JP2005120173A - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
JP2005120173A
JP2005120173A JP2003354901A JP2003354901A JP2005120173A JP 2005120173 A JP2005120173 A JP 2005120173A JP 2003354901 A JP2003354901 A JP 2003354901A JP 2003354901 A JP2003354901 A JP 2003354901A JP 2005120173 A JP2005120173 A JP 2005120173A
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
weight
parts
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003354901A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikeguchi
信之 池口
Kenichi Mori
健一 盛
Shigeki Tsuchida
隆樹 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003354901A priority Critical patent/JP2005120173A/en
Publication of JP2005120173A publication Critical patent/JP2005120173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curable resin composition which has a good moldability, gives a cured material having a low dielectricity, high heat resistance and good heat resistance after absorbing moisture. <P>SOLUTION: In the curable resin composition, 1-30 pts.wt. of (b) a crosslinked polystyrene powder is mixed with 100 pts.wt. of (a) a cyanate resin as the indispensable component. Preferably (c) a polyphenylene ether-based resin with a weight average molecular weight of 500-3,000 and/or (d) a polycarbonate resin and/or (e) silica powder are added to the curable resin composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プリント配線板材料に有用な硬化性樹脂組成物に関するものであり、本硬化性樹脂組成物から得られる硬化物は、誘電特性に優れることから、高周波用途のプリント配線板材料に好適であり、特に半導体チップを搭載する半導体プラスチックパッケージ用やマザーボード用などのプリント配線板材料に好適に使用される。   The present invention relates to a curable resin composition useful for a printed wiring board material, and a cured product obtained from the present curable resin composition is excellent in dielectric characteristics, and is therefore suitable for a printed wiring board material for high frequency applications. In particular, it is suitably used for printed wiring board materials for semiconductor plastic packages or mother boards for mounting semiconductor chips.

近年、電子機器における高密度化の進展に伴い、配線パターンの細密化やスルーホールの小径化、信号伝播速度の高速化と信号の高周波化等に対応するため、高周波領域における低誘電特性、特に低誘電正接と高耐熱性を有するプリント配線板材料の要求が増加している。低誘電正接と高耐熱性を兼ね備える樹脂としては、ポリイミド樹脂、シアン酸エステル樹脂、ビスマレイミド−トリアジン(BT)樹脂、不飽和基含有ポリフェニレンエーテル樹脂などが実用化されており、より一層の低誘電特性化を目的に、これらの樹脂をベースにした種々の改善手法が提案されている。シアン酸エステル樹脂を併用する事例としては、高分子のポリフェニレンエーテル樹脂にシアン酸エステル樹脂などを併用する積層板(例えば特許文献1参照)、シアン酸エステル樹脂に低分子の芳香族ビニル化合物オリゴマーを併用する硬化性樹脂組成物(例えば特許文献2参照)などが提案されているが、前者の積層板は、多層時の成形性や吸湿後の耐熱性が劣ること、後者の樹脂組成物は、加熱時に低分子芳香族ビニル化合物が蒸発し易く、また耐熱性が低下するなどの問題があり、更なる改善が必要であった。
特公 昭63-49695号公報 特公 2674080号公報
In recent years, with the progress of higher density in electronic equipment, in order to cope with finer wiring patterns, smaller through-hole diameters, higher signal propagation speeds and higher signal frequencies, low dielectric properties in the high frequency region, especially There is an increasing demand for printed wiring board materials having low dielectric loss tangent and high heat resistance. Polyimide resins, cyanate ester resins, bismaleimide-triazine (BT) resins, unsaturated group-containing polyphenylene ether resins, etc. have been put to practical use as resins having both low dielectric loss tangent and high heat resistance. For the purpose of characterization, various improvement methods based on these resins have been proposed. Examples of using a cyanate ester resin together include a laminated plate using a high molecular weight polyphenylene ether resin together with a cyanate ester resin (for example, see Patent Document 1), and a low molecular weight aromatic vinyl compound oligomer to the cyanate ester resin. A curable resin composition to be used in combination (see, for example, Patent Document 2) has been proposed, but the former laminate is inferior in moldability during multilayering and heat resistance after moisture absorption, and the latter resin composition is The low molecular weight aromatic vinyl compound tends to evaporate during heating, and the heat resistance is lowered, and further improvement is necessary.
Japanese Patent Publication No. 63-49695 Japanese Patent Publication No. 2674080

本発明は、成形性が良好で、得られる硬化物が、低誘電特性で、高耐熱性であり、かつ吸湿後の耐熱性に優れる硬化性樹脂組成物を提供するものである。   The present invention provides a curable resin composition having good moldability, and the obtained cured product has low dielectric properties, high heat resistance, and excellent heat resistance after moisture absorption.

本発明は、シアン酸エステル樹脂(a) 100重量部に対し、架橋ポリスチレン(b) 粉末 1〜30重量部を必須成分として配合した硬化性樹脂組成物であり、好ましくは、該硬化性樹脂組成物に、重量平均分子量 500〜3000のポリフェニレンエーテル系樹脂(c)、及び/又はポリカーボネート樹脂(d)、及び/又はシリカ粉末(e)を配合した硬化性樹脂組成物である。本発明の硬化性樹脂組成物は、得られる硬化物が、低誘電特性で、かつ高耐熱性であり、プリント配線板用途に適用した場合、成形性や吸湿後の耐熱性に優れる積層材料が得られる。   The present invention is a curable resin composition comprising 1 to 30 parts by weight of a crosslinked polystyrene (b) powder as an essential component with respect to 100 parts by weight of a cyanate ester resin (a), preferably the curable resin composition A curable resin composition comprising a polyphenylene ether resin (c) having a weight average molecular weight of 500 to 3000 and / or a polycarbonate resin (d) and / or silica powder (e). In the curable resin composition of the present invention, the obtained cured product has a low dielectric property and high heat resistance, and when applied to a printed wiring board, a laminate material having excellent moldability and heat resistance after moisture absorption is obtained. can get.

本発明の硬化性樹脂組成物から得られる硬化物は、低誘電特性で、かつ高耐熱性であり、プリント配線板用途において、吸湿後の耐熱性や成形性にも優れる積層材料が得られた。   The cured product obtained from the curable resin composition of the present invention has a low dielectric property and high heat resistance, and in a printed wiring board application, a laminated material excellent in heat resistance and moldability after moisture absorption was obtained. .

本発明で使用されるシアン酸エステル樹脂(a)とは、分子内に2個以上のシアナト基を有する化合物であれば、特に限定されるものではない。具体的に例示すると、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類などである。   The cyanate ester resin (a) used in the present invention is not particularly limited as long as it is a compound having two or more cyanato groups in the molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reaction of novolac with cyanogen halide.

これらのほかに特公昭41-1928、同43-18468、同44-4791、同45-11712、同46-41112、同47-26853及び特開昭51-63149等に記載のシアン酸エステル化合物も用い得る。また、これらシアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する重量平均分子量 400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記のシアン酸エステル化合物を、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。これらは1種或いは2種以上を適宜組み合わせて使用される。   In addition to these, cyanate ester compounds described in JP-B-41-1928, 43-18468, 44-4791, 45-11712, 46-41112, 47-26853, and JP-A-51-63149 are also included. Can be used. In addition, a prepolymer having a triazine ring formed by trimerization of cyanate groups of these cyanate ester compounds and having a weight average molecular weight of 400 to 6,000 is used. This prepolymer is obtained by polymerizing the above-mentioned cyanate ester compound using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. It is done. This prepolymer also includes a partially unreacted monomer, which is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the application of the present invention. These are used alone or in combination of two or more.

本発明で使用される架橋ポリスチレン(b)とは、架橋構造を有する、ポリスチレン或いはスチレンと他の芳香族ビニル化合物との共重合体であれば、特に限定されるものではない。他の芳香族ビニル化合物としては、例えば、α-メチルスチレン、ビニルトルエン、ジビニルベンゼン、クロルスチレン、ブロムスチレン等が挙げられるが、これらに限定されるものではない。架橋ポリスチレン(b)の製法としては、例えば、ジビニル化合物との共重合、過酸化物の併用や放射線処理等が挙げられるが、これらに限定されるものではない。具体的には、スチレンモノマーとジビニルベンゼンを使用し、重合触媒下で懸濁重合、又は溶液重合などによる手法が挙げられる。本発明で使用される架橋ポリスチレン(b) 粉末の形状は、特に限定されないが、例えば、球状、不定形状等、何れも使用可能であり、架橋ポリスチレン(b)粉末の粒子径は、特に限定されないが、好適には平均粒子径 0.2〜10μmのものが使用される。架橋ポリスチレン(b) 粉末の配合量は、シアン酸エステル樹脂(a) 100重量部に対し、1〜30重量部、好ましくは、 5〜20重量部である。   The crosslinked polystyrene (b) used in the present invention is not particularly limited as long as it is a copolymer of polystyrene or styrene and another aromatic vinyl compound having a crosslinked structure. Examples of other aromatic vinyl compounds include, but are not limited to, α-methylstyrene, vinyltoluene, divinylbenzene, chlorostyrene, bromostyrene, and the like. Examples of the method for producing the crosslinked polystyrene (b) include, but are not limited to, copolymerization with a divinyl compound, combined use of a peroxide and radiation treatment. Specifically, a method using suspension polymerization or solution polymerization in the presence of a polymerization catalyst using a styrene monomer and divinylbenzene can be mentioned. The shape of the crosslinked polystyrene (b) powder used in the present invention is not particularly limited, but for example, any shape such as a spherical shape and an indefinite shape can be used, and the particle diameter of the crosslinked polystyrene (b) powder is not particularly limited. However, those having an average particle diameter of 0.2 to 10 μm are preferably used. The blending amount of the crosslinked polystyrene (b) powder is 1 to 30 parts by weight, preferably 5 to 20 parts by weight with respect to 100 parts by weight of the cyanate ester resin (a).

本発明において、好適に使用されるポリフェニレンエーテル系樹脂(c)とは、重量平均分子量 500〜3000の、ポリフェニレンエーテル樹脂或いはその末端変性物であれば、特に限定されるものではない。ポリフェニレンエーテル構造を有する化合物の末端変性物としては、例えば、末端エポキシ化ポリフェニレンエーテル樹脂、末端シアナト化ポリフェニレンエーテル樹脂、末端スチレン化ポリフェニレンエーテル樹脂、末端 (メタ)アクリレート化ポリフェニレンエーテル樹脂等が挙げられ、1種或いは2種以上を適宜組み合わせて使用される。ポリフェニレンエーテル系樹脂(c)の分子量は、重量平均分子量で 500〜3000であり、より好適には、600〜2000である。ポリフェニレンエーテル系樹脂(c)の配合量は、シアン酸エステル樹脂(a) 100重量部に対し、5〜20重量部が好適である。   In the present invention, the polyphenylene ether resin (c) preferably used is not particularly limited as long as it is a polyphenylene ether resin having a weight average molecular weight of 500 to 3000 or a terminal-modified product thereof. Examples of the terminal modification of the compound having a polyphenylene ether structure include terminal epoxidized polyphenylene ether resin, terminal cyanated polyphenylene ether resin, terminal styrenated polyphenylene ether resin, terminal (meth) acrylated polyphenylene ether resin, and the like. One type or two or more types are used in appropriate combination. The molecular weight of the polyphenylene ether resin (c) is 500 to 3000 in terms of weight average molecular weight, and more preferably 600 to 2000. The blending amount of the polyphenylene ether resin (c) is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the cyanate ester resin (a).

本発明において、好適に使用されるポリカーボネート樹脂(d)とは、ポリカーボネート構造を有する化合物であれば、特に限定されないが、ハロゲン化ポリカーボネートが好適に使用される。ポリカーボネート樹脂(d)の分子量は、特に限定されないが、重量平均分子量で 500〜3000のものが好適である。ポリカーボネート樹脂(d)の配合量は、シアン酸エステル樹脂(a) 100重量部に対し、1〜50重量部が好適である。   In the present invention, the polycarbonate resin (d) preferably used is not particularly limited as long as it is a compound having a polycarbonate structure, but a halogenated polycarbonate is preferably used. The molecular weight of the polycarbonate resin (d) is not particularly limited, but a weight average molecular weight of 500 to 3000 is preferable. The blending amount of the polycarbonate resin (d) is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the cyanate ester resin (a).

本発明の硬化性樹脂組成物には、エポキシ樹脂の併用が好適である。これらのエポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する化合物であれば、特に限定されるものではない。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエピクロルヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。又、これらの臭素、リン化合物も使用できる。これらは1種或いは2種類以上を適宜組み合わせて使用することも可能である。   A combination of epoxy resins is suitable for the curable resin composition of the present invention. These epoxy resins are not particularly limited as long as they are compounds having two or more epoxy groups in one molecule. Specifically, double bonds such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. Epoxidized polyepoxy compounds; polyglycidyl compounds obtained by reaction of polyols, hydroxyl group-containing silicon resins and epichlorohydrin, and the like. These bromine and phosphorus compounds can also be used. These can be used alone or in combination of two or more.

本発明において、必要に応じて有機溶剤を使用するが、その種類としては、使用樹脂組成物に相溶するものであれば、特に限定されるものではない。その代表例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;ジメチルアセトアミド、ジメチルホルムアミド等の極性溶剤類;トルエン、キシレン等の芳香族炭化水素溶剤類等が挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。   In the present invention, an organic solvent is used as necessary, but the type is not particularly limited as long as it is compatible with the resin composition used. Typical examples include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; polar solvents such as dimethylacetamide and dimethylformamide; and aromatic hydrocarbon solvents such as toluene and xylene. It is also possible to use a mixture of the above as appropriate.

本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、多官能性マレイミド類;不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ブタジエン-スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、ポリエチレン-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチレン共重合体類;ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。また、その他、公知の無機、有機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。   In the thermosetting resin composition of the present invention, various additives can be blended as desired within a range where the original properties of the composition are not impaired. These additives include polyfunctional maleimides; polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymers, poly Low molecular weight liquid to high molecular weight elastic rubber such as chloroprene, butadiene-styrene copolymer, polyisoprene, butyl rubber, fluorine rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin , ABS resin, MBS resin, styrene-isoprene rubber, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymers; high molecular weight prepolymers or oligomers such as polysulfone, polyester, polyphenylene sulfide; For example, polyurethane Shown and used as appropriate. In addition, other known inorganic and organic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic properties Various additives such as an imparting agent are used in appropriate combination as desired.

本発明の硬化性樹脂組成物は、加熱により硬化するが、硬化速度が遅く、作業性、経済性等に劣る場合には、公知の熱硬化触媒を用い得る。使用量は、硬化性樹脂 100重量部に対して 0.005〜5重量部、好ましくは 0.01〜3重量部である。   The curable resin composition of the present invention is cured by heating, but a known thermosetting catalyst can be used when the curing rate is slow and the workability, economy, etc. are inferior. The amount used is 0.005 to 5 parts by weight, preferably 0.01 to 3 parts by weight, per 100 parts by weight of the curable resin.

本発明で好適に使用されるシリカ粉末(e)とは、二酸化珪素を主成分とする無機物の粉末であれば、特に限定されるものではなく、例えば、粉砕シリカ粉末、溶融シリカ粉末、合成シリカ粉末等が挙げられ、1種或いは2種以上を適宜組み合わせて使用される。シリカ粉末(e)の形状は、例えば、球状、不定形状等、何れも使用可能であるが、球状シリカが好適であり、シリカ粉末(e)の粒子径は特に限定されないが、平均粒子径 0.1〜5μmが好適である。シリカ粉末(e)の配合量は、特に限定されないが、硬化性樹脂組成物(固形分)100重量部に対し、5〜250重量部であり、好適には 7〜150重量部である。   The silica powder (e) preferably used in the present invention is not particularly limited as long as it is an inorganic powder mainly composed of silicon dioxide. For example, pulverized silica powder, fused silica powder, synthetic silica A powder etc. are mentioned, It uses 1 type or in combination of 2 or more types as appropriate. As the shape of the silica powder (e), for example, any of spherical, indefinite shape, etc. can be used. ˜5 μm is preferred. The blending amount of the silica powder (e) is not particularly limited, but is 5 to 250 parts by weight, preferably 7 to 150 parts by weight with respect to 100 parts by weight of the curable resin composition (solid content).

本発明の硬化性樹脂組成物は、成型品、成形材料、塗料、接着剤、積層板等に適用可能であり、特に、銅張積層板、多層板用途等のプリント配線板材料用途に有用であり、基材を組み合わせたプリプレグとして通常の積層材料用に、銅箔或いは離型フィルムの片面に塗布、乾燥してBステージ樹脂組成物層とし、ビルドアップ用の積層材料等として使用できる。   The curable resin composition of the present invention can be applied to molded products, molding materials, paints, adhesives, laminates, and the like, and is particularly useful for printed wiring board materials such as copper-clad laminates and multilayer boards. Yes, as a prepreg combined with a substrate, it can be applied to one side of a copper foil or a release film and dried to form a B-stage resin composition layer for an ordinary laminated material, and used as a laminated material for build-up.

本発明の硬化性樹脂組成物の用途として好適な銅張積層板の製法としては、無機或いは有機基材に、本発明の硬化性樹脂組成物を含浸、乾燥させてBステージとし、プリプレグを作製する。次に、このプリプレグを所定枚数重ね、少なくとも片面に銅箔を配置して、加熱、加圧、好適には真空下に積層成形し、銅張積層板とする。銅箔の厚みは、好適には 3〜35μmである。   As a method for producing a copper-clad laminate suitable for the use of the curable resin composition of the present invention, an inorganic or organic substrate is impregnated with the curable resin composition of the present invention and dried to form a B stage to produce a prepreg. To do. Next, a predetermined number of the prepregs are stacked, a copper foil is disposed on at least one surface, and laminated by heating and pressing, preferably under vacuum, to obtain a copper-clad laminate. The thickness of the copper foil is preferably 3 to 35 μm.

本発明の硬化性樹脂組成物の用途として好適な多層板の製法は、上記銅張積層板に、レーザー、メカニカルドリル等で貫通孔あけし、回路を形成して内層板を作製し、必要により銅箔表面処理後、少なくとも片面に、Bステージの基材補強プリプレグ、或いは基材のないBステージ樹脂組成物シート、Bステージ樹脂付き銅箔、塗料塗布による樹脂層等を配置し、必要により、その外側に銅箔を置き、加熱、加圧、好ましくは真空下に積層成形し、多層板とする。又、内層版を複数枚使用し、この内層板の間及び外側にプリプレグを入れ、最外層に銅箔を置いて積層成形し、多層板とする等、周知の方法が適用できる。   A method for producing a multilayer board suitable as a use of the curable resin composition of the present invention is to make a through hole in the copper-clad laminate with a laser, a mechanical drill, etc., to form a circuit, and to produce an inner layer board. After the copper foil surface treatment, on at least one side, a B-stage base material reinforced prepreg, or a B-stage resin composition sheet without a base material, a copper foil with a B-stage resin, a resin layer by coating, and the like are arranged. A copper foil is placed on the outside and laminated by heating and pressing, preferably under vacuum, to form a multilayer board. Further, a known method can be applied such as using a plurality of inner layer plates, putting a prepreg between and outside the inner layer plates, laminating and forming a copper foil on the outermost layer, and forming a multilayer plate.

銅張積層板の成形条件としては、通常のプリント配線板用積層板及び多層板の手法が適用できる。例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度 100〜300℃、圧力 2〜100 kgf/cm2 、加熱時間 0.1〜5時間の範囲が一般的である。 As a molding condition of the copper-clad laminate, a general method for laminates for printed wiring boards and multilayer boards can be applied. For example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc. are used, and the temperature is generally 100 to 300 ° C., the pressure is 2 to 100 kgf / cm 2 , and the heating time is 0.1 to 5 hours.

以下に実施例、比較例で本発明を具体的に説明する。『部』は重量部を表す。  The present invention will be specifically described below with reference to examples and comparative examples. “Part” represents part by weight.

合成例 (末端スチレン化ポリフェニレンエーテル樹脂Aの合成)
4,4’-メチレンビス(2,6-ジメチルフェノール)1molと 2,6-ジメチルフェノール 3molをCuCl とジ-n-ブチルアミン の存在下で反応させて得られたフェニレンエーテルオリゴマー体 480.0g、ビニルベンジルクロライド(CMS-P;セイミケミカル<株>製)260.2g、テトラヒドロフラン 2000g、炭酸カリウム 240.1g、18-クラウン-6-エーテル 60.0gを混合し、温度 30℃で6時間反応させた後、エバポレーターで濃縮し、トルエンで希釈、水洗を行い、有機層を濃縮しメタノール中へ滴下して固形化を行い、濾過により固体を回収、真空乾燥して末端スチレン化ポリフェニレンエーテル樹脂A(重量平均分子量:1420)を得た。
Synthesis example (synthesis of terminal styrenated polyphenylene ether resin A)
480.0 g of phenylene ether oligomer obtained by reacting 1 mol of 4,4'-methylenebis (2,6-dimethylphenol) and 3 mol of 2,6-dimethylphenol in the presence of CuCl and di-n-butylamine, vinylbenzyl 260.2 g of chloride (CMS-P; manufactured by Seimi Chemical Co., Ltd.), 2000 g of tetrahydrofuran, 240.1 g of potassium carbonate, and 60.0 g of 18-crown-6-ether were mixed and reacted at 30 ° C. for 6 hours. Concentrate, dilute with toluene, wash with water, concentrate the organic layer and drop into methanol to solidify, collect the solid by filtration, vacuum dry and terminal styrenated polyphenylene ether resin A (weight average molecular weight: 1420 )

実施例1
2,2-ビス(4-シアナトフェニル)プロパン 900部、ビス(4-マレイミドフェニル)メタン 100部を 150℃に溶融させ、撹拌しながら4時間反応させ、モノマー含有プレポリマーを得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解した後、ビスフェノールA型エポキシ樹脂(エピコート1001、ジャパンエポキシレジン<株>製) 200部、架橋ポリスチレン粉末(SBX-6、平均粒子径:6μm、積水化成品工業<株>製) 120部、オクチル酸亜鉛 0.4部を加え、均一に混合しワニスBとした。このワニスBを、厚さ 100μmのNEガラス織布に含浸し、170℃で乾燥して、ゲル化時間(at170℃) 120秒、樹脂組成物含有量 45重量%のプリプレグCと、樹脂組成物含有量 55重量%、ゲル化時間 145秒のプリプレグDを作製した。このプリプレグCを4枚重ね、その上下面に厚さ 35μmの電解銅箔を配置し、200℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形し、厚み 400μmの両面銅張積層板Eを作製した。次に両面銅張積層板Eに回路を形成し、導体を黒色酸化銅処理し、この両面にプリプレグDを各々1枚づつ配置し、その外側に12μmの電解銅箔を配置し、上記と同様に積層成形して4層板を作製した。評価結果を表1に示す。
Example 1
900 parts of 2,2-bis (4-cyanatophenyl) propane and 100 parts of bis (4-maleimidophenyl) methane were melted at 150 ° C. and reacted for 4 hours with stirring to obtain a monomer-containing prepolymer. After dissolving this in a mixed solvent of methyl ethyl ketone and dimethylformamide, 200 parts of bisphenol A type epoxy resin (Epicoat 1001, manufactured by Japan Epoxy Resin Co., Ltd.), cross-linked polystyrene powder (SBX-6, average particle size: 6 μm, Sekisui) 120 parts of Nippon Seisaku Kogyo Co., Ltd. and 0.4 parts of zinc octylate were added and mixed uniformly to make varnish B. This varnish B is impregnated into a 100 μm thick NE glass woven fabric, dried at 170 ° C., gelation time (at 170 ° C.) 120 seconds, resin composition content 45 wt% prepreg C, and resin composition A prepreg D having a content of 55% by weight and a gel time of 145 seconds was produced. Four prepregs C are stacked, and 35μm thick electrolytic copper foil is placed on the top and bottom surfaces of the prepreg C. Laminate molding is performed at 200 ° C, 20kgf / cm 2 , 30mmHg or less for 2 hours, and 400μm thick double-sided copper Plate E was produced. Next, a circuit is formed on the double-sided copper-clad laminate E, the conductor is treated with black copper oxide, one prepreg D is placed on each side, and a 12 μm electrolytic copper foil is placed on the outside, as above. A four-layer plate was produced by laminating to the above. The evaluation results are shown in Table 1.

実施例2
2,2-ビス(4-シアナトフェニル)エーテル 1000部を 150℃で加熱溶融し、攪拌しながら 4.5時間反応し、モノマー含有プレポリマーを得た。これをメチルエチルケトンに溶解した後、上記末端スチレン化ポリフェニレンエーテル樹脂A 300部、架橋ポリスチレン粉体(SBX-6) 300部、オクチル酸亜鉛 0.2部を加え、均一に混合しワニスFとした。このワニスFを、厚さ 50μmのEガラス織布に含浸し、160℃で乾燥して、樹脂流れ(100x100mm、5枚重ね、200℃、40kgf/cm2、5分)11%、樹脂組成物含有量 60重量%のプリプレグGと、樹脂流れ(同)14%、樹脂組成物含有量 70重量%のプリプレグHを作製した。このプリプレグGを8枚重ね、その上下面に厚さ 35μmの電解銅箔を配置し、220℃、30kgf/cm2、30mmHg以下の真空下で2時間積層成形し、厚み 400μmの両面銅張積層板Iを作製した。この両面銅張積層板Iに回路を形成し、導体を黒色酸化銅処理し、この両面にプリプレグHを各々2枚づつ配置し、その外側に厚さ 12μmの電解銅箔を配置し、上記と同様に積層成形して4層板を作製した。評価結果を表1に示す。
Example 2
1000 parts of 2,2-bis (4-cyanatophenyl) ether was heated and melted at 150 ° C. and reacted for 4.5 hours with stirring to obtain a monomer-containing prepolymer. After this was dissolved in methyl ethyl ketone, 300 parts of the above-mentioned terminal styrenated polyphenylene ether resin A, 300 parts of crosslinked polystyrene powder (SBX-6), and 0.2 part of zinc octylate were added and mixed uniformly to obtain Varnish F. This varnish F is impregnated into E glass woven fabric with a thickness of 50μm, dried at 160 ° C, resin flow (100x100mm, 5 layers, 200 ° C, 40kgf / cm 2 , 5 minutes) 11%, resin composition A prepreg G having a content of 60% by weight, a prepreg H having a resin flow (same as above) of 14% and a resin composition content of 70% by weight was prepared. Eight prepregs G are stacked, and 35μm thick electrolytic copper foil is placed on the top and bottom surfaces of the prepreg G. Laminate molding is performed at 220 ° C, 30kgf / cm 2 , 30mmHg or less for 2 hours. Plate I was prepared. A circuit is formed on this double-sided copper clad laminate I, the conductor is treated with black copper oxide, two prepregs H are arranged on both sides, and an electrolytic copper foil having a thickness of 12 μm is arranged on the outside. In the same manner, a four-layer plate was produced by laminate molding. The evaluation results are shown in Table 1.

実施例3
実施例1のワニスBの固形分 1300部に、球状シリカ粉体(FB-3SDC、平均粒子径:3μm、電気化学工業<株>製) 1000重量部を加え、均一に撹拌混合してワニスJを得た。このワニスJを、厚さ 100μmのNEガラス織布に含浸し、170℃で乾燥して、ゲル化時間(at170℃) 132秒、樹脂組成物含有量 47重量%のプリプレグKと、樹脂組成物含有量 58重量%、ゲル化時間 151秒のプリプレグLを作製した。このプリプレグKを4枚重ねた上下面に、厚さ 18μmの電解銅箔を配置し、実施例1と同様にして両面銅張積層板Mを作製した。この両面銅張積層板Mに回路を形成し、導体を黒色酸化銅処理し、この両面にプリプレグLを各々1枚づつ配置し、その外側に 12μm電解銅箔を配置し、上記と同様に積層成形して4層板を作製した。評価結果を表1に示す。
Example 3
1000 parts by weight of spherical silica powder (FB-3SDC, average particle size: 3 μm, manufactured by Denki Kagaku Kogyo Co., Ltd.) was added to 1300 parts of the solid content of varnish B of Example 1, and the mixture was uniformly stirred and mixed. Got. This varnish J is impregnated into a 100 μm thick NE glass woven fabric, dried at 170 ° C., gelation time (at 170 ° C.) 132 seconds, resin composition content 47% by weight of prepreg K, and resin composition A prepreg L having a content of 58% by weight and a gel time of 151 seconds was produced. An electrolytic copper foil having a thickness of 18 μm was placed on the upper and lower surfaces of the four prepregs K, and a double-sided copper clad laminate M was produced in the same manner as in Example 1. A circuit is formed on this double-sided copper clad laminate M, the conductor is treated with black copper oxide, one prepreg L is placed on each side, and 12μm electrolytic copper foil is placed on the outside. A four-layer board was produced by molding. The evaluation results are shown in Table 1.

実施例4
実施例3で得られたワニスJの固形分 1000部に、臭素化ポリカーボネートオリゴマー(FG8500、Br含有量:58wt%、重量平均分子量:1500、帝人化成<株>製) 300部、均一に混合してワニスNを作製した。このワニスNを、厚さ 40μmの液晶ポリエステル不織布(MBBK、<株>クラレ製)に含浸し、150℃で乾燥して、樹脂組成物含有量 50重量%、ゲル化時間(133秒at170℃)のプリプレグOを作製した。このプリプレグOを6枚重ねた上下面に、厚さ 12μmの電解銅箔を配置し、実施例1と同様に積層成形し、両面銅張積層板を作製した。評価結果を表1に示す。
Example 4
To 1000 parts of solid content of varnish J obtained in Example 3, 300 parts of brominated polycarbonate oligomer (FG8500, Br content: 58 wt%, weight average molecular weight: 1500, manufactured by Teijin Chemicals Ltd.) was uniformly mixed. Thus, varnish N was produced. This varnish N is impregnated into a liquid crystal polyester nonwoven fabric (MBBK, manufactured by Kuraray Co., Ltd.) with a thickness of 40 μm, dried at 150 ° C., and a resin composition content of 50% by weight, gelation time (133 seconds at 170 ° C.) Prepreg O was prepared. An electrolytic copper foil having a thickness of 12 μm was placed on the upper and lower surfaces where six prepregs O were stacked, and laminate-molded in the same manner as in Example 1 to produce a double-sided copper-clad laminate. The evaluation results are shown in Table 1.

比較例1
実施例1において、架橋ポリスチレン粉末 300部の替わりに ポリスチレンオリゴマー(ピコラステックA5,理化ハーキュリーズ<株>製)を 300部使用する以外は、実施例1と同様に行い、(170℃で乾燥したところ、ポリスチレンオリゴマーが飛散する現象が観察された)4層板を作製した。評価結果を表1に示す。
Comparative Example 1
In Example 1, in place of 300 parts of the crosslinked polystyrene powder, except that 300 parts of polystyrene oligomer (Picolastec A5, manufactured by Rika Hercules Co., Ltd.) was used, the same procedure as in Example 1 was carried out (when dried at 170 ° C. A phenomenon in which polystyrene oligomers were scattered was observed). The evaluation results are shown in Table 1.

比較例2
実施例2において、架橋ポリスチレン粉末を使用せずに、末端スチレン化ポリフェニレンエーテル樹脂A 300部の替わりに、ポリフェニレンエーテル樹脂(重量平均分子量 8200) 300部をトルエン溶液に溶解したものを使用する以外は、実施例2と同様に行い、4層板を作製した。評価結果を表1に示す。
Comparative Example 2
In Example 2, instead of using the crosslinked polystyrene powder, instead of using 300 parts of the terminal styrenated polyphenylene ether resin A, 300 parts of a polyphenylene ether resin (weight average molecular weight 8200) dissolved in a toluene solution was used. In the same manner as in Example 2, a four-layer plate was produced. The evaluation results are shown in Table 1.

表1
実 施 例 比 較 例
項 目 1 2 3 4 1 2
成形性 ○ ○ ○ − △ ×
ガラス転移温度(℃) 224 228 225 220 189 208
誘電率(1GHz) 3.3 3.7 3.8 3.4 3.4 3.7
誘電正接(1GHz) 0.004 0.003 0.004 0.004 0.005 0.005
吸湿耐熱性 異常なし 異常なし 異常なし 異常なし 異常なし 膨れ大
Table 1
Example Comparison example
Item 1 2 3 4 1 2
Formability ○ ○ ○ − △ ×
Glass transition temperature (℃) 224 228 225 220 189 208
Dielectric constant (1GHz) 3.3 3.7 3.8 3.4 3.4 3.7
Dissipation factor (1GHz) 0.004 0.003 0.004 0.004 0.005 0.005
Moisture absorption heat resistance No abnormality No abnormality No abnormality No abnormality No abnormality No swelling

<測定方法>
1) 成形性:4層板の内層パターンの埋め込み性を目視で判定。(○:ボイドなし △:小さなボイドあり ×:大きなボイドあり)
2)ガラス転移温度:両面銅張積層板の銅箔を除去後、JIS C 6481に準じて、DMA法で測定。
3)誘電特性:両面銅張積層板の銅箔を除去後、空洞共振摂動法により測定。(測定周波数 1GHz)
4)吸湿耐熱性:試験片(50x50mm)を、121℃、2kgf/cm2で2時間吸湿処理後に、260℃のハンダ中に 30秒浸漬した後の外観の異常の有無を目視で判定。
<Measurement method>
1) Formability: The embedding property of the inner layer pattern of the four-layer board is visually determined. (○: No void △: Small void ×: Large void)
2) Glass transition temperature: Measured by DMA method according to JIS C 6481 after removing copper foil from double-sided copper-clad laminate.
3) Dielectric property: Measured by cavity resonance perturbation method after removing copper foil from double-sided copper-clad laminate. (Measurement frequency 1GHz)
4) Moisture absorption heat resistance: The specimen (50x50mm) was subjected to moisture absorption treatment at 121 ° C and 2kgf / cm 2 for 2 hours, and visually checked for abnormal appearance after being immersed in solder at 260 ° C for 30 seconds.

Claims (4)

シアン酸エステル樹脂(a) 100重量部に対し、架橋ポリスチレン(b))粉末 1〜30重量部を必須成分として配合した硬化性樹脂組成物。 A curable resin composition comprising 1 to 30 parts by weight of a crosslinked polystyrene (b)) powder as an essential component per 100 parts by weight of a cyanate ester resin (a). 該硬化性樹脂組成物に、重量平均分子量 500〜3000のポリフェニレンエーテル系樹脂(c)を配合した請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein a polyphenylene ether resin (c) having a weight average molecular weight of 500 to 3000 is blended with the curable resin composition. 該硬化性樹脂組成物に、ポリカーボネート樹脂(d)を配合した請求項1又は2記載の硬化性樹脂組成物。 The curable resin composition of Claim 1 or 2 which mix | blended polycarbonate resin (d) with this curable resin composition. 請求項1〜3のいずれかに記載の硬化性樹脂組成物に、シリカ粉末(e)を配合した硬化性樹脂組成物。 A curable resin composition comprising the curable resin composition according to any one of claims 1 to 3 and a silica powder (e).
JP2003354901A 2003-10-15 2003-10-15 Curable resin composition Pending JP2005120173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354901A JP2005120173A (en) 2003-10-15 2003-10-15 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354901A JP2005120173A (en) 2003-10-15 2003-10-15 Curable resin composition

Publications (1)

Publication Number Publication Date
JP2005120173A true JP2005120173A (en) 2005-05-12

Family

ID=34612679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354901A Pending JP2005120173A (en) 2003-10-15 2003-10-15 Curable resin composition

Country Status (1)

Country Link
JP (1) JP2005120173A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075012A (en) * 2006-09-22 2008-04-03 Mitsubishi Gas Chem Co Inc Resin composition, prepreg and metal foil-clad laminate
JP2009161725A (en) * 2007-05-31 2009-07-23 Mitsubishi Gas Chem Co Inc Curable resin composition, curable film, and cured materials of these
EP2090612A1 (en) 2008-02-12 2009-08-19 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and their uses
CN101550221A (en) * 2008-04-01 2009-10-07 三菱瓦斯化学株式会社 Resin composition, prepreg and metal-foil-clad laminate
WO2012128313A1 (en) 2011-03-24 2012-09-27 三菱瓦斯化学株式会社 Resin composition, prepreg and resin sheet, and metal foil-clad laminate
WO2013146302A1 (en) 2012-03-29 2013-10-03 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, and metal foil-clad laminate
KR20160130227A (en) 2014-03-06 2016-11-10 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, resin sheet, metal-foil-clad laminated plate, and printed wiring board
JP2021109914A (en) * 2020-01-09 2021-08-02 太陽ホールディングス株式会社 Curable composition containing polyphenylene ether, dry film, prepreg, cured product, laminate, and electronic component

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075012A (en) * 2006-09-22 2008-04-03 Mitsubishi Gas Chem Co Inc Resin composition, prepreg and metal foil-clad laminate
JP2009161725A (en) * 2007-05-31 2009-07-23 Mitsubishi Gas Chem Co Inc Curable resin composition, curable film, and cured materials of these
EP2090612A1 (en) 2008-02-12 2009-08-19 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and their uses
JP2010138364A (en) * 2008-02-12 2010-06-24 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg and metal foil laminated plate
CN101550221A (en) * 2008-04-01 2009-10-07 三菱瓦斯化学株式会社 Resin composition, prepreg and metal-foil-clad laminate
EP2113534A1 (en) 2008-04-01 2009-11-04 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and metal-foil-clad laminate
CN101550221B (en) * 2008-04-01 2012-09-19 三菱瓦斯化学株式会社 Resin composition, prepreg and metal-foil-clad laminate
US9743515B2 (en) 2008-04-01 2017-08-22 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and metal-foil-clad laminate
US9318402B2 (en) 2011-03-24 2016-04-19 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and resin sheet and metal foil-clad laminate
WO2012128313A1 (en) 2011-03-24 2012-09-27 三菱瓦斯化学株式会社 Resin composition, prepreg and resin sheet, and metal foil-clad laminate
WO2013146302A1 (en) 2012-03-29 2013-10-03 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, and metal foil-clad laminate
US9394439B2 (en) 2012-03-29 2016-07-19 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, resin sheet, and metal foil-clad laminate
KR20140146589A (en) 2012-03-29 2014-12-26 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, resin sheet, and metal foil-clad laminate
KR20160130227A (en) 2014-03-06 2016-11-10 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, resin sheet, metal-foil-clad laminated plate, and printed wiring board
US10370536B2 (en) 2014-03-06 2019-08-06 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP2021109914A (en) * 2020-01-09 2021-08-02 太陽ホールディングス株式会社 Curable composition containing polyphenylene ether, dry film, prepreg, cured product, laminate, and electronic component
JP7388928B2 (en) 2020-01-09 2023-11-29 太陽ホールディングス株式会社 Curable compositions containing polyphenylene ether, dry films, prepregs, cured products, laminates, and electronic components

Similar Documents

Publication Publication Date Title
JP6680405B1 (en) Resin composition, prepreg, metal foil clad laminate, resin sheet and printed wiring board
JP6010872B2 (en) Resin composition, prepreg, resin sheet, and metal foil-clad laminate
WO2017135168A1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, printed wiring board, and semiconductor device
CN112236464B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
WO2016158067A1 (en) Resin composition for printed wiring board, prepreg, resin composite sheet, and metal foil-clad laminate plate
JP6819921B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2005120173A (en) Curable resin composition
TW201534643A (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
JP2004330236A (en) Auxiliary sheet for laser boring
JP6531910B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
CN110506066B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
TW201700598A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP2017157787A (en) Multilayer substrate
JP5140977B2 (en) Resin composition, prepreg and metal foil-clad laminate
JP2017200966A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
TWI713784B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6718588B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2023054518A1 (en) Prepreg, laminate and printed wiring board
JPH11124491A (en) Hardenable resin composition
JP2019119812A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet, and printed wiring board
KR20170139032A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR20240088777A (en) Prepreg, laminate and printed wiring board
JP2000061679A (en) Method for forming through hole by laser beam
WO2022124129A1 (en) Resin composition, prepreg, resin sheet, metal foil-clad layered board, and printed wiring board
WO2022124130A1 (en) Copper-clad laminated board and printed wiring board