JP2005120452A - Method for producing oriented magnetic steel sheet excellent in magnetic properties and film coated properties - Google Patents

Method for producing oriented magnetic steel sheet excellent in magnetic properties and film coated properties Download PDF

Info

Publication number
JP2005120452A
JP2005120452A JP2003359136A JP2003359136A JP2005120452A JP 2005120452 A JP2005120452 A JP 2005120452A JP 2003359136 A JP2003359136 A JP 2003359136A JP 2003359136 A JP2003359136 A JP 2003359136A JP 2005120452 A JP2005120452 A JP 2005120452A
Authority
JP
Japan
Prior art keywords
mass
annealing
steel sheet
magnesia
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003359136A
Other languages
Japanese (ja)
Inventor
Nobuisa Shiga
信勇 志賀
Toshito Takamiya
俊人 高宮
Makoto Watanabe
誠 渡辺
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003359136A priority Critical patent/JP2005120452A/en
Publication of JP2005120452A publication Critical patent/JP2005120452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oriented magnetic steel sheet excellent in a film coated properties and a magnetic properties, even in the component system containing Bi as a sub-inhibitor. <P>SOLUTION: When the oriented magnetic steel sheet is produced by using, as a blank, a silicon steel slab having a composition containing 0.005-1.5 mass% Bi as the sub-inhibitor composition, a relation between a secondary recrystallization starting temperature T<SB>1</SB>and the sheet thickness t, is regulated so that an α value shown in an expression (1): α=5.8×10<SP>-4</SP>×(T<SB>1</SB>-940)/(t-0.07)<SP>1.4</SP>falls within in the range of 0≤α<1. Further, in an annealing separating agent mainly containing magnesia, a metallic lithium compound is incorporated in an amount of 0.01-1.5 pts. mass in terms of metallic lithium to 100 pts. mass of the magnesia. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.

変圧器や発電機の鉄心材料として使用される方向性電磁鋼板には、高磁束密度でかつ低鉄損であることが最も重要な特性として要求される。
今日まで、方向性電磁鋼板の低鉄損化を実現するために様々な手段が講じられてきたが、その中でも最終仕上焼鈍後の鋼板の結晶方位を、ゴス方位と呼ばれる{110}<001>方位に高度に集積させることは、最も重要視されてきた開発目標の一つである。というのは、鉄結晶の磁化容易軸方向である結晶方位<001>を、圧延方向に高度に集積させることにより、圧延方向への磁化に要する磁化力が小さくなり、保磁力が低下する結果、ヒステリシス損ひいては鉄損の低減が達成されるからである。
A grain-oriented electrical steel sheet used as a core material for transformers and generators is required to have high magnetic flux density and low iron loss as the most important characteristics.
To date, various means have been taken to achieve low iron loss in grain-oriented electrical steel sheets. Among them, the crystal orientation of the steel sheet after final finish annealing is referred to as the Goss orientation {110} <001> Accumulation in the direction is one of the development goals that has been regarded as most important. This is because, by highly accumulating the crystal orientation <001>, which is the easy axis direction of the iron crystal, in the rolling direction, the magnetizing force required for magnetization in the rolling direction is reduced, and the coercive force is reduced. This is because the hysteresis loss and thus the iron loss can be reduced.

その他、方向性電磁鋼板の重要な要求特性として、磁化した際の騒音が小さいことが挙げられるが、この問題も結晶方位をゴス方位に揃えることによって大幅に改善される。
すなわち、変圧器で生じる騒音の主な原因は、鉄心材料の磁歪振動や電磁振動であることが知られているが、結晶方位のゴス方位への集積度を向上させると、磁歪振動の原因となる90°磁区の生成が抑制されると同時に、励磁電流が低下して電磁振動が抑制され、これらの結果として騒音が低減するからである。
In addition, an important required characteristic of grain-oriented electrical steel sheets is that noise when magnetized is small. This problem is also greatly improved by aligning the crystal orientation to the Goth orientation.
That is, it is known that the main cause of noise generated in the transformer is magnetostrictive vibration and electromagnetic vibration of the iron core material, but if the degree of integration of the crystal orientation in the Goth orientation is improved, This is because the generation of the 90 ° magnetic domain is suppressed, and at the same time, the excitation current is reduced and the electromagnetic vibration is suppressed. As a result, noise is reduced.

このように、方向性電磁鋼板にとって結晶方位<001>を圧延方向に集積させることは、最も重要な課題であるといえる。
ここに、結晶方位の集積度の指標としては、磁化力:800 A/m における磁束密度であるB8 (T)が用いられることが多く、方向性電磁鋼板の開発はこのB8 の向上を大きな目標として推進されている。
また、鉄損の代表的な値としては、励磁磁束密度:1.7 T、励磁周波数:50Hzの場合におけるエネルギー損失であるW17/50 (W/kg)が主に使用される。
Thus, it can be said that it is the most important issue for the grain-oriented electrical steel sheet to accumulate the crystal orientation <001> in the rolling direction.
Here, B 8 (T), which is a magnetic flux density at a magnetic force of 800 A / m 2, is often used as an index of the degree of integration of crystal orientation, and the development of grain-oriented electrical steel sheets has improved this B 8 . Promoted as a major goal.
As a typical value of iron loss, W 17/50 (W / kg), which is an energy loss when excitation magnetic flux density is 1.7 T and excitation frequency is 50 Hz, is mainly used.

このような方向性電磁鋼板の二次再結晶組織は、最終仕上焼鈍中の二次再結晶と呼ばれる現象を通じて形成され、この二次再結晶によりゴス方位の結晶粒を優先的に巨大成長させて、所望の磁気特性を有する製品を得る。
上記したような二次再結晶粒の集積を効果的に促進させるためには、一次再結晶粒の成長を選択的に抑制するインヒビタと呼ばれる析出分散相を均一かつ適正なサイズで形成することが重要である。このインヒビタの存在により、一次再結晶粒の正常粒成長が抑制され、最終仕上焼鈍中に高温まで細かい一次再結晶の状態が保持されると共に、良好な方位の結晶粒の成長に対する選択性が高まるため、高磁束密度が実現されるのである。一般に、インヒビタが強力で正常粒成長抑制力が高いほど高い方位集積度が得られると考えられている。
The secondary recrystallization structure of such grain-oriented electrical steel sheets is formed through a phenomenon called secondary recrystallization during the final finish annealing, and this secondary recrystallization preferentially grows goss-oriented crystal grains. To obtain a product with the desired magnetic properties.
In order to effectively promote the accumulation of secondary recrystallized grains as described above, it is necessary to form a precipitated dispersed phase called an inhibitor that selectively suppresses the growth of primary recrystallized grains with a uniform and appropriate size. is important. Due to the presence of this inhibitor, normal grain growth of primary recrystallized grains is suppressed, fine primary recrystallization state is maintained up to high temperature during final finish annealing, and selectivity for growth of grains with good orientation is enhanced. Therefore, a high magnetic flux density is realized. In general, it is considered that a higher degree of orientation accumulation is obtained as the inhibitor is stronger and the normal grain growth inhibitory power is higher.

このようなインヒビタとしては、MnS,MnSe,Cu2-X, AlNおよぴBNなど、鋼への溶解度の小さい物質が用いられる。例えば、特許文献1や特許文献2には、素材中にAlを含有させ、最終冷延圧下率を81〜95%と高圧下にすると共に、最終冷延前の焼鈍で強力なインヒビタであるAlNを析出させる技術が開示されている。 Such inhibitors, MnS, MnSe, Cu 2- X S, etc. AlN Oyopi BN, less material solubility in steel used. For example, in Patent Document 1 and Patent Document 2, AlN is included in the material, and the final cold rolling reduction ratio is 81 to 95% under high pressure, and AlN is a powerful inhibitor that is annealed before final cold rolling. A technique for precipitating is disclosed.

また、上記のインヒビタ成分に加えて、Ni,Sb,P,Cr,Te,BiおよぴPbなどの副インヒビタ成分、特にBiを付加的に添加することは、二次再結晶の方位集積度の向上に対して有効であることが知られている。
すなわち、Bi等の付加的な副インヒビタ成分は、結晶粒界上や鋼板表面に偏析することによつて、主インヒビタと共同して正常粒成長の抑制を強化し、磁気特性を高めることが知られている。
しかしながら、副インヒビタ成分として、特にBiを含有する鋼板を素材として用いた場合、最終仕上焼鈍中に鋼板表面に生じるフォルステライト被膜の形成が不良となり、製品の被膜外観や絶縁コーティングの密着性が劣化することが知られている。
Further, in addition to the above inhibitor components, additional inhibitor components such as Ni, Sb, P, Cr, Te, Bi and Pb, especially Bi, may be added to increase the degree of orientation of secondary recrystallization. It is known that it is effective for improvement.
In other words, it is known that additional secondary inhibitor components such as Bi segregate on the grain boundaries and on the surface of the steel sheet, thereby strengthening the suppression of normal grain growth and enhancing the magnetic properties in cooperation with the main inhibitor. It has been.
However, when a steel sheet containing Bi is used as a secondary inhibitor component, the formation of forsterite film on the steel sheet surface during final finish annealing becomes poor, and the film appearance of the product and the adhesion of the insulating coating deteriorate. It is known to do.

このため、このようなフォルステライト被膜の形成不良に対しては、最終仕上焼鈍の際に用いる焼鈍分離剤の含水率を 0.3〜3 %の範囲に調整する方法(例えば特許文献3)、脱炭焼鈍板の酸素目付量を 550〜850 ppm の範囲に調整する方法(例えば特許文献4)、焼鈍分離剤に用いるMgOのIg−Loss値を 0.4〜1.5 %に調整する方法(例えば特許文献5)、最終仕上焼鈍における雰囲気ガス流量を適正に調整する方法(例えば特許文献6)など多くの改善策が提案されているものの、いずれも満足のいく被膜改善効果を得ることはできなかった。
すなわち、上記した従来技術を用いることによって、幾分かの被膜改善効果は期待できるものの、Bi等の副インヒビタ成分に起因した被膜の劣化を完全に防止することはできず、外観の良好な製品を製造するには至っていないのが現状である。
For this reason, for such poor formation of the forsterite film, a method of adjusting the moisture content of the annealing separator used in the final finish annealing to a range of 0.3 to 3% (for example, Patent Document 3), decarburization. A method of adjusting the oxygen basis weight of the annealed plate to a range of 550 to 850 ppm (for example, Patent Document 4), a method of adjusting the Ig-Loss value of MgO used for the annealing separator to 0.4 to 1.5% (for example, Patent Document 5) Although many improvement measures such as a method of appropriately adjusting the atmospheric gas flow rate in the final finish annealing (for example, Patent Document 6) have been proposed, none of them can provide a satisfactory coating improvement effect.
That is, by using the above-described conventional technology, although some coating improvement effect can be expected, deterioration of the coating due to the secondary inhibitor component such as Bi cannot be completely prevented, and the product has a good appearance. Has not yet been manufactured.

さらに、上記した被膜改善策の多くにおいて、最終仕上焼鈍後の二次再結晶組織に未再結晶の一次再結晶組織が混在するといった二次再結晶不良が生じ易くなるといった問題も浮上してきている。
二次再結晶方位の鈍化による緩やかな磁性劣化に比べて、未再結晶の一次再結晶組織が混在する二次再結晶不良は、磁性劣化の程度が著しく、製品として不適合であり、絶対に避けなければならない。
Furthermore, in many of the above-mentioned measures for improving the film, there has also been a problem that secondary recrystallization defects such as primary recrystallized structure not yet recrystallized are likely to occur in the secondary recrystallized structure after final finish annealing. .
Compared to slow magnetic deterioration due to slowing of the secondary recrystallization orientation, secondary recrystallization failure in which primary recrystallized structure is mixed is unacceptable as a product because the degree of magnetic deterioration is significant and should be avoided. There must be.

上記した二次再結晶不良は、二次再結晶方位の先鋭化を目的に、Bi添加などの成分系を用い、なおかつ冷間圧延前または2回以上の冷間圧延の中間に行われる焼鈍が高温で行われる場合に生じ易くなる。すなわち、二次再結晶方位の先鋭化を狙うことは、二次再結晶不良のリスクを伴うことになる。   The above-mentioned secondary recrystallization failure is performed by using a component system such as Bi addition for the purpose of sharpening the secondary recrystallization orientation, and annealing performed before cold rolling or between two or more cold rollings. This is likely to occur when performed at high temperatures. That is, aiming for sharpening of the secondary recrystallization orientation involves a risk of secondary recrystallization failure.

特公昭33−4710号公報Japanese Patent Publication No.33-4710 特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特開平11−229036号公報Japanese Patent Laid-Open No. 11-229036 特開平10−152725号公報JP-A-10-152725 特開平10−25516号公報Japanese Patent Laid-Open No. 10-25516 特開平9−3542号公報JP-A-9-3542

本発明は、上記したような、副インヒビタとしてBiを含有させた場合の最終仕上焼鈍において生じる、被膜欠陥および二次再結晶不良を効果的に防止することにより、外観および密着性に優れたフォルステライト被膜を有し、かつ磁気特性にも優れた方向性電磁鋼板の有利な製造方法を提案することを目的とする。   The present invention effectively prevents the film defects and secondary recrystallization defects that occur in the final finish annealing when Bi is added as a secondary inhibitor, as described above, thereby improving the appearance and adhesion. An object of the present invention is to propose an advantageous method for producing a grain-oriented electrical steel sheet having a stellite film and having excellent magnetic properties.

さて、発明者らは、副インヒビタとしてBiを含有させた素材におけるフォルステライト被膜の劣化原因について調査したところ、最終仕上焼鈍中に表層部でBiの濃化が起こり、かような表層の濃化がフォルステライト被膜形成反応を阻害する結果、被膜の劣化が生じることが究明された。
そして、上記の原因による被膜の劣化を防止するためには、焼鈍分離剤中にリウチム金属化合物を極微量含有させることが有効であるとの知見を得た。
Now, when the inventors investigated the cause of deterioration of the forsterite film in the material containing Bi as a secondary inhibitor, the concentration of Bi occurs in the surface layer during the final finish annealing, and the concentration of such a surface layer occurs. As a result, it was found that the film deteriorates as a result of inhibiting the forsterite film formation reaction.
And in order to prevent the deterioration of the coating film due to the above-mentioned causes, it was found that it is effective to contain a very small amount of the lithium metal compound in the annealing separator.

また、副インヒビタであるBiの作用によって二次再結晶開始温度T1 が上昇するが、昇温中の温度が二次再結晶開始温度T1 に達するまでの間に、表層の一次再結晶粒が粗大化し、特に板厚が薄い場合には、最終仕上焼鈍における二次再結晶が生じた後でも、その二次再結晶粒に粗大化した表層の一次再結晶粒が蚕食されずに最終仕上焼鈍後にも残存し易くなる、すなわち二次再結晶不良を生じるリスクが高くなるという知見を得た。
そして、それを防ぐためには、予めBiや他の成分の含有量を調整して二次再結晶開始温度T1 の過剰な上昇を抑制すると共に、二次再結晶開始温度T1 を板厚tとの関係を適正な範囲に制御することが極めて有効であるとの知見を得た。
本発明は、上記の知見に立脚するものである。
In addition, the secondary recrystallization start temperature T 1 rises due to the action of Bi as a secondary inhibitor, but the primary recrystallization grains in the surface layer until the temperature during the temperature rise reaches the secondary recrystallization start temperature T 1. When the sheet is thin, especially when the plate thickness is thin, even after secondary recrystallization occurs in the final finish annealing, the primary recrystallized grains coarsened to the secondary recrystallized grains are not eroded and the final finish is completed. It has been found that it is easy to remain after annealing, that is, the risk of secondary recrystallization failure is increased.
Then, in the order to prevent this, pre Bi or by adjusting the content of the other components while suppressing excessive increase of the secondary recrystallization starting temperature T 1 of, the secondary recrystallization starting temperature T 1 of the plate thickness t It has been found that it is extremely effective to control the relationship between and the above in an appropriate range.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1. C:0.01〜0.10mass%およびSi:1.0 〜5.0 mass%を含み、かつインヒビタ成分として、窒化物、硫化物およびセレン化物のうち少なくともいずれか一種を形成する成分を含有し、さらに副インヒビタ成分としてBi:0.003 〜1.5 mass%を含有する組成になる珪素鋼スラブを、熱間圧延し、ついで焼鈍処理を含む1回または2回以上の冷間圧延によって最終板厚としたのち、一次再結晶焼鈍を施し、ついで焼鈍分離剤を鋼板表面に塗布してから、最終仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
次式(1)
α= 5.8×10-4×(T1 − 940)/(t−0.07)1.4 --- (1)
ここで、T1 :二次再結晶開始温度(℃)
t :板厚(mm)
で示されるα値が0≦α<1の範囲におさまるように、二次再結晶開始温度T1 と板厚tの関係を定め、さらにマグネシアを主剤とする焼鈍分離剤中に、リウチム金属化合物を、マグネシア:100 質量部に対し金属リチウム換算で0.01〜1.5 質量部含有させることを特徴とする、磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. C: 0.01 to 0.10 mass% and Si: 1.0 to 5.0 mass%, and as an inhibitor component, it contains a component that forms at least one of nitride, sulfide, and selenide, and as a secondary inhibitor component Bi: A silicon steel slab having a composition containing 0.003 to 1.5 mass% is hot-rolled and then subjected to primary recrystallization annealing after the final thickness is obtained by one or more cold rolling processes including annealing. Then, after applying the annealing separator to the steel sheet surface, in the method for producing a grain-oriented electrical steel sheet consisting of a series of steps for final finishing annealing,
(1)
α = 5.8 × 10 −4 × (T 1 −940) / (t−0.07) 1.4 --- (1)
Where T 1 : secondary recrystallization start temperature (° C.)
t: Thickness (mm)
The relationship between the secondary recrystallization start temperature T 1 and the plate thickness t is determined so that the α value represented by the formula 0 falls within the range of 0 ≦ α <1, and in the annealing separator mainly containing magnesia, , Magnesia: 0.01 to 1.5 parts by mass in terms of metallic lithium with respect to 100 parts by mass, A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.

2.珪素鋼スラブ中のBi量が0.01〜0.35mass%であることを特徴とする、上記1記載の磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法。 2. 2. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties as described in 1 above, wherein the amount of Bi in the silicon steel slab is 0.01 to 0.35 mass%.

3.マグネシアを主剤とする焼鈍分離剤中に、リウチム金属化合物以外のアルカリ金属化合物をさらに加え、その際、マグネシア:100 質量部に対し、リウチム金属化合物およびそれ以外のアルカリ金属化合物を当該金属換算合計で0.01〜1.5 質量部含有させることを特徴とする、上記1または2記載の磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法。 3. In the annealing separation agent mainly composed of magnesia, an alkali metal compound other than the lithium metal compound is further added. At that time, the magnesia: 100 parts by mass of the lithium metal compound and the other alkali metal compound in the metal conversion total. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties according to the above 1 or 2, characterized by containing 0.01 to 1.5 parts by mass.

ここで、二次再結晶開始温度T1 は、最終仕上焼鈍において発生する二次再結晶粒の面積率が全体の30%を超える最低の温度で定義する。 Here, the secondary recrystallization start temperature T 1 is defined as the lowest temperature at which the area ratio of secondary recrystallized grains generated in the final finish annealing exceeds 30% of the total.

本発明によれば、鋼中に副インヒビタ成分としてBiを含有する場合においても、被膜特性に優れ、かつ磁気特性に優れた方向性電磁鋼板を安定した得ることができる。   According to the present invention, even when Bi is contained as a secondary inhibitor component in steel, a grain-oriented electrical steel sheet having excellent coating properties and excellent magnetic properties can be stably obtained.

以下、本発明に至った経緯について説明する。
C:0.06mass%、Si:3.3 mass%、Mn:0.07mass%、Se:0.02mass%、Al:0.022 mass%、N:0.0082mass%およびCu:0.15mass%を含有し、かつ副インヒビタ成分としてBi:0.035 mass%を含有し、残部はFeおよび不可避的不純物の組成になる珪素鋼スラブを、常法に従い処理して得られた板厚:0.23mmの脱炭焼鈍板に対して、マグネシアを主剤とし、このマグネシア:100 質量部に対し、水酸化リチウムを種々の割合で添加した焼鈍分離剤を、鋼板表面に塗布したのち、乾燥させた。この時の塗布条件は、水和が20℃で30分、目付け量が両面で 12 g/m2とした。その後、最終仕上焼鈍として 800℃まで46時間かけて昇温し、 800℃に20時間保定した後、 800〜1150℃を25℃/hの平均昇温速度で昇温し、1150〜1200℃での滞留時間を20時間とする焼鈍を施した。
Hereinafter, the background to the present invention will be described.
C: 0.06 mass%, Si: 3.3 mass%, Mn: 0.07 mass%, Se: 0.02 mass%, Al: 0.022 mass%, N: 0.0082 mass% and Cu: 0.15 mass%, and as a secondary inhibitor component Bi: 0.035 mass%, with the balance being Fe and unavoidable impurities, silicon steel slabs processed according to conventional methods. Plate thickness: 0.23mm decarburized annealed plate An annealing separator having lithium hydroxide added at various ratios with respect to 100 parts by mass of magnesia as a main agent was applied to the surface of the steel sheet and then dried. The coating conditions at this time were such that hydration was at 20 ° C. for 30 minutes and the basis weight was 12 g / m 2 on both sides. Then, as final finish annealing, the temperature was raised to 800 ° C over 46 hours, held at 800 ° C for 20 hours, then heated to 800-1150 ° C at an average rate of 25 ° C / h, and 1150-1200 ° C. Annealing with a residence time of 20 hours was performed.

また、この鋼種の二次再結晶開始温度T1 について測定した結果、1035℃であった。ここで、二次再結晶開始温度T1 は、最終仕上焼鈍において発生する二次再結晶粒の面積率が鋼板全体の30%を超える最低の温度で定義するが、その測定は、脱炭焼鈍後、焼鈍分離剤を塗布した試験片を用いて別途焼鈍し、昇温過程のいくつかの温度で試験片を取り出し、表層の初期酸化膜や形成中被膜を除去して結晶粒界を可視化させるべく処理したのち、試験片に占める二次再結晶粒の面積率を測定して行った。T1 測定用の試験片の焼鈍は、実際の最終仕上焼鈍と同じ条件で行うのが望ましいが、製品コイルの焼鈍の際に通常行われるT1 より低温域における徐熱過程や均熱過程(保定)は、通常コイル内での温度不均一の解消が目的であるので、それに比べて少量であるT1 測定用の試験片の焼鈍では省いても良い。 Further, the steels of the secondary recrystallization starting temperature T 1 of the result of measurement for, was 1035 ° C.. Here, the secondary recrystallization start temperature T 1 is defined as the lowest temperature at which the area ratio of secondary recrystallized grains generated in the final finish annealing exceeds 30% of the entire steel sheet. After that, annealing is performed separately using a test piece coated with an annealing separator, and the test piece is taken out at several temperatures in the temperature rising process, and the initial oxide film on the surface layer and the film being formed are removed to visualize the grain boundaries. After processing accordingly, the area ratio of secondary recrystallized grains in the test piece was measured. It is desirable to anneal the test piece for T 1 measurement under the same conditions as the actual final finish annealing. However, the annealing process and soaking process in the lower temperature range than T 1 that is normally performed when annealing the product coil ( (Retaining) is usually intended to eliminate temperature non-uniformity in the coil, and may be omitted in annealing the test piece for measuring T 1, which is a small amount compared to that.

表1および図1に、最終仕上焼鈍後の被膜密着性と磁束密度について調べた結果を、焼鈍分離剤中のLi量との関係で示す。なお、表1および図1中のLi量は、添加した水酸化リチウム中のLiを質量部換算したものである。
また、被膜密着性は、リン酸マグネシウムとコロイダルシリカを主成分とする絶縁コーティングを施した後、5mmずつ異なる種々の直径の丸棒に試験片を巻き付け、被膜が剥離しない最小径により評価した。
Table 1 and FIG. 1 show the results of examining the film adhesion and the magnetic flux density after the final finish annealing in relation to the amount of Li in the annealing separator. In addition, the amount of Li in Table 1 and FIG. 1 is obtained by converting Li in the added lithium hydroxide into mass parts.
The film adhesion was evaluated based on the minimum diameter at which the coating film was not peeled off after a test piece was wound around a round bar having various diameters of 5 mm after applying an insulating coating mainly composed of magnesium phosphate and colloidal silica.

Figure 2005120452
Figure 2005120452

表1および図1から明らかなように、Liを0.01〜1.5 質量部合有させることによって、磁気特性および被膜特性とも良好な値が得られた。   As is apparent from Table 1 and FIG. 1, good values were obtained for both the magnetic properties and the coating properties by incorporating Li in an amount of 0.01 to 1.5 parts by mass.

上記の被膜特性が得られた理由は、まだ明確に解明されたわけではないが、発明者は以下のように考えている。
本発明の副インヒビタであるBiは、結晶粒の粒界や表面に優先的に濃化し、焼鈍中の粒界の移動度を低下させることによって二次再結晶温度を上昇させ、磁束密度を向上させる働きがある。ただし、最終仕上焼鈍時には、マグネシアの水和水により露点が上昇し、高酸化性雰囲気で焼鈍されるために、鋼板表層ではBiが酸化されてしまい、この酸化物が液相を形成して脱炭焼鈍時に生成した内部酸化膜中のSiO2を地鉄−被膜界面に凝集させ、これにより地鉄−被膜間の凹凸がなくなることから被膜が剥落し、被膜不良となる。従って、二次再結晶が終了した後は、このような元素は系外に放出させ、被膜への悪影響を排除する必要がある。
The reason why the above film characteristics were obtained has not yet been clearly clarified, but the inventor thinks as follows.
Bi, a secondary inhibitor of the present invention, concentrates preferentially at grain boundaries and surfaces of crystal grains, lowers the mobility of grain boundaries during annealing, increases secondary recrystallization temperature, and improves magnetic flux density. There is a work to make. However, at the time of final finish annealing, the dew point is increased by the hydration water of magnesia and annealing is performed in a highly oxidizing atmosphere, so Bi is oxidized in the steel sheet surface layer, and this oxide forms a liquid phase and is removed. The SiO 2 in the internal oxide film produced during the carbon annealing is aggregated at the base metal-coating interface, thereby eliminating the irregularities between the base metal and the coating film. Therefore, after the secondary recrystallization is completed, it is necessary to release such elements out of the system and eliminate the adverse effect on the coating.

本発明によれば、焼鈍分離剤中にリウチム金属化合物を極微量添加することにより、被膜改善効果が顕著に増大する。従来、アルカリ金属は被膜に対して有害であるとされており、例えば特公昭54−14556号公報に見られるように、アルカリ金属元素は可及的に低減させることが必要とされていた。さもないと、脱炭焼鈍時に形成された内部酸化膜中のSiO2が最終仕上焼鈍中に鋼板表面に浮上して、被膜欠陥や部分的な被膜剥離が起こり易くなる弊害が認められていた。
しかしながら、本発明のように、副インヒビタとしてBiを用いる場合は、アルカリ金属、特にLiを微量に存在させることによって、これらが鋼板表面へのSiO2の濃化を促進させ、この濃化したSiO2がバリアとなって雰囲気中の酸素分の影響を受け難くし、その結果Biによる被膜への悪影響が回避されるものと考えられる。
According to the present invention, the coating film improving effect is remarkably increased by adding a very small amount of the lithium metal compound to the annealing separator. Conventionally, alkali metals are considered to be harmful to the coating. For example, as shown in Japanese Patent Publication No. 54-14556, it has been necessary to reduce alkali metal elements as much as possible. Otherwise, it was recognized that SiO 2 in the internal oxide film formed during the decarburization annealing floats on the surface of the steel plate during the final finish annealing, and film defects and partial film peeling easily occur.
However, when Bi is used as a secondary inhibitor as in the present invention, the presence of trace amounts of alkali metals, particularly Li, promotes the concentration of SiO 2 on the steel sheet surface, and this concentrated SiO 2 It is considered that 2 becomes a barrier and hardly affected by the oxygen content in the atmosphere, and as a result, the adverse effect of Bi on the coating is avoided.

なお、特開昭49−29305号公報には、Liを含む化合物を添加することにより、珪酸マグネシウムおよびLiを含む酸化膜を形成させる方法が開示されているが、本発明のようなBiを含む鋼板に単純にこの技術を適用しても、必ずしも良好な被膜特性および磁気特性は得られなかった。というのは、この公報に開示される方法では、Liの添加量を多くすることにより、MgO−SiO2−LiO2系の被膜を形成させることを意図しているが、これは通常のMgO−SiO2系の被膜よりも安定性が低いために、Biの表層への移動により被膜が損傷を受けるからである。 JP-A-49-29305 discloses a method of forming an oxide film containing magnesium silicate and Li by adding a compound containing Li, but includes Bi as in the present invention. Even if this technique was simply applied to a steel sheet, good film properties and magnetic properties were not necessarily obtained. This is because the method disclosed in this publication is intended to form a MgO—SiO 2 —LiO 2 -based film by increasing the amount of Li added. This is because the film is damaged by the movement of Bi to the surface layer because it is less stable than the SiO 2 film.

この点、本発明では、被膜形成を促進させるために極微量のリウチム金属化合物を含有させるだけなので、Liをほとんど含まないMgO−SiO2系の被膜が形成され、このMgO−SiO2系被膜は化学的に安定であり、Biによる損傷を受けにくいために、良好な被膜が維持できるものと考えられる。 In this regard, in the present invention, since only a very small amount of a lithium metal compound is included in order to promote film formation, an MgO—SiO 2 based film containing almost no Li is formed, and this MgO—SiO 2 based film is It is considered that a good film can be maintained because it is chemically stable and is not easily damaged by Bi.

焼鈍分離剤に対する副剤としては、リチウム金属化合物以外に、他のアルカリ金属化合物、例えばナトリウム金属化合物やカリウム金属化合物などを使用することができるが、被膜改善効果はリチウム金属化合物がとりわけ優れていた。
そこで、本発明では、これらのアルカリ金属化合物を使用する場合にも、リチウム金属化合物は必須成分として使用するものとした。
As an auxiliary agent for the annealing separator, in addition to the lithium metal compound, other alkali metal compounds such as sodium metal compound and potassium metal compound can be used, but the lithium metal compound is particularly excellent in the coating improving effect. .
Therefore, in the present invention, when these alkali metal compounds are used, the lithium metal compound is used as an essential component.

次に、C:0.06mass%、Si:3.3 mass%、Mn:0.07mass%、Se:0.02mass%、Al:0.022 mass%、N:0.0082mass%およびCu:0.15mass%を含有し、さらには副インヒビタ成分としてBiをそれぞれ 0.005, 0.02, 0.03, 0.06, 0.10, 0.20, 0.30, 1.00, 1.50mass%含有し、残部はFeおよび不可避的不純物の組成になる珪素鋼スラブを、常法に従い処理して得られた板厚:0.15, 0.20, 0.23, 0.27, 0.30, 0.35mmの脱炭焼鈍板に対して、マグネシアを主剤とし、このマグネシア:100 質量部に対し、水酸化リチウムをLi換算で 0.1質量部添加した焼鈍分離剤を、鋼板の表面に塗布した後、乾燥した。この時の塗布条件は、水和が20℃で30分、目付け量が両面で 12 g/m2とした。その後、最終仕上焼鈍として 800℃まで46時間かけて昇温し、 800℃に20時間保定した後、 800〜1150℃を25℃/hの平均昇温速度で昇温し、1150〜1200℃での滞留時間を20時間とする焼鈍を施した。また、上記の最終仕上焼鈍前の試験片を用いて、別途、二次再結晶開始温度T1 を測定した。 Next, it contains C: 0.06 mass%, Si: 3.3 mass%, Mn: 0.07 mass%, Se: 0.02 mass%, Al: 0.022 mass%, N: 0.0082 mass% and Cu: 0.15 mass%, A silicon steel slab containing 0.005, 0.02, 0.03, 0.06, 0.10, 0.20, 0.30, 1.00, and 1.50 mass% of Bi as a secondary inhibitor component, with the balance being Fe and inevitable impurities, is treated according to a conventional method. Thickness: 0.15, 0.20, 0.23, 0.27, 0.30, 0.35mm decarburized and annealed plates, magnesia was the main agent, and lithium hydroxide was converted to Li for 0.1 parts by mass of magnesia: 100 parts by mass. The annealing separator added with parts by mass was applied to the surface of the steel sheet and then dried. The coating conditions at this time were such that hydration was at 20 ° C. for 30 minutes and the basis weight was 12 g / m 2 on both sides. Then, as final finish annealing, the temperature was raised to 800 ° C over 46 hours, held at 800 ° C for 20 hours, then heated to 800-1150 ° C at an average rate of 25 ° C / h, and 1150-1200 ° C. Annealing with a residence time of 20 hours was performed. Further, by using a final annealing prior to the test piece described above was separately measured secondary recrystallization starting temperature T 1.

図2および表2に、最終仕上焼鈍後の磁束密度B8 に及ぼす二次再結晶開始温度T1 と板厚tの影響について調べた結果を示す。
図中、磁束密度がB8 ≧1.94Tを満足する場合は○印で、一方B8 <1.94Tの場合は×印で示す。
FIG. 2 and Table 2 show the results of examining the effects of the secondary recrystallization start temperature T 1 and the plate thickness t on the magnetic flux density B 8 after the final finish annealing.
In the figure, when the magnetic flux density satisfies B 8 ≧ 1.94T, it is indicated by ○, and when B 8 <1.94T, it is indicated by x.

Figure 2005120452
Figure 2005120452

図2および表2に示したとおり、B8 ≧1.94Tという良好な磁気特性を得るには、二次再結晶開始温度T1 と板厚tの関係式である次式(1)
α= 5.8×10-4×(T1 − 940)/(t−0.07)1.4 --- (1)
で示されるα値を、0以上、1未満、すなわち0≦α<1の範囲に制御することが有効であることが判明した。
As shown in FIG. 2 and Table 2, in order to obtain a good magnetic property of B 8 ≧ 1.94T, the following equation (1) which is a relational expression between the secondary recrystallization start temperature T 1 and the plate thickness t
α = 5.8 × 10 −4 × (T 1 −940) / (t−0.07) 1.4 --- (1)
It was found that it is effective to control the α value represented by the formula in the range of 0 or more and less than 1, that is, 0 ≦ α <1.

また、図3には、上記の実験結果を、α値と磁束密度B8 との関係で示すが、同図に示したとおり、α値が0≦α<1の範囲を満足する場合には良好な磁気特性が得られている。しかしながら、この範囲を逸脱すると、特にα≧1の場合には、磁束密度B8 が急激に劣化した。 FIG. 3 shows the result of the above experiment in relation to the α value and the magnetic flux density B 8. As shown in FIG. 3, when the α value satisfies the range of 0 ≦ α <1, Good magnetic properties are obtained. However, out of this range, especially when α ≧ 1, the magnetic flux density B 8 rapidly deteriorated.

この現象は、次の機構になるものと考えられる。
まず、副インヒビタであるBiの作用によって二次再結晶開始温度T1 が上昇する。これは、Biが結晶粒の粒界や表面に優先的に濃化し、焼鈍中の粒界の移動度を低下させることが原因である。この調査実験においてはBi含有量の調整によって二次再結晶開始温度T1を変化させたが、他の成分の含有量や製造条件によっても変化し得る。
二次再結晶開始温度T1 が所定の板厚における適正範囲を高温側に外れると、二次再結晶開始温度T1 に達するまでの間に、二次再結晶粒が蚕食するマトリックスを構成する一次再結晶粒は板厚中心付近はその成長が抑制されてはいるものの、表層においては結晶粒の粗大化が徐々に進行する。板厚に対する粗大化した表層粒のサイズの割合が大きくなると、板厚が比較的薄い場合には板厚中心部が二次再結晶を生じた後でも、粗大化した表層一次再結晶粒は二次再結晶粒に蚕食されずに最終仕上焼鈍後にも残存する。上記の残存した一次再結晶粒は、粗大化したといっても二次再結晶粒と比較すると非常に細かく、また結晶方位もゴス方位から大きく外れているため、これが存在することによって、磁気特性の大幅に劣化を招く。
This phenomenon is considered to be the next mechanism.
First, the secondary recrystallization start temperature T 1 rises due to the action of Bi as a secondary inhibitor. This is because Bi concentrates preferentially on the grain boundaries and surfaces of the crystal grains and lowers the mobility of the grain boundaries during annealing. In this investigation experiment, the secondary recrystallization start temperature T 1 was changed by adjusting the Bi content. However, it may be changed depending on the contents of other components and the manufacturing conditions.
When the secondary recrystallization start temperature T 1 deviates from an appropriate range at a predetermined plate thickness to the high temperature side, a matrix in which the secondary recrystallization grains are eroded before reaching the secondary recrystallization start temperature T 1 is formed. Although the growth of primary recrystallized grains is suppressed near the center of the plate thickness, the coarsening of the crystal grains gradually proceeds on the surface layer. If the ratio of the size of the coarsened surface layer grains to the plate thickness increases, even if the plate thickness is relatively thin, the coarse primary layer recrystallized grains will not grow even after secondary recrystallization occurs at the center of the plate thickness. It remains after the final finish annealing without being phagocytosed by the next recrystallized grains. The remaining primary recrystallized grains are very fine compared to the secondary recrystallized grains even though they are coarsened, and the crystal orientation is greatly deviated from the Goth orientation. Incurs significant deterioration.

一方、二次再結晶開始温度T1 が適正範囲を低温側に外れた場合、即ちα<0となった場合は、上記したような二次再結晶不良は生じないものの、二次再結晶温度を高くして、二次再結晶方位をゴス方位へと先鋭化させるという効果が発揮されず、磁気特性も不充分なものとなる。 On the other hand, when the secondary recrystallization start temperature T 1 deviates from the appropriate range to the low temperature side, that is, when α <0, the secondary recrystallization temperature does not occur, but the secondary recrystallization temperature does not occur. And the effect of sharpening the secondary recrystallization orientation to the Goth orientation is not exhibited, and the magnetic properties are insufficient.

次に、本発明の成分組成を前記の範囲に限定した理由について説明する。
C:0.01〜0.10mass%
Cは、α−γ変態を利用して熱延組織を改善するのに有用なだけでなく、ゴス方位結晶粒の発生にも有利な元素である。かような効果を得るためには少なくとも0.01mass%の含有を必要とするが、0.10mass%を超えると脱炭焼鈍において脱炭不良を起こすので、Cは0.01〜0.10mass%の範囲に限定した。
Next, the reason why the component composition of the present invention is limited to the above range will be described.
C: 0.01-0.10mass%
C is not only useful for improving the hot-rolled structure by utilizing the α-γ transformation, but is also an element advantageous for the generation of goth-oriented crystal grains. In order to obtain such an effect, it is necessary to contain at least 0.01 mass%, but if it exceeds 0.10 mass%, decarburization failure occurs in decarburization annealing, so C is limited to a range of 0.01 to 0.10 mass%. .

Si:1.0 〜5.0 mass%
Siは、電気抵抗を高めて鉄損を低減させるだけでなく、鉄のα相を安定化させて高温の熱処理を可能とするために必要な元素であり、少なくとも1.0 mass%の含有を必要とするが、5.0 mass%を超えると冷延が困難となるので、Siは 1.0〜5.0 mass%の範囲に限定した。
Si: 1.0-5.0 mass%
Si is an element necessary not only to increase electrical resistance and reduce iron loss, but also to stabilize the α phase of iron and enable high-temperature heat treatment, and it must contain at least 1.0 mass%. However, if it exceeds 5.0 mass%, cold rolling becomes difficult, so Si is limited to the range of 1.0 to 5.0 mass%.

上記したC,Siの他に、主インヒビタを形成する元素を添加する。主インヒビタとしては、AlN,BN,MnS,MnSe等がよく知られているが、これらのいずれを用いても良く、またこれらを二種以上併用しても良い。
主インヒビタとして、MnSおよび/またはMnSeを用いる場合には、Mn:0.03〜0.10mass%と、S, Seの合計量:0.01〜0.03mass%を含有させることが好ましい。
一方、AlNを主インヒビタとして用いる場合には、Al:0.01〜0.04 mass %とN:30〜120 ppm 、BNを主インヒビタとして用いる場合には、B:0.0010〜0.015 mass%とN:30〜120 ppm を含有させることが好ましい。いずれの場合も、含有量が下限に満たないとインヒビタとしての効果に乏しく、一方上限を超えると二次再結晶が不安定となる。
In addition to the above-described C and Si, an element that forms a main inhibitor is added. As the main inhibitor, AlN, BN, MnS, MnSe, and the like are well known, but any of these may be used, or two or more of these may be used in combination.
When MnS and / or MnSe is used as the main inhibitor, it is preferable to contain Mn: 0.03 to 0.10 mass% and a total amount of S and Se: 0.01 to 0.03 mass%.
On the other hand, when AlN is used as the main inhibitor, Al: 0.01 to 0.04 mass% and N: 30 to 120 ppm, and when BN is used as the main inhibitor, B: 0.0010 to 0.015 mass% and N: 30 to 120 It is preferable to contain ppm. In either case, if the content is less than the lower limit, the effect as an inhibitor is poor, whereas if the content exceeds the upper limit, secondary recrystallization becomes unstable.

さらに、本発明では、副インヒビタ成分として、Bi:0.003 〜1.50mass%を含有させる必要がある。Biは、一次再結晶粒の粒界に優先的に濃化し、焼鈍中の粒界の移動度を低下させることによって二次再結晶開始温度を上昇させ、磁束密度を向上させる作用がある。また、MnS, MnSe, Cu2-x S, Cu2-X Se, AlNおよびBNのような析出分散型の主インヒビタと同時に鋼中に存在させることにより、磁気特性の向上により有効に作用する。ここに、Biの含有量が、 0.003mass%に満たないと、上記した粒界への濃化による正常粒成長抑制効果が発揮されず、一方1.50mass%を超えて含有させると本発明技術をもってしても被膜外観の劣化を防止できないため、適正範囲として 0.003〜1.50mass%の範囲に限定した。より好ましくは0.01〜0.35mass%の範囲である。 Furthermore, in the present invention, it is necessary to contain Bi: 0.003 to 1.50 mass% as a secondary inhibitor component. Bi preferentially concentrates at the grain boundaries of the primary recrystallized grains and lowers the mobility of the grain boundaries during annealing, thereby raising the secondary recrystallization start temperature and improving the magnetic flux density. Moreover, MnS, MnSe, Cu 2- x S, Cu 2-X Se, by the presence at the same time in the steel and precipitation distributed main inhibitor such as AlN and BN, effectively act by improving the magnetic properties. Here, if the Bi content is less than 0.003 mass%, the above-described effect of suppressing normal grain growth due to concentration at the grain boundary is not exhibited, while if it exceeds 1.50 mass%, the present invention has the technology. However, since deterioration of the coating appearance cannot be prevented, the appropriate range is limited to 0.003 to 1.50 mass%. More preferably, it is the range of 0.01-0.35 mass%.

また、Bi添加と併せて、Biと同様な副インヒビタ効果を有する成分として、Ni:0.01〜1.50mass%、Sb:0.005 〜0.50mass%、P:0.005 〜0.50mass%、Cr:0.02〜1.50mass%、Te:0.003 〜1.50mass%およびPb:0.003 〜1.50mass%のうちから選ばれる一種または二種以上を含有させることもできる。
ここに、上記した各元素の含有量が、それぞれ下限に満たないと、Biの副インヒビタ効果を補う効果が発揮されず、また上限を超えて添加すると、この技術をもってしても被膜外観の劣化を防止できないので、添加する場合には上記の範囲で行うことが好ましい。
In addition to Bi addition, as a component having a secondary inhibitory effect similar to Bi, Ni: 0.01 to 1.50 mass%, Sb: 0.005 to 0.50 mass%, P: 0.005 to 0.50 mass%, Cr: 0.02 to 1.50 mass %, Te: 0.003 to 1.50 mass%, and Pb: 0.003 to 1.50 mass%, or one or two or more kinds selected from them.
Here, if the content of each element described above is less than the lower limit, the effect of supplementing the secondary inhibitor effect of Bi will not be exhibited, and if added beyond the upper limit, even with this technique, the appearance of the coating deteriorates. Therefore, when it is added, it is preferably performed within the above range.

さらに、上述したインヒビタ元素の他にも、磁気特性を改善するためにMo, V, Nbなどを、また被膜特性と磁気特性をともに改善するためにCu、Bなどを添加することができる。
これらはいずれも、0.005 mass%を下回ると上記の改善効果が小さく、一方 0.5mass%を超えて添加すると却って製品の磁気特性や被膜特性の劣化を招くので、いずれも 0.005〜0.50mass%の範囲で含有させることが好ましい。
In addition to the above-described inhibitor elements, Mo, V, Nb, etc. can be added to improve the magnetic characteristics, and Cu, B, etc. can be added to improve both the film characteristics and the magnetic characteristics.
In any case, if the amount is less than 0.005 mass%, the above-mentioned improvement effect is small. On the other hand, if it exceeds 0.5 mass%, the magnetic properties and film properties of the product are deteriorated, so both are in the range of 0.005 to 0.50 mass%. It is preferable to contain.

次に、本発明の製造工程について述べる。
上記の好適成分組成に調整された珪素鋼スラブは、インヒビタ成分固溶のため1350℃以上の高温に加熱される。しかしながら、窒化等により後工程でインヒビタを補強する場合には、スラブ加熱温度は1280℃以下とすることができる。
ついで、熱間圧延後、焼鈍処理と冷間圧延を組み合わせて最終板厚とし、脱炭焼鈍ついで最終仕上焼鈍を施したのち、絶縁張力コーティングを焼き付けて製品とする。
Next, the manufacturing process of the present invention will be described.
The silicon steel slab adjusted to the above preferred component composition is heated to a high temperature of 1350 ° C. or higher for the inhibitor component solid solution. However, when the inhibitor is reinforced in the subsequent process by nitriding or the like, the slab heating temperature can be 1280 ° C. or less.
Next, after hot rolling, annealing treatment and cold rolling are combined to obtain a final thickness, and after decarburization annealing and final finish annealing, an insulating tension coating is baked to obtain a product.

ここに、焼鈍処理と冷間圧延を組み合わせて最終板厚とする方法としては、
1)熱間圧延後、熱延板焼鈍を施したのち、中間焼鈍を含む2回以上の冷間圧延で最終板厚とする方法、
2)熱間圧延後、熱延板焼鈍を施したのち、1回の冷間圧延で最終板厚とする方法、
3)熱間圧延後、熱延板焼鈍を施さずに、中間焼鈍を含む2回以上の冷間圧延で最終板厚とする方法
の3種類の工程が考えられるが、本発明ではいずれの工程を採ることも可能である。
この際、熱延板焼鈍や中間焼鈍で焼鈍雰囲気を酸化性にして、表層を弱脱炭する処理を施したり、焼鈍の冷却過程を急冷として鋼中の固溶Cを増加させる処理や、これに引き続き鋼中に微細炭化物を析出させるための低温保持処理を行うことは、製品の磁気特性を向上させる上で有効である。
また、冷間圧延を 100〜200 ℃の温間で行ったり、パス間での時効処理を施すことも磁気特性を向上させるのに有利に作用する。
Here, as a method of combining the annealing treatment and cold rolling to make the final plate thickness,
1) After hot rolling, after performing hot-rolled sheet annealing, a method for obtaining a final sheet thickness by two or more cold rolling processes including intermediate annealing,
2) After hot rolling, after performing hot-rolled sheet annealing, a method of making the final sheet thickness by one cold rolling,
3) After hot rolling, there are three types of processes, ie, a method of obtaining a final sheet thickness by two or more cold rolling processes including intermediate annealing without performing hot-rolled sheet annealing. It is also possible to adopt.
In this case, the annealing atmosphere is made oxidizing by hot-rolled sheet annealing or intermediate annealing, the surface layer is weakly decarburized, or the annealing cooling process is rapidly cooled to increase the solid solution C in the steel. Subsequently, a low temperature holding treatment for precipitating fine carbides in the steel is effective in improving the magnetic properties of the product.
Further, cold rolling is performed at a temperature of 100 to 200 ° C., and aging treatment between passes is also advantageous for improving magnetic properties.

さらに、磁区細分化のために、鋼板の圧延方向と交差する向きに線状の溝を複数本設けることは、鉄損のさらなる低減を図る上で有用である。
また、脱炭・一次再結晶処理後、二次再結晶温度開始までの間に 300 ppm以下の範囲でNを含ませる窒化処理を施す技術も、公知のように抑制力強化のために有効であり、本発明と組み合わせることで、被膜特性および磁気特性の優れた製品を製造することが可能である。
Furthermore, providing a plurality of linear grooves in the direction intersecting with the rolling direction of the steel sheet for magnetic domain subdivision is useful for further reducing the iron loss.
In addition, as is well known, a technique for performing nitriding that contains N within a range of 300 ppm or less after decarburization and primary recrystallization and before the start of the secondary recrystallization temperature is also effective for enhancing restraint. In combination with the present invention, it is possible to produce a product having excellent coating properties and magnetic properties.

脱炭焼鈍は、水蒸気とH2を含む雰囲気中で、均熱温度は 700〜900 ℃程度、昇温速度は室温〜700 ℃間を5〜80℃/s程度、均熱時間は20〜240 秒程度とすることが良好な二次再結晶と被膜形成を行う上で好ましい。また、均熱領域の雰囲気酸化性(P[H20]/P[H2])は 0.3〜0.85とすることが、同様な観点から好ましく、さらにこの均熱領域を2段階に分け、均熱温度や雰囲気酸化性を前段と後段とで変化させて、被膜の改善効果をさらに高めることも可能である。
また、脱炭焼鈍の加熱領域における雰囲気酸化性(P[H20]/P[H2])を0.25〜0.70とすることが好ましい。すなわち、加熱領域における雰囲気酸化性を0.25以上とすることにより、脱炭焼鈍初期の酸化膜が緻密となり、均熱領域においても緻密な酸化膜が維持される。一方、雰囲気酸化性を0.70以下とすることにより、酸化鉄を主体とした過酸化で形状の複雑な被膜となることが抑制される。従って、加熱領域の雰囲気酸化性を上記の範囲とすることにより脱炭焼鈍後の酸化膜がより好ましい状態となり、後述する焼鈍分離剤へのリチウム金属化合物の添加効果を一層発揮させることができる。
Decarburization annealing is performed in an atmosphere containing water vapor and H 2 , soaking temperature is about 700-900 ° C, heating rate is about 5-80 ° C / s between room temperature and 700 ° C, soaking time is 20-240 It is preferable to carry out secondary recrystallization and film formation which are good for about seconds. Further, it is preferable from the same point of view that the atmospheric oxidation property (P [H 2 0] / P [H 2 ]) in the soaking region is preferably 0.3 to 0.85, and the soaking region is further divided into two stages. It is also possible to further enhance the effect of improving the coating by changing the heat temperature and atmospheric oxidizability between the former stage and the latter stage.
Moreover, it is preferable that the atmospheric oxidation property (P [H 2 0] / P [H 2 ]) in the heating region of decarburization annealing is set to 0.25 to 0.70. That is, by setting the atmospheric oxidation property in the heating region to 0.25 or more, the oxide film at the initial stage of decarburization annealing becomes dense, and the dense oxide film is maintained even in the soaking region. On the other hand, by setting the atmospheric oxidizability to 0.70 or less, it becomes possible to suppress the formation of a complex-shaped film due to peroxidation mainly composed of iron oxide. Therefore, by setting the atmospheric oxidation property of the heating region in the above range, the oxide film after decarburization annealing becomes a more preferable state, and the effect of adding the lithium metal compound to the annealing separator to be described later can be further exhibited.

上記のようにして脱炭焼鈍を施したのち、焼鈍分離剤を塗布する。ここに、焼鈍分離剤は、マグネシアを主剤とする。そして、かかるマグネシア中にリチウム金属化合物を微量含有させることが、本発明の最も重要な要件の一つである。
リチウム金属化合物の添加量については、マグネシア:100質量部に対してLi換算で0.01〜1.5 質量部とする必要があり、この範囲で添加することにより、緻密なフォルステライトを主体とする被膜が形成される。この点、添加量が0.01質量部に満たないと、少なすぎて十分な効果が得られず、一方1.5 質量部を超えると、Liを含む被膜が最終仕上焼鈍中に形成され、副インヒビタ成分であるBiによりこの被膜が損傷を受ける結果、点状の被膜欠陥や被膜密着性の低下などの被膜不良が生じる。また、磁気特性についても、最終仕上焼鈍途中で粗雑な被膜となる結果、鋼板が雰囲気の影響を受け易くなり、Bi添加による磁性改善効果は失われる。
After performing decarburization annealing as described above, an annealing separator is applied. Here, the annealing separator mainly contains magnesia. And it is one of the most important requirements of the present invention that a small amount of a lithium metal compound is contained in such magnesia.
The amount of lithium metal compound added should be 0.01 to 1.5 parts by mass in terms of Li with respect to 100 parts by mass of magnesia. By adding in this range, a film mainly composed of dense forsterite is formed. Is done. In this respect, if the addition amount is less than 0.01 parts by mass, it is too small to obtain a sufficient effect, while if it exceeds 1.5 parts by mass, a film containing Li is formed during the final finish annealing, and the secondary inhibitor component As a result of the Bi being damaged by certain Bi, film defects such as point-like film defects and a decrease in film adhesion occur. In addition, as for magnetic properties, as a result of forming a rough coating during the final finish annealing, the steel sheet is easily affected by the atmosphere, and the magnetic improvement effect due to Bi addition is lost.

マグネシア中に適正量のLi金属化合物を含有させることにより良好な被膜特性が得られた理由は、明確に解明されたわけではないが、以下のように考えている。
本発明では、副インヒビタとしてBiを含有させるが、最終仕上焼鈍時にはマグネシアの水和水が放出されることにより露点が上昇し、鋼板が高酸化性雰囲気に晒されるので、表層に濃化しているBiが酸化されてしまう。このBi酸化物が液相を形成して、脱炭焼鈍時に生成した内部酸化膜中のSi02を地鉄−被膜界面に凝集させてしまう。これにより、Si02の適正な分散に由来する地鉄一被膜間の凹凸がなくなって、被膜が剥落し、被膜不良となる。
ところが、アルカリ金属、特にLiを微量に存在させることによって、鋼板表面へのSiO2の濃化が促進される。この濃化したSi02がバリアとなって高酸化性雰囲気の影響を受けにくくなる。その結果、鋼板表層でのBiの酸化が抑制され、これにより地鉄−被膜間の凹凸が正常に形成されたものと考えられる。
また、鋼板表層に存在するBiおよびその酸化物は融点・沸点が低いため、高温になるほど激しく蒸気を発生する。従って、最終仕上焼鈍時にフォルステライト被膜および地鉄−被膜間の凹凸の形成が遅れると、形成途中の被膜がこの蒸気によりエッチングされて剥落する。この時、アルカリ金属、特にLiが微量に存在すると、フォルステライト被膜および地鉄−被膜間の凹凸の形成が促進され、Biの蒸気発生が激しくなる前に地鉄−被膜間の凹凸が形成される。一旦、頑強な地鉄−被膜間の凹凸が形成されれば、Biの蒸気にエッチングされにくくなるため、正常なフォルステライト被膜を形成させることが可能となる。
The reason why good film properties were obtained by including an appropriate amount of Li metal compound in magnesia has not been clearly clarified, but is considered as follows.
In the present invention, Bi is added as a secondary inhibitor, but the dew point rises due to the release of magnesia hydration water during final finish annealing, and the steel sheet is exposed to a highly oxidizing atmosphere, so it is concentrated on the surface layer. Bi is oxidized. Would be permitted to aggregate in the coating interface - The Bi oxide to form a liquid phase, the Si0 2 in the internal oxide film formed during decarburization annealing the steel matrix. Thus, gone irregularities between the base steel one coating from a proper dispersion of Si0 2, coating flaked off, the coating defects.
However, the presence of a small amount of alkali metal, particularly Li, promotes the concentration of SiO 2 on the steel sheet surface. The thickened the Si0 2 is hardly affected by the high oxidizing atmosphere becomes a barrier. As a result, it is considered that the oxidation of Bi on the surface layer of the steel sheet was suppressed, and thereby the unevenness between the ground iron and the coating was normally formed.
In addition, Bi and its oxide existing on the surface layer of the steel sheet have a low melting point and boiling point, so that steam is violently generated at higher temperatures. Therefore, if the formation of irregularities between the forsterite coating and the ground iron-coating is delayed during the final finish annealing, the coating in the middle of formation is etched by this vapor and peeled off. At this time, if there is a trace amount of alkali metal, especially Li, the formation of unevenness between the forsterite film and the ground iron-coating is promoted, and the unevenness between the base iron-coating is formed before Bi vapor generation becomes intense. The Once the strong irregularities between the base metal and the coating are formed, it becomes difficult to be etched by Bi vapor, so that a normal forsterite coating can be formed.

また、焼鈍分離剤中に、上記のリチウム金属化合物と併せて、これと同様の効果を有するアルカリ金属化合物を含有させることも可能である。例えば、ナトリウム金属化合物であればマグネシア:100 質量部に対してNa換算で 0.005〜1質量部、カリウム金属化合物であればK換算で 0.001〜0.5 質量部が好適であり、これらの単独または複合量とLiとの合計量で0.01〜1.5 質量部とする必要がある。前述したように、リチウム金属化合物の添加量の下限値が0.01質量部であるので、他のアルカリ金属化合物との合計量で0.01質量部に満たないことはない。また、リチウム金属化合物と他のアルカリ金属化合物と合計量で1.5 質量部を超えると、これらのアルカリ金属を含む被膜が最終仕上焼鈍中に形成されることに起因する点状の被膜欠陥や被膜密着性低下などの被膜不良を生じる。   Moreover, it is also possible to contain the alkali metal compound which has the effect similar to this in combination with said lithium metal compound in an annealing separation agent. For example, in the case of a sodium metal compound, magnesia: 0.005 to 1 part by mass in terms of Na with respect to 100 parts by mass, and in the case of a potassium metal compound, 0.001 to 0.5 part by mass in terms of K is suitable. The total amount of Li and Li must be 0.01 to 1.5 parts by mass. As described above, since the lower limit value of the addition amount of the lithium metal compound is 0.01 parts by mass, the total amount with the other alkali metal compounds is not less than 0.01 parts by mass. In addition, when the total amount of the lithium metal compound and other alkali metal compound exceeds 1.5 parts by mass, the film containing these alkali metals forms a point-like film defect or film adhesion caused by the final finish annealing. Defects such as deterioration of coating properties occur.

その他にも、被膜形成の促進を目的としてTi,Mn,Fe,Zn,SiおよびS等の化合物を、また追加酸化の抑制を目的としてMg,Ca,SrおよびCu等の化合物を、さらに一次再結晶粒成長の抑制力の強化を目的としてSn、SbおよびAl等の化合物をそれぞれ、焼鈍分離剤中に添加することができる。その際、添加量としては、マグネシア:100質量部に対して 0.5〜15質量部程度とするのが好適である。
また、焼鈍分離剤の塗布量や水和量は、従来どおり、5〜15 g/m2, 0.5〜5%程度で良い。
In addition, compounds such as Ti, Mn, Fe, Zn, Si, and S for the purpose of promoting film formation, and compounds such as Mg, Ca, Sr, and Cu for the purpose of suppressing additional oxidation are further re-primary. Compounds such as Sn, Sb and Al can be added to the annealing separator for the purpose of strengthening the suppression of crystal grain growth. At that time, the addition amount is preferably about 0.5 to 15 parts by mass with respect to 100 parts by mass of magnesia.
Further, the application amount and the hydration amount of the annealing separator may be about 5 to 15 g / m 2 and about 0.5 to 5% as usual.

このような焼鈍分離剤を塗布してから、公知の方法で最終仕上焼鈍を施したのち、必要に応じて張力付与コーティングや絶縁コーティングを鋼板表面に焼き付け、ついで平坦化焼鈍を施して製品とする。
また、磁区細分化による鉄損低減を目的として、平坦化焼鈍後の鋼板に、プラズマジェットやレーザー照射を線状に施したり、突起ロールによる線状凹みを設ける処理を施すことは有利である。なお、磁区細分化処理としては、最終冷延後にエッチングなどにより圧延方法とほぼ直交する溝を形成させる処理を採用することもできる。
さらに、最終仕上焼鈍後、ゾル−ゲル法、TiN蒸着など公知の方法で張力被膜を形成させる技術を組み合わせることも、鉄損低減のために有効である。
After applying such an annealing separator, after final finishing annealing by a known method, if necessary, baked a tension-imparting coating or insulating coating on the surface of the steel sheet and then flattened annealing to make a product .
In addition, for the purpose of reducing iron loss due to magnetic domain subdivision, it is advantageous to subject the steel plate after flattening annealing to a plasma jet or laser irradiation in a linear manner or a treatment to provide a linear recess by a protruding roll. In addition, as a magnetic domain subdivision process, the process which forms the groove | channel substantially orthogonal to a rolling method by etching etc. after final cold rolling can also be employ | adopted.
Furthermore, it is also effective for reducing iron loss to combine techniques for forming a tension coating by a known method such as a sol-gel method or TiN deposition after the final finish annealing.

C:0.06mass%、Si:3.3 mass%、Mn:0.07mass%、P:0.003 mass%、S:0.003 mass%、Se:0.02mass%、Al:0.023 mass%、N:0.0082mass%およびCu:0.05mass%を含有し、かつ副インヒビタ成分としてBi:0.050 mass%を含有し、残部はFeおよび不可避的不純物の組成になる珪素鋼スラブを、1420℃で加熱後、熱間圧延により板厚:2.6 mmの熱延板とした。ついで、1000℃で熱延板焼鈍を施した後、1000℃の中間焼鈍を挟む2回の冷間圧延を施して、板厚:0.23mmまたは0.27mmの最終冷延板に仕上げた。ついで、820 ℃で120 秒の脱炭焼鈍を施した。
かくして得られた板厚:0.23mmまたは0.27mmの脱炭焼鈍板に対して、マグネシアを主剤とし、このマグネシア:100 質量部に対し、表3に示すように、水酸化リチウム、硫酸リチウムまたは炭酸リチウムをLi換算で0〜2.0 質量部の割合で添加し、さらに酸化チタンを4質量部の割合で添加した焼鈍分離剤を、鋼板の表面に塗布したのち、乾燥し、コイルに巻き取った。この時の塗布条件は、水和が20℃で30分、目付け量が両面で 12 g/m2とした。
このコイルから試験片を採取し、別途、二次再結晶開始温度T1 を測定した。
C: 0.06 mass%, Si: 3.3 mass%, Mn: 0.07 mass%, P: 0.003 mass%, S: 0.003 mass%, Se: 0.02 mass%, Al: 0.023 mass%, N: 0.0082 mass% and Cu: A steel steel slab containing 0.05 mass% and containing Bi: 0.050 mass% as a secondary inhibitor component, with the balance being Fe and inevitable impurities, heated at 1420 ° C., and then hot rolled to obtain a thickness: A 2.6 mm hot-rolled sheet was used. Subsequently, after hot-rolled sheet annealing was performed at 1000 ° C., cold rolling was performed twice with intermediate annealing at 1000 ° C. to finish a final cold-rolled sheet having a thickness of 0.23 mm or 0.27 mm. Next, decarburization annealing was performed at 820 ° C. for 120 seconds.
With respect to the decarburized and annealed sheet having a thickness of 0.23 mm or 0.27 mm, magnesia is the main agent. As shown in Table 3, lithium hydroxide, lithium sulfate or carbonate is used for 100 parts by mass of magnesia. Lithium was added at a rate of 0 to 2.0 parts by mass in terms of Li, and an annealing separator added with titanium oxide at a rate of 4 parts by mass was applied to the surface of the steel sheet, dried, and wound around a coil. The coating conditions at this time were such that hydration was at 20 ° C. for 30 minutes and the basis weight was 12 g / m 2 on both sides.
A test piece was taken from this coil, and the secondary recrystallization start temperature T 1 was measured separately.

その後、コイルを、最終仕上焼鈍として、 800℃まで46時間かけて昇温し、 800℃に20時間保定したのち、 800〜1150℃を25℃/hの平均昇温速度で昇温し、1150〜1200℃での滞留時間を20時間とする焼鈍を施した。ついで、リン酸マグネシウムとコロイダルシリカを主成分とする絶縁張力コーティングを施し、平坦化焼鈍の後、製品板とした。
かくして得られた製品板から、圧延方向の長さ:500 mm、圧延直角方向の長さ:500 mmの試験片を採取し、SST(単板磁気測定器)による磁気測定を行った。
また、被膜外観および被膜密着性についても調査した。
得られた結果を表3に示す。
Thereafter, the coil was heated to 800 ° C. over 46 hours as final finish annealing, held at 800 ° C. for 20 hours, and then heated to 800 to 1150 ° C. at an average rate of 25 ° C./h. Annealing was performed with a residence time at ˜1200 ° C. of 20 hours. Next, an insulating tension coating mainly composed of magnesium phosphate and colloidal silica was applied, and after flattening annealing, a product plate was obtained.
From the product plate thus obtained, a test piece having a length in the rolling direction of 500 mm and a length in the direction perpendicular to the rolling direction of 500 mm was sampled and subjected to magnetic measurement using an SST (single plate magnetometer).
The film appearance and film adhesion were also investigated.
The obtained results are shown in Table 3.

Figure 2005120452
Figure 2005120452

同表に示したとおり、本発明に従い、焼鈍分離剤としてマグネシア中に適正量のリチウム金属化合物を添加し、かつ板厚tと二次再結晶開始温度T1 の関係で定まるα値が0≦α<1の範囲にある場合には、被膜外観および被膜密着性に優れ、かつ磁気特性にも優れた製品板を得ることができた。 As shown in the table, according to the present invention, an appropriate amount of a lithium metal compound is added to magnesia as an annealing separator, and the α value determined by the relationship between the thickness t and the secondary recrystallization start temperature T 1 is 0 ≦ When it was in the range of α <1, it was possible to obtain a product plate having excellent coating appearance and coating adhesion and excellent magnetic properties.

C:0.06mass%、Si:3.3 mass%、Mn:0.07mass%、P:0.002 mass%、S:0.002 mass%、Se:0.02mass%、Al:0.025 mass%、N:0.0082mass%およびCu:0.10mass%を含有し、かつ副インヒビタ成分としてBiを 0.01, 0.04, 0.08, 0.12, 0.20, 1.0mass%含有し、残部はFeおよび不可避的不純物の組成になる珪素網スラブを、1410℃で加熱後、熱間圧延により板厚:2.4 mmの熱延板とした。ついで、1050℃の中間焼鈍を含む2回の冷間圧延により、板厚:0.23, 0.27, 0.30, 0.35mmの最終冷延板に仕上げたのち、850 ℃で100秒の脱炭焼鈍を施した。
かくして得られた板厚:0.23, 0.27, 0.30, 0.35mmの脱炭焼鈍板に対して、マグネシアを主剤とし、このマグネシア:100 質量部に対し、水酸化リチウムをLi金属換算で 0.1質量部添加した焼鈍分離剤を、鋼板の表面に塗布したのち、乾燥し、コイルに巻き取った。この時の塗布条件は、水和が20℃で30分、目付け量が両面で 12 g/m2とした。
このコイルから試験片を採取し、別途、二次再結晶開始温度T1 を測定した。
C: 0.06 mass%, Si: 3.3 mass%, Mn: 0.07 mass%, P: 0.002 mass%, S: 0.002 mass%, Se: 0.02 mass%, Al: 0.025 mass%, N: 0.0082 mass% and Cu: A silicon mesh slab containing 0.10 mass% and containing 0.01, 0.04, 0.08, 0.12, 0.20, 1.0 mass% Bi as a secondary inhibitor component, and the balance is heated at 1410 ° C with a composition of Fe and inevitable impurities Thereafter, hot rolling was performed to form a hot-rolled sheet having a thickness of 2.4 mm. Next, after final cold-rolled sheets with thicknesses of 0.23, 0.27, 0.30, and 0.35 mm were obtained by two cold rollings including intermediate annealing at 1050 ° C, decarburization annealing was performed at 850 ° C for 100 seconds. .
Thickness: 0.23, 0.27, 0.30, 0.35mm decarburized and annealed plates, magnesia as the main agent, and 0.1 parts by mass of lithium hydroxide in terms of Li metal is added to 100 parts by mass of magnesia. The applied annealing separator was applied to the surface of the steel sheet, dried, and wound on a coil. The coating conditions at this time were such that hydration was at 20 ° C. for 30 minutes and the basis weight was 12 g / m 2 on both sides.
A test piece was taken from this coil, and the secondary recrystallization start temperature T 1 was measured separately.

その後、コイルを、最終仕上焼鈍として、 800℃まで46時間かけて昇温し、 800℃に20時間保定したのち、 800〜1150℃を25℃/hの平均昇温速度で昇温し、1150〜1200℃での滞留時間を20時間とする焼鈍を施した。ついで、リン酸マグネシウムとコロイダルシリカを主成分とする絶縁張力コーティングを施し、平坦化焼鈍の後、製品板とした。
かくして得られた製品板から、圧延方向の長さ:500 mm、圧延直角方向の長さ:500 mmの試験片を採取し、SST(単板磁気測定器)による磁気測定を行った。
また、被膜外観および被膜密着性についても調査した。
得られた結果を表4に示す。
Thereafter, the coil was heated to 800 ° C. over 46 hours as final finish annealing, held at 800 ° C. for 20 hours, and then heated to 800 to 1150 ° C. at an average rate of 25 ° C./h. Annealing was performed with a residence time at ˜1200 ° C. of 20 hours. Next, an insulating tension coating mainly composed of magnesium phosphate and colloidal silica was applied, and after flattening annealing, a product plate was obtained.
From the product plate thus obtained, a test piece having a length in the rolling direction of 500 mm and a length in the direction perpendicular to the rolling direction of 500 mm was sampled and subjected to magnetic measurement using an SST (single plate magnetometer).
The film appearance and film adhesion were also investigated.
Table 4 shows the obtained results.

Figure 2005120452
Figure 2005120452

同表に示したとおり、本発明に従い、焼鈍分離割としてマグネシア中に適正量のリチウム金属化合物を添加し、かつ板厚tと二次再結晶開始温度T1 の関係で定まるα値が0≦α<1の範囲にある場合には、被膜外観および磁気特性に優れた製品板を得ることができた。 As shown in the table, according to the present invention, an appropriate amount of a lithium metal compound is added to magnesia as an annealing separation, and the α value determined by the relationship between the plate thickness t and the secondary recrystallization start temperature T 1 is 0 ≦ When it was in the range of α <1, it was possible to obtain a product plate having excellent coating appearance and magnetic properties.

焼鈍分離剤中に添加した水酸化リチウム量(Li換算値)と最終仕上焼鈍後の曲げ剥離径との関係を示した図である。It is the figure which showed the relationship between the amount of lithium hydroxide (Li conversion value) added in the annealing separation agent, and the bending peeling diameter after final finishing annealing. 最終仕上焼鈍後の磁束密度B8 に及ぼす二次再結晶開始温度T1 と板厚tの影響を示した図である。Illustrates the effects of final finish secondary recrystallization starting on the magnetic flux density B 8 after annealing temperatures T 1 and the plate thickness t. α値と最終仕上焼鈍後の磁束密度B8 との関係を示した図である。It is a diagram showing the relationship between the magnetic flux density B 8 of α values and final finish after annealing.

Claims (3)

C:0.01〜0.10mass%およびSi:1.0 〜5.0 mass%を含み、かつインヒビタ成分として、窒化物、硫化物およびセレン化物のうち少なくともいずれか一種を形成する成分を含有し、さらに副インヒビタ成分としてBi:0.003 〜1.5 mass%を含有する組成になる珪素鋼スラブを、熱間圧延し、ついで焼鈍処理を含む1回または2回以上の冷間圧延によって最終板厚としたのち、一次再結晶焼鈍を施し、ついで焼鈍分離剤を鋼板表面に塗布してから、最終仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
次式(1)
α= 5.8×10-4×(T1 − 940)/(t−0.07)1.4 --- (1)
ここで、T1 :二次再結晶開始温度(℃)
t :板厚(mm)
で示されるα値が0≦α<1の範囲におさまるように、二次再結晶開始温度T1 と板厚tの関係を定め、さらにマグネシアを主剤とする焼鈍分離剤中に、リウチム金属化合物を、マグネシア:100 質量部に対し金属リチウム換算で0.01〜1.5 質量部含有させることを特徴とする、磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法。
C: 0.01 to 0.10 mass% and Si: 1.0 to 5.0 mass%, and as an inhibitor component, it contains a component that forms at least one of nitride, sulfide, and selenide, and as a secondary inhibitor component Bi: A silicon steel slab having a composition containing 0.003 to 1.5 mass% is hot-rolled and then subjected to primary recrystallization annealing after the final thickness is obtained by one or more cold rolling processes including annealing. Then, after applying the annealing separator to the steel sheet surface, in the method for producing a grain-oriented electrical steel sheet consisting of a series of steps for final finishing annealing,
(1)
α = 5.8 × 10 −4 × (T 1 −940) / (t−0.07) 1.4 --- (1)
Where T 1 : secondary recrystallization start temperature (° C.)
t: Thickness (mm)
The relationship between the secondary recrystallization start temperature T 1 and the plate thickness t is determined so that the α value represented by the formula 0 falls within the range of 0 ≦ α <1, and in the annealing separator mainly containing magnesia, , Magnesia: 0.01 to 1.5 parts by mass in terms of metallic lithium with respect to 100 parts by mass, A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.
珪素鋼スラブ中のBi量が0.01〜0.35mass%であることを特徴とする、請求項1記載の磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties according to claim 1, wherein the Bi content in the silicon steel slab is 0.01 to 0.35 mass%. マグネシアを主剤とする焼鈍分離剤中に、リウチム金属化合物以外のアルカリ金属化合物をさらに加え、その際、マグネシア:100 質量部に対し、リウチム金属化合物およびそれ以外のアルカリ金属化合物を当該金属換算合計で0.01〜1.5 質量部含有させることを特徴とする、請求項1または2記載の磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法。   In the annealing separation agent mainly composed of magnesia, an alkali metal compound other than the lithium metal compound is further added. At that time, the magnesia: 100 parts by mass of the lithium metal compound and the other alkali metal compound in the metal conversion total. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties according to claim 1 or 2, wherein 0.01 to 1.5 parts by mass are contained.
JP2003359136A 2003-10-20 2003-10-20 Method for producing oriented magnetic steel sheet excellent in magnetic properties and film coated properties Pending JP2005120452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359136A JP2005120452A (en) 2003-10-20 2003-10-20 Method for producing oriented magnetic steel sheet excellent in magnetic properties and film coated properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359136A JP2005120452A (en) 2003-10-20 2003-10-20 Method for producing oriented magnetic steel sheet excellent in magnetic properties and film coated properties

Publications (1)

Publication Number Publication Date
JP2005120452A true JP2005120452A (en) 2005-05-12

Family

ID=34615462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359136A Pending JP2005120452A (en) 2003-10-20 2003-10-20 Method for producing oriented magnetic steel sheet excellent in magnetic properties and film coated properties

Country Status (1)

Country Link
JP (1) JP2005120452A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099839A (en) * 2017-11-29 2019-06-24 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
CN113302323A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Grain-oriented electromagnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099839A (en) * 2017-11-29 2019-06-24 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
CN113302323A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Grain-oriented electromagnetic steel sheet
CN113302323B (en) * 2019-01-16 2024-02-13 日本制铁株式会社 Grain oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
US9805851B2 (en) Grain-oriented electrical steel sheet and method of producing the same
JP5988027B2 (en) Method for producing ultrathin grain-oriented electrical steel sheet
WO2017006955A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014132354A1 (en) Production method for grain-oriented electrical steel sheets
JP2015200002A (en) Method for producing grain oriented magnetic steel sheet
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP3846064B2 (en) Oriented electrical steel sheet
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP4259037B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JP3928275B2 (en) Electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP6572956B2 (en) Method for producing grain-oriented electrical steel sheet
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JP2005120452A (en) Method for producing oriented magnetic steel sheet excellent in magnetic properties and film coated properties
JP2006144042A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic and coating characteristic
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JP2002194445A (en) Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP3536812B2 (en) Method for producing grain-oriented electrical steel sheet with few edge cracks and good coating properties and excellent magnetic properties
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet