WO2022124130A1 - Copper-clad laminated board and printed wiring board - Google Patents

Copper-clad laminated board and printed wiring board Download PDF

Info

Publication number
WO2022124130A1
WO2022124130A1 PCT/JP2021/043776 JP2021043776W WO2022124130A1 WO 2022124130 A1 WO2022124130 A1 WO 2022124130A1 JP 2021043776 W JP2021043776 W JP 2021043776W WO 2022124130 A1 WO2022124130 A1 WO 2022124130A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper foil
group
parts
resin
Prior art date
Application number
PCT/JP2021/043776
Other languages
French (fr)
Japanese (ja)
Inventor
克哉 山本
恵一 長谷部
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202180079958.2A priority Critical patent/CN116490555A/en
Priority to JP2022568198A priority patent/JPWO2022124130A1/ja
Priority to KR1020237014533A priority patent/KR20230115977A/en
Publication of WO2022124130A1 publication Critical patent/WO2022124130A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a copper foil-clad laminate, a printed wiring board manufactured using the same, and a semiconductor device.
  • Patent Document 1 describes excellent heat resistance by using a polyphenylene ether resin in which both sides of a molecular chain are modified with unsaturated bond substituents and three or more specific crosslinkable curing agents. It has been reported that a thermosetting resin composition having low dielectric properties and various physical properties at the same time, a prepreg using the composition, a laminated sheet and a printed circuit board can be obtained.
  • Laminated boards for printed wiring boards are required to have crack resistance in addition to transmission loss characteristics (low transmission loss) and copper foil peel strength.
  • the crack resistance indicates the insulation reliability when the bending test is performed while passing a current through the substrate on which the circuit is drawn, and means that dielectric breakdown does not occur even if the number of bendings is large.
  • the copper foil-clad laminate disclosed in the above patent document is good in terms of low transmission loss and the like, but still has a problem in terms of crack resistance.
  • the present invention uses a copper foil-clad laminate having good copper foil peel strength and transmission loss characteristics (low transmission loss), and also having excellent crack resistance and solder heat resistance. It is an object of the present invention to provide a printed wiring board and a semiconductor device.
  • the present inventors have made a copper foil-clad laminate in which copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet, and constitutes the prepreg and the resin sheet.
  • a copper foil containing a thermosetting compound a specific amount of a thermoplastic elastomer and a phosphorus-based flame retardant, and having a copper foil surface with a roughness Rz in a specific range.
  • the prepreg comprises a substrate and a resin composition impregnated or coated on the substrate.
  • the resin sheet contains a resin composition and contains
  • the resin composition contains a thermosetting compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
  • the content of the thermoplastic elastomer (B) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the content of the phosphorus-based flame retardant (C) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the copper foil-clad laminate according to the above [1], wherein the content of the phosphorus-based flame retardant (C) in the resin composition is 15 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the phosphorus-based flame retardant (C) is at least one selected from the group consisting of an aromatic condensed phosphoric acid ester (C-1) and a cyclic phosphazene compound (C-2), according to the above [1] or [2].
  • the aromatic condensed phosphoric acid ester (C-1) is a compound represented by the following formula (1)
  • the cyclic phosphazene compound (C-2) is a compound represented by the following formula (2).
  • the copper foil-clad laminate according to any one of the above [1] to [3].
  • thermoplastic elastomer (B) is a styrene-based elastomer.
  • the styrene-based elastomer is a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a styrene-hydrogenated butadiene-styrene block copolymer, and a styrene-hydrogenated isoprene-styrene block copolymer.
  • the copper foil-clad laminate according to the above [5] which is one or more selected from the group consisting of.
  • the thermosetting compound (A) contains at least one selected from the group consisting of a cyanic acid ester compound, a maleimide compound, a polyphenylene ether compound, an epoxy compound, a phenol compound, and a curable polyimide compound.
  • [8] The copper foil-clad laminate according to any one of the above [1] to [7], wherein the resin composition further contains a filler.
  • the filler is one or more selected from the group consisting of silicas, aluminum hydroxide, aluminum nitride, boron nitride, and forsterite.
  • a copper foil-clad laminate having good copper foil peel strength and transmission loss characteristics, and also having excellent crack resistance and solder heat resistance, and a printed wiring board and a semiconductor device using the copper foil-clad laminate are provided. Can be done.
  • the copper foil-clad laminate of the present embodiment is A copper foil-clad laminate in which copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet.
  • the prepreg comprises a substrate and a resin composition impregnated or coated on the substrate.
  • the resin sheet contains a resin composition and contains
  • the resin composition contains a thermosetting compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
  • the content of the thermoplastic elastomer (B) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the content of the phosphorus-based flame retardant (C) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the roughness Rz of the copper foil surface measured according to JIS B0601: 2013 is 0.2 to 4.0 ⁇ m.
  • resin solid content in the resin composition means a component of the resin composition excluding the solvent and the filler, and 100 parts by mass of the resin solid content means the resin composition, unless otherwise specified. It means that the total of the components excluding the solvent and the filler in the product is 100 parts by mass.
  • the resin composition and the components constituting the resin composition used for the copper foil-clad laminate of the present embodiment will be described, and then the prepreg, the resin sheet, and the copper foil-clad laminate obtained by using the resin composition will be described.
  • the board and the like will be described.
  • the resin composition in the present embodiment contains a thermosetting compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
  • thermosetting compound (A) is not particularly limited as long as it is a thermosetting compound, and includes, for example, a cyanic acid ester compound, a maleimide compound, a polyphenylene ether compound, an epoxy compound, a phenol compound, and a curable polyimide compound. It is preferable to include one or more selected from the group.
  • the cyanate ester compound according to the present embodiment is not particularly limited as long as it is a resin having an aromatic moiety substituted with at least one cyanato group (cyanic acid ester group) in the molecule, but is substituted with at least one cyanato group.
  • a cyanate ester compound having two or more aromatic moieties in the molecule is more preferable.
  • the lower limit of the number of cyanato groups contained in the cyanate ester compound is preferably 2 or more, and more preferably 3 or more. By setting the number of cyanato groups to the above lower limit or more, the heat resistance tends to be further improved.
  • the upper limit is not particularly specified, but may be, for example, 50 or less.
  • Examples of the cyanic acid ester compound in the present embodiment include the compound represented by the formula (5).
  • Ar 1 independently represents a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a biphenylene group which may have a substituent.
  • R 81 may independently have a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group having 6 to 12 carbon atoms which may have a substituent, and a substituent.
  • a good alkoxy group having 1 to 4 carbon atoms, an aralkyl group having a substituent in which an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are bonded, or an alkyl group having 1 to 6 carbon atoms may be used. It is selected from any one of the alkylaryl groups which may have a substituent in which an aryl group having 6 to 12 carbon atoms is bonded.
  • N 6 represents the number of cyanato groups bonded to Ar 1 .
  • N 7 represents the number of R 81 bonded to Ar 1.
  • n 6 represents the average number of iterations and is an integer from 0 to 50.
  • the cyanate ester compound may be a mixture of compounds with different n 8 ; Z is independent of each other.
  • the alkyl group in R 81 of the formula (5) may have a linear structure, a branched chain structure, a cyclic structure (cycloalkyl group or the like).
  • the hydrogen atom in the alkyl group in the alkyl group in R 81 and the aryl group in R 81 of the formula (5) is a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group or the like. It may be replaced with.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group and 2,2-dimethylpropyl group.
  • alkyl group examples include a group, a cyclopentyl group, a hexyl group, a cyclohexyl group, a trifluoromethyl group and the like.
  • the aryl group include a phenyl group, a xylyl group, a mesityl group, a naphthyl group, a phenoxyphenyl group, an ethylphenyl group, an o-, m- or p-fluorophenyl group, a dichlorophenyl group, a dicyanophenyl group and a trifluorophenyl.
  • Examples thereof include a group, a methoxyphenyl group, an o-, m- or a p-tolyl group.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tert-butoxy group and the like.
  • divalent organic group in Z of the formula (5) include a methylene group, an ethylene group, a trimethylene group, a cyclopentylene group, a cyclohexylene group, a trimethylcyclohexylene group, a biphenylylmethylene group, and a dimethylmethylene-phenylene.
  • Examples of the divalent organic group having a nitrogen number of 1 to 10 in Z of the formula (5) include an imino group and a polyimide group.
  • examples of Z in the formula (5) include those having a structure represented by the following formula (6) or the following formula (7).
  • Ar 2 is selected from any one of a phenylene group, a naphthylene group and a biphenylene group.
  • R 9 , R 10 , R 13 and R 14 are independently hydrogen atoms and have 1 to 1 carbon atoms, respectively. It is selected from any one of 6 alkyl groups, an aryl group having 6 to 12 carbon atoms, and an aryl group substituted with at least one of a trifluoromethyl group and a phenolic hydroxy group.
  • R 11 , R 12 are independently selected from any one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a hydroxy group.
  • N 9 is 0. Although an integer of 5 is shown, the cyanate ester compound may be a mixture of compounds in which n 9 has a different group.
  • Ar 3 is selected from any one of a phenylene group, a naphthylene group or a biphenylene group.
  • R 15 and R 16 are independently hydrogen atoms, alkyl groups having 1 to 6 carbon atoms, and carbon. It is selected from any one of an aryl group having a number of 6 to 12, a benzyl group, an alkoxy group having 1 to 4 carbon atoms, and an aryl group substituted with at least one of a hydroxy group, a trifluoromethyl group and a cyanato group.
  • n 10 represents an integer of 0 to 5
  • the cyanate ester compound may be a mixture of compounds in which n 10 has a different group.
  • n 11 represents an integer of 4 to 7.
  • R 17 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Ar 2 of the formula (6) and Ar 3 of the formula (7) include a 1,4-phenylene group, a 1,3-phenylene group, a 4,4'-biphenylene group, and a 2,4'-biphenylene group.
  • the alkyl and aryl groups in R 9 to R 14 of the formula (6) and R 15 and R 16 of the formula (7) are the same as those described in the formula (5).
  • Examples of the cyanic acid ester compound represented by the formula (5) include a phenol novolac type cyanic acid ester compound, a naphthol aralkyl type cyanic acid ester compound, a biphenyl aralkyl type cyanic acid ester compound, and a naphthylene ether type cyanic acid ester compound.
  • Examples thereof include a xylene resin type cyanate ester compound, an adamantan skeleton type cyanate ester compound, a bisphenol A type cyanate ester compound, a diallyl bisphenol A type cyanate ester compound, and a naphthol aralkyl type cyanate ester compound.
  • cyanate ester compound represented by the formula (5) include cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methylbenzene, 1-.
  • Cyanato-2-, 1-Cyanato-3-, or 1-Cyanato-4-methoxybenzene 1-Cyanato-2,3-,1-Cyanato-2,4-,1-Cyanato-2,5-,1 -Cyanato-2,6-, 1-Cyanato-3,4- or 1-Cyanato-3,5-dimethylbenzene, Cyanatoethylbenzene, Cyanatobutylbenzene, Cyanatooctylbenzene, Cyanatononylbenzene, 2-( 4-Cianaphenyl) -2-phenylpropane (cyanate of 4- ⁇ -cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyanato-4-vinylbenzene, 1-cyanato-2- or 1-cyana
  • Fluolenovolac resin (a reaction of a fluorenone compound and 9,9-bis (hydroxyaryl) fluorene in the presence of an acidic catalyst), phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin.
  • biphenyl aralkyl resin (by a known method, a bishalogenomethyl compound represented by Ar 4- (CH 2 Z') 2 and a phenol compound reacted with an acidic catalyst or no catalyst, Ar 4- ( Reaction of a bis (alkoxymethyl) compound represented by CH 2 OR) 2 or a bis (hydroxymethyl) compound represented by Ar 4- (CH 2 OH) 2 with a phenol compound in the presence of an acidic catalyst.
  • Phenolic resins having a structure (a polyvalent hydroxynaphthalene compound having two or more phenolic hydroxy groups in one molecule, dehydrated and condensed in the presence of a basic catalyst by a known method) are described above. Examples thereof include those which have been acid esterified by the same method as in the above, but the present invention is not particularly limited. These cyanate ester compounds may be used alone or in combination of two or more.
  • phenol novolac type cyanate ester compound naphthol aralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, bisphenol A type cyanate ester compound, bisphenol M type cyanate ester compound, diallyl bisphenol type cyanate ester Preferred, naphthol aralkyl-type cyanate ester compounds are particularly preferred.
  • the cured product of the resin composition using these cyanate ester compounds has excellent properties such as heat resistance and low dielectric property (low dielectric constant, low dielectric loss tangent property), and the printed wiring including the cured product. Plates tend to be excellent in copper foil peel strength, mechanical strength, heat resistance, and low transmission loss.
  • the content of the cyanic acid ester compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited.
  • the content of the cyanic acid ester compound is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and 10 parts by mass when the resin solid content in the resin composition is 100 parts by mass. It is more preferably parts or more, and may be 15 parts by mass or more.
  • the upper limit of the content is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, further preferably 70 parts by mass or less, further preferably 60 parts by mass or less, and 55 parts by mass. It may be as follows.
  • the low-dielectric property of the cured product of the resin composition becomes more excellent, and the printed wiring board containing the cured product tends to be more excellent in low transmission loss.
  • Only one type of cyanic acid ester compound may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount is within the above range.
  • the maleimide compound according to the present embodiment is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule, but is preferably a compound having two or more maleimide groups in the molecule.
  • Specific examples of the maleimide compound include, for example, N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidephenyl) methane, 4,4'-diphenylmethane bismaleimide, and bis (3,5-dimethyl-4-maleimide).
  • maleimide compounds represented by the following formulas (2), (3), (4) and (17) are particularly preferable in terms of low thermal expansion and improvement of heat resistance of the cured product of the resin composition. These maleimide compounds may be used alone or in combination of two or more.
  • R 4 independently represents a hydrogen atom or a methyl group, and n 4 represents an integer of 1 or more.
  • R 5 independently represents a hydrogen atom, an alkyl group or a phenyl group having 1 to 8 carbon atoms, and n 5 represents an integer of 1 or more and 10 or less.
  • R 6 independently represents a hydrogen atom, a methyl group or an ethyl group
  • R 7 independently represents a hydrogen atom or a methyl group.
  • R 8 independently represents a hydrogen atom, a methyl group or an ethyl group.
  • R 4 independently represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • n 4 represents an integer of 1 or more, and the upper limit of n 4 is usually 10, and from the viewpoint of solubility in an organic solvent, the upper limit of n 4 is preferably 10. It is 7, more preferably 5.
  • the maleimide compound may contain two or more compounds having different n4s .
  • R 5 is an independent hydrogen atom and an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group). , T-butyl group, n-pentyl group, etc.), or phenyl group.
  • the group is preferably selected from the group consisting of a hydrogen atom, a methyl group, and a phenyl group, and the hydrogen atom and methyl are preferable. It is more preferably one of the groups, and even more preferably a hydrogen atom.
  • n 5 is preferably 4 or less, more preferably 3 or less, and even more preferably 2 or less.
  • the maleimide compound may contain two or more compounds having different n5s .
  • R 6 independently represents a hydrogen atom, a methyl group or an ethyl group
  • R 7 independently represents a hydrogen atom or a methyl group.
  • R 6 is preferably a methyl group or an ethyl group. Examples of such compounds include 3,3'-diethyl-5,5'-dimethyl-4,4'-diphenylmethanebismaleimide.
  • R 8 is preferably a methyl group from the viewpoint of being more excellent in the low dielectric property of the cured product of the resin composition which independently exhibits a hydrogen atom, a methyl group or an ethyl group.
  • examples of such compounds include 2,2-bis (4- (4-maleimidephenoxy) -phenyl) propane.
  • the maleimide compound used in the present embodiment a commercially available maleimide compound may be used.
  • the maleimide compound represented by the formula (2) "BMI-2300” manufactured by Daiwa Kasei Kogyo Co., Ltd., represented by the formula (3).
  • the maleimide compound to be used is "MIR-3000” manufactured by Nippon Kayaku Co., Ltd.
  • the maleimide compound represented by the formula (4) is "BMI-70” manufactured by KI Kasei Co., Ltd.
  • the maleimide represented by the formula (17) As the compound, "BMI-80" manufactured by KI Kasei Co., Ltd. can be preferably used.
  • the content of the maleimide compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited.
  • the content of the maleimide compound is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and 20 parts by mass or more when the resin solid content in the resin composition is 100 parts by mass. Is even more preferable.
  • the upper limit value is preferably 90 parts by mass or less, more preferably 70 parts by mass or less, further preferably 60 parts by mass or less, and may be 50 parts by mass or less. Within such a range, the cured product of the resin composition tends to more effectively exhibit high heat resistance and low water absorption. Only one type of maleimide compound may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount is within the above range.
  • the polyphenylene ether compound according to this embodiment includes the formula (8) :.
  • R 8 , R 9 , R 10 , and R 11 each independently represent an alkyl group, an aryl group, a halogen atom, or a hydrogen atom having 6 or less carbon atoms.
  • the compound contains a polymer of the structural unit represented by.
  • the polyphenylene ether compound has the formula (9) :.
  • R 12 , R 13 , R 14 , R 18 , and R 19 each independently represent an alkyl group or a phenyl group having 6 or less carbon atoms.
  • R 15 , R 16 , and R 17 are respectively. Independently represents a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , and R 27 each independently represent a hydrogen atom and an alkyl group or phenyl group having 6 or less carbon atoms.
  • -A- may further include a structure represented by a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • Examples of -A- in the formula (10) include a methylene group, an ethylidene group, a 1-methylethylidene group, a 1,1-propyridene group, a 1,4-phenylenebis (1-methylethylidene) group and a 1,3-.
  • Examples thereof include, but are not limited to, a divalent organic group such as a phenylenebis (1-methylethylidene) group, a cyclohexylidene group, a phenylmethylene group, a naphthylmethylene group and a 1-phenylethylidene group.
  • polyphenylene ether compound a part or all of the terminal was functionalized with an ethylenically unsaturated group such as a vinylbenzyl group, an epoxy group, an amino group, a hydroxyl group, a mercapto group, a carboxy group, a methacryl group, a silyl group and the like.
  • Modified polyphenylene ether can also be used. These may be used individually by 1 type or in combination of 2 or more types. Examples of the modified polyphenylene ether having a hydroxyl group at the end include SA90 manufactured by SABIC Innovative Plastics Co., Ltd. Examples of the polyphenylene ether having a methacrylic group at the end include SA9000 manufactured by SABIC Innovative Plastics Co., Ltd.
  • the method for producing the modified polyphenylene ether is not particularly limited as long as the effect of the present invention can be obtained.
  • it can be produced by the method described in Japanese Patent No. 4591665.
  • the modified polyphenylene ether preferably contains a modified polyphenylene ether having an ethylenically unsaturated group at the terminal.
  • the ethylenically unsaturated group include an alkenyl group such as an ethenyl group, an allyl group, an acrylic group, a methacrylic group, a propenyl group, a butenyl group, a hexenyl group and an octenyl group, a cycloalkenyl group such as a cyclopentenyl group and a cyclohexenyl group, and vinyl.
  • Examples thereof include an alkenylaryl group such as a benzyl group and a vinylnaphthyl group, and a vinylbenzyl group is preferable.
  • the terminal ethylenically unsaturated group may be single or plural, may be the same functional group, or may be a different functional group.
  • X represents an aromatic group
  • -(YO) m- represents a polyphenylene ether moiety.
  • R 1 , R 2 , and R 3 are independent hydrogen atoms, alkyl groups, and alkenyl groups, respectively. It represents a group or an alkynyl group, m represents an integer of 1 to 100, n represents an integer of 1 to 6, q represents an integer of 1 to 4, and m is preferably an integer of 1 or more and 50 or less. , More preferably an integer of 1 or more and 30 or less, and n is preferably an integer of 1 or more and 4 or less, more preferably 1 or 2, and ideally 1. It is preferably an integer of 1 or more and 3 or less, more preferably 1 or 2, and ideally 2.)
  • the structure represented by is mentioned.
  • the aromatic group represented by X in the formula (1) is a group obtained by removing q hydrogen atoms from one ring structure selected from a benzene ring structure, a biphenyl ring structure, an indenyl ring structure, and a naphthalene ring structure.
  • a phenylene group, a biphenylene group, an indenylene group, and a naphthylene group can be mentioned, and a biphenylene group is preferable.
  • the aromatic group represented by X is a diphenyl ether group in which an aryl group is bonded with an oxygen atom, a benzophenone group in which a carbonyl group is bonded, a 2,2-diphenylpropane group bonded by an alkylene group, or the like. May include. Further, the aromatic group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group or a halogen atom. However, since the aromatic group is substituted with the polyphenylene ether moiety via the oxygen atom, the limit of the number of general substituents depends on the number of the polyphenylene ether moiety.
  • the structural unit represented by the above-mentioned formula (8), (9) or (10) can be used, and in particular, the structural unit represented by the formula (8) is included. Is particularly preferred.
  • the modified polyphenylene ether represented by the formula (1) preferably has a number average molecular weight of 1000 or more and 7000 or less. Further, in the formula (1), one having a minimum melt viscosity of 50,000 Pa ⁇ s or less can be used. In particular, in the formula (1), those having a number average molecular weight of 1000 or more and 7000 or less and a minimum melt viscosity of 50,000 Pa ⁇ s or less are preferable.
  • the number average molecular weight is measured using gel permeation chromatography according to a routine method. The number average molecular weight is more preferably 1000 to 3000. By setting the number average molecular weight to 1000 or more and 7000 or less, the effect of achieving both moldability and electrical characteristics is more effectively exhibited.
  • the minimum melt viscosity is measured using a dynamic viscoelasticity measuring device according to a conventional method.
  • the minimum melt viscosity is more preferably 500 to 50,000 Pa ⁇ s. By setting the minimum melt viscosity to 50,000 Pa ⁇ s or less, the effect of achieving both moldability and electrical characteristics is more effectively exhibited.
  • the modified polyphenylene ether is preferably a compound represented by the following formula (11) in the formula (1).
  • X is an aromatic group
  • ⁇ (YO) m ⁇ indicates a polyphenylene ether moiety
  • m indicates an integer of 1 to 100.
  • M is preferably 1 or more. It is an integer of 50 or less, and more preferably an integer of 1 or more and 30 or less.
  • X, ⁇ (YO) m ⁇ and m in the formula (11) are synonymous with those in the formula (1).
  • X in the formula (1) and the formula (11) is the formula (12), the formula (13), or the formula (14), and ⁇ (YO) m ⁇ in the formula (1) and the formula (11) is ,
  • Formula (15) or formula (16) may be arranged, or formula (15) and formula (16) may be block or randomly arranged structure.
  • R 28 , R 29 , R 30 and R 31 each independently represent a hydrogen atom or a methyl group.
  • —B— is a linear, branched or cyclic group having 20 or less carbon atoms. It is a divalent hydrocarbon group.
  • -B- the same as the specific example of -A- in the formula (10) can be mentioned.
  • -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • the method for producing the modified polyphenylene ether having the structure represented by the formula (11) is not particularly limited, and for example, the bifunctional phenylene ether obtained by oxidatively coupling a bifunctional phenol compound and a monofunctional phenol compound. It can be produced by converting the terminal phenolic hydroxyl group of the oligomer into vinylbenzyl ether. Further, as such a modified polyphenylene ether, a commercially available product can be used, and for example, OPE-2St1200 and OPE-2st2200 manufactured by Mitsubishi Gas Chemical Company, Inc. can be preferably used.
  • the content of the polyphenylene ether compound in the resin composition according to the present embodiment is preferably 5 parts by mass or more, preferably 15 parts by mass or more, based on 100 parts by mass of the resin solid content of the resin composition. More preferably, it is 18 parts by mass or more.
  • the upper limit of the content is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, further preferably 50 parts by mass or less, and 40 parts by mass or less or 30 parts by mass. It may be as follows. By setting the content of the polyphenylene ether compound in such a range, the low dielectric property, the copper foil peel strength, and the heat resistance of the cured product of the resin composition tend to be more excellent.
  • These polyphenylene ether compounds may be used alone or in admixture of two or more. When two or more types are used, it is preferable that the total amount is within the above range.
  • epoxy compound any known epoxy compound or resin having two or more epoxy groups in one molecule can be appropriately used, and the type thereof is not particularly limited.
  • bisphenol A type epoxy resin bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolak type epoxy resin, glycidyl ester type epoxy resin, aralkylnovolac Type epoxy resin, biphenyl aralkyl type epoxy resin, naphthylene ether type epoxy resin, cresol novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, naphthalene skeleton modified novolac type epoxy resin, phenol aralkyl Double bond of type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, polyol type epoxy
  • Examples thereof include a compound obtained by epoxidizing the above, a compound obtained by reacting a hydroxyl group-containing silicone resin with epichlorohydrin, and the like.
  • these epoxy compounds biphenyl aralkyl type epoxy resin, naphthylene ether type epoxy resin, polyfunctional phenol type epoxy resin, and naphthalene type epoxy resin are preferable in terms of flame retardancy and heat resistance. These epoxy compounds may be used alone or in combination of two or more.
  • the content of the epoxy compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited. Specifically, when the resin solid content in the resin composition is 100 parts by mass, the content of the epoxy compound is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass or more. It is more preferable to have.
  • the upper limit of the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, further preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less.
  • the phenol compound is not particularly limited as long as it is a compound or resin having two or more phenolic hydroxy groups in one molecule, and for example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, and the like.
  • Biphenyl S-type phenol resin phenol novolak resin, Bisphenol A novolak type phenol resin, glycidyl ester type phenol resin, aralkyl novolak phenol resin, biphenyl aralkyl type phenol resin, cresol novolak type phenol resin, polyfunctional phenol resin, naphthol resin, naphthol novolac Resin, polyfunctional naphthol resin, anthracene type phenol resin, naphthalene skeleton modified novolak type phenol resin, phenol aralkyl type phenol resin, naphthol aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin, alicyclic phenol resin, Examples thereof include a polyol type phenol resin and a phosphorus-containing phenol resin.
  • At least one selected from the group consisting of biphenyl aralkyl type phenol resin, naphthol aralkyl type phenol resin, and phosphorus-containing phenol resin is preferable from the viewpoint of further improving heat resistance and flame resistance.
  • These phenol compounds may be used alone or in combination of two or more.
  • the content of the phenol compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited. Specifically, when the resin solid content in the resin composition is 100 parts by mass, the content of the phenol compound is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass or more. It is more preferable to have.
  • the upper limit of the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, further preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less.
  • the curable polyimide compound is not particularly limited as long as it is generally known, but bisallyl nadiimide is preferable from the viewpoint of low dielectric property, and it is particularly selected from the group consisting of the following formulas (17) and (18). It is preferably at least one kind.
  • the content of the curable polyimide compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited. Specifically, when the resin solid content in the resin composition is 100 parts by mass, the content of the curable polyimide compound is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass. The above is more preferable.
  • the upper limit of the content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, further preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less.
  • the resin composition according to the present embodiment contains the thermoplastic elastomer (B), and the content of the thermoplastic elastomer (B) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content. ..
  • the content of the thermoplastic elastomer (B) in the resin composition is 1 part by mass or more with respect to 100 parts by mass of the resin solid content, the cured product of the resin composition has crack resistance, low dielectric properties, and transmission loss characteristics.
  • it is 30 parts by mass or less the solder heat resistance of the cured product of the resin composition tends to be good.
  • the content of the thermoplastic elastomer (B) is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and 8 parts by mass or more with respect to 100 parts by mass of the resin solid content of the resin composition. It is more preferable to have 10 parts by mass or more.
  • the upper limit of the content is preferably 25 parts by mass or less, more preferably 22 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by mass of the resin solid content of the resin composition. May be good.
  • the content of the thermoplastic elastomer (B) is within the above range, the cured product of the resin composition tends to have more excellent crack resistance, low dielectric property, transmission loss property, and solder heat resistance.
  • two or more kinds of thermoplastic elastomers (B) may be contained, and when two or more kinds are contained, it is preferable that the total amount thereof is within the above range.
  • thermoplastic elastomer (B) is not particularly limited, and examples thereof include the following "styrene-based elastomers” and “other thermoplastic elastomers", but from the viewpoint of low dielectric properties and reduction of transmission loss, styrene-based elastomers (B) are used. It is preferably an elastomer.
  • the "styrene-based elastomer” refers to an elastomer which is a block copolymer having a polystyrene block structure, and does not include a random copolymer.
  • Styrene-hydrogenated isoprene-styrene block copolymer Styrene-hydrogenated isoprene-styrene block copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, styrene-hydrogenated butadiene block copolymer, styrene-hydrogenated isoprene block copolymer and styrene- At least one selected from the group consisting of hydrogenated (isoprene / butadiene) block copolymers can be mentioned. These styrene-based elastomers may be used alone or in combination of two or more.
  • styrene-butadiene-styrene block copolymer styrene-isoprene-styrene block copolymer, styrene-hydrogenated butadiene-styrene block copolymer, and styrene-hydrogenated isoprene-styrene block copolymer are resin compositions. It is preferable because the cured product tends to give better low dielectric styrene.
  • styrene (styrene unit) in the polystyrene block structure in the present embodiment one having a substituent may be used.
  • styrene derivatives such as ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, and 4-cyclohexylstyrene can be used.
  • the styrene content (hereinafter, also referred to as “styrene ratio”) in the styrene-based elastomer is not particularly limited, but is preferably 10% by mass or more, and more preferably 20% by mass or more.
  • the upper limit of the styrene content is not particularly limited as long as it is less than 100% by mass, but is preferably less than 99% by mass, more preferably 70% by mass or less, for example. Within such a range, the solvent solubility and the compatibility with other compounds tend to be further improved.
  • the styrene content is (a) / (b) ⁇ 100 when the mass of the styrene unit contained in the styrene-based elastomer is (a) g and the mass of the entire styrene-based elastomer is (b) g. It is a value expressed in (unit:%).
  • styrene-based elastomer in the present embodiment, a commercially available product may be used, and examples thereof include TR2630 (manufactured by JSR Corporation) and TR2003 (manufactured by JSR Corporation) as the styrene-butadiene-styrene block copolymer. Be done.
  • examples of the styrene-isoprene-styrene block copolymer include SIS5250 (manufactured by JSR Corporation).
  • examples of the styrene-hydrogenated isoprene-styrene block copolymer include SEPTON2104 (manufactured by Kuraray Co., Ltd.).
  • examples of the styrene-hydrogenated butadiene-styrene block copolymer include H-1043 (manufactured by Asahi Kasei Corporation).
  • the content of the styrene-based elastomer is preferably 3 parts by mass or more, preferably 5 parts by mass or more, based on 100 parts by mass of the resin solid content of the resin composition. It is more preferably 8 parts by mass or more, and it may be 10 parts by mass or more.
  • the upper limit of the content of the styrene-based elastomer is preferably 25 parts by mass or less, more preferably 22 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by mass of the resin solid content of the resin composition. It may be.
  • the cured product of the resin composition tends to have more excellent crack resistance, low dielectric property, transmission loss property, and solder heat resistance.
  • two or more kinds of styrene-based elastomers may be contained, and when two or more kinds are contained, it is preferable that the total amount thereof is within the above range.
  • thermoplastic elastomers are distinguished from “styrene-based elastomers”.
  • the "styrene-based elastomer” indicates an elastomer having a polystyrene block structure and being a block copolymer, and the "other thermoplastic elastomer” indicates an elastomer other than that. That is, a random copolymer, a block copolymer having no styrene skeleton, or the like is applicable.
  • the other thermoplastic elastomer is selected from the group consisting of, for example, polyisoprene, polybutadiene, styrene-butadiene random copolymer, butyl rubber, ethylene propylene rubber, fluororubber, silicone rubber, hydrogenated compounds thereof, and alkyl compounds thereof. At least one is mentioned. Among these, at least one selected from the group consisting of polyisoprene, polybutadiene, styrene-butadiene random copolymer, butyl rubber, and ethylene propylene rubber is more preferable from the viewpoint of being more excellent in compatibility with the polyphenylene ether compound. ..
  • the resin composition in the present embodiment contains a phosphorus-based flame retardant (C), and the content of the phosphorus-based flame retardant (C) in the resin composition is 1 to 30% by mass with respect to 100 parts by mass of the resin solid content. It is a department.
  • the content of the phosphorus-based flame retardant in the resin composition is 1 part by mass or more with respect to 100 parts by mass of the resin solid content, the crack resistance, low dielectric property, and transmission loss property of the cured product of the resin composition are improved.
  • it is 30 parts by mass or less the copper foil peel strength, crack resistance, and solder heat resistance of the cured product of the resin composition tend to be good.
  • the content of the phosphorus-based flame retardant (C) is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and 8 parts by mass or more with respect to 100 parts by mass of the resin solid content of the resin composition. Is more preferable, and it may be 10 parts by mass or more, or 15 parts by mass or more.
  • the upper limit of the content is preferably 25 parts by mass or less, more preferably 22 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by mass of the resin solid content of the resin composition. May be good.
  • the content of the phosphorus-based flame retardant (C) is within the above range, the crack resistance, low dielectric property, transmission loss property, copper foil peel strength, and solder heat resistance of the cured product of the resin composition tend to be more excellent. It is in.
  • two or more kinds of phosphorus-based flame retardants (C) may be contained, and when two or more kinds are contained, it is preferable that the total amount thereof is within the above range.
  • the content of the phosphorus-based flame retardant (C) is 15 with respect to 100 parts by mass of the resin solid content of the resin composition from the viewpoint of particularly enhancing the crack resistance and the copper foil peel strength of the cured product of the resin composition. It is preferably 2 parts by mass or more, and particularly preferably 20 parts by mass or more.
  • the upper limit of the content of the phosphorus-based flame retardant (C) is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, based on 100 parts by mass of the resin solid content of the resin composition. Yes, it may be 25 parts by mass or less.
  • the resin solid content is 100. It is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, further preferably 20 parts by mass or more, particularly preferably 25 parts by mass or more, and 30 parts by mass with respect to parts by mass. It may be more than a mass part. Further, since the solder heat resistance of the cured product of the resin composition tends to be further improved, the total content of the thermoplastic elastomer (B) and the phosphorus-based flame retardant (C) is 100 parts by mass of the resin solid content. On the other hand, it is preferably 60 parts by mass or less, more preferably 55 parts by mass or less, further preferably 50 parts by mass or less, and particularly preferably 40 parts by mass or less.
  • the phosphorus-based flame retardant (C) is not particularly limited, and is, for example, red phosphorus, tricresyl phosphate, triphenyl phosphate, cresyldiphenyl phosphate, trixylenyl phosphate, trialkyl phosphate, dialkyl phosphate, tris (chloroethyl).
  • Phosphazene, phosphazene, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide and the like can be mentioned.
  • the phosphorus-based flame retardant (C) is a group consisting of an aromatic condensed phosphoric acid ester (C-1) and a cyclic phosphazene compound (C-2) from the viewpoints of low dielectric property, reduction of transmission loss, and improvement of crack resistance. It is preferable to use one or more selected species.
  • Examples of the aromatic condensed phosphoric acid ester (C-1) include resorcinol bis-diphenyl phosphate, bisphenol A bis-diphenyl phosphate, and a compound represented by the following formula (1). Above all, from the viewpoint of low dielectric property and reduction of transmission loss, the compound represented by the following formula (1) is preferable.
  • the cyclic phosphazene compound (C-2) is represented by hexaphenoxycyclotriphosphazene, hexafluorocyclotriphosphazene, pentafluoro (phenoxy) cyclotriphosphazene, ethoxy (pentafluoro) cyclotriphosphazene, and the following formula (2).
  • Examples include compounds. Above all, from the viewpoint of solvent solubility, the compound represented by the following formula (2) is preferable.
  • n an integer of 3 to 6.
  • Examples of the compound represented by the above formula (2) include Ravitor FP-300B (manufactured by Fushimi Pharmaceutical Co., Ltd.).
  • the resin composition according to the present embodiment contains a filler in order to improve low dielectric constant, low dielectric loss tangent property, flame resistance and low thermal expansion.
  • a filler in order to improve low dielectric constant, low dielectric loss tangent property, flame resistance and low thermal expansion.
  • known fillers can be appropriately used, and the types thereof are not particularly limited, and those generally used in the art can be preferably used.
  • silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerodil, hollow silica, white carbon, titanium white, zinc oxide, magnesium oxide, zirconium oxide, boron nitride, coagulated boron nitride, silicon nitride.
  • metal hydrates such as magnesium hydroxide
  • oxidation Molybdenum compounds such as molybdenum and zinc molybdenate
  • zinc borate zinc nitrate
  • organic fillers such as styrene type, butadiene type, acrylic type rubber powder, core shell type rubber powder, silicone resin powder, silicone rubber powder, and silicone composite powder, etc. Can be mentioned. These fillers may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of silicas, aluminum hydroxide, aluminum nitride, boron nitride, and forsterite, boehmite, magnesium oxide and magnesium hydroxide are preferable, and silicas and hydroxides are preferable. Aluminum, aluminum nitride, boron nitride, and forsterite are more preferred. By using these fillers, the cured product of the resin composition tends to have improved properties such as thermal expansion characteristics, dimensional stability, and flame retardancy.
  • the content of the filler in the resin composition according to the present embodiment can be appropriately set according to the desired characteristics and is not particularly limited, but when the resin solid content in the resin composition is 100 parts by mass, it is not particularly limited. It is preferably 30 parts by mass or more, and more preferably 50 parts by mass or more.
  • the upper limit is preferably 1600 parts by mass or less, more preferably 500 parts by mass or less, and particularly preferably 300 parts by mass or less.
  • the content of the filler may be 75 to 250 parts by mass or 100 to 200 parts by mass. By setting the content of the filler in this range, the moldability of the resin composition tends to be improved.
  • the resin composition may contain only one type of filler, or may contain two or more types of filler. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • silane coupling agent those generally used for surface treatment of inorganic substances can be preferably used, and the type thereof is not particularly limited. Specifically, aminosilanes such as ⁇ -aminopropyltriethoxysilane and N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxylane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4).
  • Epoxysilanes such as ethyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilanes, vinylsilanes such as vinyl-tri ( ⁇ -methoxyethoxy) silanes, N- ⁇ - (N-vinylbenzylaminoethyl)- Examples thereof include cationicsilane type such as ⁇ -aminopropyltrimethoxysilane hydrochloride and phenylsilane type.
  • the silane coupling agent may be used alone or in combination of two or more. Further, as the wet dispersant, those generally used for paints can be preferably used, and the type thereof is not particularly limited.
  • a copolymer-based wet dispersant is used, and specific examples thereof include DISPERBYK-110, 111, 161 and 180, 2009, 2152, BYK-W996, BYK-W9010 manufactured by Big Chemie Japan Co., Ltd. , BYK-W903, BYK-W940 and the like.
  • the wet dispersant may be used alone or in combination of two or more.
  • the content of the silane coupling agent is not particularly limited, and may be about 1 part by mass to 5 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
  • the content of the dispersant (particularly the wet dispersant) is not particularly limited, and may be, for example, about 0.5 to 5 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
  • the resin composition of the present embodiment may contain other components other than those described above.
  • examples of other components include oxetane resins, benzoxazine compounds, flame retardants, curing accelerators, organic solvents and the like.
  • the oxetane resin is not particularly limited, and is, for example, oxetane, alkyl oxetane (for example, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3-dimethyloxatan, etc.), 3-methyl-.
  • the benzoxazine compound is not particularly limited as long as it is a compound having two or more dihydrobenzoxazine rings in one molecule, and for example, bisphenol A type benzoxazine BA-BXZ (product of Konishi Chemical Co., Ltd.), bisphenol F. Examples thereof include type benzoxazine BF-BXZ (product of Konishi Chemical Co., Ltd.) and bisphenol S type benzoxazine BS-BXZ (product of Konishi Chemical Co., Ltd.). These benzoxazine compounds may be used alone or in combination of two or more.
  • the resin composition according to the present embodiment may contain a flame retardant other than the above-mentioned phosphorus-based flame retardant (C) in order to further improve the flame resistance.
  • a flame retardant can be used, for example, brominated epoxy resin, brominated polycarbonate, brominated polystyrene, brominated styrene, brominated phthalimide, tetrabromobisphenol A, pentabromobenzyl (meth) acrylate.
  • Pentabromotoluene tribromophenol, hexabromobenzene, decabromodiphenyl ether, bis-1,2-pentabromophenylethane, chlorinated polystyrene, halogenated flame retardants such as chlorinated paraffin, aluminum hydroxide, magnesium hydroxide, Examples thereof include inorganic flame retardants such as partial boehmite, boehmite, zinc borate and antimony trioxide, and silicone flame retardants such as silicone rubber and silicone resin. These flame retardants may be used alone or in combination of two or more.
  • the content of the flame retardant is preferably 1 part by mass or more, and more preferably 5 parts by mass or more, with respect to 100 parts by mass of the resin solid content in the resin composition.
  • the upper limit of the content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and may be 15 parts by mass or less. Only one kind of flame retardant may be used, or two or more kinds may be used. When two or more types are used, it is preferable that the total amount is within the above range.
  • the resin composition according to the present embodiment may contain a curing accelerator for appropriately adjusting the curing rate.
  • a curing accelerator for appropriately adjusting the curing rate.
  • the curing accelerator include those usually used as a curing accelerator such as maleimide compounds, cyanate esters compounds, and epoxy compounds, and organic metal salts (for example, zinc octylate, zinc naphthenate, cobalt naphthenate, etc.).
  • dicyandiamide benzyldimethylamine, 4-methyl-N, N-dimethylbenzylamine, etc.
  • phosphorus compounds eg, phosphine-based compounds, phosphinoxide-based compounds, phosphonium salt-based compounds, diphosphin-based compounds, etc.
  • epoxys eg, epoxys.
  • -Imidazole adduct-based compounds peroxides (eg, benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropylperoxycarbonate, di-2-ethylhexylperoxycarbonate, etc.), azo compounds (eg For example, azobisisobutyronitrile, etc.).
  • peroxides eg, benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropylperoxycarbonate, di-2-ethylhexylperoxycarbonate, etc.
  • azo compounds eg For example, azobisisobutyronitrile, etc.
  • the curing accelerator may be used alone or in combination of two or more.
  • the content of the curing accelerator may be about 0.005 to 10 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
  • the resin composition according to this embodiment may contain an organic solvent.
  • the resin composition according to the present embodiment is in the form (solution or varnish) in which at least a part, preferably all of the above-mentioned various resin components are dissolved or compatible with an organic solvent.
  • the organic solvent is not particularly limited as long as it is a polar organic solvent or a non-polar organic solvent capable of dissolving or compatible with at least a part, preferably all of the above-mentioned various resin components, and the polar organic solvent is, for example, a ketone.
  • Classes eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • cellosolves eg, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.
  • esters eg, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, acetate, etc.
  • examples thereof include isoamyl, ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate, etc.) amides (eg, dimethoxyacetamide, dimethylformamide, etc.)
  • non-polar organic solvent include aromatic hydrocarbons (eg, toluene, xylene). Etc.). These organic solvents may be used alone or in combination of two or more.
  • the resin composition according to the present embodiment may contain various polymer compounds such as thermosetting resins, thermoplastic resins, and oligomers thereof, and various additives other than the above components.
  • Additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, flow modifiers, lubricants, defoaming agents, leveling agents, gloss. Agents, polymerization inhibitors and the like can be mentioned. These additives may be used alone or in combination of two or more.
  • the resin composition according to the present embodiment can be prepared according to a conventional method, and contains a thermosetting compound (A), a thermoplastic elastomer (B) and a phosphorus-based flame retardant (C), and other optional components described above.
  • the preparation method is not particularly limited as long as it is a method for obtaining a resin composition uniformly containing.
  • the thermosetting compound (A), the thermoplastic elastomer (B), the phosphorus-based flame retardant (C), and the above-mentioned other optional components are sequentially added to the solvent and sufficiently stirred to relate to the present embodiment.
  • the resin composition can be easily prepared.
  • the prepreg according to the present embodiment includes a base material and a resin composition impregnated or coated on the base material.
  • the resin composition is a resin composition containing the above-mentioned thermosetting compound (A), a specific amount of the thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
  • the prepreg according to the present embodiment is obtained, for example, by impregnating or coating the base material with the resin composition according to the present embodiment and then semi-curing it by a method of drying at 120 to 220 ° C. for about 2 to 15 minutes. Be done.
  • the amount of the resin composition (including the cured product of the resin composition) adhered to the substrate that is, the amount of the resin composition (including the filler) with respect to the total amount of the prepreg after semi-curing is 20 to 99% by mass. It is preferably in the range.
  • the base material is not particularly limited as long as it is a base material used for various printed wiring board materials.
  • the material of the base material for example, glass fiber (for example, E-glass, D-glass, L-glass, S-glass, T-glass, Q-glass, UN-glass, NE-glass, spherical glass, etc.)
  • glass fiber for example, E-glass, D-glass, L-glass, S-glass, T-glass, Q-glass, UN-glass, UN-glass, NE-glass, spherical glass, etc.
  • inorganic fibers other than glass for example, quartz, etc.
  • organic fibers for example, polyimide, polyamide, polyester, liquid crystal polyester, polytetrafluoroethylene, etc.
  • the form of the base material is not particularly limited, and examples thereof include woven fabrics, non-woven fabrics, rovings, chopped strand mats, and surfaced mats.
  • base materials may be used alone or in combination of two or more.
  • woven fabrics that have undergone super-opening treatment and filling treatment are preferable from the viewpoint of dimensional stability, and silane coupling agents such as epoxy silane treatment and amino silane treatment are preferable from the viewpoint of moisture absorption and heat resistance.
  • a glass woven fabric surface-treated with is preferable. From the viewpoint of electrical characteristics, low dielectric glass cloth made of glass fibers exhibiting low dielectric constant and low dielectric loss tangent properties such as L-glass, NE-glass, and Q-glass is more preferable.
  • the resin sheet according to this embodiment contains a resin composition.
  • the resin composition is a resin composition containing the above-mentioned thermosetting compound (A), a specific amount of the thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
  • the resin sheet may be a resin sheet with a support including a support and a layer formed from the resin composition according to the present embodiment arranged on the surface of the support.
  • the resin sheet can be used as a build-up film or a dry film solder resist.
  • the method for producing the resin sheet is not particularly limited, but for example, the resin sheet is obtained by applying (coating) a solution prepared by dissolving the resin composition according to the present embodiment in a solvent to a support and drying the resin sheet. The method can be mentioned.
  • the support examples include polyethylene films, polypropylene films, polycarbonate films, polyethylene terephthalate films, ethylene tetrafluoroethylene copolymer films, and release films and polyimide films in which a release agent is applied to the surface of these films.
  • examples thereof include an organic film base material, a conductor foil such as a copper foil and an aluminum foil, and a plate-like one such as a glass plate, a SUS plate, and an FRP, but the present invention is not particularly limited.
  • a coating method for example, a method in which a solution obtained by dissolving the resin composition according to the present embodiment in a solvent is coated on a support with a bar coater, a die coater, a doctor blade, a baker applicator, or the like. Can be mentioned. Further, after drying, the support can be peeled off or etched from the resin sheet on which the support and the resin composition are laminated to obtain a single-layer sheet (resin sheet).
  • a support is used by supplying a solution obtained by dissolving the resin composition according to the present embodiment in a solvent into a mold having a sheet-shaped cavity and drying the resin composition to form a sheet. It is also possible to obtain a single-layer sheet (resin sheet) without any need.
  • the drying conditions for removing the solvent are not particularly limited, but the solvent in the resin composition can be easily removed and dried. From the viewpoint of suppressing the progress of curing over time, a temperature of 20 ° C. to 200 ° C. for 1 to 90 minutes is preferable. Further, in the single-layer sheet or the resin sheet with a support, the resin composition can be used in an uncured state in which the solvent is simply dried, or if necessary, it is made into a semi-cured state (B stage). It can also be used.
  • the thickness of the resin layer of the single-layer sheet or the resin sheet with a support according to the present embodiment can be adjusted by the concentration of the solution of the resin composition according to the present embodiment and the coating thickness, and is not particularly limited. From the viewpoint of facilitating the removal of the solvent during drying, 0.1 to 500 ⁇ m is preferable.
  • the copper foil-clad laminate according to the present embodiment is a copper foil-clad laminate in which copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet.
  • the prepreg comprises a substrate and a resin composition impregnated or coated on the substrate.
  • the resin sheet contains a resin composition and contains The resin composition contains a thermoplastic compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C), and the content of the thermoplastic elastomer (B) in the resin composition is high.
  • the roughness Rz of the copper foil surface measured according to JIS B0601: 2013 is 0.2 to 4.0 ⁇ m.
  • the roughness Rz of the copper foil surface indicates the roughness of the copper foil surface on the side in contact with one or more types selected from the group consisting of the prepreg and the resin sheet.
  • the resin compositions used for them may be the same or different.
  • one or more selected from the group consisting of the prepreg and the resin sheet may be in a semi-cured state (B stage) or in a completely cured state (C stage). You may.
  • B stage each component contained in the resin composition does not actively start a reaction (curing), but the resin composition is heated to a dry state, that is, to the extent that it is not sticky. This refers to a state in which the solvent is volatilized, and includes a state in which the solvent is only volatilized without being cured without heating.
  • the minimum melt viscosity in the semi-cured state (B stage) is usually 20,000 Pa ⁇ s or less.
  • the lower limit of the minimum melt viscosity is, for example, 10 Pa ⁇ s or more.
  • the minimum melt viscosity is measured by the following method. That is, 1 g of the resin powder collected from the resin composition is used as a sample, and the minimum melt viscosity is measured with a rheometer (ARES-G2 (trade name) manufactured by TA Instruments).
  • a disposable plate having a plate diameter of 25 mm is used, and the resin is used under the conditions of a heating rate of 2 ° C./min, a frequency of 10.0 rad / sec, and a strain of 0.1% in a range of 40 ° C. or higher and 180 ° C. or lower. Measure the minimum melt viscosity of the powder.
  • a copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet
  • an adhesive layer is formed between the prepreg or the resin sheet and the copper foil. It does not include layers such as, and means that the prepreg or resin sheet and the copper foil are in direct contact with each other.
  • the copper peel strength of the copper foil-clad laminate is increased, and the insulation reliability of the printed wiring board is improved.
  • the copper foil-clad laminate of the present embodiment has a high copper foil peel strength.
  • the measured value obtained according to JIS C6481: 1996 is preferably 0.4 kN / m or more, and more preferably 0.5 kN / m or more.
  • the upper limit of the copper foil peel strength is not particularly specified, but is practically 1.4 kN / m or less, for example.
  • the copper foil-clad laminate of the present embodiment has a small dielectric loss tangent.
  • the measured value of the dielectric tangent at 10 GHz measured by the cavity resonator perturbation method is 0. It is preferably less than 0035, more preferably less than 0.0030, and particularly preferably less than 0.0025.
  • the lower limit of the dielectric loss tangent is not particularly limited, but for example, 0.0001 or more is practical.
  • the roughness Rz of the copper foil surface measured according to JIS B0601: 2013 is adjusted to 0.2 to 4.0 ⁇ m.
  • the roughness Rz of the copper foil surface is preferably 0.5 to 4 ⁇ m, more preferably 0.6 to 3 ⁇ m, and further preferably 0.7 to 2 ⁇ m from the viewpoint of reducing transmission loss.
  • the roughness Rz of the copper foil surface can be measured according to the method described in Examples described later.
  • the copper foil-clad laminate according to the present embodiment is a copper foil arranged so as to directly contact one or more of the prepreg and / or the resin sheet according to the present embodiment and one or both sides of the prepreg and / or the resin sheet. And have.
  • a method for manufacturing a copper foil-clad laminate according to the present embodiment for example, a method of stacking one or more prepregs and / or resin sheets according to the present embodiment and arranging copper foils on one or both sides thereof for laminating and molding. Can be mentioned.
  • the copper foil is not particularly limited as long as it is used as a material for printed wiring boards and the roughness Rz of the copper foil surface measured according to JIS B0601: 2013 satisfies the above range, and is not particularly limited.
  • rolled copper foil and electrolytic copper examples thereof include copper foil such as foil, and among them, electrolytic copper foil is preferable from the viewpoint of copper foil peel strength and formability of fine wiring.
  • the thickness of the copper foil is not particularly limited and may be about 1.5 to 70 ⁇ m.
  • the forming method include a method usually used for forming a laminated plate for a printed wiring board and a multilayer plate, and more specifically, a multi-stage press machine, a multi-stage vacuum press machine, a continuous forming machine, an autoclave forming machine and the like are used. Then, a method of laminating molding at a temperature of about 180 to 350 ° C., a heating time of about 100 to 300 minutes, and a surface pressure of about 20 to 100 kg / cm 2 can be mentioned.
  • a multilayer board can be obtained by laminating and molding the prepreg and / or the resin sheet according to the present embodiment in combination with the wiring board for the inner layer separately prepared.
  • a method for manufacturing a multilayer board for example, copper foils having a thickness of about 35 ⁇ m are arranged on both sides of the prepreg and / or the resin sheet according to the present embodiment in which one or more sheets are stacked, and laminated by the above molding method. After the copper foil-clad laminate is formed, an inner layer circuit is formed, and the circuit is blackened to form an inner layer circuit board. After that, the inner layer circuit board and the prepreg and / or resin according to the present embodiment are formed.
  • a multilayer plate can be produced by alternately arranging the sheets one by one, further arranging the copper foil on the outermost layer, and laminating and molding under the above conditions, preferably under vacuum.
  • the copper foil-clad laminate according to the present embodiment can be suitably used as a printed wiring board.
  • the printed wiring board according to the present embodiment includes an insulating layer and a conductor layer arranged on the surface of the insulating layer, and the insulating layer includes a layer formed from the resin composition according to the present embodiment.
  • a printed wiring board can be manufactured according to a conventional method, and the manufacturing method thereof is not particularly limited, but for example, it can be manufactured by using the above-mentioned copper foil-clad laminate.
  • the following is an example of a method for manufacturing a printed wiring board. First, the above-mentioned copper foil-clad laminate is prepared. Next, the surface of the copper foil-clad laminate is etched to form an inner layer circuit, and an inner layer substrate is produced.
  • the inner layer circuit surface of this inner layer substrate is surface-treated to increase the adhesive strength as necessary, then the required number of the above-mentioned prepregs are laminated on the inner layer circuit surface, and the copper foil for the outer layer circuit is laminated on the outer side thereof. Then, heat and pressurize to integrally mold. In this way, a multi-layer laminated board in which an insulating layer made of a base material and a cured product of a resin composition is formed between an inner layer circuit and a copper foil for an outer layer circuit is manufactured.
  • a plated metal film for conducting the inner layer circuit and the copper foil for the outer layer circuit is formed on the wall surface of the holes, and further, the outer layer circuit is formed.
  • a printed wiring board is manufactured by forming an outer layer circuit by etching a copper foil for use.
  • the printed wiring board obtained in the above production example has an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer is the resin composition according to the present embodiment described above and a cured product thereof.
  • the configuration includes at least one of them. That is, the prepreg according to the above-mentioned embodiment (including at least one of the substrate and the resin composition according to the present embodiment impregnated or coated thereto and the cured product thereof), and the copper foil according to the above-mentioned present embodiment.
  • the layer of the resin composition of the upholstered laminated board (the layer containing at least one of the resin composition of the present invention and the cured product thereof) is an insulating layer containing at least one of the resin composition and the cured product thereof according to the present embodiment. Will be composed of.
  • the semiconductor device of this embodiment can be manufactured by mounting a semiconductor chip on a conductive portion of the printed wiring board of this embodiment.
  • the conduction point is a place where an electric signal is transmitted in the multilayer printed wiring board, and the place may be a surface or an embedded place.
  • the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the method for mounting the semiconductor chip when manufacturing the semiconductor device of the present embodiment is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and a bump. None Examples thereof include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • BBUL build-up layer
  • ACF anisotropic conductive film
  • NCF non-conductive film
  • a microstrip line was formed by etching the copper foil-clad laminate obtained in Examples or Comparative Examples so that the characteristic impedance was 50 ⁇ , and a network analyzer N5227A manufactured by Keysight Technology Co., Ltd. was used. The transmission coefficient was measured to determine the transmission loss at a frequency of 28 GHz. A, B, C and D in the table were evaluated according to the following criteria. The closer the transmission loss is to 0, the better.
  • test piece 50 mm ⁇ 50 mm ⁇ 0.8 mm
  • solder heat resistance For the copper foil-clad laminate obtained in the examples or comparative examples, a test piece (50 mm ⁇ 50 mm ⁇ 0.8 mm) with a copper foil was prepared according to JIS C5012: 1992, and the solder heated to 288 ° C. After floating the test piece in the tank for 30 minutes, it was visually confirmed whether there was any abnormality such as delamination in the copper foil-clad laminate. A and B in the table were evaluated according to the following criteria. A: No delamination for 30 minutes B: Delamination occurs within 30 minutes
  • reaction solution was allowed to stand to separate the organic phase and the aqueous phase.
  • the obtained organic phase was washed 5 times with 1300 g of water, and the electric conductivity of the wastewater in the 5th washing was 5 ⁇ S / cm, and it was confirmed that the ionic compounds that could be removed were sufficiently removed by washing with water. ..
  • the organic phase after washing with water was concentrated under reduced pressure, and finally concentrated to dryness at 90 ° C. for 1 hour to obtain 331 g of the desired 1-naphthol aralkyl-type cyanate ester compound (SNCN) (orange viscous substance).
  • the mass average molecular weight Mw of the obtained SNCN was 600.
  • Infrared absorption spectrum of SNCN showed absorption of 2250 cm -1 (cyanic acid ester group) and no absorption of hydroxy group.
  • each component contained in the resin composition The following components were used as the components contained in the resin compositions of Examples or Comparative Examples.
  • Maleimide resin MIR-3000, Polyphenylene ether resin manufactured by Nippon Kayaku Co., Ltd .: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc., number average molecular weight 2200, vinyl group equivalent: 1100 g / eq.
  • Thermoplastic Elastomer Hydrogenated Styrene Thermoplastic Elastomer (SEBS), Tuftec H-1043, Phosphorus Flame Retardant 1: 1,3-Phenylenbis (2,6-di-xylenyl phosphate) manufactured by Asahi Kasei Co., Ltd., PX-200, Phosphorus Flame Retardant manufactured by Daihachi Chemical Industry Co., Ltd .2: Cyclic organophosphazen compound, Ravitor FP-300B, Filler manufactured by Fushimi Pharmaceutical Co., Ltd .: Spherical silica, SC2050-MB, Admatex Co., Ltd. Made, average particle diameter 0.5 ⁇ m
  • the copper foil used in the examples or comparative examples is shown below.
  • the roughness Rz is the roughness Rz of the surface in contact with the laminated prepreg in the example or comparative example measured by the method described above. In the examples or comparative examples, these roughness surfaces are arranged so as to be in contact with the surface of the laminated prepreg to obtain a copper foil-clad laminate.
  • Example 1 65 parts by mass of maleimide resin MIR-3000, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 20 parts by mass of phosphorus-based flame retardant PX-200, 100 parts by mass of filler SC2050-MB. , Ethylmethylketone is used to mix and dilute to prepare a varnish, the obtained varnish is impregnated and coated on a glass woven cloth having a thickness of 0.075 mm, and heated and dried at 160 ° C. for 5 minutes to form a resin composition. A prepreg having a content of 60% by mass was obtained.
  • Example 2 65 parts by mass of polyphenylene ether resin OPE-2St2200, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 20 parts by mass of phosphorus-based flame retardant PX-200, 100 parts by mass of filler SC2050-MB, To prepare a varnish by mixing and diluting with ethyl methyl ketone, impregnating the obtained varnish on a glass woven cloth having a thickness of 0.075 mm, and heating and drying at 160 ° C. for 5 minutes to form a resin composition. A prepreg having a substance content of 60% by mass was obtained.
  • Example 3 75 parts by mass of polyphenylene ether resin OPE-2St2200, 5 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 20 parts by mass of phosphorus-based flame retardant PX-200, 100 parts by mass of filler SC2050-MB, To prepare a varnish by mixing and diluting with ethyl methyl ketone, impregnating the obtained varnish on a glass woven cloth having a thickness of 0.075 mm, and heating and drying at 160 ° C. for 5 minutes to form a resin composition. A prepreg having a substance content of 60% by mass was obtained.
  • Example 4 35 parts by mass of maleimide resin MIR-3000, 20 parts by mass of polyphenylene ether resin OPE-2St2200, 10 parts by mass of SNCN, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant PX- 20 parts by mass of 200 and 100 parts by mass of the filler SC2050-MB are mixed and diluted with ethyl methyl ketone to prepare a varnish, and the obtained varnish is impregnated into a glass woven cloth having a thickness of 0.075 mm. The coating was applied and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass.
  • Example 5 35 parts by mass of maleimide resin MIR-3000, 20 parts by mass of polyphenylene ether resin OPE-2St2200, 10 parts by mass of SNCN, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant PX- 20 parts by mass of 200 and 100 parts by mass of the filler SC2050-MB are mixed and diluted with ethyl methyl ketone to prepare a varnish, and the obtained varnish is impregnated into a glass woven cloth having a thickness of 0.075 mm. The coating was applied and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass.
  • Example 6 35 parts by mass of maleimide resin MIR-3000, 20 parts by mass of polyphenylene ether resin OPE-2St2200, 10 parts by mass of SNCN, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant Rabbitl FP 20 parts by mass of -300B and 100 parts by mass of the filler SC2050-MB were mixed and diluted with ethylmethylketone to prepare a varnish, and the obtained varnish was put into a glass woven cloth having a thickness of 0.075 mm. It was impregnated and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass.
  • the copper foil-clad laminates of Examples 1 to 6 have good copper foil peel strength and low transmission loss, and are also excellent in crack resistance and solder heat resistance. confirmed.
  • the copper foil-clad laminate of the present invention has industrial applicability as a material for constituting a printed wiring board, a semiconductor device, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a copper-clad laminated board obtained by layering a copper foil so that the same is in contact with one or more types of surface selected from the group consisting of a prepreg and a resin sheet. The prepreg contains a substrate and a resin composition impregnated in, or coated on, the substrate. The resin sheet contains a resin composition. The resin composition contains a thermosetting compound (A), a thermoplastic elastomer (B) and a phosphorus-based flame retardant (C). The content of the thermoplastic elastomer (B) in the resin composition is 1-30 parts by mass relative to 100 parts by mass of solid resin content. The content of the phosphorus-based flame retardant (C) in the resin composition is 1-30 parts by mass relative to 100 parts by mass of solid resin content. The roughness Rz of a surface of the copper foil, as measured in accordance with JIS B0601: 2013, is 0.2-4.0 µm.

Description

銅箔張積層板及びプリント配線板Copper foil-clad laminate and printed wiring board
 本発明は、銅箔張積層板、及びそれを用いて製造されたプリント配線板、半導体装置に関する。 The present invention relates to a copper foil-clad laminate, a printed wiring board manufactured using the same, and a semiconductor device.
 近年、パーソナルコンピューター、サーバーをはじめとする情報端末機器及びインターネットルーター、光通信などの通信機器は、大容量の情報を高速で処理することが要求され、電気信号の高速化・高周波化が進んでいる。それに伴い、これらに用いられるプリント配線板用の積層板は高周波への要求に対応するため、低誘電率・低誘電正接化が求められている。 In recent years, information terminal devices such as personal computers and servers, as well as communication devices such as Internet routers and optical communications, are required to process a large amount of information at high speed, and the speed and frequency of electric signals are increasing. There is. Along with this, the laminated boards for printed wiring boards used for these are required to have a low dielectric constant and a low dielectric loss tangent in order to meet the demand for high frequency.
 例えば、特許文献1には、分子鎖の両側が不飽和結合の置換基で改質されたポリフェニレンエーテル樹脂、及び3種以上の特定の架橋結合性硬化剤を併用することで、優れた耐熱性、低誘電特性及び諸物性を同時に備える熱硬化性樹脂組成物、該組成物を用いたプリプレグ、積層シート及び印刷回路基板が得られることが報告されている。 For example, Patent Document 1 describes excellent heat resistance by using a polyphenylene ether resin in which both sides of a molecular chain are modified with unsaturated bond substituents and three or more specific crosslinkable curing agents. It has been reported that a thermosetting resin composition having low dielectric properties and various physical properties at the same time, a prepreg using the composition, a laminated sheet and a printed circuit board can be obtained.
特開2019-90037号公報Japanese Unexamined Patent Publication No. 2019-90037
 プリント配線板用の積層板には、伝送損失特性(低伝送損失)や銅箔ピール強度に加えて、耐クラック性も求められている。ここで、耐クラック性とは、回路を描いた基板に電流を流しながら曲げ試験を行ったときの絶縁信頼性を示すもので、曲げ回数が多くても絶縁破壊が起こらないことを指す。上記特許文献に開示された銅箔張積層板は、低伝送損失等については良好である一方で、耐クラック性については未だ課題を残している。 Laminated boards for printed wiring boards are required to have crack resistance in addition to transmission loss characteristics (low transmission loss) and copper foil peel strength. Here, the crack resistance indicates the insulation reliability when the bending test is performed while passing a current through the substrate on which the circuit is drawn, and means that dielectric breakdown does not occur even if the number of bendings is large. The copper foil-clad laminate disclosed in the above patent document is good in terms of low transmission loss and the like, but still has a problem in terms of crack resistance.
 上記事情に鑑み、本発明は、銅箔ピール強度および伝送損失特性(低伝送損失)が良好であり、且つ、耐クラック性および半田耐熱性にも優れる銅箔張積層板、ならびにこれを用いたプリント配線板、半導体装置を提供することを目的とする。 In view of the above circumstances, the present invention uses a copper foil-clad laminate having good copper foil peel strength and transmission loss characteristics (low transmission loss), and also having excellent crack resistance and solder heat resistance. It is an object of the present invention to provide a printed wiring board and a semiconductor device.
 本発明者らは鋭意検討した結果、プリプレグおよび樹脂シートからなる群より選ばれる1種以上の表面に接するように銅箔が積層された銅箔張積層板であって、プリプレグおよび樹脂シートを構成する樹脂組成物が熱硬化性化合物と、特定量の熱可塑性エラストマー及びリン系難燃剤を含み、さらに、銅箔表面の粗度Rzが特定の範囲にある銅箔を用いることで、上記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent studies, the present inventors have made a copper foil-clad laminate in which copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet, and constitutes the prepreg and the resin sheet. By using a copper foil containing a thermosetting compound, a specific amount of a thermoplastic elastomer and a phosphorus-based flame retardant, and having a copper foil surface with a roughness Rz in a specific range, the above-mentioned problems can be solved. We found that it could be solved and completed the present invention.
 すなわち、本発明は以下のとおりである。
[1]
 プリプレグおよび樹脂シートからなる群より選ばれる1種以上の表面に接するように銅箔が積層された銅箔張積層板であって、
 前記プリプレグは、基材と、前記基材に含浸又は塗布された樹脂組成物と、を含み、
 前記樹脂シートは樹脂組成物を含み、
 前記樹脂組成物は、熱硬化性化合物(A)、熱可塑性エラストマー(B)、及びリン系難燃剤(C)を含み、
 前記樹脂組成物中の前記熱可塑性エラストマー(B)の含有量が、樹脂固形分100質量部に対して1~30質量部であり、
 前記樹脂組成物中の前記リン系難燃剤(C)の含有量が、樹脂固形分100質量部に対して1~30質量部であり、
 JIS B0601:2013に従って測定した前記銅箔表面の粗度Rzが、0.2~4.0μmである、銅箔張積層板。
[2]
 前記樹脂組成物中の前記リン系難燃剤(C)の含有量が、樹脂固形分100質量部に対して15~30質量部である、上記[1]に記載の銅箔張積層板。
[3]
 前記リン系難燃剤(C)が、芳香族縮合リン酸エステル(C-1)及び環状ホスファゼン化合物(C-2)からなる群より選択される1種以上である、上記[1]又は[2]に記載の銅箔張積層板。
[4]
 前記芳香族縮合リン酸エステル(C-1)が、下記式(1)で表される化合物であり、前記環状ホスファゼン化合物(C-2)が、下記式(2)で表される化合物である、上記[1]~[3]のいずれかに記載の銅箔張積層板。
That is, the present invention is as follows.
[1]
A copper foil-clad laminate in which copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet.
The prepreg comprises a substrate and a resin composition impregnated or coated on the substrate.
The resin sheet contains a resin composition and contains
The resin composition contains a thermosetting compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
The content of the thermoplastic elastomer (B) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
The content of the phosphorus-based flame retardant (C) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
A copper foil-clad laminate having a roughness Rz of the copper foil surface measured according to JIS B0601: 2013 of 0.2 to 4.0 μm.
[2]
The copper foil-clad laminate according to the above [1], wherein the content of the phosphorus-based flame retardant (C) in the resin composition is 15 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
[3]
The phosphorus-based flame retardant (C) is at least one selected from the group consisting of an aromatic condensed phosphoric acid ester (C-1) and a cyclic phosphazene compound (C-2), according to the above [1] or [2]. ] The copper foil-clad laminate described in.
[4]
The aromatic condensed phosphoric acid ester (C-1) is a compound represented by the following formula (1), and the cyclic phosphazene compound (C-2) is a compound represented by the following formula (2). , The copper foil-clad laminate according to any one of the above [1] to [3].
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、nは3~6の整数を表す。)
[5]
 前記熱可塑性エラストマー(B)は、スチレン系エラストマーである、上記[1]~[4]のいずれかに記載の銅箔張積層板。
[6]
 前記スチレン系エラストマーは、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-水添ブタジエン-スチレンブロック共重合体、およびスチレン-水添イソプレン-スチレンブロック共重合体からなる群より選ばれる1種以上である、上記[5]に記載の銅箔張積層板。
[7]
 前記熱硬化性化合物(A)は、シアン酸エステル化合物、マレイミド化合物、ポリフェニレンエーテル化合物、エポキシ化合物、フェノール化合物、および硬化性ポリイミド化合物からなる群より選ばれる1種以上を含む、上記[1]~[6]のいずれかに記載の銅箔張積層板。
[8]
 前記樹脂組成物が充填材をさらに含有する、上記[1]~[7]のいずれかに記載の銅箔張積層板。
[9]
 前記充填材は、シリカ類、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、及びフォルステライトからなる群より選択される1種以上である、上記[8]に記載の銅箔張積層板。
[10]
 前記樹脂組成物中の前記充填材の含有量が、樹脂固形分100質量部に対して30~300質量部である、上記[8]又は[9]に記載の銅箔張積層板。
[11]
 前記銅箔が、電解銅箔である、上記[1]~[10]のいずれかに記載の銅箔張積層板。
[12]
 上記[1]~[11]のいずれかに記載の銅箔張積層板を用いて製造されたプリント配線板。
[13]
 上記[12]に記載のプリント配線板を用いて製造された半導体装置。
(In equation (2), n represents an integer of 3 to 6.)
[5]
The copper foil-clad laminate according to any one of the above [1] to [4], wherein the thermoplastic elastomer (B) is a styrene-based elastomer.
[6]
The styrene-based elastomer is a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a styrene-hydrogenated butadiene-styrene block copolymer, and a styrene-hydrogenated isoprene-styrene block copolymer. The copper foil-clad laminate according to the above [5], which is one or more selected from the group consisting of.
[7]
The thermosetting compound (A) contains at least one selected from the group consisting of a cyanic acid ester compound, a maleimide compound, a polyphenylene ether compound, an epoxy compound, a phenol compound, and a curable polyimide compound. The copper foil-clad laminate according to any one of [6].
[8]
The copper foil-clad laminate according to any one of the above [1] to [7], wherein the resin composition further contains a filler.
[9]
The copper foil-clad laminate according to the above [8], wherein the filler is one or more selected from the group consisting of silicas, aluminum hydroxide, aluminum nitride, boron nitride, and forsterite.
[10]
The copper foil-clad laminate according to the above [8] or [9], wherein the content of the filler in the resin composition is 30 to 300 parts by mass with respect to 100 parts by mass of the resin solid content.
[11]
The copper foil-clad laminate according to any one of the above [1] to [10], wherein the copper foil is an electrolytic copper foil.
[12]
A printed wiring board manufactured by using the copper foil-clad laminate according to any one of the above [1] to [11].
[13]
A semiconductor device manufactured by using the printed wiring board according to the above [12].
 本発明により、銅箔ピール強度および伝送損失特性が良好であり、且つ、耐クラック性および半田耐熱性にも優れる銅箔張積層板、ならびにこれを用いたプリント配線板、半導体装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a copper foil-clad laminate having good copper foil peel strength and transmission loss characteristics, and also having excellent crack resistance and solder heat resistance, and a printed wiring board and a semiconductor device using the copper foil-clad laminate are provided. Can be done.
 本実施形態の銅箔張積層板は、
 プリプレグおよび樹脂シートからなる群より選ばれる1種以上の表面に接するように銅箔が積層された銅箔張積層板であって、
 前記プリプレグは、基材と、前記基材に含浸又は塗布された樹脂組成物と、を含み、
 前記樹脂シートは樹脂組成物を含み、
 前記樹脂組成物は、熱硬化性化合物(A)、熱可塑性エラストマー(B)、及びリン系難燃剤(C)を含み、
 前記樹脂組成物中の前記熱可塑性エラストマー(B)の含有量が、樹脂固形分100質量部に対して1~30質量部であり、
 前記樹脂組成物中の前記リン系難燃剤(C)の含有量が、樹脂固形分100質量部に対して1~30質量部であり、
 JIS B0601:2013に従って測定した前記銅箔表面の粗度Rzが、0.2~4.0μmである。
The copper foil-clad laminate of the present embodiment is
A copper foil-clad laminate in which copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet.
The prepreg comprises a substrate and a resin composition impregnated or coated on the substrate.
The resin sheet contains a resin composition and contains
The resin composition contains a thermosetting compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
The content of the thermoplastic elastomer (B) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
The content of the phosphorus-based flame retardant (C) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
The roughness Rz of the copper foil surface measured according to JIS B0601: 2013 is 0.2 to 4.0 μm.
 本明細書において、「樹脂組成物中の樹脂固形分」とは、特に断りのない限り、樹脂組成物における溶剤及び充填材を除いた成分をいい、樹脂固形分100質量部とは、樹脂組成物における溶剤及び充填材を除いた成分の合計が100質量部であることをいうものとする。 In the present specification, "resin solid content in the resin composition" means a component of the resin composition excluding the solvent and the filler, and 100 parts by mass of the resin solid content means the resin composition, unless otherwise specified. It means that the total of the components excluding the solvent and the filler in the product is 100 parts by mass.
 以下において、まず、本実施形態の銅箔張積層板に用いられる、樹脂組成物及びそれを構成する成分について説明し、その後、樹脂組成物を用いて得られるプリプレグ、樹脂シート、銅箔張積層板等について説明する。 In the following, first, the resin composition and the components constituting the resin composition used for the copper foil-clad laminate of the present embodiment will be described, and then the prepreg, the resin sheet, and the copper foil-clad laminate obtained by using the resin composition will be described. The board and the like will be described.
[樹脂組成物]
 本実施形態における樹脂組成物は、熱硬化性化合物(A)、熱可塑性エラストマー(B)、及びリン系難燃剤(C)を含む。
[Resin composition]
The resin composition in the present embodiment contains a thermosetting compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
[熱硬化性化合物(A)]
 熱硬化性化合物(A)としては、熱硬化性の化合物であれば特に限定されないが、例えば、シアン酸エステル化合物、マレイミド化合物、ポリフェニレンエーテル化合物、エポキシ化合物、フェノール化合物、および硬化性ポリイミド化合物からなる群より選ばれる1種以上を含むことが好ましい。
[Thermosetting compound (A)]
The thermosetting compound (A) is not particularly limited as long as it is a thermosetting compound, and includes, for example, a cyanic acid ester compound, a maleimide compound, a polyphenylene ether compound, an epoxy compound, a phenol compound, and a curable polyimide compound. It is preferable to include one or more selected from the group.
[シアン酸エステル化合物]
 本実施形態に係るシアン酸エステル化合物は、少なくとも1つのシアナト基(シアン酸エステル基)により置換された芳香族部分を分子内に有する樹脂であれば特に限定されないが、少なくとも1つのシアナト基により置換された芳香族部分を分子内に2つ以上有するシアン酸エステル化合物が、より好ましい。シアン酸エステル化合物が有するシアナト基の数の下限は、2以上であることが好ましく、3以上であることがより好ましい。シアナト基の数を上記下限値以上とすることにより、耐熱性がより向上する傾向にある。上限値については、特に定めるものではないが、例えば、50以下であってもよい。
[Cyanic acid ester compound]
The cyanate ester compound according to the present embodiment is not particularly limited as long as it is a resin having an aromatic moiety substituted with at least one cyanato group (cyanic acid ester group) in the molecule, but is substituted with at least one cyanato group. A cyanate ester compound having two or more aromatic moieties in the molecule is more preferable. The lower limit of the number of cyanato groups contained in the cyanate ester compound is preferably 2 or more, and more preferably 3 or more. By setting the number of cyanato groups to the above lower limit or more, the heat resistance tends to be further improved. The upper limit is not particularly specified, but may be, for example, 50 or less.
 本実施形態におけるシアン酸エステル化合物としては、例えば、式(5)で表される化合物が挙げられる。 Examples of the cyanic acid ester compound in the present embodiment include the compound represented by the formula (5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(5)中、Ar1は、各々独立に、置換基を有してもよいフェニレン基、置換基を有してもよいナフチレン基又は置換基を有してもよいビフェニレン基を表す。R81は各々独立に水素原子、置換基を有してもよい炭素数1~6のアルキル基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数1~4のアルコキシ基、炭素数1~6のアルキル基と炭素数6~12のアリール基とが結合した置換基を有してもよいアラルキル基又は炭素数1~6のアルキル基と炭素数6~12のアリール基とが結合した置換基を有してもよいアルキルアリール基のいずれか1種から選択される。n6はAr1に結合するシアナト基の数を表し、1~3の整数である。n7はAr1に結合するR81の数を表し、Ar1がフェニレン基の時は4-n6、ナフチレン基の時は6-n6、ビフェニレン基の時は8-n6である。n8は平均繰り返し数を表し、0~50の整数である。シアン酸エステル化合物は、n8が異なる化合物の混合物であってもよい。Zは、各々独立に、単結合、炭素数1~50の2価の有機基(水素原子がヘテロ原子に置換されていてもよい)、窒素数1~10の2価の有機基(-N-R-N-など)、カルボニル基(-CO-)、カルボキシ基(-C(=O)O-)、カルボニルジオキサイド基(-OC(=O)O-)、スルホニル基(-SO2-)、及び、2価の硫黄原子又は2価の酸素原子のいずれか1種から選択される。) (In the formula (5), Ar 1 independently represents a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a biphenylene group which may have a substituent. R 81 may independently have a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group having 6 to 12 carbon atoms which may have a substituent, and a substituent. A good alkoxy group having 1 to 4 carbon atoms, an aralkyl group having a substituent in which an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are bonded, or an alkyl group having 1 to 6 carbon atoms may be used. It is selected from any one of the alkylaryl groups which may have a substituent in which an aryl group having 6 to 12 carbon atoms is bonded. N 6 represents the number of cyanato groups bonded to Ar 1 . N 7 represents the number of R 81 bonded to Ar 1. 4-n 6 when Ar 1 is a phenylene group, 6-n 6 when Ar 1 is a naphthylene group, and 6-n 6 when Ar 1 is a biphenylene group. 8-n 6 ; n 8 represents the average number of iterations and is an integer from 0 to 50. The cyanate ester compound may be a mixture of compounds with different n 8 ; Z is independent of each other. Single bond, divalent organic group having 1 to 50 carbon atoms (hydrogen atom may be replaced with a hetero atom), divalent organic group having 1 to 10 nitrogen atoms (-N-RN-, etc.) , Carbonyl group (-CO-), carboxy group (-C (= O) O-), carbonyldioxide group (-OC (= O) O-), sulfonyl group (-SO 2- ), and divalent It is selected from either a sulfur atom or a divalent oxygen atom.)
 式(5)のR81におけるアルキル基は、直鎖状構造又は分岐鎖状構造、環状構造(シクロアルキル基等)を有していてもよい。また、式(5)のR81におけるアルキル基におけるアルキル基及びR81におけるアリール基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシ基、シアノ基等で置換されていてもよい。
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、1-エチルプロピル基、2,2-ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、トリフルオロメチル基等が挙げられる。
 アリール基の具体例としては、フェニル基、キシリル基、メシチル基、ナフチル基、フェノキシフェニル基、エチルフェニル基、o-,m-又はp-フルオロフェニル基、ジクロロフェニル基、ジシアノフェニル基、トリフルオロフェニル基、メトキシフェニル基、o-,m-又はp-トリル基等が挙げられる。
 アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基等が挙げられる。
 式(5)のZにおける2価の有機基の具体例としては、メチレン基、エチレン基、トリメチレン基、シクロペンチレン基、シクロヘキシレン基、トリメチルシクロヘキシレン基、ビフェニルイルメチレン基、ジメチルメチレン-フェニレン-ジメチルメチレン基、フルオレンジイル基、フタリドジイル基等が挙げられる。前記2価の有機基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシ基、シアノ基等で置換されていてもよい。式(5)のZにおける窒素数1~10の2価の有機基としては、イミノ基、ポリイミド基等が挙げられる。
The alkyl group in R 81 of the formula (5) may have a linear structure, a branched chain structure, a cyclic structure (cycloalkyl group or the like). Further, the hydrogen atom in the alkyl group in the alkyl group in R 81 and the aryl group in R 81 of the formula (5) is a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group or the like. It may be replaced with.
Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group and 2,2-dimethylpropyl group. Examples thereof include a group, a cyclopentyl group, a hexyl group, a cyclohexyl group, a trifluoromethyl group and the like.
Specific examples of the aryl group include a phenyl group, a xylyl group, a mesityl group, a naphthyl group, a phenoxyphenyl group, an ethylphenyl group, an o-, m- or p-fluorophenyl group, a dichlorophenyl group, a dicyanophenyl group and a trifluorophenyl. Examples thereof include a group, a methoxyphenyl group, an o-, m- or a p-tolyl group.
Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tert-butoxy group and the like.
Specific examples of the divalent organic group in Z of the formula (5) include a methylene group, an ethylene group, a trimethylene group, a cyclopentylene group, a cyclohexylene group, a trimethylcyclohexylene group, a biphenylylmethylene group, and a dimethylmethylene-phenylene. -Examples include a dimethylmethylene group, a fluorinatedyl group, a phthalidodiyl group and the like. The hydrogen atom in the divalent organic group may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group or the like. Examples of the divalent organic group having a nitrogen number of 1 to 10 in Z of the formula (5) include an imino group and a polyimide group.
 また、式(5)中のZとしては、下記式(6)又は下記式(7)で表される構造であるものが挙げられる。 Further, examples of Z in the formula (5) include those having a structure represented by the following formula (6) or the following formula (7).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(6)中、Ar2はフェニレン基、ナフチレン基及びビフェニレン基のいずれか1種から選択される。R9、R10、R13、R14は各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、並びに、トリフルオロメチル基及びフェノール性ヒドロキシ基の少なくとも1つにより置換されたアリール基のいずれか1種から選択される。R11、R12は各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシ基及びヒドロキシ基のいずれか1種から選択される。n9は0~5の整数を示すが、シアン酸エステル化合物は、n9が異なる基を有する化合物の混合物であってもよい。) (In the formula (6), Ar 2 is selected from any one of a phenylene group, a naphthylene group and a biphenylene group. R 9 , R 10 , R 13 and R 14 are independently hydrogen atoms and have 1 to 1 carbon atoms, respectively. It is selected from any one of 6 alkyl groups, an aryl group having 6 to 12 carbon atoms, and an aryl group substituted with at least one of a trifluoromethyl group and a phenolic hydroxy group. R 11 , R 12 Are independently selected from any one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a hydroxy group. N 9 is 0. Although an integer of 5 is shown, the cyanate ester compound may be a mixture of compounds in which n 9 has a different group.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(7)中、Ar3はフェニレン基、ナフチレン基又はビフェニレン基のいずれか1種から選択される。R15、R16は各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、ベンジル基、炭素数1~4のアルコキシ基、並びに、ヒドロキシ基、トリフルオロメチル基及びシアナト基の少なくとも1つにより置換されたアリール基のいずれか1種から選択される。n10は0~5の整数を示すが、シアン酸エステル化合物は、n10が異なる基を有する化合物の混合物であってもよい。) (In the formula (7), Ar 3 is selected from any one of a phenylene group, a naphthylene group or a biphenylene group. R 15 and R 16 are independently hydrogen atoms, alkyl groups having 1 to 6 carbon atoms, and carbon. It is selected from any one of an aryl group having a number of 6 to 12, a benzyl group, an alkoxy group having 1 to 4 carbon atoms, and an aryl group substituted with at least one of a hydroxy group, a trifluoromethyl group and a cyanato group. Although n 10 represents an integer of 0 to 5, the cyanate ester compound may be a mixture of compounds in which n 10 has a different group.)
 さらに、式(5)中のZとしては、下記式で表される2価の基が挙げられる。 Further, as Z in the formula (5), a divalent group represented by the following formula can be mentioned.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、n11は4~7の整数を表す。R17は各々独立に水素原子又は炭素数1~6のアルキル基を表す。) (In the formula, n 11 represents an integer of 4 to 7. R 17 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
 式(6)のAr2及び式(7)のAr3の具体例としては、1,4-フェニレン基、1,3-フェニレン基、4,4’-ビフェニレン基、2,4’-ビフェニレン基、2,2’-ビフェニレン基、2,3’-ビフェニレン基、3,3’-ビフェニレン基、3,4’-ビフェニレン基、2,6-ナフチレン基、1,5-ナフチレン基、1,6-ナフチレン基、1,8-ナフチレン基、1,3-ナフチレン基、1,4-ナフチレン基等が挙げられる。式(6)のR9~R14及び式(7)のR15、R16におけるアルキル基及びアリール基は式(5)で記載したものと同様である。 Specific examples of Ar 2 of the formula (6) and Ar 3 of the formula (7) include a 1,4-phenylene group, a 1,3-phenylene group, a 4,4'-biphenylene group, and a 2,4'-biphenylene group. , 2,2'-biphenylene group, 2,3'-biphenylene group, 3,3'-biphenylene group, 3,4'-biphenylene group, 2,6-naphthylene group, 1,5-naphthylene group, 1,6 Examples thereof include a naphthylene group, a 1,8-naphthylene group, a 1,3-naphthylene group and a 1,4-naphthylene group. The alkyl and aryl groups in R 9 to R 14 of the formula (6) and R 15 and R 16 of the formula (7) are the same as those described in the formula (5).
 式(5)で表されるシアン酸エステル化合物としては、例えば、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ジアリルビスフェノールA型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物などが挙げられる。 Examples of the cyanic acid ester compound represented by the formula (5) include a phenol novolac type cyanic acid ester compound, a naphthol aralkyl type cyanic acid ester compound, a biphenyl aralkyl type cyanic acid ester compound, and a naphthylene ether type cyanic acid ester compound. Examples thereof include a xylene resin type cyanate ester compound, an adamantan skeleton type cyanate ester compound, a bisphenol A type cyanate ester compound, a diallyl bisphenol A type cyanate ester compound, and a naphthol aralkyl type cyanate ester compound.
 また、式(5)で表されるシアン酸エステル化合物の具体例としては、シアナトベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メチルベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メトキシベンゼン、1-シアナト-2,3-,1-シアナト-2,4-,1-シアナト-2,5-,1-シアナト-2,6-,1-シアナト-3,4-又は1-シアナト-3,5-ジメチルベンゼン、シアナトエチルベンゼン、シアナトブチルベンゼン、シアナトオクチルベンゼン、シアナトノニルベンゼン、2-(4-シアナフェニル)-2-フェニルプロパン(4-α-クミルフェノールのシアネート)、1-シアナト-4-シクロヘキシルベンゼン、1-シアナト-4-ビニルベンゼン、1-シアナト-2-又は1-シアナト-3-クロロベンゼン、1-シアナト-2,6-ジクロロベンゼン、1-シアナト-2-メチル-3-クロロベンゼン、シアナトニトロベンゼン、1-シアナト-4-ニトロ-2-エチルベンゼン、1-シアナト-2-メトキシ-4-アリルベンゼン(オイゲノールのシアネート)、メチル(4-シアナトフェニル)スルフィド、1-シアナト-3-トリフルオロメチルベンゼン、4-シアナトビフェニル、1-シアナト-2-又は1-シアナト-4-アセチルベンゼン、4-シアナトベンズアルデヒド、4-シアナト安息香酸メチルエステル、4-シアナト安息香酸フェニルエステル、1-シアナト-4-アセトアミノベンゼン、4-シアナトベンゾフェノン、1-シアナト-2,6-ジ-tert-ブチルベンゼン、1,2-ジシアナトベンゼン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,4-ジシアナト-2-tert-ブチルベンゼン、1,4-ジシアナト-2,4-ジメチルベンゼン、1,4-ジシアナト-2,3,4-ジメチルベンゼン、1,3-ジシアナト-2,4,6-トリメチルベンゼン、1,3-ジシアナト-5-メチルベンゼン、1-シアナト又は2-シアナトナフタレン、1-シアナト4-メトキシナフタレン、2-シアナト-6-メチルナフタレン、2-シアナト-7-メトキシナフタレン、2,2’-ジシアナト-1,1’-ビナフチル、1,3-,1,4-,1,5-,1,6-,1,7-,2,3-,2,6-又は2,7-ジシアナトシナフタレン、2,2’-又は4,4’-ジシアナトビフェニル、4,4’-ジシアナトオクタフルオロビフェニル、2,4’-又は4,4’-ジシアナトジフェニルメタン、ビス(4-シアナト-3,5-ジメチルフェニル)メタン、1,1-ビス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、2,2-ビス(4-シアナト-3-メチルフェニル)プロパン、2,2-ビス(2-シアナト-5-ビフェニルイル)プロパン、2,2-ビス(4-シアナトフェニル)ヘキサフルオロプロパン、2,2-ビス(4-シアナト-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ペンタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-3-メチルブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)ヘプタン、3,3-ビス(4-シアナトフェニル)オクタン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルペンタン、4,4-ビス(4-シアナトフェニル)-3-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,4-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2,4-トリメチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(4-シアナトフェニル)フェニルメタン、1,1-ビス(4-シアナトフェニル)-1-フェニルエタン、ビス(4-シアナトフェニル)ビフェニルメタン、1,1-ビス(4-シアナトフェニル)シクロペンタン、1,1-ビス(4-シアナトフェニル)シクロヘキサン、2,2-ビス(4-シアナト-3-イソプロピルフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-シアナトフェニル)シクロヘキサン、ビス(4-シアナトフェニル)ジフェニルメタン、ビス(4-シアナトフェニル)-2,2-ジクロロエチレン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,1-ビス(4-シアナトフェニル)-3,3,5-トリメチルシクロヘキサン、4-[ビス(4-シアナトフェニル)メチル]ビフェニル、4,4-ジシアナトベンゾフェノン、1,3-ビス(4-シアナトフェニル)-2-プロペン-1-オン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、ビス(4-シアナトフェニル)スルホン、4-シアナト安息香酸-4-シアナトフェニルエステル(4-シアナトフェニル-4-シアナトベンゾエート)、ビス-(4-シアナトフェニル)カーボネート、1,3-ビス(4-シアナトフェニル)アダマンタン、1,3-ビス(4-シアナトフェニル)-5,7-ジメチルアダマンタン、3,3-ビス(4-シアナトフェニル)イソベンゾフラン-1(3H)-オン(フェノールフタレインのシアネート)、3,3-ビス(4-シアナト-3-メチルフェニル)イソベンゾフラン-1(3H)-オ
ン(o-クレゾールフタレインのシアネート)、9,9-ビス(4-シアナトフェニル)フルオレン、9,9-ビス(4-シアナト-3-メチルフェニル)フルオレン、9,9-ビス(2-シアナト-5-ビフェニルイル)フルオレン、トリス(4-シアナトフェニル)メタン、1,1,1-トリス(4-シアナトフェニル)エタン、1,1,3-トリス(4-シアナトフェニル)プロパン、α,α,α’-トリス(4-シアナトフェニル)-1-エチル-4-イソプロピルベンゼン、1,1,2,2-テトラキス(4-シアナトフェニル)エタン、テトラキス(4-シアナトフェニル)メタン、2,4,6-トリス(N-メチル-4-シアナトアニリノ)-1,3,5-トリアジン、2,4-ビス(N-メチル-4-シアナトアニリノ)-6-(N-メチルアニリノ)-1,3,5-トリアジン、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-3-シアナト-4-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナトフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-(ヘキサフルオロイソプロピリデン)ジフタルイミド、トリス(3,5-ジメチル-4-シアナトベンジル)イソシアヌレート、2-フェニル-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-(4-メチルフェニル)-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-フェニル-3,3-ビス(4-シアナト-3-メチルフェニル)フタルイミジン、1-メチル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、2-フェニル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、フェノールノボラック樹脂やクレゾールノボラック樹脂(公知の方法により、フェノール、アルキル置換フェノール又はハロゲン置換フェノールと、ホルマリンやパラホルムアルデヒドなどのホルムアルデヒド化合物を、酸性溶液中で反応させたもの)、トリスフェノールノボラック樹脂(ヒドロキシベンズアルデヒドとフェノールとを酸性触媒の存在下に反応させたもの)、フルオレンノボラック樹脂(フルオレノン化合物と9,9-ビス(ヒドロキシアリール)フルオレン類とを酸性触媒の存在下に反応させたもの)、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂やビフェニルアラルキル樹脂(公知の方法により、Ar4-(CH2Z')2で表されるようなビスハロゲノメチル化合物とフェノール化合物とを酸性触媒若しくは無触媒で反応させたもの、Ar4-(CH2OR)2で表されるようなビス(アルコキシメチル)化合物やAr4-(CH2OH)2で表されるようなビス(ヒドロキシメチル)化合物とフェノール化合物を酸性触媒の存在下に反応させたもの、又は、芳香族アルデヒド化合物、アラルキル化合物、フェノール化合物とを重縮合させたもの)、フェノール変性キシレンホルムアルデヒド樹脂(公知の方法により、キシレンホルムアルデヒド樹脂とフェノール化合物を酸性触媒の存在下に反応させたもの)、変性ナフタレンホルムアルデヒド樹脂(公知の方法により、ナフタレンホルムアルデヒド樹脂とヒドロキシ置換芳香族化合物を酸性触媒の存在下に反応させたもの)、フェノール変性ジシクロペンタジエン樹脂、ポリナフチレンエーテル構造を有するフェノール樹脂(公知の方法により、フェノール性ヒドロキシ基を1分子中に2つ以上有する多価ヒドロキシナフタレン化合物を、塩基性触媒の存在下に脱水縮合させたもの)等のフェノール樹脂を上述と同様の方法によりシアン酸エステル化したもの等が挙げられるが、特に制限されるものではない。これらのシアン酸エステル化合物は、単独で用いても、2種以上を併用してもよい。
Specific examples of the cyanate ester compound represented by the formula (5) include cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methylbenzene, 1-. Cyanato-2-, 1-Cyanato-3-, or 1-Cyanato-4-methoxybenzene, 1-Cyanato-2,3-,1-Cyanato-2,4-,1-Cyanato-2,5-,1 -Cyanato-2,6-, 1-Cyanato-3,4- or 1-Cyanato-3,5-dimethylbenzene, Cyanatoethylbenzene, Cyanatobutylbenzene, Cyanatooctylbenzene, Cyanatononylbenzene, 2-( 4-Cianaphenyl) -2-phenylpropane (cyanate of 4-α-cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyanato-4-vinylbenzene, 1-cyanato-2- or 1-cyanato -3-Chlorobenzene, 1-Cyanato-2,6-dichlorobenzene, 1-Cyanato-2-methyl-3-chlorobenzene, Cyanatonitrobenzene, 1-Cyanato-4-nitro-2-ethylbenzene, 1-Cyanato-2-メトキシ-4-アリルベンゼン(オイゲノールのシアネート)、メチル(4-シアナトフェニル)スルフィド、1-シアナト-3-トリフルオロメチルベンゼン、4-シアナトビフェニル、1-シアナト-2-又は1-シアナト- 4-Acetylbenzene, 4-Cyanatobenzaldehyde, 4-Cyanato benzoic acid methyl ester, 4-Cyanato benzoic acid phenyl ester, 1-Cyanato-4-acetaminobenzene, 4-Cyanatobenzophenone, 1-Cyanato-2,6 -Di-tert-butylbenzene, 1,2-disyanatobenzene, 1,3-disyanatobenzene, 1,4-disyanatobenzene, 1,4-disyanato-2-tert-butylbenzene, 1,4-disianato -2,4-dimethylbenzene, 1,4-disyanato-2,3,4-dimethylbenzene, 1,3-disyanato-2,4,6-trimethylbenzene, 1,3-disyanato-5-methylbenzene, 1 -Cyanato or 2-cyanatonaphthalene, 1-cyanato 4-methoxynaphthalene, 2-cyanato-6-methylnaphthalene, 2-cyanato-7-methoxynaphthalene, 2,2'-disyanat-1,1'-binaphthyl, 1 , 3-, 1,4-, 1,5-, 1,6-, 1,7-, 2,3-, 2,6- or 2,7-disianatocinaphthalene, 2,2'-or 4 , 4'-Gisiana Tobiphenyl, 4,4'-disyanato octafluorobiphenyl, 2,4'-or 4,4'-disyanatodiphenylmethane, bis (4-cyanato-3,5-dimethylphenyl) methane, 1,1-bis ( 4-Cyanatophenyl) ethane, 1,1-bis (4-cyanatophenyl) propane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis (3-allyl-4-cyanato) Phenyl) propane, 2,2-bis (4-cyanato-3-methylphenyl) propane, 2,2-bis (2-cyanato-5-biphenylyl) propane, 2,2-bis (4-cyanatophenyl) Hexafluoropropane, 2,2-bis (4-cyanato-3,5-dimethylphenyl) propane, 1,1-bis (4-cyanatophenyl) butane, 1,1-bis (4-cyanatophenyl) isobutane , 1,1-bis (4-cyanatophenyl) pentane, 1,1-bis (4-cyanatophenyl) -3-methylbutane, 1,1-bis (4-cyanatophenyl) -2-methylbutane, 1 , 1-bis (4-cyanatophenyl) -2,2-dimethylpropane, 2,2-bis (4-cyanatophenyl) butane, 2,2-bis (4-cyanatophenyl) pentane, 2,2 -Bis (4-cyanatophenyl) hexane, 2,2-bis (4-cyanatophenyl) -3-methylbutane, 2,2-bis (4-cyanatophenyl) -4-methylpentane, 2,2- Bis (4-cyanatophenyl) -3,3-dimethylbutane, 3,3-bis (4-cyanatophenyl) hexane, 3,3-bis (4-cyanatophenyl) heptane, 3,3-bis ( 4-Cyanatophenyl) octane, 3,3-bis (4-cyanatophenyl) -2-methylpentane, 3,3-bis (4-cyanatophenyl) -2-methylhexane, 3,3-bis (4) 4-Cyanatophenyl) -2,2-dimethylpentane, 4,4-bis (4-cyanatophenyl) -3-methylheptane, 3,3-bis (4-cyanatophenyl) -2-methylheptane, 3,3-bis (4-Cyanatophenyl) -2,2-dimethylhexane, 3,3-bis (4-Cyanatophenyl) -2,4-dimethylhexane, 3,3-bis (4-Cyanato) Phenyl) -2,2,4-trimethylpentane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-cyanatophenyl) phenyl Methan, 1,1-bis (4-Cyanatophenyl) -1-phenylethane, bis (4-cyanatophenyl) biphenylmethane, 1,1-bis (4-cyanatophenyl) cyclopentane, 1,1-bis (4-cyanatophenyl) ) Cyclohexane, 2,2-bis (4-cyanato-3-isopropylphenyl) propane, 1,1-bis (3-cyclohexyl-4-cyanatophenyl) cyclohexane, bis (4-cyanatophenyl) diphenylmethane, bis ( 4-Cyanatophenyl) -2,2-dichloroethylene, 1,3-bis [2- (4-Cyanatophenyl) -2-propyl] benzene, 1,4-bis [2- (4-Cyanatophenyl) -2-propyl] benzene, 1,1-bis (4-cyanatophenyl) -3,3,5-trimethylcyclohexane, 4- [bis (4-cyanatophenyl) methyl] biphenyl, 4,4-disyanato Benzophenone, 1,3-bis (4-cyanatophenyl) -2-propen-1-one, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) sulfide, bis (4-cyanatophenyl) ) Sulfon, 4-Cyanato benzoic acid-4-Cyanatophenyl ester (4-Cyanatophenyl-4-Cyanatobenzoate), Bis- (4-Cyanatophenyl) carbonate, 1,3-Bis (4-Cyanato) Phenyl) adamantan, 1,3-bis (4-cyanatophenyl) -5,7-dimethyladamantan, 3,3-bis (4-cyanatophenyl) isobenzofuran-1 (3H) -on (phenol phthalein) Cyanate), 3,3-bis (4-cyanato-3-methylphenyl) isobenzofuran-1 (3H) -one (o-cresolphthaline cyanate), 9,9-bis (4-cyanatophenyl) fluorene , 9,9-bis (4-cyanato-3-methylphenyl) fluorene, 9,9-bis (2-cyanato-5-biphenylyl) fluoren, tris (4-cyanatophenyl) methane, 1,1,1 -Tris (4-Cyanatophenyl) Etan, 1,1,3-Tris (4-Cyanatophenyl) Propane, α, α, α'-Tris (4-Cyanatophenyl) -1-ethyl-4-isopropyl Benzene, 1,1,2,2-tetrakis (4-cyanatophenyl) ethane, tetrakis (4-cyanatophenyl) methane, 2,4,6-tris (N-methyl-4-cyanatoanilino) -1,3 , 5-Triazine, 2,4-Bis (N-me) Chill-4-cyanatoanilino) -6- (N-methylanilino) -1,3,5-triazine, bis (N-4-cyanato-2-methylphenyl) -4,4'-oxydiphthalimide, bis (N-) 3-Cyanato-4-methylphenyl) -4,4'-oxydiphthalimide, bis (N-4-cyanatophenyl) -4,4'-oxydiphthalimide, bis (N-4-cyanato-2-methyl) Phenol) -4,4'-(hexafluoroisopropyridene) diphthalimide, tris (3,5-dimethyl-4-cyanatobenzyl) isocyanurate, 2-phenyl-3,3-bis (4-cyanatophenyl) Phenolimidine, 2- (4-methylphenyl) -3,3-bis (4-cyanatophenyl) phthalimidine, 2-phenyl-3,3-bis (4-cyanato-3-methylphenyl) phthalimidine, 1-methyl- 3,3-bis (4-cyanatophenyl) indolin-2-one, 2-phenyl-3,3-bis (4-cyanatophenyl) indolin-2-one, phenol novolac resin and cresol novolak resin (known) Depending on the method, phenol, alkyl-substituted phenol or halogen-substituted phenol is reacted with a formaldehyde compound such as formarin or paraformaldehyde in an acidic solution), trisphenol novolak resin (hydroxybenzaldehyde and phenol in the presence of an acidic catalyst). ), Fluolenovolac resin (a reaction of a fluorenone compound and 9,9-bis (hydroxyaryl) fluorene in the presence of an acidic catalyst), phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin. Or biphenyl aralkyl resin (by a known method, a bishalogenomethyl compound represented by Ar 4- (CH 2 Z') 2 and a phenol compound reacted with an acidic catalyst or no catalyst, Ar 4- ( Reaction of a bis (alkoxymethyl) compound represented by CH 2 OR) 2 or a bis (hydroxymethyl) compound represented by Ar 4- (CH 2 OH) 2 with a phenol compound in the presence of an acidic catalyst. , Or aromatic aldehyde compound, aralkyl compound, phenol compound and polycondensation), phenol-modified xyleneformaldehyde resin (by a known method, xyleneformaldehyde resin and phenol compound in the presence of an acidic catalyst) (Reacted with), modified naphthalene formaldehyde resin (reacted with naphthalene formaldehyde resin and hydroxy-substituted aromatic compound in the presence of an acidic catalyst by a known method), phenol-modified dicyclopentadiene resin, polynaphthylene ether. Phenolic resins having a structure (a polyvalent hydroxynaphthalene compound having two or more phenolic hydroxy groups in one molecule, dehydrated and condensed in the presence of a basic catalyst by a known method) are described above. Examples thereof include those which have been acid esterified by the same method as in the above, but the present invention is not particularly limited. These cyanate ester compounds may be used alone or in combination of two or more.
 この中でもフェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ジアリルビスフェノール型シアン酸エステルが好ましく、ナフトールアラルキル型シアン酸エステル化合物が特に好ましい。 Among them, phenol novolac type cyanate ester compound, naphthol aralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, bisphenol A type cyanate ester compound, bisphenol M type cyanate ester compound, diallyl bisphenol type cyanate ester Preferred, naphthol aralkyl-type cyanate ester compounds are particularly preferred.
 これらのシアン酸エステル化合物を用いた樹脂組成物の硬化物は、耐熱性、低誘電特性(低誘電率性、低誘電正接性)等に優れた特性を有し、その硬化物を含むプリント配線板は、銅箔ピール強度、機械強度、耐熱性、低伝送損失に優れる傾向にある。 The cured product of the resin composition using these cyanate ester compounds has excellent properties such as heat resistance and low dielectric property (low dielectric constant, low dielectric loss tangent property), and the printed wiring including the cured product. Plates tend to be excellent in copper foil peel strength, mechanical strength, heat resistance, and low transmission loss.
 本実施形態に係る樹脂組成物におけるシアン酸エステル化合物の含有量は、所望する特性に応じて適宜設定することができ、特に限定されない。具体的には、シアン酸エステル化合物の含有量は、樹脂組成物中の樹脂固形分を100質量部とした場合、1質量部以上が好ましく、5質量部以上であることがより好ましく、10質量部以上であることがより好ましく、15質量部以上であってもよい。また、前記含有量の上限値は、90質量部以下が好ましく、80質量部以下がより好ましく、70質量部以下であることがさらに好ましく、60質量部以下であることが一層好ましく、55質量部以下であってもよい。このような範囲とすることにより、樹脂組成物の硬化物の低誘電特性はより優れたものとなり、その硬化物を含むプリント配線板は低伝送損失により優れる傾向にある。
 シアン酸エステル化合物は1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
The content of the cyanic acid ester compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited. Specifically, the content of the cyanic acid ester compound is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and 10 parts by mass when the resin solid content in the resin composition is 100 parts by mass. It is more preferably parts or more, and may be 15 parts by mass or more. The upper limit of the content is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, further preferably 70 parts by mass or less, further preferably 60 parts by mass or less, and 55 parts by mass. It may be as follows. Within such a range, the low-dielectric property of the cured product of the resin composition becomes more excellent, and the printed wiring board containing the cured product tends to be more excellent in low transmission loss.
Only one type of cyanic acid ester compound may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount is within the above range.
[マレイミド化合物]
 本実施形態に係るマレイミド化合物は、分子中に一個以上のマレイミド基を有する化合物であれば、特に限定されるものではないが、好ましくは分子中に2個以上のマレイミド基を有する化合物である。マレイミド化合物の具体例としては、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、4,4’-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、フェニルメタンマレイミド、o-フェニレンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、o-フェニレンビスシトラコンイミド、m-フェニレンビスシトラコンイミド、p-フェニレンビスシトラコンイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3’-ジエチル-5,5’-ジメチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、4,4’-ジフェニルメタンビスシトラコンイミド、2,2-ビス[4-(4-シトラコンイミドフェノキシ)フェニル]プロパン、ビス(3,5-ジメチル-4-シトラコンイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-シトラコンイミドフェニル)メタン、ビス(3,5-ジエチル-4-シトラコンイミドフェニル)メタン、下記式(2)、(3)、(4)及び(17)で表されるマレイミド化合物等が挙げられる。
 これらの中でも、下記式(2)、(3)、(4)及び(17)で表されるマレイミド化合物が樹脂組成物の硬化物の低熱膨張性及び耐熱性向上の面で特に好ましい。これらのマレイミド化合物は、単独で用いても、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000009
[Maleimide compound]
The maleimide compound according to the present embodiment is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule, but is preferably a compound having two or more maleimide groups in the molecule. Specific examples of the maleimide compound include, for example, N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidephenyl) methane, 4,4'-diphenylmethane bismaleimide, and bis (3,5-dimethyl-4-maleimide). Phenyl) methane, bis (3,5-diethyl-4-maleimidephenyl) methane, phenylmethanemaleimide, o-phenylene bismaleimide, m-phenylene bismaleimide, p-phenylene bismaleimide, o-phenylene biscitraconimide, m- Phenylene biscitraconimide, p-phenylene biscitraconimide, 2,2-bis (4- (4-maleimidephenoxy) -phenyl) propane, 3,3'-diethyl-5,5'-dimethyl-4,4'- Diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulphon Bismaleimide, 1,3-bis (3-maleimidephenoxy) benzene, 1,3-bis (4-maleimidephenoxy) benzene, 4,4'-diphenylmethanebiscitraconimide, 2,2-bis [4- (4- (4- (4- (4- (4-) Citraconimidephenoxy) phenyl] propane, bis (3,5-dimethyl-4-citraconeimidephenyl) methane, bis (3-ethyl-5-methyl-4-citraconeimidephenyl) methane, bis (3,5-diethyl-) Examples thereof include 4-citraconimidephenyl) methane, maleimide compounds represented by the following formulas (2), (3), (4) and (17).
Among these, maleimide compounds represented by the following formulas (2), (3), (4) and (17) are particularly preferable in terms of low thermal expansion and improvement of heat resistance of the cured product of the resin composition. These maleimide compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000009
(上記式(2)中、R4は各々独立に、水素原子又はメチル基を示し、n4は1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000010
(In the above formula (2), R 4 independently represents a hydrogen atom or a methyl group, and n 4 represents an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000010
(上記式(3)中、R5は各々独立に、水素原子、炭素数1~8のアルキル基又はフェニル基を示し、n5は1以上10以下の整数を示す。)
Figure JPOXMLDOC01-appb-C000011
(In the above formula (3), R 5 independently represents a hydrogen atom, an alkyl group or a phenyl group having 1 to 8 carbon atoms, and n 5 represents an integer of 1 or more and 10 or less.)
Figure JPOXMLDOC01-appb-C000011
(上記式(4)中、R6は各々独立に水素原子、メチル基又はエチル基を示し、R7は各々独立に水素原子又はメチル基を示す。)
Figure JPOXMLDOC01-appb-C000012
(In the above formula (4), R 6 independently represents a hydrogen atom, a methyl group or an ethyl group, and R 7 independently represents a hydrogen atom or a methyl group.)
Figure JPOXMLDOC01-appb-C000012
(上記式(17)中、R8は各々独立に水素原子、メチル基又はエチル基を示す。) (In the above formula (17), R 8 independently represents a hydrogen atom, a methyl group or an ethyl group.)
 前記式(2)中、R4は各々独立に、水素原子又はメチル基を示し、好ましくは水素原子である。また、式(2)中、n4は1以上の整数を示し、n4の上限値は、通常は10であり、有機溶剤への溶解性の観点から、n4の上限値は、好ましくは7であり、より好ましくは5である。マレイミド化合物は、n4が異なる2種以上の化合物を含んでいてもよい。 In the above formula (2), R 4 independently represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom. Further, in the formula (2), n 4 represents an integer of 1 or more, and the upper limit of n 4 is usually 10, and from the viewpoint of solubility in an organic solvent, the upper limit of n 4 is preferably 10. It is 7, more preferably 5. The maleimide compound may contain two or more compounds having different n4s .
 前記式(3)中、R5は各々独立して水素原子、炭素数が1~8のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等)、又はフェニル基を表す。これらの中でも、銅箔張積層板の耐燃性及び銅箔ピール強度を向上する観点から、水素原子、メチル基、及びフェニル基からなる群より選択される基であることが好ましく、水素原子及びメチル基の一方であることがより好ましく、水素原子であることがさらに好ましい。 In the above formula (3), R 5 is an independent hydrogen atom and an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group). , T-butyl group, n-pentyl group, etc.), or phenyl group. Among these, from the viewpoint of improving the flame resistance and the copper foil peel strength of the copper foil-clad laminate, the group is preferably selected from the group consisting of a hydrogen atom, a methyl group, and a phenyl group, and the hydrogen atom and methyl are preferable. It is more preferably one of the groups, and even more preferably a hydrogen atom.
 前記式(3)中、1≦n5≦10である。n5は、溶剤溶解性がより一層優れる観点から、4以下であることが好ましく、3以下であることがより好ましく、2以下であることがさらに好ましい。マレイミド化合物は、n5が異なる2種以上の化合物を含んでいてもよい。 In the above formula (3), 1 ≦ n 5 ≦ 10. From the viewpoint of further excellent solvent solubility, n 5 is preferably 4 or less, more preferably 3 or less, and even more preferably 2 or less. The maleimide compound may contain two or more compounds having different n5s .
 前記式(4)中、R6は各々独立に水素原子、メチル基又はエチル基を示し、R7は各々独立に水素原子又はメチル基を示す。樹脂組成物の硬化物の低誘電特性により一層優れる観点から、R6はメチル基又はエチル基であることが好ましい。そのような化合物としては、3,3’-ジエチル-5,5’-ジメチル-4,4’-ジフェニルメタンビスマレイミドが挙げられる。 In the above formula (4), R 6 independently represents a hydrogen atom, a methyl group or an ethyl group, and R 7 independently represents a hydrogen atom or a methyl group. From the viewpoint of being more excellent in the low dielectric property of the cured product of the resin composition, R 6 is preferably a methyl group or an ethyl group. Examples of such compounds include 3,3'-diethyl-5,5'-dimethyl-4,4'-diphenylmethanebismaleimide.
 前記式(17)中、R8は各々独立に水素原子、メチル基又はエチル基を示す樹脂組成物の硬化物の低誘電特性により一層優れる観点から、R8はメチル基であることが好ましい。そのような化合物として、例えば、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパンが挙げられる。 In the formula (17), R 8 is preferably a methyl group from the viewpoint of being more excellent in the low dielectric property of the cured product of the resin composition which independently exhibits a hydrogen atom, a methyl group or an ethyl group. Examples of such compounds include 2,2-bis (4- (4-maleimidephenoxy) -phenyl) propane.
 本実施形態で使用するマレイミド化合物は市販のものを使用しても良く、例えば、式(2)で表されるマレイミド化合物として大和化成工業株式会社製「BMI-2300」、式(3)で表されるマレイミド化合物として日本化薬株式会社製「MIR-3000」、式(4)で表されるマレイミド化合物としてケイ・アイ化成株式会社製「BMI-70」、式(17)で表されるマレイミド化合物としてケイ・アイ化成株式会社製「BMI-80」を好適に使用できる。 As the maleimide compound used in the present embodiment, a commercially available maleimide compound may be used. For example, as the maleimide compound represented by the formula (2), "BMI-2300" manufactured by Daiwa Kasei Kogyo Co., Ltd., represented by the formula (3). The maleimide compound to be used is "MIR-3000" manufactured by Nippon Kayaku Co., Ltd., the maleimide compound represented by the formula (4) is "BMI-70" manufactured by KI Kasei Co., Ltd., and the maleimide represented by the formula (17). As the compound, "BMI-80" manufactured by KI Kasei Co., Ltd. can be preferably used.
 本実施形態に係る樹脂組成物におけるマレイミド化合物の含有量は、所望する特性に応じて適宜設定することができ、特に限定されない。マレイミド化合物の含有量は、樹脂組成物中の樹脂固形分を100質量部とした場合、1質量部以上であることが好ましく、10質量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。上限値としては、90質量部以下であることが好ましく、70質量部以下であることがより好ましく、60質量部以下であることがさらに好ましく、50質量部以下であってもよい。このような範囲とすることにより、樹脂組成物の硬化物の高耐熱性、低吸水性がより効果的に発揮される傾向にある。
 マレイミド化合物は1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
The content of the maleimide compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited. The content of the maleimide compound is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and 20 parts by mass or more when the resin solid content in the resin composition is 100 parts by mass. Is even more preferable. The upper limit value is preferably 90 parts by mass or less, more preferably 70 parts by mass or less, further preferably 60 parts by mass or less, and may be 50 parts by mass or less. Within such a range, the cured product of the resin composition tends to more effectively exhibit high heat resistance and low water absorption.
Only one type of maleimide compound may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount is within the above range.
[ポリフェニレンエーテル化合物]
 本実施形態に係るポリフェニレンエーテル化合物としては、式(8):
[Polyphenylene ether compound]
The polyphenylene ether compound according to this embodiment includes the formula (8) :.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(8)中、R、R、R10、及びR11は、各々独立に炭素数6以下のアルキル基、アリール基、ハロゲン原子、又は水素原子を表す。)
で表される構造単位の重合体を含む化合物であることが好ましい。
 ポリフェニレンエーテル化合物は、式(9):
(In formula (8), R 8 , R 9 , R 10 , and R 11 each independently represent an alkyl group, an aryl group, a halogen atom, or a hydrogen atom having 6 or less carbon atoms.)
It is preferable that the compound contains a polymer of the structural unit represented by.
The polyphenylene ether compound has the formula (9) :.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(9)中、R12、R13、R14、R18、R19は、各々独立に炭素数6以下のアルキル基又はフェニル基を表す。R15、R16、R17は、各々独立に水素原子、炭素数6以下のアルキル基又はフェニル基を表す。)
で表される構造、及び/又は、式(10):
(In formula (9), R 12 , R 13 , R 14 , R 18 , and R 19 each independently represent an alkyl group or a phenyl group having 6 or less carbon atoms. R 15 , R 16 , and R 17 are respectively. Independently represents a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.)
Structure represented by and / or formula (10) :.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式(10)中、R20,R21、R22、R23、R24、R25、R26、R27は、各々独立に水素原子、炭素数6以下のアルキル基又はフェニル基を表す。-A-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である)で表される構造をさらに含んでもよい。 In formula (10), R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , and R 27 each independently represent a hydrogen atom and an alkyl group or phenyl group having 6 or less carbon atoms. -A- may further include a structure represented by a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
 式(10)における-A-としては、例えば、メチレン基、エチリデン基、1-メチルエチリデン基、1,1-プロピリデン基、1,4-フェニレンビス(1-メチルエチリデン)基、1,3-フェニレンビス(1-メチルエチリデン)基、シクロヘキシリデン基、フェニルメチレン基、ナフチルメチレン基、1-フェニルエチリデン基等の2価の有機基が挙げられるが、これらに限定されるものではない。 Examples of -A- in the formula (10) include a methylene group, an ethylidene group, a 1-methylethylidene group, a 1,1-propyridene group, a 1,4-phenylenebis (1-methylethylidene) group and a 1,3-. Examples thereof include, but are not limited to, a divalent organic group such as a phenylenebis (1-methylethylidene) group, a cyclohexylidene group, a phenylmethylene group, a naphthylmethylene group and a 1-phenylethylidene group.
 ポリフェニレンエーテル化合物は、末端の一部又は全部を、ビニルベンジル基等のエチレン性不飽和基、エポキシ基、アミノ基、水酸基、メルカプト基、カルボキシ基、メタクリル基及びシリル基等で官能基化された変性ポリフェニレンエーテルを用いることもできる。これらは1種単独又は2種以上を組み合わせて用いてもよい。
 末端が水酸基である変性ポリフェニレンエーテルとしては例えば、SABICイノベーティブプラスチックス社製SA90等が挙げられる。また、末端がメタクリル基であるポリフェニレンエーテルとしては例えば、SABICイノベーティブプラスチックス社製SA9000等が挙げられる。
In the polyphenylene ether compound, a part or all of the terminal was functionalized with an ethylenically unsaturated group such as a vinylbenzyl group, an epoxy group, an amino group, a hydroxyl group, a mercapto group, a carboxy group, a methacryl group, a silyl group and the like. Modified polyphenylene ether can also be used. These may be used individually by 1 type or in combination of 2 or more types.
Examples of the modified polyphenylene ether having a hydroxyl group at the end include SA90 manufactured by SABIC Innovative Plastics Co., Ltd. Examples of the polyphenylene ether having a methacrylic group at the end include SA9000 manufactured by SABIC Innovative Plastics Co., Ltd.
 変性ポリフェニレンエーテルの製造方法は本発明の効果が得られるものであれば特に限定されない。例えば、特許第4591665号に記載の方法によって製造することができる。 The method for producing the modified polyphenylene ether is not particularly limited as long as the effect of the present invention can be obtained. For example, it can be produced by the method described in Japanese Patent No. 4591665.
 変性ポリフェニレンエーテルは、末端にエチレン性不飽和基を有する変性ポリフェニレンエーテルを含むものであることが好ましい。エチレン性不飽和基としては、エテニル基、アリル基、アクリル基、メタクリル基、プロペニル基、ブテニル基、ヘキセニル基及びオクテニル基等のアルケニル基、シクロペンテニル基及びシクロヘキセニル基等のシクロアルケニル基、ビニルベンジル基及びビニルナフチル基等のアルケニルアリール基が挙げられ、ビニルベンジル基が好ましい。末端のエチレン性不飽和基は、単一又は複数でもよく、同一の官能基であってもよいし、異なる官能基であってもよい。 The modified polyphenylene ether preferably contains a modified polyphenylene ether having an ethylenically unsaturated group at the terminal. Examples of the ethylenically unsaturated group include an alkenyl group such as an ethenyl group, an allyl group, an acrylic group, a methacrylic group, a propenyl group, a butenyl group, a hexenyl group and an octenyl group, a cycloalkenyl group such as a cyclopentenyl group and a cyclohexenyl group, and vinyl. Examples thereof include an alkenylaryl group such as a benzyl group and a vinylnaphthyl group, and a vinylbenzyl group is preferable. The terminal ethylenically unsaturated group may be single or plural, may be the same functional group, or may be a different functional group.
 末端にエチレン性不飽和基を有する変性ポリフェニレンエーテルとしては、式(1): As a modified polyphenylene ether having an ethylenically unsaturated group at the terminal, the formula (1):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式(1)中、Xは芳香族基を示し、-(Y-O)-はポリフェニレンエーテル部分を示す。R、R、Rは、各々独立に水素原子、アルキル基、アルケニル基又はアルキニル基を示し、mは1~100の整数を示し、nは1~6の整数を示し、qは1~4の整数を示す。mは、好ましくは1以上50以下の整数であり、より好ましくは1以上30以下の整数である。また、nは、好ましくは1以上4以下の整数であり、より好ましくは1又は2であり、理想的には1である。また、qは、好ましくは1以上3以下の整数であり、より好ましくは1又は2であり、理想的には2である。)
で表される構造が挙げられる。
(In formula (1), X represents an aromatic group,-(YO) m- represents a polyphenylene ether moiety. R 1 , R 2 , and R 3 are independent hydrogen atoms, alkyl groups, and alkenyl groups, respectively. It represents a group or an alkynyl group, m represents an integer of 1 to 100, n represents an integer of 1 to 6, q represents an integer of 1 to 4, and m is preferably an integer of 1 or more and 50 or less. , More preferably an integer of 1 or more and 30 or less, and n is preferably an integer of 1 or more and 4 or less, more preferably 1 or 2, and ideally 1. It is preferably an integer of 1 or more and 3 or less, more preferably 1 or 2, and ideally 2.)
The structure represented by is mentioned.
 式(1)におけるXが表す芳香族基としては、ベンゼン環構造、ビフェニル環構造、インデニル環構造、及びナフタレン環構造から選ばれた1種の環構造から、q個の水素原子を除いた基(例えば、フェニレン基、ビフェニレン基、インデニレン基、及びナフチレン基)が挙げられ、好ましくはビフェニレン基である。
 ここで、Xが表す芳香族基は、アリール基が酸素原子で結合されているジフェニルエーテル基等や、カルボニル基で結合されたベンゾフェノン基等、アルキレン基により結合された2,2-ジフェニルプロパン基等を含んでもよい。
 また、芳香族基は、アルキル基(好適には炭素数1~6のアルキル基、特にメチル基)、アルケニル基、アルキニル基やハロゲン原子など、一般的な置換基によって置換されていてもよい。但し、芳香族基は、酸素原子を介してポリフェニレンエーテル部分に置換されているので、一般的置換基の数の限界は、ポリフェニレンエーテル部分の数に依存する。
The aromatic group represented by X in the formula (1) is a group obtained by removing q hydrogen atoms from one ring structure selected from a benzene ring structure, a biphenyl ring structure, an indenyl ring structure, and a naphthalene ring structure. (For example, a phenylene group, a biphenylene group, an indenylene group, and a naphthylene group) can be mentioned, and a biphenylene group is preferable.
Here, the aromatic group represented by X is a diphenyl ether group in which an aryl group is bonded with an oxygen atom, a benzophenone group in which a carbonyl group is bonded, a 2,2-diphenylpropane group bonded by an alkylene group, or the like. May include.
Further, the aromatic group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group or a halogen atom. However, since the aromatic group is substituted with the polyphenylene ether moiety via the oxygen atom, the limit of the number of general substituents depends on the number of the polyphenylene ether moiety.
 式(1)におけるポリフェニレンエーテル部分としては、上述した式(8)、(9)又は(10)で表される構造単位を用いることができ、特に式(8)で表される構造単位を含むことが特に好ましい。 As the polyphenylene ether moiety in the formula (1), the structural unit represented by the above-mentioned formula (8), (9) or (10) can be used, and in particular, the structural unit represented by the formula (8) is included. Is particularly preferred.
 また、式(1)が表す変性ポリフェニレンエーテルとしては、数平均分子量が1000以上7000以下であることが好ましい。また、式(1)において、最低溶融粘度が50000Pa・s以下のものを用いることができる。特に、式(1)において、数平均分子量が1000以上7000以下であり、最低溶融粘度が50000Pa・s以下のものが好ましい。
 数平均分子量は、定法に従ってゲル浸透クロマトグラフィーを使用して測定される。数平均分子量は、1000~3000であることがより好ましい。数平均分子量を1000以上7000以下とすることにより、成形性及び電気特性の両立という効果がより効果的に発揮される。
 最低溶融粘度は、定法に従って動的粘弾性測定装置を使用して測定される。最低溶融粘度は、500~50000Pa・sがより好ましい。最低溶融粘度を50000Pa・s以下とすることにより、成形性及び電気特性の両立という効果がより効果的に発揮される。
The modified polyphenylene ether represented by the formula (1) preferably has a number average molecular weight of 1000 or more and 7000 or less. Further, in the formula (1), one having a minimum melt viscosity of 50,000 Pa · s or less can be used. In particular, in the formula (1), those having a number average molecular weight of 1000 or more and 7000 or less and a minimum melt viscosity of 50,000 Pa · s or less are preferable.
The number average molecular weight is measured using gel permeation chromatography according to a routine method. The number average molecular weight is more preferably 1000 to 3000. By setting the number average molecular weight to 1000 or more and 7000 or less, the effect of achieving both moldability and electrical characteristics is more effectively exhibited.
The minimum melt viscosity is measured using a dynamic viscoelasticity measuring device according to a conventional method. The minimum melt viscosity is more preferably 500 to 50,000 Pa · s. By setting the minimum melt viscosity to 50,000 Pa · s or less, the effect of achieving both moldability and electrical characteristics is more effectively exhibited.
 変性ポリフェニレンエーテルとしては、式(1)の中でも、下記式(11)で表される化合物であることが好ましい。 The modified polyphenylene ether is preferably a compound represented by the following formula (11) in the formula (1).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式(11)中、Xは芳香族基であり、-(Y-O)-は、それぞれ、ポリフェニレンエーテル部分を示し、mは1~100の整数を示す。mは、好ましくは1以上50以下の整数であり、より好ましくは1以上30以下の整数である。)
 式(11)におけるX、-(Y-O)-及びmは、式(1)におけるものと同義である。
(In the formula (11), X is an aromatic group, − (YO) m − indicates a polyphenylene ether moiety, and m indicates an integer of 1 to 100. M is preferably 1 or more. It is an integer of 50 or less, and more preferably an integer of 1 or more and 30 or less.)
X, − (YO) m − and m in the formula (11) are synonymous with those in the formula (1).
 式(1)及び式(11)におけるXは、式(12)、式(13)、又は式(14)であり、式(1)及び式(11)における-(Y-O)-が、式(15)又は式(16)が配列した構造であるか、或いは式(15)と式(16)が、ブロック又はランダムに配列した構造であってよい。 X in the formula (1) and the formula (11) is the formula (12), the formula (13), or the formula (14), and − (YO) m − in the formula (1) and the formula (11) is , Formula (15) or formula (16) may be arranged, or formula (15) and formula (16) may be block or randomly arranged structure.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式(13)中、R28、R29、R30及びR31は、各々独立に水素原子又はメチル基を表す。-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。)
 -B-は、式(10)における-A-の具体例と同じものが具体例として挙げられる。
(In formula (13), R 28 , R 29 , R 30 and R 31 each independently represent a hydrogen atom or a methyl group. —B— is a linear, branched or cyclic group having 20 or less carbon atoms. It is a divalent hydrocarbon group.)
As the specific example of -B-, the same as the specific example of -A- in the formula (10) can be mentioned.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式(14)中、-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。)
 -B-は、式(10)における-A-の具体例と同じものが具体例として挙げられる。
(In the formula (14), -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.)
As the specific example of -B-, the same as the specific example of -A- in the formula (10) can be mentioned.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(11)で表される構造を有する変性ポリフェニレンエーテルの製造方法は、特に限定されるものではなく、例えば、2官能フェノール化合物と1官能フェノール化合物を酸化カップリングさせて得られる2官能フェニレンエーテルオリゴマーの末端フェノール性水酸基をビニルベンジルエーテル化することで製造することができる。
 また、このような変性ポリフェニレンエーテルは市販品を用いることができ、例えば、三菱ガス化学(株)製OPE-2St1200、OPE-2st2200を好適に使用することができる。
The method for producing the modified polyphenylene ether having the structure represented by the formula (11) is not particularly limited, and for example, the bifunctional phenylene ether obtained by oxidatively coupling a bifunctional phenol compound and a monofunctional phenol compound. It can be produced by converting the terminal phenolic hydroxyl group of the oligomer into vinylbenzyl ether.
Further, as such a modified polyphenylene ether, a commercially available product can be used, and for example, OPE-2St1200 and OPE-2st2200 manufactured by Mitsubishi Gas Chemical Company, Inc. can be preferably used.
 また、本実施形態に係る樹脂組成物におけるポリフェニレンエーテル化合物の含有量は、樹脂組成物の樹脂固形分100質量部に対し、5質量部以上であることが好ましく、15質量部以上であることがより好ましく、18質量部以上であることがさらに好ましい。また、前記含有量の上限値は、80質量部以下であることが好ましく、70質量部以下であることがより好ましく、50質量部以下であることが更に好ましく、40質量部以下または30質量部以下であってもよい。ポリフェニレンエーテル化合物の含有量をこのような範囲とすることにより、樹脂組成物の硬化物の低誘電特性、銅箔ピール強度、耐熱性はより優れたものとなる傾向にある。
 これらのポリフェニレンエーテル化合物は1種単独で又は2種以上を適宜混合して使用することも可能である。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
The content of the polyphenylene ether compound in the resin composition according to the present embodiment is preferably 5 parts by mass or more, preferably 15 parts by mass or more, based on 100 parts by mass of the resin solid content of the resin composition. More preferably, it is 18 parts by mass or more. The upper limit of the content is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, further preferably 50 parts by mass or less, and 40 parts by mass or less or 30 parts by mass. It may be as follows. By setting the content of the polyphenylene ether compound in such a range, the low dielectric property, the copper foil peel strength, and the heat resistance of the cured product of the resin composition tend to be more excellent.
These polyphenylene ether compounds may be used alone or in admixture of two or more. When two or more types are used, it is preferable that the total amount is within the above range.
[エポキシ化合物]
 本実施形態に係るエポキシ化合物としては、1分子中に2個以上のエポキシ基を有するエポキシ化合物又は樹脂であれば、公知のものを適宜使用することができ、その種類は特に限定されない。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロロヒドリンとの反応により得られる化合物などが挙げられる。これらのエポキシ化合物のなかでは、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂が難燃性、耐熱性の面で好ましい。これらのエポキシ化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
[Epoxy compound]
As the epoxy compound according to the present embodiment, any known epoxy compound or resin having two or more epoxy groups in one molecule can be appropriately used, and the type thereof is not particularly limited. Specifically, bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolak type epoxy resin, glycidyl ester type epoxy resin, aralkylnovolac Type epoxy resin, biphenyl aralkyl type epoxy resin, naphthylene ether type epoxy resin, cresol novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, naphthalene skeleton modified novolac type epoxy resin, phenol aralkyl Double bond of type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, phosphorus-containing epoxy resin, glycidylamine, glycidyl ester, butadiene, etc. Examples thereof include a compound obtained by epoxidizing the above, a compound obtained by reacting a hydroxyl group-containing silicone resin with epichlorohydrin, and the like. Among these epoxy compounds, biphenyl aralkyl type epoxy resin, naphthylene ether type epoxy resin, polyfunctional phenol type epoxy resin, and naphthalene type epoxy resin are preferable in terms of flame retardancy and heat resistance. These epoxy compounds may be used alone or in combination of two or more.
 本実施形態に係る樹脂組成物におけるエポキシ化合物の含有量は、所望する特性に応じて適宜設定することができ、特に限定されない。具体的には、樹脂組成物中の樹脂固形分を100質量部とした場合、エポキシ化合物の含有量は1質量部以上が好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、前記含有量の上限値は、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下であることがさらに好ましく、3質量部以下であることが特に好ましい。エポキシ化合物の含有量をこのような範囲とすることにより、樹脂組成物の硬化物の銅箔ピール強度、耐熱性はより優れたものとなる傾向にある。 The content of the epoxy compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited. Specifically, when the resin solid content in the resin composition is 100 parts by mass, the content of the epoxy compound is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass or more. It is more preferable to have. The upper limit of the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, further preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less. By setting the content of the epoxy compound in such a range, the copper foil peel strength and heat resistance of the cured product of the resin composition tend to be more excellent.
[フェノール化合物]
 フェノール化合物としては、1分子中に2個以上のフェノール性ヒドロキシ基を有する化合物又は樹脂であれば特に限定されず、例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラックフェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂等が挙げられる。これらの中でも、耐熱性、耐燃性をより一層向上する観点から、ビフェニルアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、及びリン含有フェノール樹脂からなる群より選択される少なくとも1種であることが好ましい。これらのフェノール化合物は、単独で用いても、2種以上を併用してもよい。
[Phenol compound]
The phenol compound is not particularly limited as long as it is a compound or resin having two or more phenolic hydroxy groups in one molecule, and for example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, and the like. Biphenyl S-type phenol resin, phenol novolak resin, Bisphenol A novolak type phenol resin, glycidyl ester type phenol resin, aralkyl novolak phenol resin, biphenyl aralkyl type phenol resin, cresol novolak type phenol resin, polyfunctional phenol resin, naphthol resin, naphthol novolac Resin, polyfunctional naphthol resin, anthracene type phenol resin, naphthalene skeleton modified novolak type phenol resin, phenol aralkyl type phenol resin, naphthol aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin, alicyclic phenol resin, Examples thereof include a polyol type phenol resin and a phosphorus-containing phenol resin. Among these, at least one selected from the group consisting of biphenyl aralkyl type phenol resin, naphthol aralkyl type phenol resin, and phosphorus-containing phenol resin is preferable from the viewpoint of further improving heat resistance and flame resistance. These phenol compounds may be used alone or in combination of two or more.
 本実施形態に係る樹脂組成物におけるフェノール化合物の含有量は、所望する特性に応じて適宜設定することができ、特に限定されない。具体的には、樹脂組成物中の樹脂固形分を100質量部とした場合、フェノール化合物の含有量は1質量部以上が好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、前記含有量の上限値は、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下であることがさらに好ましく、3質量部以下であることが特に好ましい。フェノール化合物の含有量をこのような範囲とすることにより、樹脂組成物の硬化物の銅箔ピール強度、耐熱性はより優れたものとなる傾向にある。 The content of the phenol compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited. Specifically, when the resin solid content in the resin composition is 100 parts by mass, the content of the phenol compound is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass or more. It is more preferable to have. The upper limit of the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, further preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less. By setting the content of the phenol compound in such a range, the copper foil peel strength and heat resistance of the cured product of the resin composition tend to be more excellent.
[硬化性ポリイミド化合物]
 硬化性ポリイミド化合物は、一般に公知のものであれば特に限定されないが、低誘電特性の観点から、ビスアリルナジイミドが好ましく、中でも以下の式(17)及び(18)からなる群より選択される少なくとも1種であることが好ましい。
[Curable polyimide compound]
The curable polyimide compound is not particularly limited as long as it is generally known, but bisallyl nadiimide is preferable from the viewpoint of low dielectric property, and it is particularly selected from the group consisting of the following formulas (17) and (18). It is preferably at least one kind.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本実施形態に係る樹脂組成物における硬化性ポリイミド化合物の含有量は、所望する特性に応じて適宜設定することができ、特に限定されない。具体的には、樹脂組成物中の樹脂固形分を100質量部とした場合、硬化性ポリイミド化合物の含有量は1質量部以上が好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、前記含有量の上限値は、30質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下であることがさらに好ましく、5質量部以下であることが特に好ましい。硬化性ポリイミド化合物の含有量をこのような範囲とすることにより、樹脂組成物の硬化物の誘電特性、銅箔ピール強度、耐熱性はより優れたものとなる傾向にある。 The content of the curable polyimide compound in the resin composition according to the present embodiment can be appropriately set according to the desired properties and is not particularly limited. Specifically, when the resin solid content in the resin composition is 100 parts by mass, the content of the curable polyimide compound is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass. The above is more preferable. The upper limit of the content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, further preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less. By setting the content of the curable polyimide compound in such a range, the dielectric properties, copper foil peel strength, and heat resistance of the cured product of the resin composition tend to be more excellent.
[熱可塑性エラストマー(B)] [Thermoplastic elastomer (B)]
 本実施形態に係る樹脂組成物は熱可塑性エラストマー(B)を含み、樹脂組成物中の熱可塑性エラストマー(B)の含有量は、樹脂固形分100質量部に対して1~30質量部である。樹脂組成物中の熱可塑性エラストマー(B)の含有量が樹脂固形分100質量部に対して1質量部以上であると、樹脂組成物の硬化物の耐クラック性、低誘電特性、伝送損失特性が向上し、30質量部以下であると、樹脂組成物の硬化物の半田耐熱性が良好となる傾向にある。 The resin composition according to the present embodiment contains the thermoplastic elastomer (B), and the content of the thermoplastic elastomer (B) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content. .. When the content of the thermoplastic elastomer (B) in the resin composition is 1 part by mass or more with respect to 100 parts by mass of the resin solid content, the cured product of the resin composition has crack resistance, low dielectric properties, and transmission loss characteristics. When it is 30 parts by mass or less, the solder heat resistance of the cured product of the resin composition tends to be good.
 熱可塑性エラストマー(B)の含有量は、樹脂組成物の樹脂固形分100質量部に対し、3質量部以上であることが好ましく、5質量部以上であることがより好ましく、8質量部以上であることがさらに好ましく、10質量部以上であってもよい。前記含有量の上限値としては、樹脂組成物の樹脂固形分100質量部に対し、25質量部以下であることが好ましく、22質量部以下であることがより好ましく、20質量部以下であってもよい。熱可塑性エラストマー(B)の含有量が、上記範囲内であると、樹脂組成物の硬化物の耐クラック性、低誘電特性、伝送損失特性、半田耐熱性がより優れる傾向にある。本実施形態においては、2種以上の熱可塑性エラストマー(B)を含んでいてもよく、2種以上含む場合、それらの合計量が上記範囲内となることが好ましい。 The content of the thermoplastic elastomer (B) is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and 8 parts by mass or more with respect to 100 parts by mass of the resin solid content of the resin composition. It is more preferable to have 10 parts by mass or more. The upper limit of the content is preferably 25 parts by mass or less, more preferably 22 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by mass of the resin solid content of the resin composition. May be good. When the content of the thermoplastic elastomer (B) is within the above range, the cured product of the resin composition tends to have more excellent crack resistance, low dielectric property, transmission loss property, and solder heat resistance. In the present embodiment, two or more kinds of thermoplastic elastomers (B) may be contained, and when two or more kinds are contained, it is preferable that the total amount thereof is within the above range.
 熱可塑性エラストマー(B)としては、特に限定されず、例えば、以下に示す「スチレン系エラストマー」、「その他の熱可塑性エラストマー」が挙げられるが、低誘電特性、伝送損失低減の観点から、スチレン系エラストマーであることが好ましい。 The thermoplastic elastomer (B) is not particularly limited, and examples thereof include the following "styrene-based elastomers" and "other thermoplastic elastomers", but from the viewpoint of low dielectric properties and reduction of transmission loss, styrene-based elastomers (B) are used. It is preferably an elastomer.
[スチレン系エラストマー]
 本実施形態に係る「スチレン系エラストマー」とは、ポリスチレンブロック構造を有するブロック共重合体であるエラストマーを指し、ランダム共重合体は含まない。
[Styrene-based elastomer]
The "styrene-based elastomer" according to the present embodiment refers to an elastomer which is a block copolymer having a polystyrene block structure, and does not include a random copolymer.
 本実施形態に係る樹脂組成物に使用されるスチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-水添ブタジエン-スチレンブロック共重合体、スチレン-水添イソプレン-スチレンブロック共重合体、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロック共重合体、スチレン-水添ブタジエンブロック共重合体、スチレン-水添イソプレンブロック共重合体及びスチレン-水添(イソプレン/ブタジエン)ブロック共重合体からなる群より選ばれる、少なくとも1種が挙げられる。これらのスチレン系エラストマーは単独で用いても、2種以上を併用してもよい。特にスチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-水添ブタジエン-スチレンブロック共重合体、スチレン-水添イソプレン-スチレンブロック共重合体が、樹脂組成物の硬化物により優れた低誘電正接性を与える傾向にあるため、好ましい。 Examples of the styrene-based elastomer used in the resin composition according to the present embodiment include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, and a styrene-hydrogenated butadiene-styrene block copolymer. Styrene-hydrogenated isoprene-styrene block copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, styrene-hydrogenated butadiene block copolymer, styrene-hydrogenated isoprene block copolymer and styrene- At least one selected from the group consisting of hydrogenated (isoprene / butadiene) block copolymers can be mentioned. These styrene-based elastomers may be used alone or in combination of two or more. In particular, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-hydrogenated butadiene-styrene block copolymer, and styrene-hydrogenated isoprene-styrene block copolymer are resin compositions. It is preferable because the cured product tends to give better low dielectric styrene.
 本実施形態におけるポリスチレンブロック構造におけるスチレン(スチレンユニット)としては、置換基を有したものを用いてもよい。具体的には、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体を用いることができる。 As the styrene (styrene unit) in the polystyrene block structure in the present embodiment, one having a substituent may be used. Specifically, styrene derivatives such as α-methylstyrene, 3-methylstyrene, 4-propylstyrene, and 4-cyclohexylstyrene can be used.
 スチレン系エラストマー中のスチレン含有量(以下、「スチレン率」ともいう)は特に制限はないが、10質量%以上であることが好ましく、さらに好ましくは20質量%以上である。スチレン含有量の上限値としては、100質量%未満であれば特に限定されないが、例えば、99質量%未満であることが好ましく、70質量%以下であることがより好ましい。このような範囲とすることにより、溶剤溶解性及び他化合物との相溶性がより向上する傾向にある。ここで、スチレン含有量とは、スチレン系エラストマー中に含まれるスチレンユニットの質量を(a)g、スチレン系エラストマー全体の質量を(b)gとしたとき、(a)/(b)×100(単位:%)で表される値である。 The styrene content (hereinafter, also referred to as “styrene ratio”) in the styrene-based elastomer is not particularly limited, but is preferably 10% by mass or more, and more preferably 20% by mass or more. The upper limit of the styrene content is not particularly limited as long as it is less than 100% by mass, but is preferably less than 99% by mass, more preferably 70% by mass or less, for example. Within such a range, the solvent solubility and the compatibility with other compounds tend to be further improved. Here, the styrene content is (a) / (b) × 100 when the mass of the styrene unit contained in the styrene-based elastomer is (a) g and the mass of the entire styrene-based elastomer is (b) g. It is a value expressed in (unit:%).
 本実施形態におけるスチレン系エラストマーとしては、市販品を用いてもよく、例えば、スチレン-ブタジエン-スチレンブロック共重合体としてはTR2630(JSR(株)製)、TR2003(JSR(株)製)が挙げられる。また、スチレン-イソプレン-スチレンブロック共重合体としては、SIS5250(JSR(株)製)が挙げられる。スチレン-水添イソプレン-スチレンブロック共重合体としては、SEPTON2104((株)クラレ製)が挙げられる。さらに、スチレン-水添ブタジエン-スチレンブロック共重合体としては、H―1043(旭化成(株)製)が挙げられる。 As the styrene-based elastomer in the present embodiment, a commercially available product may be used, and examples thereof include TR2630 (manufactured by JSR Corporation) and TR2003 (manufactured by JSR Corporation) as the styrene-butadiene-styrene block copolymer. Be done. Examples of the styrene-isoprene-styrene block copolymer include SIS5250 (manufactured by JSR Corporation). Examples of the styrene-hydrogenated isoprene-styrene block copolymer include SEPTON2104 (manufactured by Kuraray Co., Ltd.). Further, examples of the styrene-hydrogenated butadiene-styrene block copolymer include H-1043 (manufactured by Asahi Kasei Corporation).
 熱可塑性エラストマー(B)が、スチレン系エラストマーである場合、スチレン系エラストマーの含有量は、樹脂組成物の樹脂固形分100質量部に対し、3質量部以上であることが好ましく、5質量部以上であることがより好ましく、8質量部以上であることがさらに好ましく、10質量部以上であってもよい。スチレン系エラストマーの含有量の上限値としては、樹脂組成物の樹脂固形分100質量部に対し、25質量部以下であることが好ましく、22質量部以下であることがより好ましく、20質量部以下であってもよい。スチレン系エラストマーの含有量が、上記範囲内であると、樹脂組成物の硬化物の耐クラック性、低誘電特性、伝送損失特性、半田耐熱性がより優れる傾向にある。本実施形態においては、2種以上のスチレン系エラストマーを含んでいてもよく、2種以上含む場合、それらの合計量が上記範囲内となることが好ましい。 When the thermoplastic elastomer (B) is a styrene-based elastomer, the content of the styrene-based elastomer is preferably 3 parts by mass or more, preferably 5 parts by mass or more, based on 100 parts by mass of the resin solid content of the resin composition. It is more preferably 8 parts by mass or more, and it may be 10 parts by mass or more. The upper limit of the content of the styrene-based elastomer is preferably 25 parts by mass or less, more preferably 22 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by mass of the resin solid content of the resin composition. It may be. When the content of the styrene-based elastomer is within the above range, the cured product of the resin composition tends to have more excellent crack resistance, low dielectric property, transmission loss property, and solder heat resistance. In the present embodiment, two or more kinds of styrene-based elastomers may be contained, and when two or more kinds are contained, it is preferable that the total amount thereof is within the above range.
[その他の熱可塑性エラストマー]
 「その他の熱可塑性エラストマー」は、「スチレン系エラストマー」とは区別される。「スチレン系エラストマー」とは、ポリスチレンブロック構造を有し、かつブロック共重合体であるエラストマーを示し、「その他の熱可塑性エラストマー」とは、それ以外のエラストマーを示す。すなわち、ランダム共重合体、スチレン骨格を有しないブロック共重合体等が該当する。
 その他の熱可塑性エラストマーとしては、例えばポリイソプレン、ポリブタジエン、スチレンブタジエンランダム共重合体、ブチルゴム、エチレンプロピレンゴム、フッ素ゴム、シリコーンゴム、それらの水添化合物、それらのアルキル化合物からなる群より選択される少なくとも1種が挙げられる。これらの中でも、ポリフェニレンエーテル化合物との相溶性により優れる観点から、ポリイソプレン、ポリブタジエン、スチレンブタジエンランダム共重合体、ブチルゴム、及びエチレンプロピレンゴムからなる群より選択される少なくとも1種であることがより好ましい。
[Other thermoplastic elastomers]
"Other thermoplastic elastomers" are distinguished from "styrene-based elastomers". The "styrene-based elastomer" indicates an elastomer having a polystyrene block structure and being a block copolymer, and the "other thermoplastic elastomer" indicates an elastomer other than that. That is, a random copolymer, a block copolymer having no styrene skeleton, or the like is applicable.
The other thermoplastic elastomer is selected from the group consisting of, for example, polyisoprene, polybutadiene, styrene-butadiene random copolymer, butyl rubber, ethylene propylene rubber, fluororubber, silicone rubber, hydrogenated compounds thereof, and alkyl compounds thereof. At least one is mentioned. Among these, at least one selected from the group consisting of polyisoprene, polybutadiene, styrene-butadiene random copolymer, butyl rubber, and ethylene propylene rubber is more preferable from the viewpoint of being more excellent in compatibility with the polyphenylene ether compound. ..
[リン系難燃剤(C)]
 本実施形態における樹脂組成物はリン系難燃剤(C)を含み、前記樹脂組成物中の前記リン系難燃剤(C)の含有量が、樹脂固形分100質量部に対して1~30質量部である。樹脂組成物中のリン系難燃剤の含有量が樹脂固形分100質量部に対して1質量部以上であると、樹脂組成物の硬化物の耐クラック性、低誘電特性、伝送損失特性が向上する傾向にあり、30質量部以下であると、樹脂組成物の硬化物の銅箔ピール強度、耐クラック性、半田耐熱性が良好となる傾向にある。
[Phosphorus flame retardant (C)]
The resin composition in the present embodiment contains a phosphorus-based flame retardant (C), and the content of the phosphorus-based flame retardant (C) in the resin composition is 1 to 30% by mass with respect to 100 parts by mass of the resin solid content. It is a department. When the content of the phosphorus-based flame retardant in the resin composition is 1 part by mass or more with respect to 100 parts by mass of the resin solid content, the crack resistance, low dielectric property, and transmission loss property of the cured product of the resin composition are improved. When it is 30 parts by mass or less, the copper foil peel strength, crack resistance, and solder heat resistance of the cured product of the resin composition tend to be good.
 リン系難燃剤(C)の含有量は、樹脂組成物の樹脂固形分100質量部に対し、3質量部以上であることが好ましく、5質量部以上であることがより好ましく、8質量部以上であることがさらに好ましく、10質量部以上であってもよく、15質量部以上であってもよい。前記含有量の上限値としては、樹脂組成物の樹脂固形分100質量部に対し、25質量部以下であることが好ましく、22質量部以下であることがより好ましく、20質量部以下であってもよい。リン系難燃剤(C)の含有量が、上記範囲内であると、樹脂組成物の硬化物の耐クラック性、低誘電特性、伝送損失特性、銅箔ピール強度、半田耐熱性がより優れる傾向にある。本実施形態においては、2種以上のリン系難燃剤(C)を含んでいてもよく、2種以上含む場合、それらの合計量が上記範囲内となることが好ましい。 The content of the phosphorus-based flame retardant (C) is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and 8 parts by mass or more with respect to 100 parts by mass of the resin solid content of the resin composition. Is more preferable, and it may be 10 parts by mass or more, or 15 parts by mass or more. The upper limit of the content is preferably 25 parts by mass or less, more preferably 22 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by mass of the resin solid content of the resin composition. May be good. When the content of the phosphorus-based flame retardant (C) is within the above range, the crack resistance, low dielectric property, transmission loss property, copper foil peel strength, and solder heat resistance of the cured product of the resin composition tend to be more excellent. It is in. In the present embodiment, two or more kinds of phosphorus-based flame retardants (C) may be contained, and when two or more kinds are contained, it is preferable that the total amount thereof is within the above range.
 また、リン系難燃剤(C)の含有量は、樹脂組成物の硬化物の耐クラック性、銅箔ピール強度を特に高める観点からは、樹脂組成物の樹脂固形分100質量部に対し、15質量部以上であることが好ましく、20質量部以上であることが特に好ましい。一方、同様の観点から、リン系難燃剤(C)の含有量の上限値は、樹脂組成物の樹脂固形分100質量部に対し、好ましくは30質量部以下、より好ましくは28質量部以下であり、25質量部以下であってもよい。 Further, the content of the phosphorus-based flame retardant (C) is 15 with respect to 100 parts by mass of the resin solid content of the resin composition from the viewpoint of particularly enhancing the crack resistance and the copper foil peel strength of the cured product of the resin composition. It is preferably 2 parts by mass or more, and particularly preferably 20 parts by mass or more. On the other hand, from the same viewpoint, the upper limit of the content of the phosphorus-based flame retardant (C) is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, based on 100 parts by mass of the resin solid content of the resin composition. Yes, it may be 25 parts by mass or less.
 熱可塑性エラストマー(B)とリン系難燃剤(C)の合計の含有量は、樹脂組成物の硬化物の耐クラック性、銅箔ピール強度がより向上する傾向にあることから、樹脂固形分100質量部に対して、10質量部以上であることが好ましく、15質量部以上であることがより好ましく、20質量部以上であることがさらに好ましく、25質量部以上であることが特に好ましく、30質量部以上であってもよい。また、樹脂組成物の硬化物の半田耐熱性がより向上する傾向にあることから、熱可塑性エラストマー(B)とリン系難燃剤(C)の合計の含有量は、樹脂固形分100質量部に対して、60質量部以下であることが好ましく、55質量部以下であることがより好ましく、50質量部以下であることがさらに好ましく、40質量部以下であることが特に好ましい。 Since the total content of the thermoplastic elastomer (B) and the phosphorus-based flame retardant (C) tends to further improve the crack resistance and the copper foil peel strength of the cured product of the resin composition, the resin solid content is 100. It is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, further preferably 20 parts by mass or more, particularly preferably 25 parts by mass or more, and 30 parts by mass with respect to parts by mass. It may be more than a mass part. Further, since the solder heat resistance of the cured product of the resin composition tends to be further improved, the total content of the thermoplastic elastomer (B) and the phosphorus-based flame retardant (C) is 100 parts by mass of the resin solid content. On the other hand, it is preferably 60 parts by mass or less, more preferably 55 parts by mass or less, further preferably 50 parts by mass or less, and particularly preferably 40 parts by mass or less.
 リン系難燃剤(C)としては、特に限定されないが、例えば、赤リン、トリクレジルホスフェート、トリフェニルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、トリアルキルホスフェート、ジアルキルホスフェート、トリス(クロロエチル)ホスフェート、ホスファゼン、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等が挙げられる。 The phosphorus-based flame retardant (C) is not particularly limited, and is, for example, red phosphorus, tricresyl phosphate, triphenyl phosphate, cresyldiphenyl phosphate, trixylenyl phosphate, trialkyl phosphate, dialkyl phosphate, tris (chloroethyl). Phosphazene, phosphazene, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide and the like can be mentioned.
 リン系難燃剤(C)としては、低誘電特性、伝送損失低減、耐クラック性向上の観点から、芳香族縮合リン酸エステル(C-1)及び環状ホスファゼン化合物(C-2)からなる群より選択される1種以上を用いることが好ましい。 The phosphorus-based flame retardant (C) is a group consisting of an aromatic condensed phosphoric acid ester (C-1) and a cyclic phosphazene compound (C-2) from the viewpoints of low dielectric property, reduction of transmission loss, and improvement of crack resistance. It is preferable to use one or more selected species.
 芳香族縮合リン酸エステル(C-1)としては、レゾルシノールビス-ジフェニルホスフェート、ビスフェノールAビス-ジフェニルホスフェート、下記式(1)で表される化合物等が挙げられる。中でも、低誘電特性、伝送損失低減の観点から、下記式(1)で表される化合物であることが好ましい。 Examples of the aromatic condensed phosphoric acid ester (C-1) include resorcinol bis-diphenyl phosphate, bisphenol A bis-diphenyl phosphate, and a compound represented by the following formula (1). Above all, from the viewpoint of low dielectric property and reduction of transmission loss, the compound represented by the following formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 環状ホスファゼン化合物(C-2)としては、ヘキサフェノキシシクロトリホスファゼン、ヘキサフルオロシクロトリホスファゼン、ペンタフルオロ(フェノキシ)シクロトリホスファゼン、エトキシ(ペンタフルオロ)シクロトリホスファゼン、下記式(2)で表される化合物等が挙げられる。中でも、溶剤溶解性の観点から、下記式(2)で表される化合物であることが好ましい。 The cyclic phosphazene compound (C-2) is represented by hexaphenoxycyclotriphosphazene, hexafluorocyclotriphosphazene, pentafluoro (phenoxy) cyclotriphosphazene, ethoxy (pentafluoro) cyclotriphosphazene, and the following formula (2). Examples include compounds. Above all, from the viewpoint of solvent solubility, the compound represented by the following formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000026
(式(2)中、nは3~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000026
(In equation (2), n represents an integer of 3 to 6.)
 上記式(2)で表される化合物としては、例えば、ラビトルFP-300B(伏見製薬所(株)製)が挙げられる。 Examples of the compound represented by the above formula (2) include Ravitor FP-300B (manufactured by Fushimi Pharmaceutical Co., Ltd.).
[充填材]
 本実施形態に係る樹脂組成物は、低誘電率性、低誘電正接性、耐燃性及び低熱膨張性の向上のため、充填材を含むことが望ましい。本実施形態で使用される充填材としては、公知のものを適宜使用することができ、その種類は特に限定されず、当業界において一般に使用されているものを好適に用いることができる。具体的には、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類、ホワイトカーボン、チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム、硫酸バリウム、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデンやモリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラスなど無機系の充填材の他、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、シリコーンレジンパウダー、シリコーンゴムパウダー、シリコーン複合パウダーなど有機系の充填材などが挙げられる。これらの充填材は、単独で用いても、2種以上を併用してもよい。
 これらの中でも、シリカ類、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、及びフォルステライト、ベーマイト、酸化マグネシウム及び水酸化マグネシウムからなる群から選択される1種又は2種以上が好ましく、シリカ類、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、及びフォルステライトがより好ましい。これらの充填材を使用することで、樹脂組成物の硬化物の、熱膨張特性、寸法安定性、難燃性などの特性が向上する傾向にある。
[Filler]
It is desirable that the resin composition according to the present embodiment contains a filler in order to improve low dielectric constant, low dielectric loss tangent property, flame resistance and low thermal expansion. As the filler used in the present embodiment, known fillers can be appropriately used, and the types thereof are not particularly limited, and those generally used in the art can be preferably used. Specifically, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerodil, hollow silica, white carbon, titanium white, zinc oxide, magnesium oxide, zirconium oxide, boron nitride, coagulated boron nitride, silicon nitride. , Aluminum nitride, barium sulfate, aluminum hydroxide, aluminum hydroxide heat-treated product (aluminum hydroxide heat-treated to reduce a part of crystalline water), boehmite, metal hydrates such as magnesium hydroxide, oxidation Molybdenum compounds such as molybdenum and zinc molybdenate, zinc borate, zinc nitrate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass, A-glass, NE-glass, C -Glass, L-glass, D-glass, S-glass, M-glass G20, short glass fibers (including fine glass powders such as E glass, T glass, D glass, S glass, and Q glass), hollow. In addition to inorganic fillers such as glass and spherical glass, organic fillers such as styrene type, butadiene type, acrylic type rubber powder, core shell type rubber powder, silicone resin powder, silicone rubber powder, and silicone composite powder, etc. Can be mentioned. These fillers may be used alone or in combination of two or more.
Among these, one or more selected from the group consisting of silicas, aluminum hydroxide, aluminum nitride, boron nitride, and forsterite, boehmite, magnesium oxide and magnesium hydroxide are preferable, and silicas and hydroxides are preferable. Aluminum, aluminum nitride, boron nitride, and forsterite are more preferred. By using these fillers, the cured product of the resin composition tends to have improved properties such as thermal expansion characteristics, dimensional stability, and flame retardancy.
 本実施形態に係る樹脂組成物における充填材の含有量は、所望する特性に応じて適宜設定することができ、特に限定されないが、樹脂組成物中の樹脂固形分を100質量部とした場合、30質量部以上であることが好ましく、50質量部以上であることがより好ましい。上限値としては、1600質量部以下が好ましく、500質量部以下がより好ましく、300質量部以下が特に好ましい。あるいは、充填材の含有量は、75~250質量部であってもよく、100~200質量部であってもよい。充填材の含有量をこの範囲とすることで、樹脂組成物の成形性が良好となる傾向にある。
 樹脂組成物は、充填材を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The content of the filler in the resin composition according to the present embodiment can be appropriately set according to the desired characteristics and is not particularly limited, but when the resin solid content in the resin composition is 100 parts by mass, it is not particularly limited. It is preferably 30 parts by mass or more, and more preferably 50 parts by mass or more. The upper limit is preferably 1600 parts by mass or less, more preferably 500 parts by mass or less, and particularly preferably 300 parts by mass or less. Alternatively, the content of the filler may be 75 to 250 parts by mass or 100 to 200 parts by mass. By setting the content of the filler in this range, the moldability of the resin composition tends to be improved.
The resin composition may contain only one type of filler, or may contain two or more types of filler. When two or more kinds are contained, it is preferable that the total amount is within the above range.
 ここで充填材を使用するにあたり、シランカップリング剤及び湿潤分散剤からなる群より選ばれる少なくとも1種を併用することが好ましい。
 シランカップリング剤としては、一般に無機物の表面処理に使用されているものを好適に用いることができ、その種類は特に限定されない。具体的には、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシランなどのアミノシラン系、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン系、γ-メタアクリロキシプロピルトリメトキシシラン、ビニルートリ(β-メトキシエトキシ)シランなどのビニルシラン系、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、フェニルシラン系などが挙げられる。シランカップリング剤は、単独で用いても、2種以上を併用してもよい。
 また、湿潤分散剤としては、一般に塗料用に使用されているものを好適に用いることができ、その種類は特に限定されない。好ましくは、共重合体ベースの湿潤分散剤が使用され、その具体例としては、ビックケミー・ジャパン(株)製のDISPERBYK-110、111、161、180、2009、2152、BYK-W996、BYK-W9010、BYK-W903、BYK-W940などが挙げられる。湿潤分散剤は、単独で用いても、2種以上を併用してもよい。
Here, when using the filler, it is preferable to use at least one selected from the group consisting of a silane coupling agent and a wet dispersant in combination.
As the silane coupling agent, those generally used for surface treatment of inorganic substances can be preferably used, and the type thereof is not particularly limited. Specifically, aminosilanes such as γ-aminopropyltriethoxysilane and N-β- (aminoethyl) -γ-aminopropyltrimethoxylane, γ-glycidoxypropyltrimethoxysilane, β- (3,4). -Epoxycyclohexyl) Epoxysilanes such as ethyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilanes, vinylsilanes such as vinyl-tri (β-methoxyethoxy) silanes, N-β- (N-vinylbenzylaminoethyl)- Examples thereof include cationicsilane type such as γ-aminopropyltrimethoxysilane hydrochloride and phenylsilane type. The silane coupling agent may be used alone or in combination of two or more.
Further, as the wet dispersant, those generally used for paints can be preferably used, and the type thereof is not particularly limited. Preferably, a copolymer-based wet dispersant is used, and specific examples thereof include DISPERBYK-110, 111, 161 and 180, 2009, 2152, BYK-W996, BYK-W9010 manufactured by Big Chemie Japan Co., Ltd. , BYK-W903, BYK-W940 and the like. The wet dispersant may be used alone or in combination of two or more.
 シランカップリング剤の含有量は、特に限定されず、樹脂組成物中の樹脂固形分100質量部に対して、1質量~5質量部程度であってもよい。分散剤(特に湿潤分散剤)の含有量は、特に限定されず、樹脂組成物中の樹脂固形分100質量部に対して、例えば、0.5~5質量部程度であってもよい。 The content of the silane coupling agent is not particularly limited, and may be about 1 part by mass to 5 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. The content of the dispersant (particularly the wet dispersant) is not particularly limited, and may be, for example, about 0.5 to 5 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
[その他成分]
 本実施形態の樹脂組成物は、上述した以外のその他成分が含まれていてよい。その他成分としては、例えば、オキセタン樹脂、ベンゾオキサジン化合物、難燃剤、硬化促進剤、有機溶剤等が挙げられる。
[Other ingredients]
The resin composition of the present embodiment may contain other components other than those described above. Examples of other components include oxetane resins, benzoxazine compounds, flame retardants, curing accelerators, organic solvents and the like.
[オキセタン樹脂]
 オキセタン樹脂としては、特に限定されず、例えば、オキセタン、アルキルオキセタン(例えば、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキサタン等)、3-メチル-3-メトキシメチルオキセタン、3,3-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成(株)製品)、OXT-121(東亞合成(株)製品)等が挙げられる。これらのオキセタン樹脂は、単独で用いても、2種以上を併用してもよい。
[Oxetane resin]
The oxetane resin is not particularly limited, and is, for example, oxetane, alkyl oxetane (for example, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3-dimethyloxatan, etc.), 3-methyl-. 3-methoxymethyl oxetane, 3,3-di (trifluoromethyl) perfluoxetane, 2-chloromethyl oxetane, 3,3-bis (chloromethyl) oxetane, biphenyl-type oxetane, OXT-101 (Toa Synthetic Co., Ltd.) Products), OXT-121 (Products of Toa Synthetic Co., Ltd.) and the like. These oxetane resins may be used alone or in combination of two or more.
[ベンゾオキサジン化合物]
 ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば特に限定されず、例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学(株)製品)、ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学(株)製品)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学(株)製品)等が挙げられる。これらのベンゾオキサジン化合物は、単独で用いても、2種以上を併用してもよい。
[Benzoxazine compound]
The benzoxazine compound is not particularly limited as long as it is a compound having two or more dihydrobenzoxazine rings in one molecule, and for example, bisphenol A type benzoxazine BA-BXZ (product of Konishi Chemical Co., Ltd.), bisphenol F. Examples thereof include type benzoxazine BF-BXZ (product of Konishi Chemical Co., Ltd.) and bisphenol S type benzoxazine BS-BXZ (product of Konishi Chemical Co., Ltd.). These benzoxazine compounds may be used alone or in combination of two or more.
[難燃剤]
 本実施形態に係る樹脂組成物は、耐燃性のさらなる向上のため、上述したリン系難燃剤(C)以外の難燃剤を含んでいてもよい。そのような難燃剤としては、公知のものが使用でき、例えば、臭素化エポキシ樹脂、臭素化ポリカーボネート、臭素化ポリスチレン、臭素化スチレン、臭素化フタルイミド、テトラブロモビスフェノールA、ペンタブロモベンジル(メタ)アクリレート、ペンタブロモトルエン、トリブロモフェノール、ヘキサブロモベンゼン、デカブロモジフェニルエーテル、ビス-1,2-ペンタブロモフェニルエタン、塩素化ポリスチレン、塩素化パラフィン等のハロゲン系難燃剤、水酸化アルミニウム、水酸化マグネシウム、部分ベーマイト、ベーマイト、ほう酸亜鉛、三酸化アンチモン等の無機系難燃剤、シリコーンゴム、シリコーンレジン等のシリコーン系難燃剤が挙げられる。これらの難燃剤は単独で用いても、2種以上を併用してもよい。
[Flame retardants]
The resin composition according to the present embodiment may contain a flame retardant other than the above-mentioned phosphorus-based flame retardant (C) in order to further improve the flame resistance. Known flame retardants can be used, for example, brominated epoxy resin, brominated polycarbonate, brominated polystyrene, brominated styrene, brominated phthalimide, tetrabromobisphenol A, pentabromobenzyl (meth) acrylate. , Pentabromotoluene, tribromophenol, hexabromobenzene, decabromodiphenyl ether, bis-1,2-pentabromophenylethane, chlorinated polystyrene, halogenated flame retardants such as chlorinated paraffin, aluminum hydroxide, magnesium hydroxide, Examples thereof include inorganic flame retardants such as partial boehmite, boehmite, zinc borate and antimony trioxide, and silicone flame retardants such as silicone rubber and silicone resin. These flame retardants may be used alone or in combination of two or more.
 難燃剤の含有量は、樹脂組成物中の樹脂固形分100質量部に対して、1質量部以上であることが好ましく、5質量部以上であることがより好ましい。また、前記含有量の上限値は、30質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であってもよい。
 難燃剤は、1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
The content of the flame retardant is preferably 1 part by mass or more, and more preferably 5 parts by mass or more, with respect to 100 parts by mass of the resin solid content in the resin composition. The upper limit of the content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and may be 15 parts by mass or less.
Only one kind of flame retardant may be used, or two or more kinds may be used. When two or more types are used, it is preferable that the total amount is within the above range.
[硬化促進剤]
 本実施形態に係る樹脂組成物は、硬化速度を適宜調節するための硬化促進剤を含有してもよい。硬化促進剤としては、マレイミド化合物、シアン酸エステル化合物、エポキシ化合物などの硬化促進剤として通常用いられているものが挙げられ、有機金属塩類(例えば、オクチル酸亜鉛、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、アセチルアセトン鉄、オクチル酸ニッケル、オクチル酸マンガン等)、フェノール化合物(例えば、フェノール、キシレノール、クレゾール、レゾルシン、カテコール、オクチルフェノール、ノニルフェノール等)、アルコール類(例えば、1-ブタノール、2-エチルヘキサノール等)、イミダゾール類(例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等)、及びこれらのイミダゾール類のカルボン酸若しくはその酸無水類の付加体等の誘導体、アミン類(例えば、ジシアンジアミド、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン等)、リン化合物(例えば、ホスフィン系化合物、ホスフィンオキサイド系化合物、ホスホニウム塩系化合物、ダイホスフィン系化合物等)、エポキシ-イミダゾールアダクト系化合物、過酸化物(例えば、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート等)、アゾ化合物(例えば、アゾビスイソブチロニトリル等)が挙げられる。硬化促進剤は、単独で用いても、2種以上を併用してもよい。
[Curing accelerator]
The resin composition according to the present embodiment may contain a curing accelerator for appropriately adjusting the curing rate. Examples of the curing accelerator include those usually used as a curing accelerator such as maleimide compounds, cyanate esters compounds, and epoxy compounds, and organic metal salts (for example, zinc octylate, zinc naphthenate, cobalt naphthenate, etc.). Copper naphthenate, iron acetylacetone, nickel octylate, manganese octylate, etc.), phenolic compounds (eg, phenol, xylenol, cresol, resorcin, catechol, octylphenol, nonylphenol, etc.), alcohols (eg, 1-butanol, 2-ethyl) Hexanol, etc.), imidazoles (eg, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-Phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, etc.), and derivatives such as carboxylic acids of these imidazoles or adducts of acid anhydrides thereof, amines, etc. (For example, dicyandiamide, benzyldimethylamine, 4-methyl-N, N-dimethylbenzylamine, etc.), phosphorus compounds (eg, phosphine-based compounds, phosphinoxide-based compounds, phosphonium salt-based compounds, diphosphin-based compounds, etc.), epoxys. -Imidazole adduct-based compounds, peroxides (eg, benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropylperoxycarbonate, di-2-ethylhexylperoxycarbonate, etc.), azo compounds (eg For example, azobisisobutyronitrile, etc.). The curing accelerator may be used alone or in combination of two or more.
 硬化促進剤の含有量は、通常、樹脂組成物中の樹脂固形分100質量部に対し、0.005~10質量部程度であってもよい。 The content of the curing accelerator may be about 0.005 to 10 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
[有機溶剤]
 本実施形態に係る樹脂組成物は、有機溶剤を含有してもよい。この場合、本実施形態に係る樹脂組成物は、上述した各種樹脂成分の少なくとも一部、好ましくは全部が有機溶剤に溶解又は相溶した形態(溶液又はワニス)である。有機溶剤としては、上述した各種樹脂成分の少なくとも一部、好ましくは全部を溶解又は相溶可能な極性有機溶剤又は無極性有機溶剤であれば特に限定されず、極性有機溶剤としては、例えば、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、セロソルブ類(例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等)、エステル類(例えば、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等)アミド類(例えば、ジメトキシアセトアミド、ジメチルホルムアミド類等)が挙げられ、無極性有機溶剤としては、芳香族炭化水素(例えば、トルエン、キシレン等)が挙げられる。これらの有機溶剤は、単独で用いても、2種以上を併用してもよい。
[Organic solvent]
The resin composition according to this embodiment may contain an organic solvent. In this case, the resin composition according to the present embodiment is in the form (solution or varnish) in which at least a part, preferably all of the above-mentioned various resin components are dissolved or compatible with an organic solvent. The organic solvent is not particularly limited as long as it is a polar organic solvent or a non-polar organic solvent capable of dissolving or compatible with at least a part, preferably all of the above-mentioned various resin components, and the polar organic solvent is, for example, a ketone. Classes (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), cellosolves (eg, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.), esters (eg, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, acetate, etc.) Examples thereof include isoamyl, ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate, etc.) amides (eg, dimethoxyacetamide, dimethylformamide, etc.), and examples of the non-polar organic solvent include aromatic hydrocarbons (eg, toluene, xylene). Etc.). These organic solvents may be used alone or in combination of two or more.
 本実施形態に係る樹脂組成物は、上記の成分以外の他の熱硬化性樹脂、熱可塑性樹脂、及びそのオリゴマー等の種々の高分子化合物、各種添加剤を含有してもよい。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、流動調整剤、滑剤、消泡剤、レベリング剤、光沢剤、重合禁止剤等が挙げられる。これらの添加剤は、単独で用いても、2種以上を併用してもよい。 The resin composition according to the present embodiment may contain various polymer compounds such as thermosetting resins, thermoplastic resins, and oligomers thereof, and various additives other than the above components. Additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, flow modifiers, lubricants, defoaming agents, leveling agents, gloss. Agents, polymerization inhibitors and the like can be mentioned. These additives may be used alone or in combination of two or more.
[樹脂組成物の調製方法]
 本実施形態に係る樹脂組成物は、常法にしたがって調製することができ、熱硬化性化合物(A)、熱可塑性エラストマー(B)及びリン系難燃剤(C)、及び上述したその他の任意成分を均一に含有する樹脂組成物が得られる方法であれば、その調製方法は特に限定されない。例えば、熱硬化性化合物(A)、熱可塑性エラストマー(B)及びリン系難燃剤(C)、及び上述したその他の任意成分を順次溶剤に配合し、十分に撹拌することで本実施形態に係る樹脂組成物を容易に調製することができる。
[Method for preparing resin composition]
The resin composition according to the present embodiment can be prepared according to a conventional method, and contains a thermosetting compound (A), a thermoplastic elastomer (B) and a phosphorus-based flame retardant (C), and other optional components described above. The preparation method is not particularly limited as long as it is a method for obtaining a resin composition uniformly containing. For example, the thermosetting compound (A), the thermoplastic elastomer (B), the phosphorus-based flame retardant (C), and the above-mentioned other optional components are sequentially added to the solvent and sufficiently stirred to relate to the present embodiment. The resin composition can be easily prepared.
[プリプレグ]
 本実施形態に係るプリプレグは、基材と、前記基材に含浸又は塗布された樹脂組成物とを含む。ここで、樹脂組成物は、上述した熱硬化性化合物(A)と、特定量の熱可塑性エラストマー(B)及びリン系難燃剤(C)を含む樹脂組成物である。本実施形態に係るプリプレグは、例えば、本実施形態に係る樹脂組成物を基材に含浸又は塗布させた後、120~220℃で2~15分程度乾燥させる方法等によって半硬化させることにより得られる。この場合、基材に対する樹脂組成物(樹脂組成物の硬化物も含む)の付着量、すなわち半硬化後のプリプレグの総量に対する樹脂組成物量(充填材を含む。)は、20~99質量%の範囲であることが好ましい。
[Prepreg]
The prepreg according to the present embodiment includes a base material and a resin composition impregnated or coated on the base material. Here, the resin composition is a resin composition containing the above-mentioned thermosetting compound (A), a specific amount of the thermoplastic elastomer (B), and a phosphorus-based flame retardant (C). The prepreg according to the present embodiment is obtained, for example, by impregnating or coating the base material with the resin composition according to the present embodiment and then semi-curing it by a method of drying at 120 to 220 ° C. for about 2 to 15 minutes. Be done. In this case, the amount of the resin composition (including the cured product of the resin composition) adhered to the substrate, that is, the amount of the resin composition (including the filler) with respect to the total amount of the prepreg after semi-curing is 20 to 99% by mass. It is preferably in the range.
 基材としては、各種プリント配線板材料に用いられている基材であれば特に限定されない。基材の材質としては、例えば、ガラス繊維(例えば、E-ガラス、D-ガラス、L-ガラス、S-ガラス、T-ガラス、Q-ガラス、UN-ガラス、NE-ガラス、球状ガラス等)ガラス以外の無機繊維(例えば、クォーツ等)、有機繊維(例えば、ポリイミド、ポリアミド、ポリエステル、液晶ポリエステル、ポリテトラフルオロエチレン等)が挙げられる。基材の形態としては、特に限定されず、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等が挙げられる。これらの基材は、単独で用いても、2種以上を併用してもよい。これらの基材の中でも、寸法安定性の観点から、超開繊処理、目詰め処理を施した織布が好ましく、吸湿耐熱性の観点から、エポキシシラン処理、アミノシラン処理などのシランカップリング剤等により表面処理したガラス織布が好ましい。電気特性の観点から、L-ガラスやNE-ガラス、Q-ガラス等の低誘電率性、低誘電正接性を示すガラス繊維からなる、低誘電ガラスクロスがより好ましい。 The base material is not particularly limited as long as it is a base material used for various printed wiring board materials. As the material of the base material, for example, glass fiber (for example, E-glass, D-glass, L-glass, S-glass, T-glass, Q-glass, UN-glass, NE-glass, spherical glass, etc.) Examples thereof include inorganic fibers other than glass (for example, quartz, etc.) and organic fibers (for example, polyimide, polyamide, polyester, liquid crystal polyester, polytetrafluoroethylene, etc.). The form of the base material is not particularly limited, and examples thereof include woven fabrics, non-woven fabrics, rovings, chopped strand mats, and surfaced mats. These base materials may be used alone or in combination of two or more. Among these base materials, woven fabrics that have undergone super-opening treatment and filling treatment are preferable from the viewpoint of dimensional stability, and silane coupling agents such as epoxy silane treatment and amino silane treatment are preferable from the viewpoint of moisture absorption and heat resistance. A glass woven fabric surface-treated with is preferable. From the viewpoint of electrical characteristics, low dielectric glass cloth made of glass fibers exhibiting low dielectric constant and low dielectric loss tangent properties such as L-glass, NE-glass, and Q-glass is more preferable.
[樹脂シート]
 本実施形態に係る樹脂シートは樹脂組成物を含む。ここで、樹脂組成物は、上述した熱硬化性化合物(A)と、特定量の熱可塑性エラストマー(B)及びリン系難燃剤(C)を含む樹脂組成物である。樹脂シートは、支持体と、前記支持体の表面に配置した本実施形態に係る樹脂組成物から形成された層とを含む支持体付き樹脂シートとしてもよい。樹脂シートは、ビルドアップ用フィルム又はドライフィルムソルダーレジストとして使用することができる。樹脂シートの製造方法としては、特に限定されないが、例えば、上記の本実施形態に係る樹脂組成物を溶剤に溶解させた溶液を支持体に塗布(塗工)し乾燥することで樹脂シートを得る方法が挙げられる。
[Resin sheet]
The resin sheet according to this embodiment contains a resin composition. Here, the resin composition is a resin composition containing the above-mentioned thermosetting compound (A), a specific amount of the thermoplastic elastomer (B), and a phosphorus-based flame retardant (C). The resin sheet may be a resin sheet with a support including a support and a layer formed from the resin composition according to the present embodiment arranged on the surface of the support. The resin sheet can be used as a build-up film or a dry film solder resist. The method for producing the resin sheet is not particularly limited, but for example, the resin sheet is obtained by applying (coating) a solution prepared by dissolving the resin composition according to the present embodiment in a solvent to a support and drying the resin sheet. The method can be mentioned.
 支持体としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルム、ポリイミドフィルム等の有機系のフィルム基材、銅箔、アルミ箔等の導体箔、ガラス板、SUS板、FRP等の板状のものが挙げられるが、特に限定されるものではない。 Examples of the support include polyethylene films, polypropylene films, polycarbonate films, polyethylene terephthalate films, ethylene tetrafluoroethylene copolymer films, and release films and polyimide films in which a release agent is applied to the surface of these films. Examples thereof include an organic film base material, a conductor foil such as a copper foil and an aluminum foil, and a plate-like one such as a glass plate, a SUS plate, and an FRP, but the present invention is not particularly limited.
 塗布方法(塗工方法)としては、例えば、本実施形態に係る樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等で支持体上に塗布する方法が挙げられる。また、乾燥後に、支持体と樹脂組成物が積層された樹脂シートから支持体を剥離又はエッチングすることで、単層シート(樹脂シート)とすることもできる。なお、上記の本実施形態に係る樹脂組成物を溶剤に溶解させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、支持体を用いることなく単層シート(樹脂シート)を得ることもできる。 As a coating method (coating method), for example, a method in which a solution obtained by dissolving the resin composition according to the present embodiment in a solvent is coated on a support with a bar coater, a die coater, a doctor blade, a baker applicator, or the like. Can be mentioned. Further, after drying, the support can be peeled off or etched from the resin sheet on which the support and the resin composition are laminated to obtain a single-layer sheet (resin sheet). A support is used by supplying a solution obtained by dissolving the resin composition according to the present embodiment in a solvent into a mold having a sheet-shaped cavity and drying the resin composition to form a sheet. It is also possible to obtain a single-layer sheet (resin sheet) without any need.
 なお、本実施形態に係る単層シート又は支持体付き樹脂シートの作製において、溶剤を除去する際の乾燥条件は、特に限定されないが、樹脂組成物中の溶剤が除去されやすくなり、かつ、乾燥時における硬化の進行が抑制される観点からは、20℃~200℃の温度で1~90分間が好ましい。また、単層シート又は支持体付き樹脂シートにおいて、樹脂組成物は溶剤を乾燥しただけの未硬化の状態で使用することもできるし、必要に応じて半硬化(Bステージ化)の状態にして使用することもできる。さらに、本実施形態に係る単層シート又は支持体付き樹脂シートの樹脂層の厚みは、本実施形態に係る樹脂組成物の溶液の濃度と塗布厚みにより調整することができ、特に限定されないが、乾燥時に溶剤が除去されやすくなる観点からは、0.1~500μmが好ましい。 In the production of the single-layer sheet or the resin sheet with a support according to the present embodiment, the drying conditions for removing the solvent are not particularly limited, but the solvent in the resin composition can be easily removed and dried. From the viewpoint of suppressing the progress of curing over time, a temperature of 20 ° C. to 200 ° C. for 1 to 90 minutes is preferable. Further, in the single-layer sheet or the resin sheet with a support, the resin composition can be used in an uncured state in which the solvent is simply dried, or if necessary, it is made into a semi-cured state (B stage). It can also be used. Further, the thickness of the resin layer of the single-layer sheet or the resin sheet with a support according to the present embodiment can be adjusted by the concentration of the solution of the resin composition according to the present embodiment and the coating thickness, and is not particularly limited. From the viewpoint of facilitating the removal of the solvent during drying, 0.1 to 500 μm is preferable.
[銅箔張積層板]
 本実施形態に係る銅箔張積層板は、プリプレグおよび樹脂シートからなる群より選ばれる1種以上の表面に接するように銅箔が積層された銅箔張積層板であって、
 前記プリプレグは、基材と、前記基材に含浸又は塗布された樹脂組成物と、を含み、
 前記樹脂シートは樹脂組成物を含み、
 前記樹脂組成物は、熱硬化性化合物(A)、熱可塑性エラストマー(B)、及びリン系難燃剤(C)を含み、前記樹脂組成物中の前記熱可塑性エラストマー(B)の含有量が、樹脂固形分100質量部に対して1~30質量部であり、前記樹脂組成物中の前記リン系難燃剤(C)の含有量が、樹脂固形分100質量部に対して1~30質量部であり、
 JIS B0601:2013に従って測定した前記銅箔表面の粗度Rzが、0.2~4.0μmである。
 ここで、銅箔表面の粗度Rzは、プリプレグおよび樹脂シートからなる群より選ばれる1種以上の表面と接する側の銅箔表面の粗度を示す。
[Copper foil-clad laminate]
The copper foil-clad laminate according to the present embodiment is a copper foil-clad laminate in which copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet.
The prepreg comprises a substrate and a resin composition impregnated or coated on the substrate.
The resin sheet contains a resin composition and contains
The resin composition contains a thermoplastic compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C), and the content of the thermoplastic elastomer (B) in the resin composition is high. It is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content, and the content of the phosphorus-based flame retardant (C) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content. And
The roughness Rz of the copper foil surface measured according to JIS B0601: 2013 is 0.2 to 4.0 μm.
Here, the roughness Rz of the copper foil surface indicates the roughness of the copper foil surface on the side in contact with one or more types selected from the group consisting of the prepreg and the resin sheet.
 本実施形態に係る銅箔張積層板において、プリプレグおよび樹脂シートの両方を用いる場合、それらに用いられる樹脂組成物は同一であっても異なっていてもよい。本実施形態の銅箔張積層板において、プリプレグおよび樹脂シートからなる群より選ばれる1種以上は、半硬化状態(Bステージ)であってもよく、完全に硬化した状態(Cステージ)であってもよい。半硬化状態(Bステージ)とは、樹脂組成物に含まれる各成分が、積極的に反応(硬化)を始めてはいないが、樹脂組成物が乾燥状態、すなわち、粘着性がない程度まで、加熱して溶媒を揮発させている状態を称し、加熱しなくても硬化せずに溶媒が揮発したのみの状態も含まれる。本実施形態において、半硬化状態(Bステージ)の最低溶融粘度は、通常、20,000Pa・s以下である。最低溶融粘度の下限は、例えば、10Pa・s以上である。なお、本実施形態において、最低溶融粘度は、次の方法で測定される。すなわち、樹脂組成物から採取した樹脂粉1gをサンプルとして使用し、レオメータ(TAインスツルメンツ社製ARES-G2(商品名))により、最低溶融粘度を測定する。ここでは、プレート径25mmのディスポーサブルプレートを使用し、40℃以上180℃以下の範囲において、昇温速度2℃/分、周波数10.0rad/秒、及び歪0.1%の条件下で、樹脂粉の最低溶融粘度を測定する。 When both the prepreg and the resin sheet are used in the copper foil-clad laminate according to the present embodiment, the resin compositions used for them may be the same or different. In the copper foil-clad laminate of the present embodiment, one or more selected from the group consisting of the prepreg and the resin sheet may be in a semi-cured state (B stage) or in a completely cured state (C stage). You may. In the semi-cured state (B stage), each component contained in the resin composition does not actively start a reaction (curing), but the resin composition is heated to a dry state, that is, to the extent that it is not sticky. This refers to a state in which the solvent is volatilized, and includes a state in which the solvent is only volatilized without being cured without heating. In the present embodiment, the minimum melt viscosity in the semi-cured state (B stage) is usually 20,000 Pa · s or less. The lower limit of the minimum melt viscosity is, for example, 10 Pa · s or more. In this embodiment, the minimum melt viscosity is measured by the following method. That is, 1 g of the resin powder collected from the resin composition is used as a sample, and the minimum melt viscosity is measured with a rheometer (ARES-G2 (trade name) manufactured by TA Instruments). Here, a disposable plate having a plate diameter of 25 mm is used, and the resin is used under the conditions of a heating rate of 2 ° C./min, a frequency of 10.0 rad / sec, and a strain of 0.1% in a range of 40 ° C. or higher and 180 ° C. or lower. Measure the minimum melt viscosity of the powder.
 本実施形態において、「プリプレグおよび樹脂シートからなる群より選ばれる1種以上の表面に接するように銅箔が積層され」るとは、プリプレグまたは樹脂シートと銅箔との間に、接着剤層などの層を含まず、プリプレグまたは樹脂シートと銅箔とが直接接触していることを意味する。これにより、銅箔張積層板の銅箔ピール強度が高くなり、プリント配線板の絶縁信頼性が向上するという効果を奏する。 In the present embodiment, "a copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet" means that an adhesive layer is formed between the prepreg or the resin sheet and the copper foil. It does not include layers such as, and means that the prepreg or resin sheet and the copper foil are in direct contact with each other. As a result, the copper peel strength of the copper foil-clad laminate is increased, and the insulation reliability of the printed wiring board is improved.
 本実施形態の銅箔張積層板は、銅箔ピール強度が大きいことが好ましい。具体的には、JIS C6481:1996に準じて求められる測定値が、0.4kN/m以上であることが好ましく、0.5kN/m以上であることがより好ましい。銅箔ピール強度の上限値については、特に定めるものではないが、例えば、1.4kN/m以下が実際的である。 It is preferable that the copper foil-clad laminate of the present embodiment has a high copper foil peel strength. Specifically, the measured value obtained according to JIS C6481: 1996 is preferably 0.4 kN / m or more, and more preferably 0.5 kN / m or more. The upper limit of the copper foil peel strength is not particularly specified, but is practically 1.4 kN / m or less, for example.
 本実施形態の銅箔張積層板は、誘電正接が小さいことが好ましい。具体的には、銅箔張積層板から銅箔をエッチングにより除去したサンプルを用いて、JIS C2138:2007に準じて、空洞共振器摂動法によって測定される10GHzにおける誘電正接の測定値が0.0035未満であることが好ましく、0.0030未満であることがより好ましく、0.0025未満であることが特に好ましい。誘電正接の下限値については、特に限定されることはないが、例えば、0.0001以上が実際的である。 It is preferable that the copper foil-clad laminate of the present embodiment has a small dielectric loss tangent. Specifically, using a sample obtained by removing the copper foil from the copper foil-clad laminate by etching, the measured value of the dielectric tangent at 10 GHz measured by the cavity resonator perturbation method is 0. It is preferably less than 0035, more preferably less than 0.0030, and particularly preferably less than 0.0025. The lower limit of the dielectric loss tangent is not particularly limited, but for example, 0.0001 or more is practical.
[銅箔]
 本実施形態における銅箔は、JIS B0601:2013に従って測定した前記銅箔表面の粗度Rzが、0.2~4.0μmに調整されている。銅箔表面の粗度Rzが0.2μm未満である場合、銅箔表面の粗度が小さくなり過ぎて銅箔ピール強度が不十分となる。一方、銅箔表面の粗度Rzが4.0を超える場合、銅箔表面の粗度が大きくなり過ぎて、伝送損失特性が悪化する。銅箔表面の粗度Rzは、伝送損失低減の観点から、好ましくは0.5~4μmであり、より好ましくは0.6~3μmであり、さらに好ましくは0.7~2μmである。
 ここで、銅箔表面の粗度Rzは、後述する実施例に記載された方法に従って測定することができる。
[Copper foil]
In the copper foil in the present embodiment, the roughness Rz of the copper foil surface measured according to JIS B0601: 2013 is adjusted to 0.2 to 4.0 μm. When the roughness Rz of the copper foil surface is less than 0.2 μm, the roughness of the copper foil surface becomes too small and the copper foil peel strength becomes insufficient. On the other hand, when the roughness Rz of the copper foil surface exceeds 4.0, the roughness of the copper foil surface becomes too large and the transmission loss characteristic deteriorates. The roughness Rz of the copper foil surface is preferably 0.5 to 4 μm, more preferably 0.6 to 3 μm, and further preferably 0.7 to 2 μm from the viewpoint of reducing transmission loss.
Here, the roughness Rz of the copper foil surface can be measured according to the method described in Examples described later.
 本実施形態に係る銅箔張積層板は、1枚以上重ねた本実施形態に係るプリプレグ及び/又は樹脂シートと、プリプレグ及び/又は樹脂シートの片面又は両面に直接接するように配置された銅箔とを有する。本実施形態に係る銅箔張積層板の製造方法としては、例えば、本実施形態に係るプリプレグ及び/又は樹脂シートを1枚以上重ね、その片面又は両面に銅箔を配置して積層成形する方法が挙げられる。
 銅箔としては、プリント配線板用材料に用いられ、JIS B0601:2013に従って測定した銅箔表面の粗度Rzが上記範囲を満たすものであれば特に限定されないが、例えば、圧延銅箔、電解銅箔等の銅箔が挙げられ、中でも、銅箔ピール強度、微細配線の形成性の観点から、電解銅箔が好ましい。銅箔の厚さは、特に限定されず、1.5~70μm程度であってもよい。成形方法としては、プリント配線板用積層板及び多層板を成形する際に通常用いられる方法が挙げられ、より詳細には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を使用して、温度180~350℃程度、加熱時間100~300分程度、面圧20~100kg/cm2程度で積層成形する方法が挙げられる。
The copper foil-clad laminate according to the present embodiment is a copper foil arranged so as to directly contact one or more of the prepreg and / or the resin sheet according to the present embodiment and one or both sides of the prepreg and / or the resin sheet. And have. As a method for manufacturing a copper foil-clad laminate according to the present embodiment, for example, a method of stacking one or more prepregs and / or resin sheets according to the present embodiment and arranging copper foils on one or both sides thereof for laminating and molding. Can be mentioned.
The copper foil is not particularly limited as long as it is used as a material for printed wiring boards and the roughness Rz of the copper foil surface measured according to JIS B0601: 2013 satisfies the above range, and is not particularly limited. For example, rolled copper foil and electrolytic copper. Examples thereof include copper foil such as foil, and among them, electrolytic copper foil is preferable from the viewpoint of copper foil peel strength and formability of fine wiring. The thickness of the copper foil is not particularly limited and may be about 1.5 to 70 μm. Examples of the forming method include a method usually used for forming a laminated plate for a printed wiring board and a multilayer plate, and more specifically, a multi-stage press machine, a multi-stage vacuum press machine, a continuous forming machine, an autoclave forming machine and the like are used. Then, a method of laminating molding at a temperature of about 180 to 350 ° C., a heating time of about 100 to 300 minutes, and a surface pressure of about 20 to 100 kg / cm 2 can be mentioned.
 また、本実施形態に係るプリプレグ及び/又は樹脂シートと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることもできる。多層板の製造方法としては、例えば、1枚以上重ねた本実施形態に係るプリプレグ及び/又は樹脂シート両面に厚さ35μm程度の銅箔を配置し、上記の成形方法にて積層形成して、銅箔張積層板とした後、内層回路を形成し、この回路に黒化処理を実施して内層回路板を形成し、この後、この内層回路板と本実施形態に係るプリプレグ及び/又は樹脂シートとを交互に1枚ずつ配置し、さらに最外層に銅箔を配置して、上記条件にて好ましくは真空下で積層成形することにより、多層板を作製することができる。本実施形態に係る銅箔張積層板は、プリント配線板として好適に使用することができる。 Further, a multilayer board can be obtained by laminating and molding the prepreg and / or the resin sheet according to the present embodiment in combination with the wiring board for the inner layer separately prepared. As a method for manufacturing a multilayer board, for example, copper foils having a thickness of about 35 μm are arranged on both sides of the prepreg and / or the resin sheet according to the present embodiment in which one or more sheets are stacked, and laminated by the above molding method. After the copper foil-clad laminate is formed, an inner layer circuit is formed, and the circuit is blackened to form an inner layer circuit board. After that, the inner layer circuit board and the prepreg and / or resin according to the present embodiment are formed. A multilayer plate can be produced by alternately arranging the sheets one by one, further arranging the copper foil on the outermost layer, and laminating and molding under the above conditions, preferably under vacuum. The copper foil-clad laminate according to the present embodiment can be suitably used as a printed wiring board.
[プリント配線板]
 本実施形態に係るプリント配線板は、絶縁層と、絶縁層の表面に配置した導体層と、を含み、絶縁層が、本実施形態に係る樹脂組成物から形成された層を含む。このようなプリント配線板は、常法に従って製造でき、その製造方法は特に限定されないが、例えば、上述した銅箔張積層板を用いて製造できる。以下、プリント配線板の製造方法の一例を示す。まず上述した銅箔張積層板を用意する。次に、銅箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述したプリプレグを所要枚数重ね、さらにその外側に外層回路用の銅箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の銅箔との間に、基材及び樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の銅箔とを導通させるめっき金属皮膜を形成し、さらに外層回路用の銅箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。
[Printed wiring board]
The printed wiring board according to the present embodiment includes an insulating layer and a conductor layer arranged on the surface of the insulating layer, and the insulating layer includes a layer formed from the resin composition according to the present embodiment. Such a printed wiring board can be manufactured according to a conventional method, and the manufacturing method thereof is not particularly limited, but for example, it can be manufactured by using the above-mentioned copper foil-clad laminate. The following is an example of a method for manufacturing a printed wiring board. First, the above-mentioned copper foil-clad laminate is prepared. Next, the surface of the copper foil-clad laminate is etched to form an inner layer circuit, and an inner layer substrate is produced. The inner layer circuit surface of this inner layer substrate is surface-treated to increase the adhesive strength as necessary, then the required number of the above-mentioned prepregs are laminated on the inner layer circuit surface, and the copper foil for the outer layer circuit is laminated on the outer side thereof. Then, heat and pressurize to integrally mold. In this way, a multi-layer laminated board in which an insulating layer made of a base material and a cured product of a resin composition is formed between an inner layer circuit and a copper foil for an outer layer circuit is manufactured. Next, after drilling holes for through holes and via holes in the multilayer laminated board, a plated metal film for conducting the inner layer circuit and the copper foil for the outer layer circuit is formed on the wall surface of the holes, and further, the outer layer circuit is formed. A printed wiring board is manufactured by forming an outer layer circuit by etching a copper foil for use.
 上記の製造例で得られるプリント配線板は、絶縁層と、この絶縁層の表面に形成された導体層とを有し、絶縁層が上述した本実施形態に係る樹脂組成物及びその硬化物の少なくともいずれかを含む構成となる。すなわち、上述した本実施形態に係るプリプレグ(基材及びこれに含浸又は塗布された本実施形態に係る樹脂組成物及びその硬化物の少なくともいずれかを含む)、上述した本実施形態に係る銅箔張積層板の樹脂組成物の層(本発明の樹脂組成物及びその硬化物の少なくともいずれかを含む層)が、本実施形態に係る樹脂組成物及びその硬化物の少なくともいずれかを含む絶縁層から構成されることになる。 The printed wiring board obtained in the above production example has an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer is the resin composition according to the present embodiment described above and a cured product thereof. The configuration includes at least one of them. That is, the prepreg according to the above-mentioned embodiment (including at least one of the substrate and the resin composition according to the present embodiment impregnated or coated thereto and the cured product thereof), and the copper foil according to the above-mentioned present embodiment. The layer of the resin composition of the upholstered laminated board (the layer containing at least one of the resin composition of the present invention and the cured product thereof) is an insulating layer containing at least one of the resin composition and the cured product thereof according to the present embodiment. Will be composed of.
[半導体装置]
 本実施形態の半導体装置は、本実施形態のプリント配線板の導通箇所に、半導体チップを実装することにより製造することができる。ここで、導通箇所とは、多層プリント配線板における電気信号を伝える箇所のことであって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
[Semiconductor device]
The semiconductor device of this embodiment can be manufactured by mounting a semiconductor chip on a conductive portion of the printed wiring board of this embodiment. Here, the conduction point is a place where an electric signal is transmitted in the multilayer printed wiring board, and the place may be a surface or an embedded place. Further, the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
 本実施形態の半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、などが挙げられる。 The method for mounting the semiconductor chip when manufacturing the semiconductor device of the present embodiment is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and a bump. None Examples thereof include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
 以下の実施例及び比較例において、各物性の測定及び各評価は以下に従って行った。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
In the following Examples and Comparative Examples, the measurement and evaluation of each physical property were performed according to the following.
(銅箔表面の粗度Rz)
 実施例又は比較例で用いた銅箔A、B、Cについて、JIS B0601:2013に従って、積層したプリプレグに接触する面の粗度Rzを測定した。
(Roughness Rz of copper foil surface)
For the copper foils A, B, and C used in Examples or Comparative Examples, the roughness Rz of the surface in contact with the laminated prepreg was measured according to JIS B0601: 2013.
(伝送損失)
 実施例又は比較例で得られた銅箔張積層板に対して、エッチングにより、特性インピーダンスが50Ωとなるようマイクロストリップ線路を形成し、キーサイト・テクノロジー(株)社製のネットワークアナライザーN5227Aを用いて透過係数を測定して、周波数28GHzにおける伝送損失を求めた。
 表中のA、B、C、Dは以下の通りの基準で評価した。伝送損失は、0に近いほど良好であることを意味する。
A:-0.39dB/m以下
B:-0.39dB/m超、-0.41dB/m以下
C:-0.41dB/m超、-0.43dB/m以下
D:-0.43dB/m超
(Transmission loss)
A microstrip line was formed by etching the copper foil-clad laminate obtained in Examples or Comparative Examples so that the characteristic impedance was 50Ω, and a network analyzer N5227A manufactured by Keysight Technology Co., Ltd. was used. The transmission coefficient was measured to determine the transmission loss at a frequency of 28 GHz.
A, B, C and D in the table were evaluated according to the following criteria. The closer the transmission loss is to 0, the better.
A: -0.39 dB / m or less B: -0.39 dB / m or more, -0.41 dB / m or less C: -0.41 dB / m or more, -0.43 dB / m or less D: -0.43 dB / Over m
(銅箔ピール強度)
 実施例又は比較例で得られた銅箔張積層板について、銅箔付きの試験片(30mm×150mm×0.8mm)を作成し、JIS C6481:1996に準じて、試験数3で銅箔の引き剥がし強度を測定して、下限値の平均値を測定値とした。
 表中のA、B、Cは以下の通りの基準で評価した。
A:0.5kN/m以上
B:0.4kN/m以上、0.5kN/m未満
C:0.4kN/m未満
(Copper foil peel strength)
For the copper foil-clad laminate obtained in the examples or comparative examples, a test piece (30 mm × 150 mm × 0.8 mm) with a copper foil was prepared, and according to JIS C6481: 1996, the number of tests was 3 for the copper foil. The peel strength was measured, and the average value of the lower limit was used as the measured value.
A, B, and C in the table were evaluated according to the following criteria.
A: 0.5 kN / m or more B: 0.4 kN / m or more, less than 0.5 kN / m C: less than 0.4 kN / m
(耐クラック性)
 実施例又は比較例で得られた銅箔張積層板について、JIS C5016:1994に準じて、銅箔に配線幅1mmの配線パターンを形成した試験片(15mm×130mm×0.1mm)を用い、試料の導体パターンの端子部に絶縁被覆した電線を取り付け,プランジャーに基板の上端部を固定、下端部に荷重1kgfを設置した後、通電状態のまま、角度135°、速度175cpmにて、両方向に屈曲を開始し、断線に至るまでの往復屈曲回数を測定した。表中のA、B、C、Dは以下の通りの基準で評価した。
A:90回以上
B:60回以上90回未満
C:40回以上60回未満
D:40回未満
(Crack resistance)
For the copper foil-clad laminate obtained in the examples or comparative examples, a test piece (15 mm × 130 mm × 0.1 mm) in which a wiring pattern having a wiring width of 1 mm was formed on the copper foil was used according to JIS C5016: 1994. After attaching an insulatingly coated electric wire to the terminal part of the conductor pattern of the sample, fixing the upper end part of the substrate to the plunger, and installing a load of 1 kgf on the lower end part, in the energized state, at an angle of 135 ° and a speed of 175 cpm, both directions. The number of reciprocating bends was measured from the start of bending to the disconnection. A, B, C and D in the table were evaluated according to the following criteria.
A: 90 times or more B: 60 times or more and less than 90 times C: 40 times or more and less than 60 times D: less than 40 times
(半田耐熱性)
 実施例又は比較例で得られた銅箔張積層板について、JIS C5012:1992に準じて、銅箔付きの試験片(50mm×50mm×0.8mm)を作成し、288℃に加熱した半田が入った槽に、30分間試験片を浮かせた後に、銅箔張積層板にデラミネーションなどの異常がないか、目視で確認した。表中のA、Bは以下の通りの基準で評価した。
A:30分間デラミネーションなし
B:30分間以内でデラミネーション発生
(Solder heat resistance)
For the copper foil-clad laminate obtained in the examples or comparative examples, a test piece (50 mm × 50 mm × 0.8 mm) with a copper foil was prepared according to JIS C5012: 1992, and the solder heated to 288 ° C. After floating the test piece in the tank for 30 minutes, it was visually confirmed whether there was any abnormality such as delamination in the copper foil-clad laminate. A and B in the table were evaluated according to the following criteria.
A: No delamination for 30 minutes B: Delamination occurs within 30 minutes
(合成例1)1-ナフトールアラルキル型シアン酸エステル樹脂(SNCN)の合成
 α-ナフトールアラルキル樹脂(SN495V、OH基当量:236g/eq.、新日鐵化学(株)製)300g(OH基換算1.28mol)及びトリエチルアミン194.6g(1.92mol)(ヒドロキシ基1molに対して1.5mol)をジクロロメタン1800gに溶解させ、これを溶液1とした。
(Synthesis Example 1) Synthesis of 1-naphthol aralkyl type cyanate ester resin (SNCN) α-naphthol aralkyl resin (SN495V, OH group equivalent: 236 g / eq., Manufactured by Nippon Steel Chemical Co., Ltd.) 300 g (OH group conversion) 1.28 mol) and 194.6 g (1.92 mol) of triethylamine (1.5 mol with respect to 1 mol of hydroxy group) were dissolved in 1800 g of dichloromethane, and this was used as Solution 1.
 塩化シアン125.9g(2.05mol)(ヒドロキシ基1molに対して1.6mol)、ジクロロメタン293.8g、36%塩酸194.5g(1.92mol)(ヒドロキシ基1molに対して1.5mol)、水1205.9gを、撹拌下、液温-2~-0.5℃に保ちながら、溶液1を30分かけて注下した。溶液1注下終了後、同温度にて30分撹拌した後、トリエチルアミン65g(0.64mol)(ヒドロキシ基1molに対して0.5mol)をジクロロメタン65gに溶解させた溶液(溶液2)を10分かけて注下した。溶液2注下終了後、同温度にて30分撹拌して反応を完結させた。 Cyanogen chloride 125.9 g (2.05 mol) (1.6 mol with respect to 1 mol of hydroxy group), dichloromethane 293.8 g, 36% hydrochloric acid 194.5 g (1.92 mol) (1.5 mol with respect to 1 mol of hydroxy group), Solution 1 was poured over 30 minutes while maintaining a liquid temperature of −2 to −0.5 ° C. with 1205.9 g of water under stirring. After pouring 1 solution, the mixture was stirred at the same temperature for 30 minutes, and then a solution (solution 2) in which 65 g (0.64 mol) of triethylamine (0.5 mol with respect to 1 mol of hydroxy group) was dissolved in 65 g of dichloromethane was used for 10 minutes. I poured it over. After pouring 2 of the solution, the reaction was completed by stirring at the same temperature for 30 minutes.
 その後反応液を静置して有機相と水相を分離した。得られた有機相を水1300gで5回洗浄し、水洗5回目の廃水の電気伝導度は5μS/cmであり、水による洗浄により、除けるイオン性化合物は十分に除去されていることを確認した。 After that, the reaction solution was allowed to stand to separate the organic phase and the aqueous phase. The obtained organic phase was washed 5 times with 1300 g of water, and the electric conductivity of the wastewater in the 5th washing was 5 μS / cm, and it was confirmed that the ionic compounds that could be removed were sufficiently removed by washing with water. ..
 水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて目的とする1-ナフトールアラルキル型シアン酸エステル化合物(SNCN)(橙色粘性物)331gを得た。得られたSNCNの質量平均分子量Mwは600であった。また、SNCNの赤外吸収スペクトルは2250cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。 The organic phase after washing with water was concentrated under reduced pressure, and finally concentrated to dryness at 90 ° C. for 1 hour to obtain 331 g of the desired 1-naphthol aralkyl-type cyanate ester compound (SNCN) (orange viscous substance). The mass average molecular weight Mw of the obtained SNCN was 600. Infrared absorption spectrum of SNCN showed absorption of 2250 cm -1 (cyanic acid ester group) and no absorption of hydroxy group.
(樹脂組成物に含まれる各成分)
 実施例又は比較例の樹脂組成物に含まれる各成分として、以下のものを用いた。
マレイミド樹脂:MIR-3000、日本化薬(株)製
ポリフェニレンエーテル樹脂:OPE-2St2200、三菱ガス化学(株)製、数平均分子量2200、ビニル基当量:1100g/eq.
熱可塑性エラストマー:水添スチレン系熱可塑性エラストマー(SEBS)、タフテックH-1043、旭化成(株)製
リン系難燃剤1:1,3-フェニレンビス(2,6-ジ-キシレニルホスフェート)、PX-200、大八化学工業(株)製
リン系難燃剤2:環状オルガノホスファゼン化合物、ラビトルFP-300B、伏見製薬所(株)製
充填材:球状シリカ、SC2050-MB、(株)アドマテックス製、平均粒子径0.5μm
(Each component contained in the resin composition)
The following components were used as the components contained in the resin compositions of Examples or Comparative Examples.
Maleimide resin: MIR-3000, Polyphenylene ether resin manufactured by Nippon Kayaku Co., Ltd .: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc., number average molecular weight 2200, vinyl group equivalent: 1100 g / eq.
Thermoplastic Elastomer: Hydrogenated Styrene Thermoplastic Elastomer (SEBS), Tuftec H-1043, Phosphorus Flame Retardant 1: 1,3-Phenylenbis (2,6-di-xylenyl phosphate) manufactured by Asahi Kasei Co., Ltd., PX-200, Phosphorus Flame Retardant manufactured by Daihachi Chemical Industry Co., Ltd .2: Cyclic organophosphazen compound, Ravitor FP-300B, Filler manufactured by Fushimi Pharmaceutical Co., Ltd .: Spherical silica, SC2050-MB, Admatex Co., Ltd. Made, average particle diameter 0.5 μm
(銅箔)
 実施例又は比較例で用いた銅箔を以下に示す。粗度Rzは、上述した方法で測定した、実施例又は比較例において積層したプリプレグと接触する面の粗度Rzである。実施例又は比較例においては、これらの粗度の面が積層したプリプレグの表面と接触するように配置して、銅箔張積層板を得ている。
銅箔A:TQ-M5-VSP(三井金属鉱業(株)製)、電解銅箔、Rz=0.7μm、厚さ12μm
銅箔B:3EC-M3-VLP(三井金属鉱業(株)製)、電解銅箔、Rz=4.0μm、厚さ12μm
銅箔C:3EC-III(三井金属鉱業(株)製)、電解銅箔、Rz=5.5μm、厚さ12μm
(Copper foil)
The copper foil used in the examples or comparative examples is shown below. The roughness Rz is the roughness Rz of the surface in contact with the laminated prepreg in the example or comparative example measured by the method described above. In the examples or comparative examples, these roughness surfaces are arranged so as to be in contact with the surface of the laminated prepreg to obtain a copper foil-clad laminate.
Copper foil A: TQ-M5-VSP (manufactured by Mitsui Mining & Smelting Co., Ltd.), electrolytic copper foil, Rz = 0.7 μm, thickness 12 μm
Copper foil B: 3EC-M3-VLP (manufactured by Mitsui Mining & Smelting Co., Ltd.), electrolytic copper foil, Rz = 4.0 μm, thickness 12 μm
Copper foil C: 3EC-III (manufactured by Mitsui Mining & Smelting Co., Ltd.), electrolytic copper foil, Rz = 5.5 μm, thickness 12 μm
(実施例1)
 マレイミド樹脂MIR-3000を65質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を15質量部、リン系難燃剤PX-200を20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Example 1)
65 parts by mass of maleimide resin MIR-3000, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 20 parts by mass of phosphorus-based flame retardant PX-200, 100 parts by mass of filler SC2050-MB. , Ethylmethylketone is used to mix and dilute to prepare a varnish, the obtained varnish is impregnated and coated on a glass woven cloth having a thickness of 0.075 mm, and heated and dried at 160 ° C. for 5 minutes to form a resin composition. A prepreg having a content of 60% by mass was obtained. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(実施例2)
 ポリフェニレンエーテル樹脂OPE-2St2200を65質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を15質量部、リン系難燃剤PX-200を20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Example 2)
65 parts by mass of polyphenylene ether resin OPE-2St2200, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 20 parts by mass of phosphorus-based flame retardant PX-200, 100 parts by mass of filler SC2050-MB, To prepare a varnish by mixing and diluting with ethyl methyl ketone, impregnating the obtained varnish on a glass woven cloth having a thickness of 0.075 mm, and heating and drying at 160 ° C. for 5 minutes to form a resin composition. A prepreg having a substance content of 60% by mass was obtained. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(実施例3)
 ポリフェニレンエーテル樹脂OPE-2St2200を75質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を5質量部、リン系難燃剤PX-200を20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Example 3)
75 parts by mass of polyphenylene ether resin OPE-2St2200, 5 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 20 parts by mass of phosphorus-based flame retardant PX-200, 100 parts by mass of filler SC2050-MB, To prepare a varnish by mixing and diluting with ethyl methyl ketone, impregnating the obtained varnish on a glass woven cloth having a thickness of 0.075 mm, and heating and drying at 160 ° C. for 5 minutes to form a resin composition. A prepreg having a substance content of 60% by mass was obtained. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(実施例4)
 マレイミド樹脂MIR-3000を35質量部、ポリフェニレンエーテル樹脂OPE-2St2200を20質量部、SNCNを10質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を15質量部、リン系難燃剤PX-200を20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Example 4)
35 parts by mass of maleimide resin MIR-3000, 20 parts by mass of polyphenylene ether resin OPE-2St2200, 10 parts by mass of SNCN, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant PX- 20 parts by mass of 200 and 100 parts by mass of the filler SC2050-MB are mixed and diluted with ethyl methyl ketone to prepare a varnish, and the obtained varnish is impregnated into a glass woven cloth having a thickness of 0.075 mm. The coating was applied and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(実施例5)
 マレイミド樹脂MIR-3000を35質量部、ポリフェニレンエーテル樹脂OPE-2St2200を20質量部、SNCNを10質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を15質量部、リン系難燃剤PX-200を20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Bを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Example 5)
35 parts by mass of maleimide resin MIR-3000, 20 parts by mass of polyphenylene ether resin OPE-2St2200, 10 parts by mass of SNCN, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant PX- 20 parts by mass of 200 and 100 parts by mass of the filler SC2050-MB are mixed and diluted with ethyl methyl ketone to prepare a varnish, and the obtained varnish is impregnated into a glass woven cloth having a thickness of 0.075 mm. The coating was applied and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil B shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(実施例6)
 マレイミド樹脂MIR-3000を35質量部、ポリフェニレンエーテル樹脂OPE-2St2200を20質量部、SNCNを10質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を15質量部、リン系難燃剤ラビトルFP-300Bを20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Example 6)
35 parts by mass of maleimide resin MIR-3000, 20 parts by mass of polyphenylene ether resin OPE-2St2200, 10 parts by mass of SNCN, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant Rabbitl FP 20 parts by mass of -300B and 100 parts by mass of the filler SC2050-MB were mixed and diluted with ethylmethylketone to prepare a varnish, and the obtained varnish was put into a glass woven cloth having a thickness of 0.075 mm. It was impregnated and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例1)
 マレイミド樹脂MIR-3000を81質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を19質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 1)
81 parts by mass of maleimide resin MIR-3000, 19 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 100 parts by mass of filler SC2050-MB, were mixed and diluted with ethyl methyl ketone. A varnish was prepared, and the obtained varnish was impregnated and coated on a glass woven cloth having a thickness of 0.075 mm and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例2)
 ポリフェニレンエーテル樹脂OPE-2St2200を81質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を19質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 2)
81 parts by mass of polyphenylene ether resin OPE-2St2200, 19 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 100 parts by mass of filler SC2050-MB, were mixed and diluted with ethyl methyl ketone. The obtained varnish was impregnated and coated on a glass woven cloth having a thickness of 0.075 mm and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例3)
 ポリフェニレンエーテル樹脂OPE-2St2200を94質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を6質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 3)
94 parts by mass of polyphenylene ether resin OPE-2St2200, 6 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), 100 parts by mass of filler SC2050-MB, were mixed and diluted with ethyl methyl ketone. The obtained varnish was impregnated and coated on a glass woven cloth having a thickness of 0.075 mm and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例4)
 マレイミド樹脂MIR-3000を44質量部、ポリフェニレンエーテル樹脂OPE-2St2200を25質量部、SNCNを13質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を19質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 4)
44 parts by mass of maleimide resin MIR-3000, 25 parts by mass of polyphenylene ether resin OPE-2St2200, 13 parts by mass of SNCN, 19 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), filler SC2050-MB. 100 parts by mass is mixed and diluted with ethyl methyl ketone to prepare a varnish, and the obtained varnish is impregnated into a 0.075 mm thick glass woven cloth, coated, and dried by heating at 160 ° C. for 5 minutes. A prepreg having a resin composition content of 60% by mass was obtained. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例5)
 マレイミド樹脂MIR-3000を26質量部、ポリフェニレンエーテル樹脂OPE-2St2200を15質量部、SNCNを8質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を11質量部、リン系難燃剤PX-200を40質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 5)
26 parts by mass of maleimide resin MIR-3000, 15 parts by mass of polyphenylene ether resin OPE-2St2200, 8 parts by mass of SNCN, 11 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant PX- 40 parts by mass of 200 and 100 parts by mass of the filler SC2050-MB are mixed and diluted with ethylmethylketone to prepare a varnish, and the obtained varnish is impregnated into a 0.075 mm thick glass woven cloth. The coating was applied and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例6)
 マレイミド樹脂MIR-3000を26質量部、ポリフェニレンエーテル樹脂OPE-2St2200を15質量部、SNCNを8質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を11質量部、リン系難燃剤ラビトルFP-300Bを40質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 6)
26 parts by mass of maleimide resin MIR-3000, 15 parts by mass of polyphenylene ether resin OPE-2St2200, 8 parts by mass of SNCN, 11 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant Rabbitl FP 40 parts by mass of -300B and 100 parts by mass of the filler SC2050-MB were mixed and diluted with ethylmethylketone to prepare a varnish, and the obtained varnish was put into a glass woven cloth having a thickness of 0.075 mm. It was impregnated and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例7)
 マレイミド樹脂MIR-3000を35質量部、ポリフェニレンエーテル樹脂OPE-2St2200を20質量部、SNCNを10質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を15質量部、リン系難燃剤PX-200を20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Cを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 7)
35 parts by mass of maleimide resin MIR-3000, 20 parts by mass of polyphenylene ether resin OPE-2St2200, 10 parts by mass of SNCN, 15 parts by mass of thermoplastic elastomer H-1043 (styrene ratio 67%), phosphorus-based flame retardant PX- 20 parts by mass of 200 and 100 parts by mass of the filler SC2050-MB are mixed and diluted with ethyl methyl ketone to prepare a varnish, and the obtained varnish is impregnated into a glass woven cloth having a thickness of 0.075 mm. The coating was applied and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil C shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例8)
 マレイミド樹脂MIR-3000を50質量部、ポリフェニレンエーテル樹脂OPE-2St2200を20質量部、SNCNを10質量部、リン系難燃剤PX-200を20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 8)
50 parts by mass of maleimide resin MIR-3000, 20 parts by mass of polyphenylene ether resin OPE-2St2200, 10 parts by mass of SNCN, 20 parts by mass of phosphorus-based flame retardant PX-200, 100 parts by mass of filler SC2050-MB. , Ethylmethylketone is used to mix and dilute to prepare a varnish, the obtained varnish is impregnated and coated on a glass woven cloth having a thickness of 0.075 mm, and heated and dried at 160 ° C. for 5 minutes to form a resin composition. A prepreg having a content of 60% by mass was obtained. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
(比較例9)
 マレイミド樹脂MIR-3000を10質量部、ポリフェニレンエーテル樹脂OPE-2St2200を20質量部、SNCNを10質量部、熱可塑性エラストマーH-1043(スチレン比率67%)を40質量部、リン系難燃剤PX-200を20質量部、充填材SC2050-MBを100質量部、を、エチルメチルケトンを用いて混合・希釈してワニスを作成し、得られたワニスを厚さ0.075mmのガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂組成物含有量60質量%のプリプレグを得た。得られたプリプレグを8枚重ねて上記に示した銅箔Aを上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの銅箔張積層板を得た。
(Comparative Example 9)
Maleimide resin MIR-3000 by 10 parts by mass, polyphenylene ether resin OPE-2St2200 by 20 parts by mass, SNCN by 10 parts by mass, thermoplastic elastomer H-1043 (styrene ratio 67%) by 40 parts by mass, phosphorus-based flame retardant PX- 20 parts by mass of 200 and 100 parts by mass of the filler SC2050-MB are mixed and diluted with ethyl methyl ketone to prepare a varnish, and the obtained varnish is impregnated into a glass woven cloth having a thickness of 0.075 mm. The coating was applied and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 60% by mass. Eight obtained prepregs were stacked and the copper foil A shown above was placed one above the other, and laminated and molded at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, and a copper foil with an insulating layer thickness of 0.8 mm was formed. A stretched laminated board was obtained.
 実施例1~6、比較例1~9で得られた銅箔張積層板を用いて各物性を評価し、その評価結果を表1に示した。 Each physical property was evaluated using the copper foil-clad laminates obtained in Examples 1 to 6 and Comparative Examples 1 to 9, and the evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 上記表1に示されているとおり、実施例1~6の銅箔張積層板は、銅箔ピール強度および低伝送損失が良好であり、且つ、耐クラック性および半田耐熱性にも優れることが確認された。 As shown in Table 1 above, the copper foil-clad laminates of Examples 1 to 6 have good copper foil peel strength and low transmission loss, and are also excellent in crack resistance and solder heat resistance. confirmed.
 本出願は、2020年12月9日に日本国特許庁へ出願された日本特許出願(特願2020-204372)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2020-204372) filed with the Japan Patent Office on December 9, 2020, the contents of which are incorporated herein by reference.
 本発明の銅箔張積層板は、プリント配線板や半導体装置等を構成する材料としての産業上利用可能性を有する。
 
The copper foil-clad laminate of the present invention has industrial applicability as a material for constituting a printed wiring board, a semiconductor device, or the like.

Claims (13)

  1.  プリプレグおよび樹脂シートからなる群より選ばれる1種以上の表面に接するように銅箔が積層された銅箔張積層板であって、
     前記プリプレグは、基材と、前記基材に含浸又は塗布された樹脂組成物と、を含み、
     前記樹脂シートは樹脂組成物を含み、
     前記樹脂組成物は、熱硬化性化合物(A)、熱可塑性エラストマー(B)、及びリン系難燃剤(C)を含み、
     前記樹脂組成物中の前記熱可塑性エラストマー(B)の含有量が、樹脂固形分100質量部に対して1~30質量部であり、
     前記樹脂組成物中の前記リン系難燃剤(C)の含有量が、樹脂固形分100質量部に対して1~30質量部であり、
     JIS B0601:2013に従って測定した前記銅箔表面の粗度Rzが、0.2~4.0μmである、銅箔張積層板。
    A copper foil-clad laminate in which copper foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of a prepreg and a resin sheet.
    The prepreg comprises a substrate and a resin composition impregnated or coated on the substrate.
    The resin sheet contains a resin composition and contains
    The resin composition contains a thermosetting compound (A), a thermoplastic elastomer (B), and a phosphorus-based flame retardant (C).
    The content of the thermoplastic elastomer (B) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
    The content of the phosphorus-based flame retardant (C) in the resin composition is 1 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
    A copper foil-clad laminate having a roughness Rz of the copper foil surface measured according to JIS B0601: 2013 of 0.2 to 4.0 μm.
  2.  前記樹脂組成物中の前記リン系難燃剤(C)の含有量が、樹脂固形分100質量部に対して15~30質量部である、請求項1に記載の銅箔張積層板。 The copper foil-clad laminate according to claim 1, wherein the content of the phosphorus-based flame retardant (C) in the resin composition is 15 to 30 parts by mass with respect to 100 parts by mass of the resin solid content.
  3.  前記リン系難燃剤(C)が、芳香族縮合リン酸エステル(C-1)及び環状ホスファゼン化合物(C-2)からなる群より選択される1種以上である、請求項1又は2に記載の銅箔張積層板。 The invention according to claim 1 or 2, wherein the phosphorus-based flame retardant (C) is at least one selected from the group consisting of an aromatic condensed phosphoric acid ester (C-1) and a cyclic phosphazene compound (C-2). Copper foil-clad laminate.
  4.  前記芳香族縮合リン酸エステル(C-1)が、下記式(1)で表される化合物であり、前記環状ホスファゼン化合物(C-2)が、下記式(2)で表される化合物である、請求項1~3のいずれか一項に記載の銅箔張積層板。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、nは3~6の整数を表す。)
    The aromatic condensed phosphoric acid ester (C-1) is a compound represented by the following formula (1), and the cyclic phosphazene compound (C-2) is a compound represented by the following formula (2). , The copper foil-clad laminate according to any one of claims 1 to 3.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In equation (2), n represents an integer of 3 to 6.)
  5.  前記熱可塑性エラストマー(B)は、スチレン系エラストマーである、請求項1~4のいずれか一項に記載の銅箔張積層板。 The copper foil-clad laminate according to any one of claims 1 to 4, wherein the thermoplastic elastomer (B) is a styrene-based elastomer.
  6.  前記スチレン系エラストマーは、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-水添ブタジエン-スチレンブロック共重合体、およびスチレン-水添イソプレン-スチレンブロック共重合体からなる群より選ばれる1種以上である、請求項5に記載の銅箔張積層板。 The styrene-based elastomer is a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a styrene-hydrogenated butadiene-styrene block copolymer, and a styrene-hydrogenated isoprene-styrene block copolymer. The copper foil-clad laminate according to claim 5, which is one or more selected from the group consisting of.
  7.  前記熱硬化性化合物(A)は、シアン酸エステル化合物、マレイミド化合物、ポリフェニレンエーテル化合物、エポキシ化合物、フェノール化合物、および硬化性ポリイミド化合物からなる群より選ばれる1種以上を含む、請求項1~6のいずれか一項に記載の銅箔張積層板。 Claims 1 to 6 include the thermosetting compound (A) at least one selected from the group consisting of a cyanic acid ester compound, a maleimide compound, a polyphenylene ether compound, an epoxy compound, a phenol compound, and a curable polyimide compound. The copper foil-clad laminate according to any one of the above.
  8.  前記樹脂組成物が充填材をさらに含有する、請求項1~7のいずれか一項に記載の銅箔張積層板。 The copper foil-clad laminate according to any one of claims 1 to 7, wherein the resin composition further contains a filler.
  9.  前記充填材は、シリカ類、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、及びフォルステライトからなる群より選択される1種以上である、請求項8に記載の銅箔張積層板。 The copper foil-clad laminate according to claim 8, wherein the filler is at least one selected from the group consisting of silicas, aluminum hydroxide, aluminum nitride, boron nitride, and forsterite.
  10.  前記樹脂組成物中の前記充填材の含有量が、樹脂固形分100質量部に対して30~300質量部である、請求項8又は9に記載の銅箔張積層板。 The copper foil-clad laminate according to claim 8 or 9, wherein the content of the filler in the resin composition is 30 to 300 parts by mass with respect to 100 parts by mass of the resin solid content.
  11.  前記銅箔が、電解銅箔である、請求項1~10のいずれか一項に記載の銅箔張積層板。 The copper foil-clad laminate according to any one of claims 1 to 10, wherein the copper foil is an electrolytic copper foil.
  12.  請求項1~11いずれか一項に記載の銅箔張積層板を用いて製造されたプリント配線板。 A printed wiring board manufactured by using the copper foil-clad laminate according to any one of claims 1 to 11.
  13.  請求項12に記載のプリント配線板を用いて製造された半導体装置。
     
    A semiconductor device manufactured by using the printed wiring board according to claim 12.
PCT/JP2021/043776 2020-12-09 2021-11-30 Copper-clad laminated board and printed wiring board WO2022124130A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180079958.2A CN116490555A (en) 2020-12-09 2021-11-30 Copper-clad laminate and printed circuit board
JP2022568198A JPWO2022124130A1 (en) 2020-12-09 2021-11-30
KR1020237014533A KR20230115977A (en) 2020-12-09 2021-11-30 Copper clad laminate and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020204372 2020-12-09
JP2020-204372 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022124130A1 true WO2022124130A1 (en) 2022-06-16

Family

ID=81973922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043776 WO2022124130A1 (en) 2020-12-09 2021-11-30 Copper-clad laminated board and printed wiring board

Country Status (5)

Country Link
JP (1) JPWO2022124130A1 (en)
KR (1) KR20230115977A (en)
CN (1) CN116490555A (en)
TW (1) TW202235267A (en)
WO (1) WO2022124130A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173765A (en) * 2008-01-24 2009-08-06 Asahi Kasei E-Materials Corp Flame-retardant epoxy resin composition
WO2016175325A1 (en) * 2015-04-30 2016-11-03 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and multilayer printed wiring board
JP2018131519A (en) * 2017-02-15 2018-08-23 三菱瓦斯化学株式会社 Resin composition, resin sheet and printed wiring board
JP2020169274A (en) * 2019-04-03 2020-10-15 日立化成株式会社 Resin composition, prepreg, laminated plate, multilayer printed wiring board and semiconductor package

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101865649B1 (en) 2014-12-22 2018-07-04 주식회사 두산 Thermoplastic resin composition for high frequency, prepreg, laminate sheet and printed circuit board using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173765A (en) * 2008-01-24 2009-08-06 Asahi Kasei E-Materials Corp Flame-retardant epoxy resin composition
WO2016175325A1 (en) * 2015-04-30 2016-11-03 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and multilayer printed wiring board
JP2018131519A (en) * 2017-02-15 2018-08-23 三菱瓦斯化学株式会社 Resin composition, resin sheet and printed wiring board
JP2020169274A (en) * 2019-04-03 2020-10-15 日立化成株式会社 Resin composition, prepreg, laminated plate, multilayer printed wiring board and semiconductor package

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "ALMOST NO PROFILE COPPER FOIL FOR REDUCED SIGNAL LOSSES", CIRCUIT FOIL WEB PAGE, CIRCUIT FOIL, LU, 19 January 2022 (2022-01-19), LU, pages 1 - 1, XP055941330, Retrieved from the Internet <URL:https://www.circuitfoil.com/wp-content/uploads/2021/06/BF-ANP.pdf> [retrieved on 20220712] *
MITSUI KINZOKU: "Low profile electrolytic copper foil, ideal for fine etching in the subtractive process", WEBPAGE MITSUI KINZOKU, MITSUI KIZIOKU, JP, 19 January 2022 (2022-01-19), JP, pages 1 - 1, XP055941306, Retrieved from the Internet <URL:http://www.mitsui-kinzoku.co.jp/project/douhaku/front/pdf/3EC-M3-VLP_j1.pdf> [retrieved on 20220712] *

Also Published As

Publication number Publication date
JPWO2022124130A1 (en) 2022-06-16
TW202235267A (en) 2022-09-16
CN116490555A (en) 2023-07-25
KR20230115977A (en) 2023-08-03

Similar Documents

Publication Publication Date Title
KR102329650B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR102099545B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR102671536B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
EP3103825B1 (en) Resin composition for printed-circuit board, prepreg, metal foil-clad laminate board, resin composite sheet, and printed-circuit board
KR102136518B1 (en) Resin composition, prepreg, laminated sheet, and metal-foil-clad laminated board
JP6819921B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6761572B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP7322877B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP6699076B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP6531910B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
TWI798212B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
WO2022124130A1 (en) Copper-clad laminated board and printed wiring board
WO2022124129A1 (en) Resin composition, prepreg, resin sheet, metal foil-clad layered board, and printed wiring board
JP6792204B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2019119812A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet, and printed wiring board
EP3290454B1 (en) Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board
JP6761573B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR20240088777A (en) Prepreg, laminate and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568198

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180079958.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2301003499

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903234

Country of ref document: EP

Kind code of ref document: A1