒循環流路Iにおける過冷却器14と主膨張弁16との間の部分から分岐し、過冷却用開閉弁23、過冷却用膨張弁24を経由した分岐流路IIが通過し、この分岐流路IIは圧縮機11の中間圧力部に通じている。さらに、油回収器12内には、油分離エレメント12aが設けられ、その下部は油溜まり部12bになっており、この油溜まり部12bの下部からは油冷却器25が介設され、圧縮機11内の圧縮空間部、軸受・軸封部等の給油箇所に至る油流路IIIが延びている。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a refrigeration apparatus 1A according to the present invention. The refrigeration apparatus 1A has an oil-cooled compressor 11, an oil-cooled compressor 12, a condenser 13, a supercooler 14, and a main on-off valve. 15, a refrigerant circulation flow path I in which a main expansion valve 16 and an evaporator 17 are interposed is provided. The compressor 11 is, for example, a screw compressor, and an inverter 21 is interposed between a motor 18 that drives the compressor 11 and a power source 19. The rotational speed of the motor 18 is controlled by the control unit 22 via the inverter 21. The subcooler 14 branches from the portion between the supercooler 14 and the main expansion valve 16 in the refrigerant circulation channel I, and passes through the supercooling on-off valve 23 and the supercooling expansion valve 24. II passes, and this branch channel II communicates with the intermediate pressure portion of the compressor 11. Further, an oil separation element 12a is provided in the oil recovery unit 12, and a lower part thereof is an oil reservoir 12b. An oil cooler 25 is interposed from the lower part of the oil reservoir 12b, and the compressor The oil flow path III which extends to oil supply locations, such as the compression space part in 11 and a bearing and a shaft seal part, is extended.

そして、上記構成からなる冷凍装置1Aにおいて、圧縮機11に吸込まれた冷媒ガスは、分岐流路IIからの気液混合状態の冷媒と油流路IIIからの油の注入下で、圧縮され、油を随伴して油回収器12へと吐出される。油回収器12では、油分離エレメント12aで冷媒ガスから油が分離され、冷媒ガスは凝縮器13に向けて送り出される一方、分離された油は一旦油溜まり部12bに溜められた後、油流路IIIの油冷却器25で冷却された圧縮機11内の上記給油箇所に導かれる。   In the refrigeration apparatus 1A having the above-described configuration, the refrigerant gas sucked into the compressor 11 is compressed under the injection of the gas-liquid mixed refrigerant from the branch flow path II and the oil from the oil flow path III, The oil is discharged to the oil collector 12 with accompanying oil. In the oil recovery device 12, oil is separated from the refrigerant gas by the oil separation element 12a, and the refrigerant gas is sent out toward the condenser 13, while the separated oil is once stored in the oil reservoir 12b, It is led to the oil supply point in the compressor 11 cooled by the oil cooler 25 in the path III.

凝縮器13に導かれた冷媒ガスは、ここで熱を奪われて凝縮し、冷媒液となって過冷却器14に至る。さらに、この冷媒液は過冷却器14を通過した後、主開閉弁15から主膨張弁16へと流動してゆく冷媒液と、分岐流路IIに分流してゆく冷媒液とに分かれる。この分岐流路IIに分流した冷媒液は過冷却用開閉弁23、過冷却用膨張弁24を経て断熱膨張させられて温度を下げ、気液混合状態となって、過冷却器14を通過する。そして、この過冷却器14を通過する間に、冷媒循環流路Iと分岐流路IIとの間の熱交換の結果、分流した冷媒は冷媒循環流路I中の冷媒から熱を奪い、これを過冷却状態にし、過冷却器14を出て、上記中間圧力部に合流する。なお、中間圧力部とは、圧縮機11内の吸込圧力と吐出圧力との間の圧力状態にある冷媒作動空間を意味し、圧縮機11が多段に配列した圧縮機本体を備えるタイプである場合、中間圧力部には圧縮機本体間の冷媒作動空間も含まれる。   The refrigerant gas led to the condenser 13 is deprived of heat here and condensed to become a refrigerant liquid and reach the supercooler 14. Further, after passing through the supercooler 14, the refrigerant liquid is divided into a refrigerant liquid that flows from the main on-off valve 15 to the main expansion valve 16, and a refrigerant liquid that diverts to the branch flow path II. The refrigerant liquid divided into the branch channel II is adiabatically expanded through the supercooling on-off valve 23 and the supercooling expansion valve 24 to lower the temperature, and is in a gas-liquid mixed state and passes through the supercooler 14. . As a result of heat exchange between the refrigerant circulation channel I and the branch channel II while passing through the supercooler 14, the divided refrigerant takes heat away from the refrigerant in the refrigerant circulation channel I. Is brought into a supercooled state, exits the supercooler 14 and joins the intermediate pressure portion. The intermediate pressure part means a refrigerant working space in a pressure state between the suction pressure and the discharge pressure in the compressor 11, and the compressor 11 is a type including a compressor body arranged in multiple stages. The intermediate pressure portion also includes a refrigerant working space between the compressor bodies.

過冷却器14を通過した過冷却状態の冷媒液は、主開閉弁15、主膨張弁16を経て、断熱膨張により温度を下げ、気液混合状態となって蒸発器17に至る。さらに、この冷媒は蒸発器17にて周囲から熱を奪うことにより蒸発し、圧縮機11に戻り、上記同様、循環を繰返す。   The refrigerant liquid in the supercooled state that has passed through the supercooler 14 passes through the main on-off valve 15 and the main expansion valve 16 to lower the temperature by adiabatic expansion and enters a vapor-liquid mixed state to reach the evaporator 17. Further, the refrigerant evaporates by taking heat from the surroundings in the evaporator 17, returns to the compressor 11, and repeats the circulation as described above.

ところで、この冷凍装置1Aでは、インバータ21を介して制御部22によりモータ19の回転数が制御され、これにより圧縮機11の容量調整がなされるとともに、以下に詳述するように、この容量調整の程度に応じて過冷却器14を運転状態と停止状態のいずれかに切換え可能に形成されている。   By the way, in this refrigeration apparatus 1A, the rotational speed of the motor 19 is controlled by the control unit 22 via the inverter 21, and thereby the capacity of the compressor 11 is adjusted and, as will be described in detail below, this capacity adjustment Depending on the degree, the subcooler 14 can be switched between an operating state and a stopped state.

モータ19の回転数が大きく、圧縮機11が比較的大きい容量状態に維持されている場合には、過冷却器14を運転状態にしていてもよいが、圧縮機11の容量が低下していった場合、過冷却器14を運転状態にしたままでは問題が生じる。圧縮機11が、モータ19の回転数を最大として最大容量の状態にある場合を容量100%とすると、例えば、過冷却器14の運転状態下で、100〜50%の範囲内で容量調整を行っている限り問題がなくても、過冷却器14の運転状態下で、容量を50%以下とした場合、圧縮機11の吐出温度が異常に低下し、油回収器12内に回収した油のフォーミング現象や油面の異常上昇を招くことがある。   When the rotational speed of the motor 19 is large and the compressor 11 is maintained in a relatively large capacity state, the supercooler 14 may be in an operating state, but the capacity of the compressor 11 is reduced. In such a case, a problem occurs if the supercooler 14 is left in an operating state. Assuming that the compressor 11 is in the state of maximum capacity with the rotation speed of the motor 19 being the maximum, the capacity is adjusted within a range of 100 to 50% under the operating state of the subcooler 14, for example. Even if there is no problem as long as the operation is performed, when the capacity is 50% or less under the operation state of the subcooler 14, the discharge temperature of the compressor 11 is abnormally decreased, and the oil recovered in the oil recovery device 12 Forming phenomenon and abnormal oil level rise may occur.

そこで、この冷凍装置1Aでは、図2(横軸:モータ回転数r、縦軸:過冷却用開閉弁の作動状態)に示すように、モータ19の回転数が、低下過程にある場合において、吐出温度の異常低下による上記フォーミング現象、上記油面の異常上昇といた油回収器12内での異常現象を引き起こし始める値よりも大きい第1閾値r1に達すると制御部22により過冷却用開閉弁23を閉じるように制御させ、過冷却器14を停止状態にするようになっている。これにより、圧縮機11の吐出温度の異常低下は阻止され、上記異常現象の発生は回避される。これに対して、モータ19の回転数が、上昇過程にある場合において、過冷却用開閉弁23の開閉切換えのハンチングが生じることのない第1閾値r1よりも大きい第2閾値r2に達すると制御部22により過冷却用開閉弁23を開くように制御させ、過冷却器14を運転状態にするようになっている。この結果、上記異常現象の発生に伴う圧縮機11の損傷事故の発生も回避され、かつ圧縮機11の容量調整可能な範囲が拡大され、約25%程度までの容量調整が可能となる。   Therefore, in this refrigeration apparatus 1A, as shown in FIG. 2 (horizontal axis: motor rotation speed r, vertical axis: operating state of the supercooling on-off valve), when the rotation speed of the motor 19 is in a decreasing process, When the first threshold value r1 larger than the value at which the forming phenomenon due to the abnormal drop of the discharge temperature, the abnormal rise of the oil level and the abnormal phenomenon in the oil recovery unit 12 starts to occur is reached, the controller 22 causes the supercooling on-off valve. 23 is controlled to be closed, and the supercooler 14 is stopped. Thereby, the abnormal drop of the discharge temperature of the compressor 11 is prevented, and the occurrence of the abnormal phenomenon is avoided. On the other hand, when the rotational speed of the motor 19 is in an increasing process, the control is performed when the motor reaches a second threshold value r2 that is larger than the first threshold value r1 at which the hunting for opening / closing switching of the overcooling on / off valve 23 does not occur. The supercooling on / off valve 23 is controlled to be opened by the section 22 so that the supercooler 14 is in an operating state. As a result, the occurrence of a damage accident of the compressor 11 due to the occurrence of the abnormal phenomenon is avoided, the range in which the capacity of the compressor 11 can be adjusted is expanded, and the capacity can be adjusted up to about 25%.

図3は、本発明に係る別の冷凍装置1Bを示し、図1に示す冷凍装置1Aと共通する図3中の部分については、互いに同一番号を付して説明を省略する。
この冷凍装置1Bでは、圧縮機11の吐出圧力を検出し、検出圧力を示す圧力信号を制御部22に入力する圧力検出器26と圧縮機11の吐出温度を検出し、検出温度を示す温度信号を制御部22に入力する温度検出器27とが設けられている。
FIG. 3 shows another refrigeration apparatus 1B according to the present invention, and portions in FIG. 3 that are common to the refrigeration apparatus 1A shown in FIG.
In the refrigeration apparatus 1B, the discharge pressure of the compressor 11 is detected, the pressure signal 26 indicating the detected pressure is input to the control unit 22, the discharge temperature of the compressor 11 is detected, and the temperature signal indicating the detected temperature. And a temperature detector 27 for inputting the signal to the control unit 22.

そして、制御部22において、入力された圧力信号に基づき、吐出圧力に対応する吐出圧力飽和温度を求めるとともに、この吐出圧力飽和温度から上記吐出温度を差し引いた温度差Δt(=吐出温度−吐出圧力飽和温度)を求め、図4(横軸:温度差Δt、縦軸:過冷却用開閉弁の作動状態)に示すように、この温度差Δtが減少過程にある場合において、上記温度差が油回収器12内での異常現象を引き起こし始める値よりも大きい第1閾値Δt1、例えば10℃に達すると制御部により過冷却用開閉弁23を閉じるように制御させ、過冷却器14を停止状態にするようになっている。これにより、圧縮機11の吐出温度の異常低下は阻止され、上記異常現象の発生は回避される。これに対して、上記温度差Δtが増大過程にある場合において、過冷却用開閉弁23の開閉切換えのハンチングが生じることのない第1閾値Δt1よりも大きい第2閾値Δt2、例えば15℃に達すると制御部22により過冷却用開閉弁23を開くように制御させ、過冷却器14を運転状態にするようになっている。この結果、上述した圧縮機11の損傷事故発生の回避、容量調整可能な範囲が拡大に加えて、過冷却器14の能力を極限まで利用した制御が可能となる。   Then, the control unit 22 obtains a discharge pressure saturation temperature corresponding to the discharge pressure based on the input pressure signal, and a temperature difference Δt (= discharge temperature−discharge pressure) obtained by subtracting the discharge temperature from the discharge pressure saturation temperature. As shown in FIG. 4 (horizontal axis: temperature difference Δt, vertical axis: operating state of the supercooling on-off valve), when this temperature difference Δt is decreasing, the temperature difference is When a first threshold value Δt1, which is larger than a value at which an abnormal phenomenon in the recovery device 12 starts to occur, for example, 10 ° C., is reached, the control unit controls the supercooling on-off valve 23 to be closed, and the supercooler 14 is stopped. It is supposed to do. Thereby, the abnormal drop of the discharge temperature of the compressor 11 is prevented, and the occurrence of the abnormal phenomenon is avoided. On the other hand, when the temperature difference Δt is increasing, the second threshold value Δt2, for example, 15 ° C., which is larger than the first threshold value Δt1 at which the hunting for switching of the overcooling on / off valve 23 does not occur. Then, the control part 22 is controlled to open the supercooling on-off valve 23, and the supercooler 14 is put into an operating state. As a result, in addition to avoiding the occurrence of a damage accident of the compressor 11 and expanding the range in which the capacity can be adjusted, control using the capacity of the subcooler 14 to the maximum is possible.

なお、本発明は、図1及び2中、二点鎖線による四角形の枠で囲んで示すように、過冷却器14を通過する分岐流路IIを過冷却器14と主膨張弁16との間で分岐させた冷凍装置1A及び1Bに限定するものでなく、図5に示すように、分岐流路IIを凝縮器13と過冷却器14との間で分岐させた冷凍装置をも含むものである。
なお、図5中、図1及び2と共通する部分については互いに同一番号が付してある。
In the present invention, as shown in FIGS. 1 and 2, a branch flow path II passing through the supercooler 14 is provided between the supercooler 14 and the main expansion valve 16, as shown by being surrounded by a square frame by a two-dot chain line. It is not limited to the refrigeration apparatuses 1A and 1B branched at, but also includes a refrigeration apparatus where the branch channel II is branched between the condenser 13 and the subcooler 14, as shown in FIG.
In FIG. 5, parts that are the same as those in FIGS. 1 and 2 are given the same reference numerals.

本発明に係る冷凍装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the freezing apparatus which concerns on this invention. 図1に示す冷凍装置における圧縮機のモータ回転数と過冷却用開閉弁の作動状態との関係を示す図である。It is a figure which shows the relationship between the motor rotation speed of the compressor in the freezing apparatus shown in FIG. 1, and the operating state of the on-off valve for supercooling. 本発明に係る別の冷凍装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of another freezing apparatus which concerns on this invention. 図2に示す冷凍装置における圧縮機の吐出側での温度差(=吐出温度−吐出圧力飽和温度)と過冷却用開閉弁の作動状態との関係を示す図である。It is a figure which shows the relationship between the temperature difference (= discharge temperature-discharge pressure saturation temperature) by the side of discharge of the compressor in the freezing apparatus shown in FIG. 2, and the operating state of the on-off valve for supercooling. 本発明における過冷却器を通過する分岐流路の他の構成を示すブロック図である。It is a block diagram which shows the other structure of the branch flow path which passes the subcooler in this invention.

符号の説明Explanation of symbols

1A、1B 冷凍装置
11 圧縮機
12 油回収器
12a 油分離エレメント
12b 油溜まり部
13 凝縮器
14 過冷却器
15 主開閉弁
16 主膨張弁
17 蒸発器
18 モータ
19 電源
21 インバータ
22 制御部
23 過冷却用開閉弁
24 過冷却用膨張弁
25 油冷却器
26 圧力検出器
27 温度検出器
I 冷媒循環流路
II 分岐流路
III 油流路
1A, 1B Refrigeration apparatus 11 Compressor 12 Oil recovery unit 12a Oil separation element 12b Oil reservoir 13 Condenser 14 Supercooler 15 Main on / off valve 16 Main expansion valve 17 Evaporator 18 Motor 19 Power supply 21 Inverter 22 Control unit 23 Supercooling Open / close valve 24 Supercooling expansion valve 25 Oil cooler 26 Pressure detector 27 Temperature detector
I Refrigerant circulation flow path
II Branch channel
III Oil flow path

Claims (4)

容量調整可能な油冷式圧縮機に続いて、少なくとも油回収器、凝縮器、過冷却器、主膨張弁及び蒸発器が介設された冷媒循環流路を備え、
上記過冷却部には、上記冷媒循環流路における上記凝縮器と上記主膨張弁との間の部分から分岐し、過冷却用開閉弁、過冷却用膨張弁を経由した分岐流路が通過し、
この分岐流路は上記圧縮機の中間圧力部に通じるように設けられた冷凍装置において、
上記圧縮機を駆動するモータの回転数をインバータを介して制御する制御部であって、低下過程にある上記回転数が第1閾値に達すると上記過冷却用開閉弁を閉じる一方、上昇過程にある上記回転数が上記第1閾値よりも大きい第2閾値に達すると上記過冷却用開閉弁を開く制御をする制御部を設けたことを特徴とする冷凍装置。
Following the oil-cooled compressor whose capacity can be adjusted, a refrigerant circulation passage having at least an oil recovery unit, a condenser, a supercooler, a main expansion valve, and an evaporator,
The supercooling section branches from a portion of the refrigerant circulation passage between the condenser and the main expansion valve, and a branch passage through the supercooling on-off valve and the supercooling expansion valve passes. ,
In the refrigeration apparatus provided so that this branch flow path leads to the intermediate pressure part of the compressor,
A control unit that controls the rotational speed of a motor that drives the compressor through an inverter, and closes the overcooling on-off valve when the rotational speed in the decreasing process reaches a first threshold, while A refrigeration apparatus comprising: a control unit configured to control to open the overcooling on-off valve when a certain number of rotations reaches a second threshold value greater than the first threshold value.
容量調整可能な油冷式圧縮機に続いて、少なくとも油回収器、凝縮器、過冷却器、主膨張弁及び蒸発器が介設された冷媒循環流路を備え、
上記過冷却器には、上記冷媒循環流路における上記凝縮器と上記主膨張弁との間の部分から分岐し、過冷却用開閉弁、過冷却用膨張弁を経由した分岐流路が通過し、
この分岐流路は上記圧縮機の中間圧力部に通じるように設けられた冷凍装置において、
上記圧縮機の吐出圧力を検出する圧力検出器と、
上記圧縮機の吐出温度を検出する温度検出器と、
上記圧縮機を駆動するモータの回転数をインバータを介して制御する制御部であって、上記圧力検出器から検出圧力を示す圧力信号及び上記温度検出器から検出温度を示す温度信号を受けて、上記吐出圧力に対応する吐出圧力飽和温度を求めるとともに、吐出温度から上記吐出圧力飽和温度を差し引いた温度差を求め、減少過程にある上記温度差が第1閾値に達すると、上記過冷却用開閉弁を閉じる一方、増大過程にある上記温度差が上記第1閾値よりも大きい第2閾値に達すると上記過冷却用開閉弁を開く制御をする制御部とを設けたことを特徴とする冷凍装置。
Following the oil-cooled compressor whose capacity can be adjusted, a refrigerant circulation passage having at least an oil recovery unit, a condenser, a supercooler, a main expansion valve, and an evaporator,
The subcooler branches from a portion of the refrigerant circulation passage between the condenser and the main expansion valve, and a branch passage through the supercooling on-off valve and the supercooling expansion valve passes. ,
In the refrigeration apparatus provided so that this branch flow path leads to the intermediate pressure part of the compressor,
A pressure detector for detecting the discharge pressure of the compressor;
A temperature detector for detecting the discharge temperature of the compressor;
A control unit for controlling the rotational speed of a motor for driving the compressor via an inverter, receiving a pressure signal indicating a detected pressure from the pressure detector and a temperature signal indicating a detected temperature from the temperature detector; A discharge pressure saturation temperature corresponding to the discharge pressure is obtained, a temperature difference obtained by subtracting the discharge pressure saturation temperature from the discharge temperature is obtained, and when the temperature difference in the decreasing process reaches a first threshold value, the overcooling opening / closing is performed. A refrigeration apparatus comprising: a control unit that controls to open the supercooling on-off valve when the temperature difference in the increasing process reaches a second threshold value that is larger than the first threshold value while closing the valve. .
上記第1閾値が、上記油回収器内での異常現象を引き起こし始める値よりも大きいことを特徴とする請求項1または2に記載の冷凍装置。   The refrigeration apparatus according to claim 1 or 2, wherein the first threshold value is larger than a value at which an abnormal phenomenon starts in the oil recovery unit. 上記第2閾値が、上記過冷却用開閉弁の開閉切換えのハンチングが生じることのない程度に、上記第1閾値よりも大きいことを特徴とする請求項1から3のいずれか1項に記載の冷凍装置。
The said 2nd threshold value is larger than the said 1st threshold value to the extent that the hunting of the opening-and-closing switching of the said on-off valve for supercooling does not arise, The any one of Claim 1 to 3 characterized by the above-mentioned. Refrigeration equipment.
JP2003353538A 2003-10-14 2003-10-14 Refrigeration equipment Expired - Fee Related JP3986487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353538A JP3986487B2 (en) 2003-10-14 2003-10-14 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353538A JP3986487B2 (en) 2003-10-14 2003-10-14 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2005121246A true JP2005121246A (en) 2005-05-12
JP3986487B2 JP3986487B2 (en) 2007-10-03

Family

ID=34611797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353538A Expired - Fee Related JP3986487B2 (en) 2003-10-14 2003-10-14 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3986487B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1888976A1 (en) * 2005-05-19 2008-02-20 Quantum Energy Technologies Pty Limited Heat pump system and method for heating a fluid
US7690211B2 (en) 2005-11-15 2010-04-06 Hitachi Appliances, Inc. Refrigerating apparatus
JP2011179783A (en) * 2010-03-03 2011-09-15 Hitachi Appliances Inc Refrigerating device
JP2014224649A (en) * 2013-05-16 2014-12-04 株式会社神戸製鋼所 Heat pump system
JP2017110900A (en) * 2015-10-19 2017-06-22 エイエルアイ エス.ピイ.エイ. カルピジャーニ グループALI S.p.A. CARPIGIANI GROUP Thermodynamic system for thermal treatment, and machine comprising the same for making liquid and semi-liquid products
CN107677017A (en) * 2017-10-16 2018-02-09 南京天加环境科技有限公司 A kind of control method of multi-joint captain's union defrosting
JP2020153651A (en) * 2019-03-22 2020-09-24 サンデン・リテールシステム株式会社 Cooler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550617B1 (en) * 2016-10-25 2023-07-04 엘지전자 주식회사 Air conditioner and controlling method of thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1888976A1 (en) * 2005-05-19 2008-02-20 Quantum Energy Technologies Pty Limited Heat pump system and method for heating a fluid
EP1888976A4 (en) * 2005-05-19 2011-02-23 Quantum Energy Technologies Pty Ltd Heat pump system and method for heating a fluid
US7690211B2 (en) 2005-11-15 2010-04-06 Hitachi Appliances, Inc. Refrigerating apparatus
JP2011179783A (en) * 2010-03-03 2011-09-15 Hitachi Appliances Inc Refrigerating device
JP2014224649A (en) * 2013-05-16 2014-12-04 株式会社神戸製鋼所 Heat pump system
JP2017110900A (en) * 2015-10-19 2017-06-22 エイエルアイ エス.ピイ.エイ. カルピジャーニ グループALI S.p.A. CARPIGIANI GROUP Thermodynamic system for thermal treatment, and machine comprising the same for making liquid and semi-liquid products
CN107677017A (en) * 2017-10-16 2018-02-09 南京天加环境科技有限公司 A kind of control method of multi-joint captain's union defrosting
JP2020153651A (en) * 2019-03-22 2020-09-24 サンデン・リテールシステム株式会社 Cooler
JP7229057B2 (en) 2019-03-22 2023-02-27 サンデン・リテールシステム株式会社 Cooling system

Also Published As

Publication number Publication date
JP3986487B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP5169295B2 (en) Refrigeration equipment
US20070144190A1 (en) Refrigerator
JP2007139225A (en) Refrigerating device
JP2008267787A5 (en)
JP2009109065A (en) Refrigeration system
KR101220583B1 (en) Freezing device
CN103196250A (en) Refrigerating apparatus and refrigerating unit
JP6264688B2 (en) Refrigeration equipment
KR101220741B1 (en) Freezing device
JP5971377B1 (en) Refrigeration equipment
JP2017053598A (en) Refrigeration device
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP3986487B2 (en) Refrigeration equipment
JP2007292351A (en) Operation control method of circulation type water cooler
JP2005331177A (en) Engine heat pump
JP5693247B2 (en) Refrigeration cycle apparatus and refrigerant discharge apparatus
JP2015218911A (en) Refrigeration device
JP6253370B2 (en) Refrigeration cycle equipment
JP5770157B2 (en) Refrigeration equipment
JP2003240310A (en) Air conditioner and outdoor machine used in the same
JP2008025905A (en) Refrigerator
JP3495899B2 (en) Screw refrigerator
EP2578965A1 (en) Freezing device
JP6467682B2 (en) Refrigeration equipment
JP6497582B2 (en) Refrigerator unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Ref document number: 3986487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees