WO2023054518A1 - Prepreg, laminate and printed wiring board - Google Patents

Prepreg, laminate and printed wiring board Download PDF

Info

Publication number
WO2023054518A1
WO2023054518A1 PCT/JP2022/036277 JP2022036277W WO2023054518A1 WO 2023054518 A1 WO2023054518 A1 WO 2023054518A1 JP 2022036277 W JP2022036277 W JP 2022036277W WO 2023054518 A1 WO2023054518 A1 WO 2023054518A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
resin composition
prepreg
resin
Prior art date
Application number
PCT/JP2022/036277
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 田原
孝史 久保
将太 古賀
環 伊藤
政伸 十亀
Original Assignee
三菱瓦斯化学株式会社
Mgcエレクトロテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcエレクトロテクノ株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2023551633A priority Critical patent/JPWO2023054518A1/ja
Priority to CN202280065717.7A priority patent/CN118043384A/en
Publication of WO2023054518A1 publication Critical patent/WO2023054518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to prepregs, and laminates and printed wiring boards using them.
  • the present invention has been made based on such problems, and aims to provide a prepreg, a laminate, and a printed wiring board that can reduce skew and transmission loss.
  • Patent Document 1 describes a prepreg for the purpose of reducing variations in signal delay time.
  • the prepreg described in Patent Document 1 reduces the influence of the high dielectric constant of the glass fiber on the impedance of the conductor wiring by interposing hexagonal boron nitride between the glass fiber and the conductor wiring, thereby This is intended to reduce skew, and the specific configuration differs from that of the present invention.
  • the present invention is as follows.
  • the glass fiber base material contains at least one glass fiber selected from the group consisting of E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, and HME glass [1] The prepreg described in .
  • thermosetting compound contains terminal unsaturated group-modified polyphenylene ether.
  • content of the terminal unsaturated group-modified polyphenylene ether is 1 to 40 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
  • thermosetting compound contains one or more selected from the group consisting of maleimide compounds, cyanate ester compounds, epoxy compounds, and phenol compounds.
  • resin composition further contains a thermoplastic elastomer.
  • skew and transmission loss can be reduced. Therefore, high frequencies can be handled.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as “this embodiment") will be described in detail, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention. is possible.
  • the prepreg according to the present embodiment is obtained by impregnating or coating a glass fiber base material with a resin composition containing a thermosetting compound.
  • the ratio of the resin composition to the total amount of prepreg is in the range of 81% by volume or more and 98% by volume or less. This is because skew can be reduced by setting the ratio of the resin composition to the total amount of the prepreg to be 81% by volume or more, and it is possible to cope with high frequencies.
  • the ratio of the resin composition to the total amount of the prepreg exceeds 98% by volume, the warp after curing becomes large, which is not suitable for printed wiring boards.
  • the ratio of the resin composition to the total amount of the prepreg is more preferably 85% by volume or more, and even more preferably 86% by volume or more. Also, the ratio of the resin composition to the total amount of the prepreg is more preferably 96% by volume or less, and even more preferably 95% by volume or less.
  • the dielectric constant at 10 GHz after curing of the prepreg is 3.3 or less. This is because the lower the dielectric constant, the higher the signal speed and the higher the frequency. More preferably, the dielectric constant at 10 GHz after curing of the prepreg is less than 3.2. Although the lower limit of the dielectric constant at 10 GHz after curing the prepreg is not particularly limited, it can be set to 2.6 or more, for example. In addition, the dielectric loss tangent at 10 GHz after curing of the prepreg is 0.004 or less. This is because a smaller dielectric loss tangent can reduce transmission loss and can cope with high frequencies. Although the lower limit of the dielectric loss tangent at 10 GHz after curing the prepreg is not particularly limited, it can be, for example, 0.002 or more.
  • This prepreg can be obtained, for example, by impregnating or applying a resin composition to a glass fiber base material, and then semi-curing (to B-stage) by drying at 120 to 220°C for about 2 to 15 minutes.
  • the ratio of the resin composition to the total amount of the prepreg is the ratio after semi-curing, and the resin composition includes a cured product of the resin composition.
  • the resin composition also contains a filler.
  • the glass fiber base material contains, for example, at least one glass fiber selected from the group consisting of E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, and HME glass. is preferred.
  • the form of the fiber base material is not particularly limited, and examples thereof include woven fabrics, nonwoven fabrics, rovings, chopped strand mats, surfacing mats, and the like. Among them, from the viewpoint of dimensional stability, woven fabrics subjected to super-opening treatment and stuffing treatment are preferable, and from the viewpoint of moisture absorption and heat resistance, woven fabrics surface-treated with a silane coupling agent such as epoxysilane treatment and aminosilane treatment. Cloth is preferred.
  • the thickness of the glass fiber substrate is not particularly limited, and can be, for example, 9 ⁇ m to 32 ⁇ m.
  • the resin composition can contain a terminal unsaturated group-modified polyphenylene ether as a thermosetting compound.
  • a terminal unsaturated group-modified polyphenylene ether is represented by general formula (1).
  • X represents an aryl group
  • —(Y—O)n 2 — represents a polyphenylene ether moiety
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl or an alkynyl group
  • n2 is an integer of 1-100
  • n1 is an integer of 1-6
  • n3 is an integer of 1-4.
  • the terminal unsaturated group-modified polyphenylene ether By containing the terminal unsaturated group-modified polyphenylene ether, excellent low dielectric constant and low dielectric loss tangent can be obtained, and moldability can be improved.
  • the terminal unsaturated group-modified polyphenylene ether preferably has a number average molecular weight of 1,000 or more and 7,000 or less. By setting the number average molecular weight to 7000 or less, fluidity during molding can be ensured. Moreover, by setting the number average molecular weight to 1000 or more, excellent dielectric properties (low dielectric constant and low dielectric loss tangent) and heat resistance intrinsic to polyphenylene ether resin can be obtained.
  • the number average molecular weight of the terminal unsaturated group-modified polyphenylene ether is preferably 1,100 or more and 5,000 or less in order to obtain more excellent fluidity, heat resistance, and dielectric properties. More preferably, the unsaturated terminal group-modified polyphenylene ether has a number average molecular weight of 4,500 or less, and even more preferably, the terminal unsaturated group-modified polyphenylene ether has a number average molecular weight of 3,000 or less. Number average molecular weights are measured using gel permeation chromatography according to standard methods.
  • the terminal unsaturated group-modified polyphenylene ether preferably has a minimum melt viscosity of 50000 Pa ⁇ s or less. By setting the minimum melt viscosity to 50,000 Pa ⁇ s or less, fluidity can be secured, and multi-layer molding becomes possible. Although the lower limit of the lowest melt viscosity is not particularly defined, it may be, for example, 1000 Pa ⁇ s or more.
  • the terminal unsaturated group-modified polyphenylene ether preferably contains a polymer of structural units represented by the following general formula (2).
  • R 401 , R 402 , R 403 and R 404 each independently represent an alkyl group having 6 or less carbon atoms, an aryl group, a halogen atom or a hydrogen atom.
  • the polymer may further contain at least one structural unit selected from the group consisting of structural units represented by general formulas (3) and (4).
  • R 405 , R 406 , R 407 , R 411 and R 412 each independently represent an alkyl group having 6 or less carbon atoms or a phenyl group.
  • R 408 , R 409 and R 410 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • R 413 , R 414 , R 415 , R 416 , R 417 , R 418 , R 419 , and R 420 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • . -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • the above general formulas (2), (3) and (4) are preferably -(YO)- in general formula (1).
  • -(YO)- has n2 number (1 to 100) repeating units.
  • X represents an aryl group (aromatic group), —(Y—O)n 2 — represents a polyphenylene ether moiety, and R 1 , R 2 and R 3 each independently represent a hydrogen atom.
  • n2 is an integer of 1 to 100
  • n1 is an integer of 1 to 6
  • n3 is an integer of 1 to 4.
  • n1 is an integer of 1 or more and 4 or less, more preferably n1 is 1 or 2, and ideally n1 is 1.
  • n3 is preferably an integer of 1 or more and 3 or less, more preferably 1 or 2, and ideally n3 is 2.
  • An aromatic hydrocarbon group can be used as the aryl group for X in the general formula (1).
  • a group obtained by removing n three hydrogen atoms from one ring structure selected from a benzene ring structure, a biphenyl structure, an indenyl ring structure, and a naphthalene ring structure e.g., a phenyl group, a biphenyl group, indenyl group and naphthyl group
  • a naphthalene ring structure e.g., a phenyl group, a biphenyl group, indenyl group and naphthyl group
  • the aryl group includes a diphenyl ether group in which the above aryl group is bonded via an oxygen atom, a benzophenone group in which the aryl group is bonded via a carbonyl group, and a 2,2-diphenylpropane group bonded via an alkylene group. It's okay.
  • the aryl group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, especially a methyl group), an alkenyl group, an alkynyl group or a halogen atom.
  • a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, especially a methyl group), an alkenyl group, an alkynyl group or a halogen atom.
  • the "aryl group” is substituted on the polyphenylene ether moiety through an oxygen atom, the limit on the number of general substituents depends on the
  • the terminal unsaturated group-modified polyphenylene ether particularly preferably contains a compound represented by the structure of the following general formula (5).
  • X is an aryl group (aromatic group)
  • -(Y-O)n 2 - each represents a polyphenylene ether moiety
  • n 2 each represents an integer of 1 to 100.
  • —(YO)n 2 — and n 2 have the same meanings as in general formula (1). It may contain a plurality of different compounds of n2 .
  • X in general formula (1) and general formula (5) is preferably general formula (6), general formula (7), or general formula (8), and general formula (1) and general formula (5) -(YO)n 2 - in is a structure in which general formula (9) or general formula (10) is arranged, or a structure in which general formula (9) and general formula (10) are arranged randomly more preferred.
  • R 421 , R 422 , R 423 and R 424 each independently represent a hydrogen atom or a methyl group.
  • -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • the method for producing a terminal unsaturated group-modified polyphenylene ether having a structure represented by the general formula (5) is not particularly limited, for example, by oxidative coupling of a bifunctional phenol compound and a monofunctional phenol compound. It can be produced by vinylbenzyl etherifying the terminal phenolic hydroxyl group of the bifunctional phenylene ether oligomer obtained. Moreover, such terminal unsaturated group-modified polyphenylene ethers can be commercially available products, for example, OPE-2St1200 and OPE-2st2200 manufactured by Mitsubishi Gas Chemical Company, Inc. can be preferably used.
  • the content of the terminal unsaturated group-modified polyphenylene ether in the resin composition is preferably 1 part by mass or more, and is 5 parts by mass or more with respect to 100 parts by mass of the resin solid content of the resin composition. is more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, and even more preferably 20 parts by mass or more.
  • the upper limit of the content is preferably 70 parts by mass or less, more preferably 65 parts by mass or less, and may be 60 parts by mass or less. Such a range tends to effectively achieve a low dielectric constant, a low dielectric loss tangent and good moldability.
  • the resin composition may contain only one type of terminal unsaturated group-modified polyphenylene ether, or may contain two or more types thereof. When two or more types are included, the total amount is preferably within the above range.
  • the term "resin solid content in the resin composition” refers to the components of the resin composition excluding fillers, curing accelerators, and additives, and the resin solid content 100 parts by mass means that the total amount of components excluding fillers, curing accelerators, and additives in the resin composition is 100 parts by mass.
  • the resin composition can contain a maleimide compound as a thermosetting compound.
  • the maleimide compound is a compound having one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) maleimide groups in the molecule. If so, it is not particularly limited.
  • N-phenylmaleimide N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 4,4′-diphenylmethanebismaleimide, bis(3,5-dimethyl-4-maleimidophenyl) Methane, bis(3,5-diethyl-4-maleimidophenyl)methane, phenylmethanemaleimide, o-phenylenebismaleimide, m-phenylenebismaleimide, p-phenylenebismaleimide, o-phenylenebiscitraconimide, m-phenylenebis Citraconimide, p-phenylenebiscitraconimide, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, 3,3'-diethyl-5,5'-dimethyl-4,4'-diphenylmethanebis Maleimide, 4-methyl-1,3-phenylenebismaleimide, 4-methyl
  • R 51 and R 52 each independently represent a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • n 4 represents an integer of 1 or more, the upper limit of n 4 is usually 10, and from the viewpoint of solubility in organic solvents, the upper limit of n 4 is preferably is 7, more preferably 5.
  • the compound represented by the general formula (11) may contain two or more compounds with different n4 .
  • R 601 , R 602 , R 603 , R 604 , R 605 , R 606 , R 607 , R 608 , R 609 , R 610 , R 611 and R 612 are each independently a hydrogen atom; an alkyl group having 1 to 8 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, etc.), or a phenyl group; show.
  • an alkyl group having 1 to 8 carbon atoms e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, etc.
  • n5 is preferably 4 or less, more preferably 3 or less, and even more preferably 2 or less from the viewpoint of further excellent solvent solubility.
  • the compound represented by the general formula (12) may contain two or more compounds with different n5 .
  • R 71 , R 72 , R 73 and R 74 each independently represent a hydrogen atom, a methyl group or an ethyl group
  • R 81 and R 82 each independently represent a hydrogen atom or a methyl group
  • R 71 , R 72 , R 73 , and R 74 are preferably methyl groups or ethyl groups from the standpoint of even better low dielectric constant and low dielectric loss tangent properties.
  • Such compounds include, for example, 3,3'-diethyl-5,5'-dimethyl-4,4'-diphenylmethanebismaleimide.
  • R 91 and R 92 each independently represent a hydrogen atom, a methyl group or an ethyl group.
  • R 91 and R 92 are preferably methyl groups from the standpoint of further superior low dielectric constant and low dielectric loss tangent properties.
  • Such compounds include, for example, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane.
  • n6 represents an integer of 1 or more.
  • the compound represented by the general formula (15) may contain two or more compounds with different n6 .
  • R M1 , R M2 , R M3 and R M4 each independently represent a hydrogen atom or an organic group.
  • RM5 and RM6 each independently represent a hydrogen atom or an alkyl group.
  • Ar M represents a divalent aromatic group.
  • A is a 4- to 6-membered alicyclic group.
  • RM7 and RM8 are each independently an alkyl group.
  • mx is 1 or 2 and lx is 0 or 1.
  • RM9 and RM10 each independently represent a hydrogen atom or an alkyl group.
  • R M11 , R M12 , R M13 and R M14 each independently represent a hydrogen atom or an organic group.
  • nx represents an integer of 1 or more and 20 or less.
  • the compound represented by the general formula (16) may contain two or more compounds with different nx.
  • R M1 , R M2 , R M3 and R M4 in general formula (16) each independently represent a hydrogen atom or an organic group.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferred, and a methyl group is particularly preferred.
  • R M1 and R M3 are each independently preferably an alkyl group, and R M2 and R M4 are preferably hydrogen atoms.
  • RM5 and RM6 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group.
  • Ar 1 M represents a divalent aromatic group, preferably a phenylene group, a naphthalenediyl group, a phenanthenediyl group or an anthracenediyl group, more preferably a phenylene group, still more preferably an m-phenylene group.
  • Ar M may have a substituent, and the substituent is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, Ethyl group, propyl group and butyl group are more preferred, and methyl group is particularly preferred.
  • Ar 2 M is preferably unsubstituted.
  • A is a 4- to 6-membered alicyclic group, more preferably a 5-membered alicyclic group (preferably a group forming an indane ring in combination with a benzene ring).
  • R 1 M7 and R 1 M8 are each independently an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group.
  • mx is 1 or 2, preferably 2;
  • lx is 0 or 1, preferably 1;
  • R M9 and R M10 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group.
  • R M11 , R M12 , R M13 and R M14 each independently represent a hydrogen atom or an organic group.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferred, and a methyl group is particularly preferred.
  • R M12 and R M13 are each independently preferably an alkyl group, and R M11 and R M14 are preferably hydrogen atoms.
  • nx represents an integer of 1 or more and 20 or less
  • the compound represented by the general formula (16) is preferably a compound represented by the following general formula (17).
  • R M21 , R M22 , R M23 and R M24 each independently represent a hydrogen atom or an organic group.
  • RM25 and RM26 each independently represent a hydrogen atom or an alkyl group.
  • R M27 , R M28 , R M29 and R M30 each independently represent a hydrogen atom or an organic group.
  • R M31 and R M32 each independently represent a hydrogen atom or an alkyl group.
  • R M33 , R M34 , R M35 and R M36 each independently represent a hydrogen atom or an organic group.
  • R M37 , R M38 and R M39 each independently represent a hydrogen atom or an alkyl group.
  • nx represents an integer of 1 or more and 20 or less.
  • R M21 , R M22 , R M23 and R M24 in general formula (17) each independently represent a hydrogen atom or an organic group.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferably, a methyl group is particularly preferred.
  • R M21 and R M23 are preferably alkyl groups, and R M22 and R M24 are preferably hydrogen atoms.
  • RM25 and RM26 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group.
  • R M27 , R M28 , R M29 and R M30 each independently represent a hydrogen atom or an organic group, preferably a hydrogen atom.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferably, a methyl group is particularly preferred.
  • R M31 and R M32 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group.
  • R M33 , R M34 , R M35 and R M36 each independently represent a hydrogen atom or an organic group.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group.
  • R M33 and R M36 are preferably hydrogen atoms, and R M34 and R M35 are preferably alkyl groups.
  • R M37 , R M38 and R M39 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group.
  • nx represents an integer of 1 or more and 20 or less.
  • the compound represented by the general formula (17) is preferably a compound represented by the following general formula (18).
  • nx represents an integer of 1 or more and 20 or less.
  • the molecular weight of the compound represented by general formula (16) is preferably 500 or more, more preferably 600 or more, and even more preferably 700 or more. When the content is equal to or higher than the lower limit, dielectric properties and low water absorption tend to be further improved. Further, the molecular weight of the compound represented by the general formula (16) is preferably 10,000 or less, more preferably 9,000 or less, further preferably 7,000 or less, and even more preferably 5,000 or less. , 4000 or less. By adjusting the content to the above upper limit or less, heat resistance and handleability tend to be further improved.
  • the maleimide compound preferably contains at least one compound represented by general formulas (11), (12), (13), (14), (15) and (16). This is because low thermal expansion and heat resistance can be improved.
  • a commercially available maleimide compound may be used, for example, "BMI-2300” manufactured by Daiwa Kasei Kogyo Co., Ltd. as a maleimide compound represented by the general formula (11), and a maleimide compound represented by the general formula (12).
  • maleimide compound represented by the general formula (13) As the maleimide compound represented by the general formula (13), and the maleimide compound represented by the general formula (14) "BMI-80” manufactured by K.I. Kasei Co., Ltd., as the maleimide compound represented by the general formula (15), "MIR-5000” manufactured by Nippon Kayaku Co., Ltd., and as the maleimide compound represented by the general formula (16), DIC "X9-450", “X9-470” and “NE-X-9470S” manufactured by the company can be preferably used.
  • the content of the maleimide compound in the resin composition can be appropriately set according to the desired properties, and is not particularly limited.
  • the content of the maleimide compound is contained, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and 10 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. It is more preferable that it is above.
  • the upper limit is preferably 90 parts by mass or less, more preferably 60 parts by mass or less, even more preferably 50 parts by mass or less, and may be 40 parts by mass or less. By setting it as such a range, there exists a tendency for high heat resistance and low water absorption to be exhibited more effectively. Only one type of maleimide compound may be used, or two or more types may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition can contain a cyanate ester compound as a thermosetting compound.
  • the cyanate ester compound has one or more (preferably 2 to 12, more preferably 2 to 6, more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) cyanato groups (
  • the resin is not particularly limited as long as it has an aromatic portion substituted with a cyanate ester group) in the molecule.
  • Examples of cyanate ester compounds include compounds represented by general formula (19).
  • Ar 1 and Ar 2 are each independently a phenylene group optionally having a substituent, a naphthylene group optionally having a substituent or a biphenylene group optionally having a substituent represents R 101 and R 102 each independently represent a hydrogen atom, an optionally substituted C 1-6 alkyl group, an optionally substituted C 6-12 aryl group, or a substituted an alkoxy group having 1 to 4 carbon atoms which may be substituted, an aralkyl group which may have a substituent in which an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are bonded, or an aralkyl group having 1 to 6 carbon atoms.
  • n 71 represents the number of cyanato groups bonded to Ar 1 and is an integer of 1-3.
  • n 72 represents the number of cyanato groups attached to Ar 2 and is an integer of 1-3.
  • n 73 represents the number of R 101 bonded to Ar 1 , 4-n 71 when Ar 1 is a phenylene group, 6-n 71 when it is a naphthylene group, and 8-n 71 when it is a biphenylene group.
  • n 74 represents the number of R 102 bound to Ar 2 , 4-n 72 when Ar 2 is a phenylene group, 6-n 72 when it is a naphthylene group, and 8-n 72 when it is a biphenylene group.
  • n8 represents the average repetition number and is an integer from 0 to 50.
  • the cyanate ester compound may be a mixture of compounds with different n8 .
  • the alkyl group for R 101 and R 102 in formula (19) may have a linear structure, a branched chain structure, or a cyclic structure (such as a cycloalkyl group). Further, the hydrogen atom in the alkyl group in the general formula (19) and the aryl group in R 101 and R 102 is substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group, or the like.
  • a halogen atom such as a fluorine atom or a chlorine atom
  • an alkoxy group such as a methoxy group or a phenoxy group, a cyano group, or the like.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 1-ethylpropyl and 2,2-dimethylpropyl. group, cyclopentyl group, hexyl group, cyclohexyl group, trifluoromethyl group and the like.
  • aryl groups include phenyl, xylyl, mesityl, naphthyl, phenoxyphenyl, ethylphenyl, o-, m- or p-fluorophenyl, dichlorophenyl, dicyanophenyl and trifluorophenyl. group, methoxyphenyl group, o-, m- or p-tolyl group, and the like.
  • alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy and tert-butoxy groups.
  • divalent organic group for Z in the general formula (19) examples include a methylene group, ethylene group, trimethylene group, cyclopentylene group, cyclohexylene group, trimethylcyclohexylene group, biphenylylmethylene group, dimethylmethylene- A phenylene-dimethylmethylene group, a fluorenediyl group, a phthalidodiyl group and the like can be mentioned.
  • a hydrogen atom in the divalent organic group may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group, or the like.
  • divalent organic group having 1 to 10 nitrogen atoms in Z of the general formula (19) examples include an imino group and a polyimide group.
  • Z in general formula (19) includes those having a structure represented by general formula (20) or general formula (21).
  • Ar 3 is selected from any one of a phenylene group, a naphthylene group and a biphenylene group.
  • R 103 , R 104 , R 107 and R 108 each independently represents at least one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a trifluoromethyl group and a phenolic hydroxy group; is selected from any one of aryl groups substituted with one.
  • Each of R 105 and R 106 is independently selected from any one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a hydroxy group.
  • n 9 represents an integer of 0 to 5
  • the cyanate ester compound may be a mixture of compounds in which n 9 has different groups.
  • Ar 4 is selected from any one of a phenylene group, a naphthylene group and a biphenylene group.
  • R 109 and R 110 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a benzyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, and trifluoromethyl and an aryl group substituted with at least one of a cyanato group.
  • n10 represents an integer of 0 to 5
  • the cyanate ester compound may be a mixture of compounds in which n10 has different groups.
  • Z in general formula (19) includes a divalent group represented by the following formula.
  • n11 represents an integer of 4-7.
  • R 111 and R 112 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Ar 3 of general formula (20) and Ar 4 of general formula (21) include a 1,4-phenylene group, a 1,3-phenylene group, a 4,4'-biphenylene group, a 2,4'- biphenylene group, 2,2'-biphenylene group, 2,3'-biphenylene group, 3,3'-biphenylene group, 3,4'-biphenylene group, 2,6-naphthylene group, 1,5-naphthylene group, 1 ,6-naphthylene group, 1,8-naphthylene group, 1,3-naphthylene group, 1,4-naphthylene group and the like.
  • the alkyl group and aryl group for R 103 to R 108 in general formula (20) and R 109 and R 110 in general formula (21) are the same as those described for general formula (19).
  • Examples of the cyanate ester compound represented by the general formula (19) include a phenol novolak-type cyanate ester compound, a naphthol aralkyl-type cyanate ester compound, a biphenyl aralkyl-type cyanate ester compound, a naphthylene ether-type cyanate ester compound, Examples include xylene resin type cyanate ester compounds, adamantane skeleton type cyanate ester compounds, bisphenol A type cyanate ester compounds, diallylbisphenol A type cyanate ester compounds, naphthol aralkyl type cyanate ester compounds, and the like.
  • cyanate ester compound represented by the general formula (19) include cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methylbenzene, 1-cyanato -2-, 1-cyanato-3-, or 1-cyanato-4-methoxybenzene, 1-cyanato-2,3-, 1-cyanato-2,4-, 1-cyanato-2,5-, 1- Cyanato-2,6-,1-cyanato-3,4- or 1-cyanato-3,5-dimethylbenzene, cyanatoethylbenzene, cyanatobutylbenzene, cyanatooctylbenzene, cyanatononylbenzene, 2-(4 -cyanaphenyl)-2-phenylpropane (cyanate of 4- ⁇ -cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyanato-4-vinylbenzene, 1-cyanato-2-
  • phenol novolak-type cyanate ester compounds naphthol aralkyl-type cyanate ester compounds, naphthylene ether-type cyanate ester compounds, bisphenol A-type cyanate ester compounds, bisphenol M-type cyanate ester compounds, diallyl bisphenol-type cyanate ester compounds is preferred, and a naphthol aralkyl-type cyanate ester compound is particularly preferred.
  • Cured products of resin compositions using these cyanate ester compounds have excellent properties such as low dielectric properties (low dielectric constant and low dielectric loss tangent).
  • the content of the cyanate ester compound in the resin composition can be appropriately set according to the desired properties, and is not particularly limited. Specifically, when the content of the cyanate ester compound is contained, it is preferably 0.1 parts by mass or more, and 0.5 parts by mass or more, relative to 100 parts by mass of the resin solid content in the resin composition. is more preferably 1 part by mass or more, and may be 3 parts by mass or more, or 5 parts by mass or more. In addition, the upper limit of this content is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, even more preferably less than 70 parts by mass, even more preferably 60 parts by mass or less, and 50 parts by mass. Hereinafter, it may be 40 parts by mass or less.
  • cyanate ester compound Only one type of cyanate ester compound may be used, or two or more types may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition can contain an epoxy resin as a thermosetting compound.
  • an epoxy resin as a thermosetting compound.
  • the epoxy resin one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) epoxy groups per molecule.
  • epoxy resins may be used alone or in combination of two or more.
  • biphenyl aralkyl epoxy resins, naphthylene ether epoxy resins, polyfunctional phenol epoxy resins, and naphthalene epoxy resins are preferred from the viewpoint of further improving flame retardancy and heat resistance.
  • the resin composition can contain a phenolic resin as a thermosetting compound.
  • a phenolic resin as a thermosetting compound.
  • the phenolic resin one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) phenolic hydroxy It is not particularly limited as long as it is a compound or resin having a group.
  • glycidyl ester type phenolic resin glycidyl ester type phenolic resin, aralkyl novolak phenolic resin, biphenyl aralkyl type phenolic resin, cresol novolac type phenolic resin, polyfunctional phenolic resin, naphthol resin, naphthol novolak resin, polyfunctional naphthol resin, anthracene type phenolic resin, naphthalene skeleton modified novolac type phenol resin, phenol aralkyl type phenol resin, naphthol aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin, alicyclic phenol resin, polyol type phenol resin, and phosphorus-containing phenol resins.
  • phenol resins may be used alone or in combination of two or more.
  • at least one selected from the group consisting of biphenylaralkyl-type phenolic resins, naphtholaralkyl-type phenolic resins, and phosphorus-containing phenolic resins is preferred.
  • the resin composition can contain a thermoplastic elastomer.
  • Thermoplastic elastomers contain styrene monomer units. By including styrene monomer units, the solubility of the thermoplastic elastomer in the resin composition is improved.
  • Styrene monomers include styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene (vinylstyrene), N,N-dimethyl-p-aminoethylstyrene, N,N-diethyl-p-aminoethylstyrene and the like.
  • styrene ⁇ -methylstyrene, and p-methylstyrene are preferred from the viewpoint of availability and productivity.
  • styrene is particularly preferred.
  • the content of styrene monomer units (styrene ratio) in the thermoplastic elastomer is preferably in the range of 10 to 50% by mass, more preferably in the range of 13 to 45% by mass, more preferably 15 to 40% by mass of the total monomer units. % range is more preferred. If the content of styrene monomer units is 50% by mass or less, the adhesiveness and adhesiveness to substrates and the like will be better.
  • thermoplastic elastomer may contain only one type of styrene monomer unit, or may contain two or more types. When two or more kinds are included, the total amount is preferably within the above range.
  • the method for measuring the content of styrene monomer units in the thermoplastic elastomer of the present embodiment can be referred to the description in WO 2017/126469, the content of which is incorporated herein. The same applies to the conjugated diene monomer unit and the like, which will be described later.
  • the thermoplastic elastomer contains conjugated diene monomer units. Containing the conjugated diene monomer unit improves the solubility of the thermoplastic elastomer in the resin composition.
  • the conjugated diene monomer is not particularly limited as long as it is a diolefin having a pair of conjugated double bonds.
  • Conjugated diene monomers are, for example, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl- 1,3-pentadiene, 1,3-hexadiene, and farnesene are included, with 1,3-butadiene and isoprene being preferred, and 1,3-butadiene being more preferred.
  • the thermoplastic elastomer may contain only one type of conjugated diene monomer unit, or may contain two or more types.
  • the mass ratio of the styrene polymer unit and the conjugated diene monomer unit is in the range of 5/95 to 80/20, it is possible to suppress the increase in adhesion, maintain high adhesive strength, and easily peel the adhesive surfaces. get better.
  • the thermoplastic elastomer may or may not contain other monomer units in addition to the styrene monomer units and the conjugated diene monomer units.
  • examples of other monomer units include aromatic vinyl compound units other than styrene monomer units.
  • the total amount of styrene monomer units and conjugated diene monomer units is preferably 90% by mass or more, more preferably 95% by mass or more, more preferably 97% by mass. % or more, more preferably 99 mass % or more.
  • the thermoplastic elastomer may contain only one kind of styrene monomer units and conjugated diene monomer units, or may contain two or more kinds thereof. When two or more types are included, the total amount is preferably within the above range.
  • thermoplastic elastomer used in this embodiment may be a block polymer or a random polymer. Moreover, even if the conjugated diene monomer unit is a hydrogenated elastomer in which the conjugated diene monomer unit is hydrogenated, it may be an unhydrogenated elastomer in which it is not hydrogenated, or a partially hydrogenated elastomer in which it is partially hydrogenated. good.
  • thermoplastic elastomers examples include SEPTON (registered trademark) 2104 manufactured by Kuraray Co., Ltd., DYNARON (registered trademark) 9901P, TR2250 manufactured by JSR Corporation, and the like.
  • the content thereof is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass or more with respect to 100 parts by mass of the resin solid content. More preferably, it is 8 parts by mass or more, and even more preferably 10 parts by mass or more. When the content is equal to or higher than the lower limit, low dielectric properties tend to be further improved.
  • the upper limit of the content of the thermoplastic elastomer is preferably 45 parts by mass or less, more preferably 40 parts by mass or less, and 35 parts by mass or less with respect to 100 parts by mass of the resin solid content. is more preferably 32 parts by mass or less, and even more preferably 28 parts by mass or less.
  • the resin composition may contain only one type of thermoplastic elastomer, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition may contain a filler in order to improve low dielectric constant properties and low dielectric loss tangent properties.
  • a filler known fillers can be used as appropriate, and the type thereof is not particularly limited, and fillers commonly used in the art can be suitably used.
  • silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerosil, hollow silica, white carbon, titanium white, zinc oxide, magnesium oxide, zirconium oxide, boron nitride, aggregated boron nitride, silicon nitride , Aluminum Nitride, Barium Sulfate, Aluminum Hydroxide, Heat Treated Aluminum Hydroxide (Aluminum Hydroxide Heat Treated to Reduce Some of the Water of Crystallization), Boehmite, Metal Hydrates such as Magnesium Hydroxide, Oxides Molybdenum and molybdenum compounds such as zinc molybdate, zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass, A-glass, NE-glass, C -Glass, L-glass, D-glass, S-glass, M-
  • fillers may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of silica, aluminum hydroxide, boehmite, magnesium oxide and magnesium hydroxide is suitable. By using these fillers, properties such as thermal expansion properties, dimensional stability and flame retardancy of the resin composition are improved.
  • the content of the filler in the resin composition can be appropriately set according to the desired properties, and is not particularly limited. It is preferably at least 1 part.
  • the upper limit is preferably 1600 parts by mass or less, more preferably 500 parts by mass or less, and particularly preferably 300 parts by mass or less.
  • the filler may be from 75 parts by weight to 250 parts by weight, or from 100 parts by weight to 200 parts by weight. By setting the content of the filler within this range, the moldability of the resin composition is improved.
  • the resin composition may contain only one filler, or may contain two or more fillers. When two or more types are included, the total amount is preferably within the above range.
  • silane coupling agents When using fillers, it is preferable to use at least one selected from the group consisting of silane coupling agents and wetting and dispersing agents.
  • silane coupling agent those generally used for surface treatment of inorganic substances can be suitably used, and the type thereof is not particularly limited.
  • aminosilanes such as ⁇ -aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(3,4 -epoxysilanes such as epoxycyclohexyl)ethyltrimethoxysilane, vinylsilanes such as ⁇ -methacryloxypropyltrimethoxysilane, vinyl-tri( ⁇ -methoxyethoxy)silane, N- ⁇ -(N-vinylbenzylaminoethyl)- Examples include cationic silanes such as ⁇ -aminopropyltrimethoxysilane hydrochloride, phenylsilanes, and the like.
  • the silane coupling agents may be used alone or in combination of two or more.
  • the wetting and dispersing agent those generally used for paints can be suitably used, and the type thereof is not particularly limited.
  • a copolymer-based wetting and dispersing agent is used, specific examples of which include Disperbyk-110, 111, 161, 180, 2009, 2152, BYK-W996, BYK-W9010 manufactured by BYK-Chemie Japan Co., Ltd. BYK-W903, BYK-W940 and the like.
  • Wetting and dispersing agents may be used alone or in combination of two or more.
  • the content of the silane coupling agent is not particularly limited, and may be about 1 to 5 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
  • the content of the dispersant (particularly the wetting and dispersing agent) is not particularly limited, and may be, for example, about 0.5 parts by mass to 5 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. .
  • the resin composition may contain a styrene oligomer.
  • the styrene oligomer according to the present embodiment is obtained by polymerizing at least one selected from the group consisting of styrene, styrene derivatives, and vinyltoluene, and has a number average molecular weight of 178 to 1,600 and an average number of aromatic rings of 2 to 14. , the total amount of 2 to 14 aromatic rings is 50% by mass or more, and the boiling point is 300° C. or more and does not have a branched structure.
  • the "styrene oligomer" used in this embodiment is distinguished from the above-mentioned "thermoplastic elastomer”.
  • styrene oligomers examples include styrene polymers, vinyltoluene polymers, ⁇ -methylstyrene polymers, vinyltoluene- ⁇ -methylstyrene polymers, and styrene- ⁇ -styrene polymers.
  • styrene polymer commercially available products may be used. Examples include FTR-8100 (manufactured by Mitsui Chemicals, Inc.) and FTR-8120 (manufactured by Mitsui Chemicals, Inc.).
  • examples of the vinyltoluene- ⁇ -methylstyrene polymer include Picotex LC (manufactured by Eastman Chemical Co.).
  • Examples of ⁇ -methylstyrene polymers include Crystalex 3070 (manufactured by Eastman Chemical Co.), Crystalex 3085 (manufactured by Eastman Chemical Co.), Crystalex (3100), Crystalex 5140 (manufactured by Eastman Chemical Co.) and FMR. -0100 (manufactured by Mitsui Chemicals, Inc.) and FMR-0150 (manufactured by Mitsui Chemicals, Inc.). Further, the styrene- ⁇ -styrene polymer includes FTR-2120 (manufactured by Mitsui Chemicals, Inc.). These styrene oligomers may be used alone or in combination of two or more.
  • the content of the styrene oligomer in the resin composition when it is contained, is 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the resin solid content of the resin composition. From the viewpoint of dielectric loss tangent and chemical resistance, it is preferably 5 parts by mass or more and 20 parts by mass or less, and may be 15 parts by mass or less.
  • the resin composition may contain only one type of styrene oligomer, or may contain two or more types thereof. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition may contain a flame retardant to improve flame resistance.
  • Known flame retardants can be used, for example, brominated epoxy resin, brominated polycarbonate, brominated polystyrene, brominated styrene, brominated phthalimide, tetrabromobisphenol A, pentabromobenzyl (meth)acrylate, pentabromo Halogen flame retardants such as toluene, tribromophenol, hexabromobenzene, decabromodiphenyl ether, bis-1,2-pentabromophenylethane, chlorinated polystyrene, chlorinated paraffin, red phosphorus, tricresyl phosphate, triphenyl phosphate , cresyl diphenyl phosphate, trixylenyl phosphate, trialkyl phosphate, dialkyl phosphate, tris(chloroethyl) phosphate, phospha
  • Silicone-based flame retardants such as flame retardants, silicone rubbers, and silicone resins can be used. These flame retardants may be used alone or in combination of two or more. Among these, phosphorus-based flame retardants are preferred, and 1,3-phenylenebis(2,6-dixylenyl phosphate) is particularly preferred because it hardly impairs low dielectric properties.
  • the phosphorus content in the resin composition is preferably 0.1% by mass to 5% by mass.
  • the content of the flame retardant when contained, is preferably 1 part by mass or more, more preferably 5 parts by mass or more, relative to 100 parts by mass of the resin solid content in the resin composition.
  • the upper limit of the content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and may be 15 parts by mass or less. Only one flame retardant may be used, or two or more flame retardants may be used. When two or more are used, the total amount is preferably within the above range.
  • the resin composition contains a thermoplastic elastomer ( hereinafter referred to as "other thermoplastic elastomer”), a curing accelerator, an organic solvent, and the like.
  • other thermoplastic elastomer a thermoplastic elastomer
  • the total amount of the polyphenylene ether compound other than the polyphenylene ether compound and the other thermoplastic elastomer is preferably 3% by mass or less, more preferably 1% by mass or less, based on the solid content of the resin. . With such a configuration, the effects of the present invention are exhibited more effectively.
  • the oxetane resin is not particularly limited, and examples thereof include oxetane, alkyloxetane (eg, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3-dimethyloxatane, etc.), 3-methyl- 3-Methoxymethyloxetane, 3,3-di(trifluoromethyl)perfluoxetane, 2-chloromethyloxetane, 3,3-bis(chloromethyl)oxetane, biphenyl type oxetane, OXT-101 (product of Toagosei Co., Ltd.) ), OXT-121 (a product of Toagosei Co., Ltd.), and the like. These oxetane resins may be used alone or in combination of two or more.
  • alkyloxetane eg, 2-methyloxetane, 2,2-d
  • the benzoxazine compound is not particularly limited as long as it is a compound having two or more dihydrobenzoxazine rings in one molecule.
  • Benzoxazine BF-BXZ product of Konishi Chemical Co., Ltd.
  • bisphenol S-type benzoxazine BS-BXZ product of Konishi Chemical Co., Ltd.
  • These benzoxazine compounds may be used alone or in combination of two or more.
  • thermoplastic elastomers refer to elastomers other than the thermoplastic elastomers described above.
  • Other thermoplastic elastomers include, for example, at least one selected from the group consisting of polyisoprene, polybutadiene, butyl rubber, ethylene propylene rubber, fluororubber, silicone rubber, hydrogenated compounds thereof, and alkyl compounds thereof.
  • at least one selected from the group consisting of polyisoprene, polybutadiene, butyl rubber, and ethylene propylene rubber is more preferable from the viewpoint of better compatibility with the polyphenylene ether compound.
  • the resin composition may contain a curing accelerator for appropriately adjusting the curing speed.
  • curing accelerators include those commonly used as curing accelerators such as maleimide compounds and epoxy resins. iron, nickel octylate, manganese octylate, etc.), phenolic compounds (e.g., phenol, xylenol, cresol, resorcinol, catechol, octylphenol, nonylphenol, etc.), alcohols (e.g., 1-butanol, 2-ethylhexanol, etc.), imidazole (for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4 , 5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole,
  • the resin composition may contain thermosetting resins, thermoplastic resins, various polymer compounds such as oligomers thereof, and various additives.
  • Additives include UV absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, flow control agents, lubricants, antifoaming agents, dispersants, and leveling agents. agents, brighteners, polymerization inhibitors, and the like. These additives may be used alone or in combination of two or more.
  • the prepreg may contain an organic solvent.
  • the resin composition according to the present embodiment is in a form (solution or varnish) in which at least part, preferably all of the various resin components described above are dissolved or compatible with an organic solvent.
  • the organic solvent is not particularly limited as long as it is a polar organic solvent or a non-polar organic solvent capable of dissolving or dissolving at least part, preferably all, of the various resin components described above. Examples of polar organic solvents include ketones.
  • nonpolar organic solvents include aromatic hydrocarbons (e.g., toluene, xylene etc.). These organic solvents may be used alone or in combination of two or more.
  • the prepreg according to this embodiment can be suitably used as an insulating layer of a printed wiring board.
  • the laminate is obtained by heating and pressurizing a laminate containing one or more prepregs according to the present embodiment and curing the prepregs.
  • the method and conditions for molding the laminate are not particularly limited, and general methods and conditions can be used.
  • a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, or the like can be used for molding.
  • the temperature is generally 100° C. to 300° C.
  • the pressure is 2 kgf/cm 2 to 100 kgf/cm 2
  • the heating time is generally 0.05 to 5 hours.
  • post-curing can be performed at a temperature of 150° C. to 300° C., if desired.
  • the temperature is preferably 200° C. to 250° C.
  • the pressure is 10 kgf/cm 2 to 40 kgf/cm 2
  • the heating time is 80 minutes to 130 minutes. More preferably, the temperature is 215° C. to 235° C., the pressure is 25 kgf/cm 2 to 35 kgf/cm 2 , and the heating time is 90 minutes to 120 minutes.
  • a printed wiring board has an insulating layer and a conductor layer, and the insulating layer includes a layer formed from the prepreg according to the present embodiment, that is, a cured product of the prepreg according to the present embodiment.
  • Such a printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited.
  • An example of a method for manufacturing a printed wiring board is shown below. First, a metal foil-clad laminate such as a copper-clad laminate is prepared by stacking one or more prepregs and placing a metal foil on one or both sides thereof. Next, the surface of the metal foil-clad laminate is etched to form an inner layer circuit, thereby producing an inner layer substrate.
  • the surface of the inner layer circuit of this inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, and then the required number of prepregs described above are laminated on the surface of the inner layer circuit, and a metal foil for the outer layer circuit is laminated on the outer side. Then, heat and pressurize to integrally mold. In this manner, a multilayer laminate is manufactured in which an insulating layer made of the cured prepreg is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after drilling holes for through holes and via holes in this multi-layer laminate, a plated metal film is formed on the walls of the holes for conducting the inner layer circuit and the metal foil for the outer layer circuit, and further the outer layer circuit. A printed wiring board is manufactured by etching the metal foil for the purpose to form an outer layer circuit.
  • the ratio of the resin composition, the dielectric constant, and the dielectric loss tangent are adjusted, so that the skew and transmission loss can be reduced, and the signal speed can be increased. can be done. Therefore, high frequencies can be handled.
  • the resulting organic phase was washed 5 times with 1300 g of water.
  • the electrical conductivity of the wastewater after the fifth washing was 5 ⁇ S/cm, and it was confirmed that the ionic compounds that could be removed were sufficiently removed by washing with water.
  • the organic phase was concentrated under reduced pressure and finally concentrated to dryness at 90° C. for 1 hour to obtain 331 g of the desired naphthol aralkyl cyanate ester compound (SNCN) (orange viscous substance).
  • the weight average molecular weight Mw of the obtained SNCN was 600.
  • the IR spectrum of SNCN showed an absorption at 2250 cm -1 (cyanate ester group) and no absorption of a hydroxy group.
  • Example 1 As the resin solid content of the resin composition, a maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) 15 in which R 51 and R 52 are hydrogen atoms and n 4 is 1 to 3 in the general formula (11) parts by mass, 35 parts by mass of the cyanate ester compound (SNCN) obtained in Synthesis Example 1, and in general formula (5), X is general formula (6) and -(YO)n 2 - is general formula ( 9) Terminal unsaturated group-modified polyphenylene ether (OPE-2St1200, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight 1187, vinyl group equivalent: 590 g / eq.) 10 parts by weight, terminal unsaturated group As the second component of the saturated group-modified polyphenylene ether, in the general formula (5), X is the general formula (6) and —(Y—O)n 2 — is the structural unit of the general formula (9) polymer
  • Terminal unsaturated group-modified polyphenylene ether (OPE-2St2200, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight 2200, vinyl group equivalent: 1100 g / eq.) 10 parts by mass, styrene-isoprene-styrene elastomer (SEPTON2104, stock 10 parts by mass of styrene content 65% manufactured by Kuraray Co., Ltd. and 20 parts by mass of ⁇ -methylstyrene polymer (Crystarex 3085, manufactured by Eastman Chemical Co.) were prepared.
  • SEPTON2104 stock 10 parts by mass of styrene content 65% manufactured by Kuraray Co., Ltd.
  • ⁇ -methylstyrene polymer (Crystarex 3085, manufactured by Eastman Chemical Co.) were prepared.
  • Example 2 A low dielectric glass cloth with a thickness of 19 ⁇ m was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Example 2) to the total amount of prepreg was 92.1% by volume. prepared a prepreg in the same manner as in Example 1.
  • Example 3 A low dielectric glass cloth with a thickness of 14 ⁇ m was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Example 3) to the total amount of prepreg was 95.1% by volume. prepared a prepreg in the same manner as in Example 1.
  • Example 4 As the resin solid content of the resin composition, the maleimide compound (MIR-5000, manufactured by Nippon Kayaku Co., Ltd.) represented by the general formula (15) is 40 parts by mass, and in the general formula (5), X is the general formula (6). Terminal unsaturated group-modified polyphenylene ether (OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc., number average molecular weight 2200, vinyl Basic equivalent: 1100 g/eq.) 35 parts by mass, and 25 parts by mass of a styrene-butadiene block copolymer (TR2250, manufactured by JSR Corporation, styrene content: 52%) were prepared.
  • OPE-2St2200 Terminal unsaturated group-modified polyphenylene ether
  • TR2250 styrene-butadiene block copolymer
  • This resin solid content was mixed and diluted with an organic solvent, methyl ethyl ketone, to obtain a varnish.
  • This varnish is impregnated and coated on a low-dielectric glass cloth having a thickness of 14 ⁇ m, which is a glass fiber base material, and dried by heating at 165° C. for 3 minutes using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.).
  • Got the prepreg The ratio of the resin composition (resin solid content in Example 4) to the total amount of prepreg was 95.1% by volume.
  • Example 5 Except that a low dielectric glass cloth with a thickness of 9 ⁇ m was used as the glass fiber base material and the ratio of the resin composition (resin solid content in Example 5) to the total amount of prepreg was 96.7% by volume. A prepreg was produced in the same manner as in 4.
  • Example 6 As the resin solid content of the resin composition, 10 maleimide compounds (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) in which R 51 and R 52 are hydrogen atoms and n 4 is 1 to 3 in the general formula (11) parts by mass, 30 parts by mass of the cyanate ester compound (SNCN) obtained in Synthesis Example 1, and in general formula (5), X is general formula (6) and -(YO)n 2 - is general formula ( 60 parts by mass of a polyphenylene ether compound (OPE-2St1200, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1187, vinyl group equivalent: 590 g/eq.) obtained by polymerizing the structural units of 9) was prepared.
  • a polyphenylene ether compound OPE-2St1200, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1187, vinyl group equivalent: 590 g/eq.
  • Comparative example 1 A low dielectric glass cloth with a thickness of 80 ⁇ m was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Comparative Example 1) to the total amount of prepreg was set to 69.3% by volume. prepared a prepreg in the same manner as in Example 1.
  • Comparative example 2 A low dielectric glass cloth with a thickness of 49 ⁇ m was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Comparative Example 2) to the total amount of prepreg was set to 78.8% by volume. prepared a prepreg in the same manner as in Example 1.
  • Comparative Example 3 A low dielectric glass cloth with a thickness of 43 ⁇ m was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Comparative Example 3) to the total amount of prepreg was set to 80.9% by volume. prepared a prepreg in the same manner as in Example 1.
  • Example 4 The same varnish as in Example 1 was applied to one side of a 12 ⁇ m thick copper foil (3EC-M3-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd.) using a bar coater to obtain a copper-coated resin sheet. Using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.), the obtained resin sheet with copper was dried by heating at 130° C. for 5 minutes to obtain a semi-cured resin sheet with copper having a resin thickness of 25 ⁇ m. rice field. The ratio of the resin composition (resin solid content + filler in Comparative Example 4) to the total amount of the resin sheet was 100% by volume.
  • Example 5 The same varnish as in Example 4 was applied to one side of a 12 ⁇ m thick copper foil (3EC-M3-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd.) using a bar coater to obtain a resin sheet with copper. Using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.), the obtained resin sheet with copper was dried by heating at 130° C. for 5 minutes to obtain a semi-cured resin sheet with copper having a resin thickness of 25 ⁇ m. rice field. The ratio of the resin composition (resin solid content in Comparative Example 5) to the total amount of the resin sheet was 100% by volume.
  • Wiring boards were prepared by etching only one side of the 0.1 mm-thick copper-clad laminate obtained in each example and each comparative example to form a microstrip line with a circuit length of 10 cm, and the transmission characteristics were evaluated.
  • a high-frequency signal was transmitted using a network analyzer N5227B manufactured by Keysight Technologies, and the transmission loss at 20 GHz was measured. The results obtained are shown in Tables 1 and 2.
  • the skew can be reduced and the dielectric constant can be decreased by setting the ratio of the resin composition to the total amount of the prepreg to 81% by volume or more. . Moreover, it was found that warping can be sufficiently reduced by setting the ratio of the resin composition to the total amount of the prepreg to 98% by volume or less. That is, it was found that the ratio of the resin composition to the total amount of the prepreg is preferably in the range of 81% by volume or more and 98% by volume or less.
  • the dielectric constant at 10 GHz after curing of the prepreg can be 3.3 or less, and the dielectric loss tangent at 10 GHz after curing of the prepreg can be 0.004 or less. can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] The present invention provides: a prepreg which is capable of reducing skew and transmission loss; a laminate; and a printed wiring board. [Solution] The present invention provides a prepreg which is obtained by impregnating or coating a glass fiber base material with a resin composition that contains a thermosetting compound, wherein the proportion of the resin composition with respect to the total amount of the prepreg is within the range from 81% by volume to 98% by volume. The skew is able to be reduced by setting the proportion of the resin composition to 81% by volume or more. Meanwhile, if the proportion of the resin composition exceeds 98% by volume, warp after curing becomes large. After the curing, the relative dielectric constant at 10 GHz is 3.3 or less, and the dielectric loss tangent is 0.004 or less.

Description

プリプレグ、積層板、及び、プリント配線板Prepregs, laminates and printed wiring boards
 本発明は、プリプレグ、並びに、それを用いた積層板及びプリント配線板に関する。 The present invention relates to prepregs, and laminates and printed wiring boards using them.
 近年、情報通信において用いられるデータ通信の高速化及び大容量化が急激に進められている。そのため、情報通信の電子機器では、高周波に対応したプリント配線板が求められている。プリント配線板に用いられる絶縁材料としては、例えば、ガラス繊維に樹脂を含侵又は塗布したプリプレグが広く用いられている。しかし、ガラス繊維と樹脂の誘電特性が異なるため、ガラス繊維の粗密に起因して信号の遅延時間(伝送速度)にばらつきが生じてしまう。伝送速度が高速化するに伴い、差動配線間で生じる伝搬遅延時間差(スキュー;SKEW)の影響は大きくなっており、スキューは伝送特性が劣化する原因となっている。また、高周波に対応するには伝送損失を小さくする必要もある。 In recent years, there has been rapid progress in increasing the speed and capacity of data communications used in information communications. Therefore, electronic devices for information and communication require printed wiring boards that are compatible with high frequencies. As an insulating material used for printed wiring boards, for example, a prepreg obtained by impregnating or applying a resin to glass fiber is widely used. However, since the glass fiber and the resin have different dielectric properties, variations in the signal delay time (transmission speed) occur due to the density of the glass fiber. As the transmission speed increases, the influence of the propagation delay time difference (skew; SKEW) occurring between the differential wirings increases, and the skew causes the deterioration of the transmission characteristics. In addition, it is necessary to reduce transmission loss in order to cope with high frequencies.
国際公開第2019/230945号公報International Publication No. 2019/230945
 本発明は、このような問題に基づきなされたものであり、スキュー及び伝送損失を低減することができるプリプレグ、積層板、及び、プリント配線板を提供することを目的とする。 The present invention has been made based on such problems, and aims to provide a prepreg, a laminate, and a printed wiring board that can reduce skew and transmission loss.
 なお、特許文献1には、信号の遅延時間のばらつきを低減することを目的としたプリプレグが記載されている。しかしながら、特許文献1に記載のプリプレグは、ガラス繊維と導体配線との間に六方晶窒化ホウ素を介在させることにより、ガラス繊維の高い誘電率が導体配線のインピーダンスに与える影響を小さくし、それによりスキューを低減するものであり、本願発明とは具体的な構成が異なっている。 Note that Patent Document 1 describes a prepreg for the purpose of reducing variations in signal delay time. However, the prepreg described in Patent Document 1 reduces the influence of the high dielectric constant of the glass fiber on the impedance of the conductor wiring by interposing hexagonal boron nitride between the glass fiber and the conductor wiring, thereby This is intended to reduce skew, and the specific configuration differs from that of the present invention.
 本発明は以下の通りである。
[1]
 熱硬化性化合物を含む樹脂組成物がガラス繊維基材に含浸又は塗布されたプリプレグであって、前記プリプレグの総量に対する、前記樹脂組成物の比率が81体積%以上98体積%以下の範囲内であり、硬化後における10GHzでの比誘電率が3.3以下、誘電正接が0.004以下であるプリプレグ。
[2]
 前記ガラス繊維基材がEガラス、Dガラス、Sガラス、Tガラス、Qガラス、Lガラス、NEガラス、及び、HMEガラスからなる群より選択される少なくとも1種のガラス繊維を含む、[1]に記載のプリプレグ。
[3]
 前記熱硬化性化合物が、末端不飽和基変性ポリフェニレンエーテルを含む、[1]に記載のプリプレグ。
[4]
 前記末端不飽和基変性ポリフェニレンエーテルの含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して1~40質量部である、[3]に記載のプリプレグ。
[5]
 前記熱硬化性化合物が、マレイミド化合物、シアン酸エステル化合物、エポキシ化合物、及びフェノール化合物、からなる群より選択される1種類以上を含む、[1]に記載のプリプレグ。
[6]
 前記樹脂組成物が、さらに熱可塑性エラストマーを含む、[1]に記載のプリプレグ。
[7]
 前記熱可塑性エラストマーの含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して1~45質量部である、[6]に記載のプリプレグ。
[8]
 前記樹脂組成物が、さらに充填材を含む、[1]に記載のプリプレグ。
[9]
 前記充填材の含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して50~1600質量部である、[8]に記載のプリプレグ。
[10]
 [1]に記載のプリプレグの硬化物を含む、積層板。
[11]
 絶縁層と、導体層とを有するプリント配線板であって、前記絶縁層が、[1]に記載のプリプレグの硬化物を含む、プリント配線板。
The present invention is as follows.
[1]
A prepreg in which a glass fiber substrate is impregnated or coated with a resin composition containing a thermosetting compound, wherein the ratio of the resin composition to the total amount of the prepreg is 81% by volume or more and 98% by volume or less. A prepreg having a relative permittivity of 3.3 or less at 10 GHz and a dielectric loss tangent of 0.004 or less after curing.
[2]
The glass fiber base material contains at least one glass fiber selected from the group consisting of E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, and HME glass [1] The prepreg described in .
[3]
The prepreg according to [1], wherein the thermosetting compound contains terminal unsaturated group-modified polyphenylene ether.
[4]
The prepreg according to [3], wherein the content of the terminal unsaturated group-modified polyphenylene ether is 1 to 40 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
[5]
The prepreg according to [1], wherein the thermosetting compound contains one or more selected from the group consisting of maleimide compounds, cyanate ester compounds, epoxy compounds, and phenol compounds.
[6]
The prepreg according to [1], wherein the resin composition further contains a thermoplastic elastomer.
[7]
The prepreg according to [6], wherein the content of the thermoplastic elastomer is 1 to 45 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
[8]
The prepreg according to [1], wherein the resin composition further contains a filler.
[9]
The prepreg according to [8], wherein the content of the filler is 50 to 1600 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
[10]
A laminate comprising a cured product of the prepreg according to [1].
[11]
A printed wiring board having an insulating layer and a conductor layer, wherein the insulating layer contains the cured prepreg of [1].
 本発明によれば、スキュー及び伝送損失を低減することができる。よって、高周波に対応することができる。 According to the present invention, skew and transmission loss can be reduced. Therefore, high frequencies can be handled.
樹脂組成物の比率と比誘電率との関係を表す図である。It is a figure showing the relationship between the ratio of a resin composition, and a dielectric constant. 樹脂組成物の比率とスキューとの関係を表す図である。It is a figure showing the relationship between the ratio and skew of a resin composition. 樹脂組成物の比率と反りとの関係を表す図である。It is a figure showing the relationship between the ratio and curvature of a resin composition.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention. is possible.
[プリプレグ]
 本実施形態に係るプリプレグは、熱硬化性化合物を含む樹脂組成物がガラス繊維基材に含浸又は塗布されたものである。プリプレグの総量に対する樹脂組成物の比率は、81体積%以上98体積%以下の範囲内である。プリプレグの総量に対する樹脂組成物の比率を81体積%以上とすることによりスキューを低減することができ、高周波に対応することができるからである。一方、プリプレグの総量に対する樹脂組成物の比率が98体積%を超えると硬化後における反りが大きくなり、プリント配線板に適さないからである。プリプレグの総量に対する樹脂組成物の比率は、85体積%以上とすればより好ましく、86体積%以上とすれば更に好ましい。また、プリプレグの総量に対する樹脂組成物の比率は、96体積%以下とすればより好ましく、95体積%以下とすれば更に好ましい。
[Prepreg]
The prepreg according to the present embodiment is obtained by impregnating or coating a glass fiber base material with a resin composition containing a thermosetting compound. The ratio of the resin composition to the total amount of prepreg is in the range of 81% by volume or more and 98% by volume or less. This is because skew can be reduced by setting the ratio of the resin composition to the total amount of the prepreg to be 81% by volume or more, and it is possible to cope with high frequencies. On the other hand, if the ratio of the resin composition to the total amount of the prepreg exceeds 98% by volume, the warp after curing becomes large, which is not suitable for printed wiring boards. The ratio of the resin composition to the total amount of the prepreg is more preferably 85% by volume or more, and even more preferably 86% by volume or more. Also, the ratio of the resin composition to the total amount of the prepreg is more preferably 96% by volume or less, and even more preferably 95% by volume or less.
 プリプレグの硬化後における10GHzでの比誘電率は3.3以下である。比誘電率が低い方が信号速度を速くすることができ、高周波に対応することができるからである。プリプレグの硬化後における10GHzでの比誘電率は3.2未満とすればより好ましい。なお、プリプレグの硬化後における10GHzでの比誘電率の下限値は特に制限されないが、例えば、2.6以上とすることができる。また、プリプレグの硬化後における10GHzでの誘電正接は0.004以下である。誘電正接が小さい方が伝送損失を低減することができ、高周波に対応することができるからである。プリプレグの硬化後における10GHzでの誘電正接の下限値は特に制限されないが、例えば、0.002以上とすることができる。 The dielectric constant at 10 GHz after curing of the prepreg is 3.3 or less. This is because the lower the dielectric constant, the higher the signal speed and the higher the frequency. More preferably, the dielectric constant at 10 GHz after curing of the prepreg is less than 3.2. Although the lower limit of the dielectric constant at 10 GHz after curing the prepreg is not particularly limited, it can be set to 2.6 or more, for example. In addition, the dielectric loss tangent at 10 GHz after curing of the prepreg is 0.004 or less. This is because a smaller dielectric loss tangent can reduce transmission loss and can cope with high frequencies. Although the lower limit of the dielectric loss tangent at 10 GHz after curing the prepreg is not particularly limited, it can be, for example, 0.002 or more.
 このプリプレグは、例えば、ガラス繊維基材に樹脂組成物を含浸又は塗布させた後、120~220℃で2~15分程度乾燥させる方法等によって半硬化(Bステージ化)させることにより得られる。プリプレグの総量に対する樹脂組成物の比率は、半硬化後の比率であり、樹脂組成物には樹脂組成物の硬化物も含む。なお、後述するように、樹脂組成物には充填材も含まれる。 This prepreg can be obtained, for example, by impregnating or applying a resin composition to a glass fiber base material, and then semi-curing (to B-stage) by drying at 120 to 220°C for about 2 to 15 minutes. The ratio of the resin composition to the total amount of the prepreg is the ratio after semi-curing, and the resin composition includes a cured product of the resin composition. As will be described later, the resin composition also contains a filler.
<ガラス繊維基材>
 ガラス繊維基材は、例えば、Eガラス、Dガラス、Sガラス、Tガラス、Qガラス、Lガラス、NEガラス、及び、HMEガラスからなる群より選択される少なくとも1種のガラス繊維を含んでいることが好ましい。繊維基材の形態としては、特に限定されず、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等が挙げられる。中でも、寸法安定性の観点から、超開繊処理、目詰め処理を施した織布が好ましく、吸湿耐熱性の観点から、エポキシシラン処理、アミノシラン処理などのシランカップリング剤等により表面処理した織布が好ましい。ガラス繊維基材の厚みは特に限定されず、例えば、9μm~32μmとすることができる。
<Glass fiber base material>
The glass fiber base material contains, for example, at least one glass fiber selected from the group consisting of E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, and HME glass. is preferred. The form of the fiber base material is not particularly limited, and examples thereof include woven fabrics, nonwoven fabrics, rovings, chopped strand mats, surfacing mats, and the like. Among them, from the viewpoint of dimensional stability, woven fabrics subjected to super-opening treatment and stuffing treatment are preferable, and from the viewpoint of moisture absorption and heat resistance, woven fabrics surface-treated with a silane coupling agent such as epoxysilane treatment and aminosilane treatment. Cloth is preferred. The thickness of the glass fiber substrate is not particularly limited, and can be, for example, 9 μm to 32 μm.
<樹脂組成物>
(末端不飽和基変性ポリフェニレンエーテル)
 樹脂組成物は、熱硬化性化合物として、末端不飽和基変性ポリフェニレンエーテルを含むことができる。末端不飽和基変性ポリフェニレンエーテルは、一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)において、Xはアリール基を示し、-(Y-О)n-はポリフェニレンエーテル部分を示し、R,R,Rは各々独立して水素原子、アルキル基、アルケニル基又はアルキニル基を示し、nは1~100の整数を示し、nは1~6の整数を示し、nは1~4の整数を示す。
<Resin composition>
(Terminal unsaturated group-modified polyphenylene ether)
The resin composition can contain a terminal unsaturated group-modified polyphenylene ether as a thermosetting compound. A terminal unsaturated group-modified polyphenylene ether is represented by general formula (1).
Figure JPOXMLDOC01-appb-C000001
In general formula (1), X represents an aryl group, —(Y—O)n 2 — represents a polyphenylene ether moiety, and R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl or an alkynyl group, n2 is an integer of 1-100, n1 is an integer of 1-6, and n3 is an integer of 1-4.
 末端不飽和基変性ポリフェニレンエーテルを含有することにより、優れた低誘電率性や低誘電正接性が得られ、また、成形性を高めることができる。末端不飽和基変性ポリフェニレンエーテルは、数平均分子量が1000以上7000以下であることが好ましい。数平均分子量を7000以下とすることで成形時の流動性を確保できる。また数平均分子量を1000以上とすることで、ポリフェニレンエーテル樹脂本来の優れた誘電特性(低誘電率性、低誘電正接性)と耐熱性が得られる。その中でも、より優れた流動性、耐熱性、及び誘電特性を得るためには、末端不飽和基変性ポリフェニレンエーテルの数平均分子量が1100以上5000以下であるとよい。より好ましくは、末端不飽和基変性ポリフェニレンエーテルの数平均分子量が4500以下であるとよく、さらに好ましくは、末端不飽和基変性ポリフェニレンエーテルの数平均分子量が3000以下である。数平均分子量は、定法に従ってゲル浸透クロマトグラフィーを使用して測定される。 By containing the terminal unsaturated group-modified polyphenylene ether, excellent low dielectric constant and low dielectric loss tangent can be obtained, and moldability can be improved. The terminal unsaturated group-modified polyphenylene ether preferably has a number average molecular weight of 1,000 or more and 7,000 or less. By setting the number average molecular weight to 7000 or less, fluidity during molding can be ensured. Moreover, by setting the number average molecular weight to 1000 or more, excellent dielectric properties (low dielectric constant and low dielectric loss tangent) and heat resistance intrinsic to polyphenylene ether resin can be obtained. Among them, the number average molecular weight of the terminal unsaturated group-modified polyphenylene ether is preferably 1,100 or more and 5,000 or less in order to obtain more excellent fluidity, heat resistance, and dielectric properties. More preferably, the unsaturated terminal group-modified polyphenylene ether has a number average molecular weight of 4,500 or less, and even more preferably, the terminal unsaturated group-modified polyphenylene ether has a number average molecular weight of 3,000 or less. Number average molecular weights are measured using gel permeation chromatography according to standard methods.
 末端不飽和基変性ポリフェニレンエーテルは、最低溶融粘度が50000Pa・s以下のものが好ましい。最低溶融粘度を50000Pa・s以下とすることで、流動性が確保でき、多層成形が可能となる。最低溶融粘度の下限値は特に定めるものではないが、例えば、1000Pa・s以上であってもよい。 The terminal unsaturated group-modified polyphenylene ether preferably has a minimum melt viscosity of 50000 Pa·s or less. By setting the minimum melt viscosity to 50,000 Pa·s or less, fluidity can be secured, and multi-layer molding becomes possible. Although the lower limit of the lowest melt viscosity is not particularly defined, it may be, for example, 1000 Pa·s or more.
 末端不飽和基変性ポリフェニレンエーテルは、以下の一般式(2)で表される構成単位の重合体を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、R401,R402,R403,R404は、各々独立に炭素数6以下のアルキル基、アリール基、ハロゲン原子、又は水素原子を表す。
The terminal unsaturated group-modified polyphenylene ether preferably contains a polymer of structural units represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
In general formula (2), R 401 , R 402 , R 403 and R 404 each independently represent an alkyl group having 6 or less carbon atoms, an aryl group, a halogen atom or a hydrogen atom.
 前記重合体は、一般式(3)及び一般式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位をさらに含んでもよい。
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、R405,R406,R407,R411,R412は、各々独立に炭素数6以下のアルキル基又はフェニル基を表す。R408,R409,R410は、各々独立に水素原子、炭素数6以下のアルキル基又はフェニル基を表す。
Figure JPOXMLDOC01-appb-C000004
 一般式(4)中、R413,R414,R415,R416,R417,R418,R419,R420は、各々独立に水素原子、炭素数6以下のアルキル基又はフェニル基を表す。-A-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。
 一般式(1)との関係でいうと、上記一般式(2)、(3)、(4)は一般式(1)の-(Y-O)-であることが好ましい。-(Y-O)-はnの数(1~100)の繰り返し単位を有する。
The polymer may further contain at least one structural unit selected from the group consisting of structural units represented by general formulas (3) and (4).
Figure JPOXMLDOC01-appb-C000003
In general formula (3), R 405 , R 406 , R 407 , R 411 and R 412 each independently represent an alkyl group having 6 or less carbon atoms or a phenyl group. R 408 , R 409 and R 410 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
Figure JPOXMLDOC01-appb-C000004
In general formula (4), R 413 , R 414 , R 415 , R 416 , R 417 , R 418 , R 419 , and R 420 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. . -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
In relation to general formula (1), the above general formulas (2), (3) and (4) are preferably -(YO)- in general formula (1). -(YO)- has n2 number (1 to 100) repeating units.
 一般式(1)中、Xはアリール基(芳香族基)を示し、-(Y-O)n-はポリフェニレンエーテル部分を示し、R,R,Rは、各々独立に水素原子、アルキル基、アルケニル基又はアルキニル基を示し、nは1~100の整数を示し、nは1~6の整数を示し、nは1~4の整数を示す。好ましくは、nは1以上4以下の整数であるとよく、さらに好ましくは、nは1又は2であるとよく、理想的にはnは1であるとよい。また、好ましくは、nは1以上3以下の整数であるとよく、さらに好ましくは、nは1又は2であるとよく、理想的にはnは2であるとよい。 In general formula (1), X represents an aryl group (aromatic group), —(Y—O)n 2 — represents a polyphenylene ether moiety, and R 1 , R 2 and R 3 each independently represent a hydrogen atom. , an alkyl group, an alkenyl group or an alkynyl group, n2 is an integer of 1 to 100, n1 is an integer of 1 to 6, and n3 is an integer of 1 to 4. Preferably, n1 is an integer of 1 or more and 4 or less, more preferably n1 is 1 or 2, and ideally n1 is 1. Also, n3 is preferably an integer of 1 or more and 3 or less, more preferably 1 or 2, and ideally n3 is 2.
 一般式(1)のXにおけるアリール基としては、芳香族炭化水素基を用いることができる。具体的には、ベンゼン環構造、ビフェニル構造、インデニル環構造、及びナフタレン環構造から選ばれた1種の環構造から、n個の水素原子を除いた基(例えば、フェニル基、ビフェニル基、インデニル基、及びナフチル基)を用いることができ、好ましくはビフェニル基を用いるとよい。ここで、アリール基は、上記のアリール基が酸素原子で結合されているジフェニルエーテル基等や、カルボニル基で結合されたベンゾフェノン基等、アルキレン基により結合された2,2-ジフェニルプロパン基等を含んでもよい。また、アリール基は、アルキル基(好適には炭素数1~6のアルキル基、特にメチル基)、アルケニル基、アルキニル基やハロゲン原子など、一般的な置換基によって置換されていてもよい。但し、前記「アリール基」は、酸素原子を介してポリフェニレンエーテル部分に置換されているので、一般的置換基の数の限界は、ポリフェニレンエーテル部分の数に依存する。 An aromatic hydrocarbon group can be used as the aryl group for X in the general formula (1). Specifically, a group obtained by removing n three hydrogen atoms from one ring structure selected from a benzene ring structure, a biphenyl structure, an indenyl ring structure, and a naphthalene ring structure (e.g., a phenyl group, a biphenyl group, indenyl group and naphthyl group) can be used, preferably a biphenyl group. Here, the aryl group includes a diphenyl ether group in which the above aryl group is bonded via an oxygen atom, a benzophenone group in which the aryl group is bonded via a carbonyl group, and a 2,2-diphenylpropane group bonded via an alkylene group. It's okay. In addition, the aryl group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, especially a methyl group), an alkenyl group, an alkynyl group or a halogen atom. However, since the "aryl group" is substituted on the polyphenylene ether moiety through an oxygen atom, the limit on the number of general substituents depends on the number of polyphenylene ether moieties.
 末端不飽和基変性ポリフェニレンエーテルとしては、下記一般式(5)の構造で表される化合物を含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(5)中、Xはアリール基(芳香族基)であり、-(Y-O)n-は、それぞれ、ポリフェニレンエーテル部分を示し、nは、それぞれ、1~100の整数を示す。-(Y-O)n-及びnは、一般式(1)におけるものと同義である。nの異なる化合物を複数種含んでいてもよい。
The terminal unsaturated group-modified polyphenylene ether particularly preferably contains a compound represented by the structure of the following general formula (5).
Figure JPOXMLDOC01-appb-C000005
In general formula (5), X is an aryl group (aromatic group), -(Y-O)n 2 - each represents a polyphenylene ether moiety, and n 2 each represents an integer of 1 to 100. show. —(YO)n 2 — and n 2 have the same meanings as in general formula (1). It may contain a plurality of different compounds of n2 .
 一般式(1)及び一般式(5)におけるXは、一般式(6)、一般式(7)、又は一般式(8)であることが好ましく、一般式(1)及び一般式(5)における-(Y-O)n-が、一般式(9)若しくは一般式(10)が配列した構造であるか、又は一般式(9)と一般式(10)がランダムに配列した構造がより好ましい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 一般式(7)中、R421,R422,R423,R424は、各々独立に水素原子又はメチル基を表す。-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。
Figure JPOXMLDOC01-appb-C000008
 一般式(8)中、-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
X in general formula (1) and general formula (5) is preferably general formula (6), general formula (7), or general formula (8), and general formula (1) and general formula (5) -(YO)n 2 - in is a structure in which general formula (9) or general formula (10) is arranged, or a structure in which general formula (9) and general formula (10) are arranged randomly more preferred.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
In general formula (7), R 421 , R 422 , R 423 and R 424 each independently represent a hydrogen atom or a methyl group. -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000008
In general formula (8), -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 一般式(5)で表される構造を有する末端不飽和基変性ポリフェニレンエーテルの製造方法は、特に限定されるものではなく、例えば、2官能フェノール化合物と1官能フェノール化合物を酸化カップリングさせて得られる2官能フェニレンエーテルオリゴマーの末端フェノール性水酸基をビニルベンジルエーテル化することで製造することができる。また、このような末端不飽和基変性ポリフェニレンエーテルは市販品を用いることができ、例えば、三菱ガス化学株式会社製OPE-2St1200、OPE-2st2200を好適に使用することができる。 The method for producing a terminal unsaturated group-modified polyphenylene ether having a structure represented by the general formula (5) is not particularly limited, for example, by oxidative coupling of a bifunctional phenol compound and a monofunctional phenol compound. It can be produced by vinylbenzyl etherifying the terminal phenolic hydroxyl group of the bifunctional phenylene ether oligomer obtained. Moreover, such terminal unsaturated group-modified polyphenylene ethers can be commercially available products, for example, OPE-2St1200 and OPE-2st2200 manufactured by Mitsubishi Gas Chemical Company, Inc. can be preferably used.
 樹脂組成物における末端不飽和基変性ポリフェニレンエーテルの含有量は、含有する場合、樹脂組成物の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましく、15質量部以上であることが一層好ましく、20質量部以上であることがより一層好ましい。また、この含有量の上限値としては、70質量部以下であることが好ましく、65質量部以下であることがより好ましく、60質量部以下であってもよい。このような範囲とすることにより、効果的に、低誘電率性、低誘電正接性及び良好な成形性を達成する傾向にある。樹脂組成物は、末端不飽和基変性ポリフェニレンエーテルを、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The content of the terminal unsaturated group-modified polyphenylene ether in the resin composition, when it is contained, is preferably 1 part by mass or more, and is 5 parts by mass or more with respect to 100 parts by mass of the resin solid content of the resin composition. is more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, and even more preferably 20 parts by mass or more. The upper limit of the content is preferably 70 parts by mass or less, more preferably 65 parts by mass or less, and may be 60 parts by mass or less. Such a range tends to effectively achieve a low dielectric constant, a low dielectric loss tangent and good moldability. The resin composition may contain only one type of terminal unsaturated group-modified polyphenylene ether, or may contain two or more types thereof. When two or more types are included, the total amount is preferably within the above range.
 なお、本発明において「樹脂組成物中の樹脂固形分」とは、特に断りのない限り、樹脂組成物における、充填材、硬化促進剤、及び、添加剤を除いた成分をいい、樹脂固形分100質量部とは、樹脂組成物における充填材、硬化促進剤、及び、添加剤を除いた成分の総量が100質量部であることをいうものとする。 In the present invention, unless otherwise specified, the term "resin solid content in the resin composition" refers to the components of the resin composition excluding fillers, curing accelerators, and additives, and the resin solid content 100 parts by mass means that the total amount of components excluding fillers, curing accelerators, and additives in the resin composition is 100 parts by mass.
(マレイミド化合物)
 樹脂組成物は、熱硬化性化合物として、マレイミド化合物を含むことができる。マレイミド化合物は、分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、4,4’-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、フェニルメタンマレイミド、o-フェニレンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、o-フェニレンビスシトラコンイミド、m-フェニレンビスシトラコンイミド、p-フェニレンビスシトラコンイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3’-ジエチル-5,5’-ジメチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、4,4’-ジフェニルメタンビスシトラコンイミド、2,2-ビス[4-(4-シトラコンイミドフェノキシ)フェニル]プロパン、ビス(3,5-ジメチル-4-シトラコンイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-シトラコンイミドフェニル)メタン、ビス(3,5-ジエチル-4-シトラコンイミドフェニル)メタン、一般式(11)、一般式(12)、一般式(13)、一般式(14)、一般式(15)、及び、一般式(16)で表されるマレイミド化合物等が挙げられる。
(maleimide compound)
The resin composition can contain a maleimide compound as a thermosetting compound. The maleimide compound is a compound having one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) maleimide groups in the molecule. If so, it is not particularly limited. Specific examples include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 4,4′-diphenylmethanebismaleimide, bis(3,5-dimethyl-4-maleimidophenyl) Methane, bis(3,5-diethyl-4-maleimidophenyl)methane, phenylmethanemaleimide, o-phenylenebismaleimide, m-phenylenebismaleimide, p-phenylenebismaleimide, o-phenylenebiscitraconimide, m-phenylenebis Citraconimide, p-phenylenebiscitraconimide, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, 3,3'-diethyl-5,5'-dimethyl-4,4'-diphenylmethanebis Maleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide-(2,2,4-trimethyl)hexane, 4,4'-diphenyletherbismaleimide, 4,4'-diphenylsulfonebismaleimide , 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, 4,4'-diphenylmethanebiscitraconimide, 2,2-bis[4-(4-citraconimide phenoxy)phenyl]propane, bis(3,5-dimethyl-4-citraconimidophenyl)methane, bis(3-ethyl-5-methyl-4-citraconimidophenyl)methane, bis(3,5-diethyl-4- Citraconimidophenyl)methane, maleimide compounds represented by general formula (11), general formula (12), general formula (13), general formula (14), general formula (15), and general formula (16), etc. is mentioned.
Figure JPOXMLDOC01-appb-C000011
 一般式(11)中、R51,R52は各々独立に、水素原子又はメチル基を示し、好ましくは水素原子である。また、一般式(11)中、nは1以上の整数を示し、nの上限値は、通常は10であり、有機溶剤への溶解性の観点から、nの上限値は、好ましくは7であり、より好ましくは5である。一般式(11)で示される化合物は、nが異なる2種以上の化合物を含んでいても良い。
Figure JPOXMLDOC01-appb-C000011
In general formula (11), R 51 and R 52 each independently represent a hydrogen atom or a methyl group, preferably a hydrogen atom. Further, in general formula (11), n 4 represents an integer of 1 or more, the upper limit of n 4 is usually 10, and from the viewpoint of solubility in organic solvents, the upper limit of n 4 is preferably is 7, more preferably 5. The compound represented by the general formula (11) may contain two or more compounds with different n4 .
Figure JPOXMLDOC01-appb-C000012
 一般式(12)中、R601,R602,R603,R604,R605,R606,R607,R608,R609,R610,R611,R612は各々独立して水素原子、炭素数が1~8のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等)、又はフェニル基を表す。これらの中でも、水素原子、メチル基、及びフェニル基からなる群より選択される基であることが好ましく、水素原子及びメチル基の一方であることがより好ましく、水素原子であることがさらに好ましい。
 また、一般式(12)中、1≦n≦10の整数である。nは、溶剤溶解性がより一層優れる観点から、4以下であることが好ましく、3以下であることがより好ましく、2以下であることがさらに好ましい。一般式(12)で示される化合物は、nが異なる2種以上の化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000012
In general formula (12), R 601 , R 602 , R 603 , R 604 , R 605 , R 606 , R 607 , R 608 , R 609 , R 610 , R 611 and R 612 are each independently a hydrogen atom; an alkyl group having 1 to 8 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, etc.), or a phenyl group; show. Among these, a group selected from the group consisting of a hydrogen atom, a methyl group and a phenyl group is preferred, one of a hydrogen atom and a methyl group is more preferred, and a hydrogen atom is even more preferred.
Moreover, it is an integer of 1<= n5 <=10 in general formula (12). n5 is preferably 4 or less, more preferably 3 or less, and even more preferably 2 or less from the viewpoint of further excellent solvent solubility. The compound represented by the general formula (12) may contain two or more compounds with different n5 .
Figure JPOXMLDOC01-appb-C000013
 一般式(13)中、R71,R72,R73,R74は各々独立に水素原子、メチル基又はエチル基を示し、R81,R82は各々独立に水素原子又はメチル基を示す。低誘電率性及び低誘電正接性により一層優れる観点から、R71,R72,R73,R74はメチル基又はエチル基であることが好ましい。そのような化合物として、例えば、3,3’-ジエチル-5,5’-ジメチル-4,4’-ジフェニルメタンビスマレイミドが挙げられる。
Figure JPOXMLDOC01-appb-C000013
In general formula (13), R 71 , R 72 , R 73 and R 74 each independently represent a hydrogen atom, a methyl group or an ethyl group, and R 81 and R 82 each independently represent a hydrogen atom or a methyl group. R 71 , R 72 , R 73 , and R 74 are preferably methyl groups or ethyl groups from the standpoint of even better low dielectric constant and low dielectric loss tangent properties. Such compounds include, for example, 3,3'-diethyl-5,5'-dimethyl-4,4'-diphenylmethanebismaleimide.
Figure JPOXMLDOC01-appb-C000014
 一般式(14)中、R91,R92は各々独立に水素原子、メチル基又はエチル基を示す。低誘電率性及び低誘電正接性により一層優れる観点から、R91,R92はメチル基であることが好ましい。そのような化合物として、例えば、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパンが挙げられる。
Figure JPOXMLDOC01-appb-C000014
In general formula (14), R 91 and R 92 each independently represent a hydrogen atom, a methyl group or an ethyl group. R 91 and R 92 are preferably methyl groups from the standpoint of further superior low dielectric constant and low dielectric loss tangent properties. Such compounds include, for example, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane.
Figure JPOXMLDOC01-appb-C000015
 一般式(15)中、nは1以上の整数を示す。一般式(15)で表される化合物は、nが異なる2種以上の化合物を含んでいても良い。
Figure JPOXMLDOC01-appb-C000015
In general formula (15), n6 represents an integer of 1 or more. The compound represented by the general formula (15) may contain two or more compounds with different n6 .
Figure JPOXMLDOC01-appb-C000016
 一般式(16)中、RM1、RM2、RM3、およびRM4は、それぞれ独立に、水素原子または有機基を表す。RM5およびRM6はそれぞれ独立に、水素原子またはアルキル基を表す。Arは2価の芳香族基を表す。Aは、4~6員環の脂環基である。RM7およびRM8は、それぞれ独立に、アルキル基である。mxは1または2であり、lxは0または1である。RM9およびRM10はそれぞれ独立に、水素原子またはアルキル基を表す。RM11、RM12、RM13、およびRM14は、それぞれ独立に、水素原子または有機基を表す。nxは1以上20以下の整数を表す。一般式(16)で表される化合物は、nxが異なる2種以上の化合物を含んでいても良い。
Figure JPOXMLDOC01-appb-C000016
In general formula (16), R M1 , R M2 , R M3 and R M4 each independently represent a hydrogen atom or an organic group. RM5 and RM6 each independently represent a hydrogen atom or an alkyl group. Ar M represents a divalent aromatic group. A is a 4- to 6-membered alicyclic group. RM7 and RM8 are each independently an alkyl group. mx is 1 or 2 and lx is 0 or 1. RM9 and RM10 each independently represent a hydrogen atom or an alkyl group. R M11 , R M12 , R M13 and R M14 each independently represent a hydrogen atom or an organic group. nx represents an integer of 1 or more and 20 or less. The compound represented by the general formula (16) may contain two or more compounds with different nx.
 一般式(16)中のRM1、RM2、RM3、およびRM4は、それぞれ独立に、水素原子または有機基を表す。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。RM1およびRM3は、それぞれ独立に、アルキル基が好ましく、RM2およびRM4は、水素原子が好ましい。
 RM5およびRM6はそれぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 Arは2価の芳香族基を表し、好ましくはフェニレン基、ナフタレンジイル基、フェナントレンジイル基、アントラセンジイル基であり、より好ましくはフェニレン基であり、さらに好ましくはm-フェニレン基である。Arは置換基を有していてもよく、置換基としては、アルキル基が好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、メチル基が特に好ましい。中でもArは無置換であることが好ましい。
 Aは、4~6員環の脂環基であり、5員の脂環基(好ましくはベンゼン環と合せてインダン環となる基)がより好ましい。RM7およびRM8はそれぞれ独立に、アルキル基であり、炭素数1~6のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基が特に好ましい。mxは1または2であり、2であることが好ましい。lxは0または1であり、1であることが好ましい。
 RM9およびRM10はそれぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 RM11、RM12、RM13、およびRM14は、それぞれ独立に、水素原子または有機基を表す。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。RM12およびRM13は、それぞれ独立に、アルキル基が好ましく、RM11およびRM14は、水素原子が好ましい。
 nxは1以上20以下の整数を表す。
R M1 , R M2 , R M3 and R M4 in general formula (16) each independently represent a hydrogen atom or an organic group. The organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferred, and a methyl group is particularly preferred. R M1 and R M3 are each independently preferably an alkyl group, and R M2 and R M4 are preferably hydrogen atoms.
RM5 and RM6 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group. The alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group. preferable.
Ar 1 M represents a divalent aromatic group, preferably a phenylene group, a naphthalenediyl group, a phenanthenediyl group or an anthracenediyl group, more preferably a phenylene group, still more preferably an m-phenylene group. Ar M may have a substituent, and the substituent is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, Ethyl group, propyl group and butyl group are more preferred, and methyl group is particularly preferred. Among them, Ar 2 M is preferably unsubstituted.
A is a 4- to 6-membered alicyclic group, more preferably a 5-membered alicyclic group (preferably a group forming an indane ring in combination with a benzene ring). R 1 M7 and R 1 M8 are each independently an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group. mx is 1 or 2, preferably 2; lx is 0 or 1, preferably 1;
R M9 and R M10 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group. The alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group. preferable.
R M11 , R M12 , R M13 and R M14 each independently represent a hydrogen atom or an organic group. The organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferred, and a methyl group is particularly preferred. R M12 and R M13 are each independently preferably an alkyl group, and R M11 and R M14 are preferably hydrogen atoms.
nx represents an integer of 1 or more and 20 or less.
 一般式(16)で表される化合物は、下記一般式(17)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(17)中、RM21、RM22、RM23、およびRM24は、それぞれ独立に、水素原子または有機基を表す。RM25およびRM26はそれぞれ独立に、水素原子またはアルキル基を表す。RM27、RM28、RM29、およびRM30は、それぞれ独立に、水素原子または有機基を表す。RM31およびRM32はそれぞれ独立に、水素原子またはアルキル基を表す。RM33、RM34、RM35、およびRM36は、それぞれ独立に、水素原子または有機基を表す。RM37、RM38、RM39はそれぞれ独立に、水素原子またはアルキル基を表す。nxは1以上20以下の整数を表す。
The compound represented by the general formula (16) is preferably a compound represented by the following general formula (17).
Figure JPOXMLDOC01-appb-C000017
In general formula (17), R M21 , R M22 , R M23 and R M24 each independently represent a hydrogen atom or an organic group. RM25 and RM26 each independently represent a hydrogen atom or an alkyl group. R M27 , R M28 , R M29 and R M30 each independently represent a hydrogen atom or an organic group. R M31 and R M32 each independently represent a hydrogen atom or an alkyl group. R M33 , R M34 , R M35 and R M36 each independently represent a hydrogen atom or an organic group. R M37 , R M38 and R M39 each independently represent a hydrogen atom or an alkyl group. nx represents an integer of 1 or more and 20 or less.
 一般式(17)中のRM21、RM22、RM23、およびRM24は、それぞれ独立に、水素原子または有機基を表す。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、メチル基が特に好ましい。RM21およびRM23は、アルキル基が好ましく、RM22およびRM24は、水素原子が好ましい。
 RM25およびRM26はそれぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 RM27、RM28、RM29、およびRM30は、それぞれ独立に、水素原子または有機基を表し、水素原子が好ましい。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、メチル基が特に好ましい。
 RM31およびRM32はそれぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 RM33、RM34、RM35、およびRM36は、それぞれ独立に、水素原子または有機基を表す。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、メチル基が特に好ましい。
 RM33およびRM36は、水素原子が好ましく、RM34およびRM35はアルキル基が好ましい。
 RM37、RM38、RM39はそれぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 nxは1以上20以下の整数を表す。
R M21 , R M22 , R M23 and R M24 in general formula (17) each independently represent a hydrogen atom or an organic group. The organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferably, a methyl group is particularly preferred. R M21 and R M23 are preferably alkyl groups, and R M22 and R M24 are preferably hydrogen atoms.
RM25 and RM26 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group. The alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group. preferable.
R M27 , R M28 , R M29 and R M30 each independently represent a hydrogen atom or an organic group, preferably a hydrogen atom. The organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferably, a methyl group is particularly preferred.
R M31 and R M32 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group. The alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group. preferable.
R M33 , R M34 , R M35 and R M36 each independently represent a hydrogen atom or an organic group. The organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group. More preferably, a methyl group is particularly preferred.
R M33 and R M36 are preferably hydrogen atoms, and R M34 and R M35 are preferably alkyl groups.
R M37 , R M38 and R M39 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group. The alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and especially a methyl group. preferable.
nx represents an integer of 1 or more and 20 or less.
 一般式(17)で表される化合物は、下記一般式(18)の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(18)中、nxは1以上20以下の整数を表す。
The compound represented by the general formula (17) is preferably a compound represented by the following general formula (18).
Figure JPOXMLDOC01-appb-C000018
In general formula (18), nx represents an integer of 1 or more and 20 or less.
 一般式(16)で表される化合物の分子量は、500以上であることが好ましく、600以上であることがより好ましく、700以上であることがさらに好ましい。前記下限値以上とすることにより、誘電特性および低吸水性がより向上する傾向にある。また、一般式(16)で表される化合物の分子量は、10000以下であることが好ましく、9000以下であることがより好ましく、7000以下であることがさらに好ましく、5000以下であることが一層好ましく、4000以下であることがより一層好ましい。前記上限値以下とすることにより、耐熱性および取り扱い性がより向上する傾向にある。 The molecular weight of the compound represented by general formula (16) is preferably 500 or more, more preferably 600 or more, and even more preferably 700 or more. When the content is equal to or higher than the lower limit, dielectric properties and low water absorption tend to be further improved. Further, the molecular weight of the compound represented by the general formula (16) is preferably 10,000 or less, more preferably 9,000 or less, further preferably 7,000 or less, and even more preferably 5,000 or less. , 4000 or less. By adjusting the content to the above upper limit or less, heat resistance and handleability tend to be further improved.
 マレイミド化合物としては、これらの中でも、一般式(11)、(12)、(13)、(14)、(15)及び(16)で表される化合物を少なくとも1種類以上含むことが好ましい。低熱膨張性及び耐熱性を向上させることができるからである。マレイミド化合物は市販のものを使用しても良く、例えば、一般式(11)で表されるマレイミド化合物として大和化成工業株式会社製「BMI-2300」、一般式(12)で表されるマレイミド化合物として日本化薬株式会社製「MIR-3000」、一般式(13)で表されるマレイミド化合物としてケイ・アイ化成株式会社製「BMI-70」、一般式(14)で表されるマレイミド化合物としてケイ・アイ化成株式会社製「BMI-80」、一般式(15)で表されマレイミド化合物として、日本化薬株式会社製「MIR-5000」、一般式(16)で表されマレイミド化合物として、DIC社製「X9―450」、「X9-470」、「NE-X-9470S」、を好適に使用できる。 Among these, the maleimide compound preferably contains at least one compound represented by general formulas (11), (12), (13), (14), (15) and (16). This is because low thermal expansion and heat resistance can be improved. A commercially available maleimide compound may be used, for example, "BMI-2300" manufactured by Daiwa Kasei Kogyo Co., Ltd. as a maleimide compound represented by the general formula (11), and a maleimide compound represented by the general formula (12). "MIR-3000" manufactured by Nippon Kayaku Co., Ltd., "BMI-70" manufactured by K-I Kasei Co., Ltd. as the maleimide compound represented by the general formula (13), and the maleimide compound represented by the general formula (14) "BMI-80" manufactured by K.I. Kasei Co., Ltd., as the maleimide compound represented by the general formula (15), "MIR-5000" manufactured by Nippon Kayaku Co., Ltd., and as the maleimide compound represented by the general formula (16), DIC "X9-450", "X9-470" and "NE-X-9470S" manufactured by the company can be preferably used.
 樹脂組成物におけるマレイミド化合物の含有量は、所望する特性に応じて適宜設定することができ、特に限定されない。マレイミド化合物の含有量は、含有する場合、樹脂組成物中の樹脂固形分を100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましい。上限値としては、90質量部以下であることが好ましく、60質量部以下であることがより好ましく、50質量部以下であることがさらに好ましく、40質量部以下であってもよい。このような範囲とすることにより、高耐熱性、低吸水性がより効果的に発揮される傾向にある。マレイミド化合物は1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。 The content of the maleimide compound in the resin composition can be appropriately set according to the desired properties, and is not particularly limited. When the content of the maleimide compound is contained, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and 10 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. It is more preferable that it is above. The upper limit is preferably 90 parts by mass or less, more preferably 60 parts by mass or less, even more preferably 50 parts by mass or less, and may be 40 parts by mass or less. By setting it as such a range, there exists a tendency for high heat resistance and low water absorption to be exhibited more effectively. Only one type of maleimide compound may be used, or two or more types may be used. When two or more kinds are used, the total amount is preferably within the above range.
(シアン酸エステル化合物)
 樹脂組成物は、熱硬化性化合物として、シアン酸エステル化合物を含むことができる。シアン酸エステル化合物は、分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のシアナト基(シアン酸エステル基)により置換された芳香族部分を分子内に有する樹脂であれば特に限定されない。シアン酸エステル化合物としては、例えば、一般式(19)で表される化合物が挙げられる。
(Cyanate ester compound)
The resin composition can contain a cyanate ester compound as a thermosetting compound. The cyanate ester compound has one or more (preferably 2 to 12, more preferably 2 to 6, more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) cyanato groups ( The resin is not particularly limited as long as it has an aromatic portion substituted with a cyanate ester group) in the molecule. Examples of cyanate ester compounds include compounds represented by general formula (19).
Figure JPOXMLDOC01-appb-C000019
 一般式(19)中、Ar、Arは、各々独立に、置換基を有してもよいフェニレン基、置換基を有してもよいナフチレン基又は置換基を有してもよいビフェニレン基を表す。R101、R102は各々独立に水素原子、置換基を有してもよい炭素数1~6のアルキル基、置換基を有してもよい炭素数6~12のアリール基、置換基を有してもよい炭素数1~4のアルコキシ基、炭素数1~6のアルキル基と炭素数6~12のアリール基とが結合した置換基を有してもよいアラルキル基又は炭素数1~6のアルキル基と炭素数6~12のアリール基とが結合した置換基を有してもよいアルキルアリール基のいずれか1種から選択される。n71はArに結合するシアナト基の数を表し、1~3の整数である。n72はArに結合するシアナト基の数を表し、1~3の整数である。
 n73はArに結合するR101の数を表し、Arがフェニレン基の時は4-n71、ナフチレン基の時は6-n71、ビフェニレン基の時は8-n71である。n74はArに結合するR102の数を表し、Arがフェニレン基の時は4-n72、ナフチレン基の時は6-n72、ビフェニレン基の時は8-n72である。nは平均繰り返し数を表し、0~50の整数である。シアン酸エステル化合物は、nが異なる化合物の混合物であってもよい。Zは、各々独立に、単結合、炭素数1~50の2価の有機基(水素原子がヘテロ原子に置換されていてもよい)、窒素数1~10の2価の有機基(-N-R-N-など)、カルボニル基(-CO-)、カルボキシ基(-C(=O)O-)、カルボニルジオキサイド基(-OC(=O)O-)、スルホニル基(-SO-)、及び、2価の硫黄原子又は2価の酸素原子のいずれか1種から選択される。
Figure JPOXMLDOC01-appb-C000019
In general formula (19), Ar 1 and Ar 2 are each independently a phenylene group optionally having a substituent, a naphthylene group optionally having a substituent or a biphenylene group optionally having a substituent represents R 101 and R 102 each independently represent a hydrogen atom, an optionally substituted C 1-6 alkyl group, an optionally substituted C 6-12 aryl group, or a substituted an alkoxy group having 1 to 4 carbon atoms which may be substituted, an aralkyl group which may have a substituent in which an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are bonded, or an aralkyl group having 1 to 6 carbon atoms. and an aryl group having 6 to 12 carbon atoms, which may have a substituent. n 71 represents the number of cyanato groups bonded to Ar 1 and is an integer of 1-3. n 72 represents the number of cyanato groups attached to Ar 2 and is an integer of 1-3.
n 73 represents the number of R 101 bonded to Ar 1 , 4-n 71 when Ar 1 is a phenylene group, 6-n 71 when it is a naphthylene group, and 8-n 71 when it is a biphenylene group. n 74 represents the number of R 102 bound to Ar 2 , 4-n 72 when Ar 2 is a phenylene group, 6-n 72 when it is a naphthylene group, and 8-n 72 when it is a biphenylene group. n8 represents the average repetition number and is an integer from 0 to 50. The cyanate ester compound may be a mixture of compounds with different n8 . Each Z is independently a single bond, a divalent organic group having 1 to 50 carbon atoms (a hydrogen atom may be substituted with a hetero atom), a divalent organic group having 1 to 10 nitrogen atoms (-N -RN- etc.), carbonyl group (-CO-), carboxy group (-C(=O)O-), carbonyl dioxide group (-OC(=O)O-), sulfonyl group (-SO 2 -), and any one of a divalent sulfur atom or a divalent oxygen atom.
 一般式(19)のR101、R102におけるアルキル基は、直鎖状構造又は分岐鎖状構造、環状構造(シクロアルキル基等)を有していてもよい。また、一般式(19)におけるアルキル基及びR101、R102におけるアリール基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシ基、シアノ基等で置換されていてもよい。
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、1-エチルプロピル基、2,2-ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、トリフルオロメチル基等が挙げられる。
 アリール基の具体例としては、フェニル基、キシリル基、メシチル基、ナフチル基、フェノキシフェニル基、エチルフェニル基、o-,m-又はp-フルオロフェニル基、ジクロロフェニル基、ジシアノフェニル基、トリフルオロフェニル基、メトキシフェニル基、o-,m-又はp-トリル基等が挙げられる。
 アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基等が挙げられる。
The alkyl group for R 101 and R 102 in formula (19) may have a linear structure, a branched chain structure, or a cyclic structure (such as a cycloalkyl group). Further, the hydrogen atom in the alkyl group in the general formula (19) and the aryl group in R 101 and R 102 is substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group, or the like. may have been
Specific examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 1-ethylpropyl and 2,2-dimethylpropyl. group, cyclopentyl group, hexyl group, cyclohexyl group, trifluoromethyl group and the like.
Specific examples of aryl groups include phenyl, xylyl, mesityl, naphthyl, phenoxyphenyl, ethylphenyl, o-, m- or p-fluorophenyl, dichlorophenyl, dicyanophenyl and trifluorophenyl. group, methoxyphenyl group, o-, m- or p-tolyl group, and the like.
Specific examples of alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy and tert-butoxy groups.
 一般式(19)のZにおける2価の有機基の具体例としては、メチレン基、エチレン基、トリメチレン基、シクロペンチレン基、シクロヘキシレン基、トリメチルシクロヘキシレン基、ビフェニルイルメチレン基、ジメチルメチレン-フェニレン-ジメチルメチレン基、フルオレンジイル基、フタリドジイル基等が挙げられる。2価の有機基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシ基、シアノ基等で置換されていてもよい。一般式(19)のZにおける窒素数1~10の2価の有機基としては、イミノ基、ポリイミド基等が挙げられる。 Specific examples of the divalent organic group for Z in the general formula (19) include a methylene group, ethylene group, trimethylene group, cyclopentylene group, cyclohexylene group, trimethylcyclohexylene group, biphenylylmethylene group, dimethylmethylene- A phenylene-dimethylmethylene group, a fluorenediyl group, a phthalidodiyl group and the like can be mentioned. A hydrogen atom in the divalent organic group may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group, or the like. Examples of the divalent organic group having 1 to 10 nitrogen atoms in Z of the general formula (19) include an imino group and a polyimide group.
 また、一般式(19)中のZとしては、一般式(20)又は一般式(21)で表される構造であるものが挙げられる。 In addition, Z in general formula (19) includes those having a structure represented by general formula (20) or general formula (21).
Figure JPOXMLDOC01-appb-C000020
 一般式(20)中、Arはフェニレン基、ナフチレン基及びビフェニレン基のいずれか1種から選択される。R103、R104、R107、R108は各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、並びに、トリフルオロメチル基及びフェノール性ヒドロキシ基の少なくとも1つにより置換されたアリール基のいずれか1種から選択される。R105、R106は各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~ 12のアリール基、炭素数1~4のアルコキシ基及びヒドロキシ基のいずれか1種から選択される。nは0~5の整数を示すが、シアン酸エステル化合物は、nが異なる基を有する化合物の混合物であってもよい。
Figure JPOXMLDOC01-appb-C000020
In general formula (20), Ar 3 is selected from any one of a phenylene group, a naphthylene group and a biphenylene group. R 103 , R 104 , R 107 and R 108 each independently represents at least one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a trifluoromethyl group and a phenolic hydroxy group; is selected from any one of aryl groups substituted with one. Each of R 105 and R 106 is independently selected from any one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a hydroxy group. . Although n 9 represents an integer of 0 to 5, the cyanate ester compound may be a mixture of compounds in which n 9 has different groups.
Figure JPOXMLDOC01-appb-C000021
 一般式(21)中、Arはフェニレン基、ナフチレン基又はビフェニレン基のいずれか1種から選択される。R109、R110は各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、ベンジル基、炭素数1~4のアルコキシ基、並びに、ヒドロキシ基、トリフルオロメチル基及びシアナト基の少なくとも1つにより置換されたアリール基のいずれか1種から選択される。n10は0~5の整数を示すが、シアン酸エステル化合物は、n10が異なる基を有する化合物の混合物であってもよい。
Figure JPOXMLDOC01-appb-C000021
In general formula (21), Ar 4 is selected from any one of a phenylene group, a naphthylene group and a biphenylene group. R 109 and R 110 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a benzyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, and trifluoromethyl and an aryl group substituted with at least one of a cyanato group. Although n10 represents an integer of 0 to 5, the cyanate ester compound may be a mixture of compounds in which n10 has different groups.
 さらに、一般式(19)中のZとしては、下記式で表される2価の基が挙げられる。 Furthermore, Z in general formula (19) includes a divalent group represented by the following formula.
Figure JPOXMLDOC01-appb-C000022
 式中、n11は4~7の整数を表す。R111,R112は各々独立に水素原子又は炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000022
In the formula, n11 represents an integer of 4-7. R 111 and R 112 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 一般式(20)のAr及び一般式(21)のArの具体例としては、1,4-フェニレン基、1,3-フェニレン基、4,4’-ビフェニレン基、2,4’-ビフェニレン基、2,2’-ビフェニレン基、2,3’-ビフェニレン基、3,3’-ビフェニレン基、3,4’-ビフェニレン基、2,6-ナフチレン基、1,5-ナフチレン基、1,6-ナフチレン基、1,8-ナフチレン基、1,3-ナフチレン基、1,4-ナフチレン基等が挙げられる。一般式(20)のR103~R108及び一般式(21)のR109,R110におけるアルキル基及びアリール基は一般式(19)で記載したものと同様である。 Specific examples of Ar 3 of general formula (20) and Ar 4 of general formula (21) include a 1,4-phenylene group, a 1,3-phenylene group, a 4,4'-biphenylene group, a 2,4'- biphenylene group, 2,2'-biphenylene group, 2,3'-biphenylene group, 3,3'-biphenylene group, 3,4'-biphenylene group, 2,6-naphthylene group, 1,5-naphthylene group, 1 ,6-naphthylene group, 1,8-naphthylene group, 1,3-naphthylene group, 1,4-naphthylene group and the like. The alkyl group and aryl group for R 103 to R 108 in general formula (20) and R 109 and R 110 in general formula (21) are the same as those described for general formula (19).
 一般式(19)で表されるシアン酸エステル化合物としては例えば、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ジアリルビスフェノールA型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物などが挙げられる。 Examples of the cyanate ester compound represented by the general formula (19) include a phenol novolak-type cyanate ester compound, a naphthol aralkyl-type cyanate ester compound, a biphenyl aralkyl-type cyanate ester compound, a naphthylene ether-type cyanate ester compound, Examples include xylene resin type cyanate ester compounds, adamantane skeleton type cyanate ester compounds, bisphenol A type cyanate ester compounds, diallylbisphenol A type cyanate ester compounds, naphthol aralkyl type cyanate ester compounds, and the like.
 一般式(19)で表されるシアン酸エステル化合物の具体例としては、シアナトベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メチルベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メトキシベンゼン、1-シアナト-2,3-,1-シアナト-2,4-,1-シアナト-2,5-,1-シアナト-2,6-,1-シアナト-3,4-又は1-シアナト-3,5-ジメチルベンゼン、シアナトエチルベンゼン、シアナトブチルベンゼン、シアナトオクチルベンゼン、シアナトノニルベンゼン、2-(4-シアナフェニル)-2-フェニルプロパン(4-α-クミルフェノールのシアネート)、1-シアナト-4-シクロヘキシルベンゼン、1-シアナト-4-ビニルベンゼン、1-シアナト-2-又は1-シアナト-3-クロロベンゼン、1-シアナト-2,6-ジクロロベンゼン、1-シアナト-2-メチル-3-クロロベンゼン、シアナトニトロベンゼン、1-シアナト-4-ニトロ-2-エチルベンゼン、1-シアナト-2-メトキシ-4-アリルベンゼン(オイゲノールのシアネート)、メチル(4-シアナトフェニル)スルフィド、1-シアナト-3-トリフルオロメチルベンゼン、4-シアナトビフェニル、1-シアナト-2-又は1-シアナト-4-アセチルベンゼン、4-シアナトベンズアルデヒド、4-シアナト安息香酸メチルエステル、4-シアナト安息香酸フェニルエステル、1-シアナト-4-アセトアミノベンゼン、4-シアナトベンゾフェノン、1-シアナト-2,6-ジ-tert-ブチルベンゼン、1,2-ジシアナトベンゼン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,4-ジシアナト-2-tert-ブチルベンゼン、1,4-ジシアナト-2,4-ジメチルベンゼン、1,4-ジシアナト-2,3,4-ジメチルベンゼン、1,3-ジシアナト-2,4,6-トリメチルベンゼン、1,3-ジシアナト-5-メチルベンゼン、1-シアナト又は2-シアナトナフタレン、1-シアナト4-メトキシナフタレン、2-シアナト-6-メチルナフタレン、2-シアナト-7-メトキシナフタレン、2,2’-ジシアナト-1,1’-ビナフチル、1,3-,1,4-,1,5-,1,6-,1,7-,2,3-,2,6-又は2,7-ジシアナトシナフタレン、2,2’-又は4,4’-ジシアナトビフェニル、4,4’-ジシアナトオクタフルオロビフェニル、2,4’-又は4,4’-ジシアナトジフェニルメタン、ビス(4-シアナト-3,5-ジメチルフェニル)メタン、1,1-ビス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、2,2-ビス(4-シアナト-3-メチルフェニル)プロパン、2,2-ビス(2-シアナト-5-ビフェニルイル)プロパン、2,2-ビス(4-シアナトフェニル)ヘキサフルオロプロパン、2,2-ビス(4-シアナト-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ペンタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-3-メチルブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)ヘプタン、3,3-ビス(4-シアナトフェニル)オクタン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルペンタン、4,4-ビス(4-シアナトフェニル)-3-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,4-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2,4-トリメチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(4-シアナトフェニル)フェニルメタン、1,1-ビス(4-シアナトフェニル)-1-フェニルエタン、ビス(4-シアナトフェニル)ビフェニルメタン、1,1-ビス(4-シアナトフェニル)シクロペンタン、1,1-ビス(4-シアナトフェニル)シクロヘキサン、2,2-ビス(4-シアナト-3-イソプロピルフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-シアナトフェニル)シクロヘキサン、ビス(4-シアナトフェニル)ジフェニルメタン、ビス(4-シアナトフェニル)-2,2-ジクロロエチレン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,1-ビス(4-シアナトフェニル)-3,3,5-トリメチルシクロヘキサン、4-[ビス(4-シアナトフェニル)メチル]ビフェニル、4,4-ジシアナトベンゾフェノン、1,3-ビス(4-シアナトフェニル)-2-プロペン-1-オン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、ビス(4-シアナトフェニル)スルホン、4-シアナト安息香酸-4-シアナトフェニルエステル(4-シアナトフェニル-4-シアナトベンゾエート)、ビス-(4-シアナトフェニル)カーボネート、1,3-ビス(4-シアナトフェニル)アダマンタン、1,3-ビス(4-シアナトフェニル)-5,7-ジメチルアダマンタン、3,3-ビス(4-シアナトフェニル)イソベンゾフラン-1(3H)-オン(フェノールフタレインのシアネート)、3,3-ビス(4-シアナト-3-メチルフェニル)イソベンゾフラン-1(3H)-オン(o-クレゾールフタレインのシアネート)、9,9-ビス(4-シアナトフェニル)フルオレン、9,9-ビス(4-シアナト-3-メチルフェニル)フルオレン、9,9-ビス(2-シアナト-5-ビフェニルイル)フルオレン、トリス(4-シアナトフェニル)メタン、1,1,1-トリス(4-シアナトフェニル)エタン、1,1,3-トリス(4-シアナトフェニル)プロパン、α,α,α’-トリス(4-シアナトフェニル)-1-エチル-4-イソプロピルベンゼン、1,1,2,2-テトラキス(4-シアナトフェニル)エタン、テトラキス(4-シアナトフェニル)メタン、2,4,6-トリス(N-メチル-4-シアナトアニリノ)-1,3,5-トリアジン、2,4-ビス(N-メチル-4-シアナトアニリノ)-6-(N-メチルアニリノ)-1,3,5-トリアジン、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-3-シアナト-4-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナトフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-(ヘキサフルオロイソプロピリデン)ジフタルイミド、トリス(3,5-ジメチル-4-シアナトベンジル)イソシアヌレート、2-フェニル-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-(4-メチルフェニル)-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-フェニル-3,3-ビス(4-シアナト-3-メチルフェニル)フタルイミジン、1-メチル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、2-フェニル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、フェノールノボラック樹脂やクレゾールノボラック樹脂(公知の方法により、フェノール、アルキル置換フェノール又はハロゲン置換フェノールと、ホルマリンやパラホルムアルデヒドなどのホルムアルデヒド化合物を、酸性溶液中で反応させたもの)、トリスフェノールノボラック樹脂(ヒドロキシベンズアルデヒドとフェノールとを酸性触媒の存在下に反応させたもの)、フルオレンノボラック樹脂(フルオレノン化合物と9,9-ビス(ヒドロキシアリール)フルオレン類とを酸性触媒の存在下に反応させたもの)、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂やビフェニルアラルキル樹脂(公知の方法により、Ar-(CHZ’)で表されるようなビスハロゲノメチル化合物とフェノール化合物とを酸性触媒若しくは無触媒で反応させたもの、Ar-(CHOR)で表されるようなビス(アルコキシメチル)化合物やAr-(CHOH)で表されるようなビス(ヒドロキシメチル)化合物とフェノール化合物を酸性触媒の存在下に反応させたもの、又は、芳香族アルデヒド化合物、アラルキル化合物、フェノール化合物とを重縮合させたもの)、フェノール変性キシレンホルムアルデヒド樹脂(公知の方法により、キシレンホルムアルデヒド樹脂とフェノール化合物を酸性触媒の存在下に反応させたもの)、変性ナフタレンホルムアルデヒド樹脂(公知の方法により、ナフタレンホルムアルデヒド樹脂とヒドロキシ置換芳香族化合物を酸性触媒の存在下に反応させたもの)、フェノール変性ジシクロペンタジエン樹脂、ポリナフチレンエーテル構造を有するフェノール樹脂(公知の方法により、フェノール性ヒドロキシ基を1分子中に2つ以上有する多価ヒドロキシナフタレン化合物を、塩基性触媒の存在下に脱水縮合させたもの)等のフェノール樹脂を上述と同様の方法によりシアン酸エステル化したもの等が挙げられるが、特に制限されるものではない。これらのシアン酸エステル化合物は、単独で用いても、2種以上を併用してもよい。 Specific examples of the cyanate ester compound represented by the general formula (19) include cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methylbenzene, 1-cyanato -2-, 1-cyanato-3-, or 1-cyanato-4-methoxybenzene, 1-cyanato-2,3-, 1-cyanato-2,4-, 1-cyanato-2,5-, 1- Cyanato-2,6-,1-cyanato-3,4- or 1-cyanato-3,5-dimethylbenzene, cyanatoethylbenzene, cyanatobutylbenzene, cyanatooctylbenzene, cyanatononylbenzene, 2-(4 -cyanaphenyl)-2-phenylpropane (cyanate of 4-α-cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyanato-4-vinylbenzene, 1-cyanato-2- or 1-cyanato- 3-chlorobenzene, 1-cyanato-2,6-dichlorobenzene, 1-cyanato-2-methyl-3-chlorobenzene, cyanatonitrobenzene, 1-cyanato-4-nitro-2-ethylbenzene, 1-cyanato-2-methoxy -4-allylbenzene (eugenol cyanate), methyl (4-cyanatophenyl) sulfide, 1-cyanato-3-trifluoromethylbenzene, 4-cyanatobiphenyl, 1-cyanato-2- or 1-cyanato-4 -acetylbenzene, 4-cyanatobenzaldehyde, 4-cyanatobenzoic acid methyl ester, 4-cyanatobenzoic acid phenyl ester, 1-cyanato-4-acetaminobenzene, 4-cyanatobenzophenone, 1-cyanato-2,6- Di-tert-butylbenzene, 1,2-dicyanatobenzene, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,4-dicyanato-2-tert-butylbenzene, 1,4-dicyanato- 2,4-dimethylbenzene, 1,4-dicyanato-2,3,4-dimethylbenzene, 1,3-dicyanato-2,4,6-trimethylbenzene, 1,3-dicyanato-5-methylbenzene, 1- cyanato or 2-cyanatonaphthalene, 1-cyanato-4-methoxynaphthalene, 2-cyanato-6-methylnaphthalene, 2-cyanato-7-methoxynaphthalene, 2,2′-dicyanato-1,1′-binaphthyl, 1, 3-,1,4-,1,5-,1,6-,1,7-,2,3-,2,6- or 2,7-dicyanatocinaphthalene, 2,2′- or 4, 4'-dicyanatobiphenyl, 4,4'-dicyanatooctafluorobiphenyl, 2,4'- or 4,4'-dicyanatodiphenylmethane, bis(4-cyanato-3,5-dimethylphenyl)methane, 1, 1-bis(4-cyanatophenyl)ethane, 1,1-bis(4-cyanatophenyl)propane, 2,2-bis(4-cyanatophenyl)propane, 2,2-bis(3-allyl- 4-cyanatophenyl)propane, 2,2-bis(4-cyanato-3-methylphenyl)propane, 2,2-bis(2-cyanato-5-biphenylyl)propane, 2,2-bis(4- cyanatophenyl)hexafluoropropane, 2,2-bis(4-cyanato-3,5-dimethylphenyl)propane, 1,1-bis(4-cyanatophenyl)butane, 1,1-bis(4-cyanatophenyl) anatophenyl)isobutane, 1,1-bis(4-cyanatophenyl)pentane, 1,1-bis(4-cyanatophenyl)-3-methylbutane, 1,1-bis(4-cyanatophenyl)-2 -methylbutane, 1,1-bis(4-cyanatophenyl)-2,2-dimethylpropane, 2,2-bis(4-cyanatophenyl)butane, 2,2-bis(4-cyanatophenyl)pentane , 2,2-bis(4-cyanatophenyl)hexane, 2,2-bis(4-cyanatophenyl)-3-methylbutane, 2,2-bis(4-cyanatophenyl)-4-methylpentane, 2,2-bis(4-cyanatophenyl)-3,3-dimethylbutane, 3,3-bis(4-cyanatophenyl)hexane, 3,3-bis(4-cyanatophenyl)heptane, 3, 3-bis(4-cyanatophenyl)octane, 3,3-bis(4-cyanatophenyl)-2-methylpentane, 3,3-bis(4-cyanatophenyl)-2-methylhexane, 3, 3-bis(4-cyanatophenyl)-2,2-dimethylpentane, 4,4-bis(4-cyanatophenyl)-3-methylheptane, 3,3-bis(4-cyanatophenyl)-2 -methylheptane, 3,3-bis(4-cyanatophenyl)-2,2-dimethylhexane, 3,3-bis(4-cyanatophenyl)-2,4-dimethylhexane, 3,3-bis( 4-cyanatophenyl)-2,2,4-trimethylpentane, 2,2-bis(4-cyanatophenyl)-1,1,1,3,3,3-hexafluoropropane, bis(4- anatophenyl)phenylmethane, 1,1-bis(4-cyanatophenyl)-1-phenylethane, bis(4-cyanatophenyl)biphenylmethane, 1,1-bis(4-cyanatophenyl)cyclopentane, 1,1-bis(4-cyanatophenyl)cyclohexane, 2,2-bis(4-cyanato-3-isopropylphenyl)propane, 1,1-bis(3-cyclohexyl-4-cyanatophenyl)cyclohexane, bis (4-cyanatophenyl)diphenylmethane, bis(4-cyanatophenyl)-2,2-dichloroethylene, 1,3-bis[2-(4-cyanatophenyl)-2-propyl]benzene, 1,4- Bis[2-(4-cyanatophenyl)-2-propyl]benzene, 1,1-bis(4-cyanatophenyl)-3,3,5-trimethylcyclohexane, 4-[bis(4-cyanatophenyl) ) methyl]biphenyl, 4,4-dicyanatobenzophenone, 1,3-bis(4-cyanatophenyl)-2-propen-1-one, bis(4-cyanatophenyl) ether, bis(4-cyanato phenyl) sulfide, bis(4-cyanatophenyl) sulfone, 4-cyanatobenzoic acid-4-cyanatophenyl ester (4-cyanatophenyl-4-cyanatobenzoate), bis-(4-cyanatophenyl) carbonate , 1,3-bis(4-cyanatophenyl)adamantane, 1,3-bis(4-cyanatophenyl)-5,7-dimethyladamantane, 3,3-bis(4-cyanatophenyl)isobenzofuran- 1(3H)-one (cyanate of phenolphthalein), 3,3-bis(4-cyanato-3-methylphenyl)isobenzofuran-1(3H)-one (cyanate of o-cresolphthalein), 9, 9-bis(4-cyanatophenyl)fluorene, 9,9-bis(4-cyanato-3-methylphenyl)fluorene, 9,9-bis(2-cyanato-5-biphenylyl)fluorene, tris(4- cyanatophenyl)methane, 1,1,1-tris(4-cyanatophenyl)ethane, 1,1,3-tris(4-cyanatophenyl)propane, α,α,α'-tris(4-cyanatophenyl) anatophenyl)-1-ethyl-4-isopropylbenzene, 1,1,2,2-tetrakis(4-cyanatophenyl)ethane, tetrakis(4-cyanatophenyl)methane, 2,4,6-tris(N -methyl-4-cyanatoanilino)-1,3,5-triazine, 2,4-bis(N-methyl-4-cyanatoanilino)-6-(N-methylanilino)-1,3,5-triazine, bis(N -4-cyanato-2-methylphenyl)-4,4'-oxydiphthalimide, bis(N-3-cyanato-4-methylphenyl)-4,4'-oxydiphthalimide, bis(N-4- anatophenyl)-4,4'-oxydiphthalimide, bis(N-4-cyanato-2-methylphenyl)-4,4'-(hexafluoroisopropylidene)diphthalimide, tris(3,5-dimethyl-4 -cyanatobenzyl)isocyanurate, 2-phenyl-3,3-bis(4-cyanatophenyl)phthalimidine, 2-(4-methylphenyl)-3,3-bis(4-cyanatophenyl)phthalimidine, 2 -phenyl-3,3-bis(4-cyanato-3-methylphenyl)phthalimidine, 1-methyl-3,3-bis(4-cyanatophenyl)indolin-2-one, 2-phenyl-3,3- Bis(4-cyanatophenyl)indolin-2-one, phenol novolac resin or cresol novolac resin (by a known method, phenol, alkyl-substituted phenol or halogen-substituted phenol and formaldehyde compound such as formalin or paraformaldehyde are mixed in an acidic solution. in the reaction), trisphenol novolak resin (hydroxybenzaldehyde and phenol reacted in the presence of an acidic catalyst), fluorene novolac resin (fluorenone compound and 9,9-bis (hydroxyaryl) fluorenes and in the presence of an acidic catalyst), phenol aralkyl resins, cresol aralkyl resins, naphthol aralkyl resins and biphenyl aralkyl resins (by known methods, such as represented by Ar 5 —(CH 2 Z′) 2 Bishalogenomethyl compounds and phenolic compounds reacted with or without an acidic catalyst, bis(alkoxymethyl) compounds represented by Ar 5 —(CH 2 OR) 2 and Ar 5 —(CH 2 OH) A product obtained by reacting a bis(hydroxymethyl) compound represented by 2 with a phenol compound in the presence of an acidic catalyst, or a product obtained by polycondensing an aromatic aldehyde compound, an aralkyl compound, or a phenol compound), phenol Modified xylene formaldehyde resin (by a known method, a xylene formaldehyde resin and a phenol compound are reacted in the presence of an acidic catalyst), modified naphthalene formaldehyde resin (by a known method, a naphthalene formaldehyde resin and a hydroxy-substituted aromatic compound are reacted with an acidic reacted in the presence of a catalyst), phenol-modified dicyclopentadiene resin, phenolic resin having a polynaphthylene ether structure (by a known method, polyhydric hydroxynaphthalene having two or more phenolic hydroxy groups in one molecule A compound obtained by dehydrating and condensing a compound in the presence of a basic catalyst) and a phenolic resin obtained by cyanate esterification in the same manner as described above, but are not particularly limited. These cyanate ester compounds may be used alone or in combination of two or more.
 この中でもフェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ジアリルビスフェノール型シアン酸エステル化合物が好ましく、ナフトールアラルキル型シアン酸エステル化合物が特に好ましい。これらのシアン酸エステル化合物を用いた樹脂組成物の硬化物は、低誘電特性(低誘電率性、低誘電正接性)等に優れた特性を有する。 Among these, phenol novolak-type cyanate ester compounds, naphthol aralkyl-type cyanate ester compounds, naphthylene ether-type cyanate ester compounds, bisphenol A-type cyanate ester compounds, bisphenol M-type cyanate ester compounds, diallyl bisphenol-type cyanate ester compounds is preferred, and a naphthol aralkyl-type cyanate ester compound is particularly preferred. Cured products of resin compositions using these cyanate ester compounds have excellent properties such as low dielectric properties (low dielectric constant and low dielectric loss tangent).
 樹脂組成物におけるシアン酸エステル化合物の含有量は、所望する特性に応じて適宜設定することができ、特に限定されない。具体的には、シアン酸エステル化合物の含有量は、含有する場合、樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部以上が好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることがより好ましく、3質量部以上、5質量部以上であってもよい。また、この含有量の上限値は、90質量部以下が好ましく、80質量部以下がより好ましく、70質量部未満であることがさらに好ましく、60質量部以下であることが一層好ましく、50質量部以下、40質量部以下であってもよい。このような範囲とすることにより、より優れた低誘電率性、低誘電正接性を与えることができる。シアン酸エステル化合物は1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。 The content of the cyanate ester compound in the resin composition can be appropriately set according to the desired properties, and is not particularly limited. Specifically, when the content of the cyanate ester compound is contained, it is preferably 0.1 parts by mass or more, and 0.5 parts by mass or more, relative to 100 parts by mass of the resin solid content in the resin composition. is more preferably 1 part by mass or more, and may be 3 parts by mass or more, or 5 parts by mass or more. In addition, the upper limit of this content is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, even more preferably less than 70 parts by mass, even more preferably 60 parts by mass or less, and 50 parts by mass. Hereinafter, it may be 40 parts by mass or less. By setting it to such a range, more excellent low dielectric constant property and low dielectric loss tangent property can be provided. Only one type of cyanate ester compound may be used, or two or more types may be used. When two or more kinds are used, the total amount is preferably within the above range.
(エポキシ樹脂)
 樹脂組成物は、熱硬化性化合物として、エポキシ樹脂を含むことができる。エポキシ樹脂としては、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のエポキシ基を有する化合物又は樹脂であれば特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエン等の二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロロヒドリンとの反応により得られる化合物等が挙げられる。これらのエポキシ樹脂は、単独で用いても、2種以上を併用してもよい。これらの中でも、難燃性及び耐熱性をより一層向上する観点から、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂であることが好ましい。
(Epoxy resin)
The resin composition can contain an epoxy resin as a thermosetting compound. As the epoxy resin, one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) epoxy groups per molecule. It is not particularly limited as long as it is a compound or resin having, for example, bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolac type epoxy resin , glycidyl ester type epoxy resin, aralkyl novolac type epoxy resin, biphenyl aralkyl type epoxy resin, naphthylene ether type epoxy resin, cresol novolak type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, naphthalene skeleton-modified novolak-type epoxy resin, phenol aralkyl-type epoxy resin, naphthol-aralkyl-type epoxy resin, dicyclopentadiene-type epoxy resin, biphenyl-type epoxy resin, alicyclic epoxy resin, polyol-type epoxy resin, phosphorus-containing epoxy resin, glycidylamine, Examples include compounds obtained by epoxidizing double bonds such as glycidyl esters and butadiene, and compounds obtained by reacting hydroxyl group-containing silicone resins with epichlorohydrin. These epoxy resins may be used alone or in combination of two or more. Among these, biphenyl aralkyl epoxy resins, naphthylene ether epoxy resins, polyfunctional phenol epoxy resins, and naphthalene epoxy resins are preferred from the viewpoint of further improving flame retardancy and heat resistance.
(フェノール樹脂)
 樹脂組成物は、熱硬化性化合物として、フェノール樹脂を含むことができる。フェノール樹脂としては、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のフェノール性ヒドロキシ基を有する化合物又は樹脂であれば特に限定されず、例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラックフェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂類等が挙げられる。これらのフェノール樹脂は、単独で用いても、2種以上を併用してもよい。これらの中でも、耐燃性をより一層向上する観点から、ビフェニルアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、及びリン含有フェノール樹脂からなる群より選択される少なくとも1種であることが好ましい。
(Phenolic resin)
The resin composition can contain a phenolic resin as a thermosetting compound. As the phenolic resin, one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) phenolic hydroxy It is not particularly limited as long as it is a compound or resin having a group. , glycidyl ester type phenolic resin, aralkyl novolak phenolic resin, biphenyl aralkyl type phenolic resin, cresol novolac type phenolic resin, polyfunctional phenolic resin, naphthol resin, naphthol novolak resin, polyfunctional naphthol resin, anthracene type phenolic resin, naphthalene skeleton modified novolac type phenol resin, phenol aralkyl type phenol resin, naphthol aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin, alicyclic phenol resin, polyol type phenol resin, and phosphorus-containing phenol resins. These phenol resins may be used alone or in combination of two or more. Among these, from the viewpoint of further improving flame resistance, at least one selected from the group consisting of biphenylaralkyl-type phenolic resins, naphtholaralkyl-type phenolic resins, and phosphorus-containing phenolic resins is preferred.
(熱可塑性エラストマー)
 樹脂組成物は、熱可塑性エラストマーを含むことができる。熱可塑性エラストマーは、スチレン単量体単位を含む。スチレン単量体単位を含むことにより、熱可塑性エラストマーの樹脂組成物への溶解性が向上する。スチレン単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン(ビニルスチレン)、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン等が例示され、これらの中でも、入手性および生産性の観点から、スチレン、α-メチルスチレン、p-メチルスチレンが好ましい。これらの中でもスチレンが特に好ましい。
 上記熱可塑性エラストマーにおけるスチレン単量体単位の含有量(スチレン率)は、全単量体単位の10~50質量%の範囲が好ましく、13~45質量%の範囲がより好ましく、15~40質量%の範囲がさらに好ましい。スチレン単量体単位の含有量が50質量%以下であれば、基材等との密着性、粘着性がより良好になる。また、10質量%以上であれば、粘着昂進を抑制でき、糊残りやストップマークが生じにくく、粘着面同士の易剥離性が良好になる傾向にあるため好ましい。
 熱可塑性エラストマーは、スチレン単量体単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲であることが好ましい。
 本実施形態の熱可塑性エラストマー中のスチレン単量体単位の含有量の測定方法は、国際公開第2017/126469号の記載を参酌でき、この内容は本明細書に組み込まれる。後述する、共役ジエン単量体単位等についても同様である。
(thermoplastic elastomer)
The resin composition can contain a thermoplastic elastomer. Thermoplastic elastomers contain styrene monomer units. By including styrene monomer units, the solubility of the thermoplastic elastomer in the resin composition is improved. Styrene monomers include styrene, α-methylstyrene, p-methylstyrene, divinylbenzene (vinylstyrene), N,N-dimethyl-p-aminoethylstyrene, N,N-diethyl-p-aminoethylstyrene and the like. Among these, styrene, α-methylstyrene, and p-methylstyrene are preferred from the viewpoint of availability and productivity. Among these, styrene is particularly preferred.
The content of styrene monomer units (styrene ratio) in the thermoplastic elastomer is preferably in the range of 10 to 50% by mass, more preferably in the range of 13 to 45% by mass, more preferably 15 to 40% by mass of the total monomer units. % range is more preferred. If the content of styrene monomer units is 50% by mass or less, the adhesiveness and adhesiveness to substrates and the like will be better. In addition, if it is 10% by mass or more, it is preferable because the increase in adhesion can be suppressed, adhesive residue and stop marks are less likely to occur, and the easy peeling property between the adhesive surfaces tends to be improved.
The thermoplastic elastomer may contain only one type of styrene monomer unit, or may contain two or more types. When two or more kinds are included, the total amount is preferably within the above range.
The method for measuring the content of styrene monomer units in the thermoplastic elastomer of the present embodiment can be referred to the description in WO 2017/126469, the content of which is incorporated herein. The same applies to the conjugated diene monomer unit and the like, which will be described later.
 上記熱可塑性エラストマーは、共役ジエン単量体単位を含む。共役ジエン単量体単位を含むことにより、熱可塑性エラストマーの樹脂組成物への溶解性が向上する。共役ジエン単量体としては、1対の共役二重結合を有するジオレフィンである限り、特に限定されない。共役ジエン単量体は、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペン タジエン、1,3-ヘキサジエン、および、ファルネセンが挙げられ、1,3-ブタジエン、および、イソプレンが好ましく、1,3-ブタジエンがより好ましい。
 熱可塑性エラストマーは共役ジエン単量体単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
The thermoplastic elastomer contains conjugated diene monomer units. Containing the conjugated diene monomer unit improves the solubility of the thermoplastic elastomer in the resin composition. The conjugated diene monomer is not particularly limited as long as it is a diolefin having a pair of conjugated double bonds. Conjugated diene monomers are, for example, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl- 1,3-pentadiene, 1,3-hexadiene, and farnesene are included, with 1,3-butadiene and isoprene being preferred, and 1,3-butadiene being more preferred.
The thermoplastic elastomer may contain only one type of conjugated diene monomer unit, or may contain two or more types.
 上記熱可塑性エラストマーにおいては、スチレン単量体単位と共役ジエン単量体単位との質量比率が、スチレン単量体単位/共役ジエン単量体単位=5/95~80/20の範囲であることが好ましく、7/93~77/23の範囲であることがより好ましく、10/90~70/30の範囲であることがさらに好ましい。前記スチレン重合体単位と共役ジエン単量体単位の質量比率が、5/95~80/20の範囲であれば、粘着昂進を抑制し粘着力を高く維持でき、粘着面同士の易剥離性が良好になる。 In the above thermoplastic elastomer, the mass ratio of styrene monomer units and conjugated diene monomer units is in the range of styrene monomer units/conjugated diene monomer units=5/95 to 80/20. , more preferably in the range of 7/93 to 77/23, and even more preferably in the range of 10/90 to 70/30. When the mass ratio of the styrene polymer unit and the conjugated diene monomer unit is in the range of 5/95 to 80/20, it is possible to suppress the increase in adhesion, maintain high adhesive strength, and easily peel the adhesive surfaces. get better.
 上記熱可塑性エラストマーは、スチレン単量体単位および共役ジエン単量体単位に加え、他の単量体単位を含んでいてもよいし、含んでいなくてもよい。他の単量体単位としては、スチレン単量体単位以外の芳香族ビニル化合物単位などが例示される。
 上記熱可塑性エラストマーは、スチレン単量体単位および共役ジエン単量体単位の合計が全単量体単位の90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、99質量%以上であることが一層好ましい。
 上述の通り、熱可塑性エラストマーは、スチレン単量体単位および共役ジエン単量体単位を、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The thermoplastic elastomer may or may not contain other monomer units in addition to the styrene monomer units and the conjugated diene monomer units. Examples of other monomer units include aromatic vinyl compound units other than styrene monomer units.
In the thermoplastic elastomer, the total amount of styrene monomer units and conjugated diene monomer units is preferably 90% by mass or more, more preferably 95% by mass or more, more preferably 97% by mass. % or more, more preferably 99 mass % or more.
As described above, the thermoplastic elastomer may contain only one kind of styrene monomer units and conjugated diene monomer units, or may contain two or more kinds thereof. When two or more types are included, the total amount is preferably within the above range.
 本実施形態で用いる熱可塑性エラストマーは、ブロック重合体であっても、ランダム重合体であってもよい。また、共役ジエン単量体単位が水素添加された水添エラストマーであっても、水素添加されていない未水添エラストマーであっても、部分的に水素添加された部分水添エラストマーであってもよい。 The thermoplastic elastomer used in this embodiment may be a block polymer or a random polymer. Moreover, even if the conjugated diene monomer unit is a hydrogenated elastomer in which the conjugated diene monomer unit is hydrogenated, it may be an unhydrogenated elastomer in which it is not hydrogenated, or a partially hydrogenated elastomer in which it is partially hydrogenated. good.
 本実施形態で用いる熱可塑性エラストマーの市販品としては、株式会社クラレ製のSEPTON(登録商標)2104、JSR株式会社製、DYNARON(登録商標)9901P、TR2250、等が例示される。 Examples of commercially available thermoplastic elastomers used in this embodiment include SEPTON (registered trademark) 2104 manufactured by Kuraray Co., Ltd., DYNARON (registered trademark) 9901P, TR2250 manufactured by JSR Corporation, and the like.
 樹脂組成物が熱可塑性エラストマーを含む場合、その含有量は、樹脂固形分100質量部に対し、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、8質量部以上であることが一層好ましく、10質量部以上であることがより一層好ましい。前記下限値以上とすることにより、低誘電特性がより向上する傾向にある。また、前記熱可塑性エラストマーの含有量の上限値は、樹脂固形分100質量部に対し、45質量部以下であることが好ましく、40質量部以下であることがより好ましく、35質量部以下であることがさらに好ましく、32質量部以下であることが一層好ましく、28質量部以下であることがより一層好ましい。前記上限値以下とすることにより、耐熱性がより向上する傾向にある。
 樹脂組成物は、熱可塑性エラストマーを1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
When the resin composition contains a thermoplastic elastomer, the content thereof is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass or more with respect to 100 parts by mass of the resin solid content. More preferably, it is 8 parts by mass or more, and even more preferably 10 parts by mass or more. When the content is equal to or higher than the lower limit, low dielectric properties tend to be further improved. In addition, the upper limit of the content of the thermoplastic elastomer is preferably 45 parts by mass or less, more preferably 40 parts by mass or less, and 35 parts by mass or less with respect to 100 parts by mass of the resin solid content. is more preferably 32 parts by mass or less, and even more preferably 28 parts by mass or less. By making it below the said upper limit, there exists a tendency for heat resistance to improve more.
The resin composition may contain only one type of thermoplastic elastomer, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
(充填材)
 樹脂組成物は、低誘電率性、低誘電正接性を向上させるために、充填材を含んでいてもよい。充填材としては、公知のものを適宜使用することができ、その種類は特に限定されず、当業界において一般に使用されているものを好適に用いることができる。具体的には、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類、ホワイトカーボン、チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム、硫酸バリウム、水酸化アルミニウム、水酸化アルミニウム加熱処理品( 水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの) 、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデンやモリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラスなど無機系の充填材の他、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、シリコーンレジンパウダー、シリコーンゴムパウダー、シリコーン複合パウダーなど有機系の充填材などが挙げられる。これらの充填材は、単独で用いても、2種以上を併用してもよい。
 これらの中でも、シリカ、水酸化アルミニウム、ベーマイト、酸化マグネシウム及び水酸化マグネシウムからなる群から選択される1種又は2種以上が好適である。これらの充填材を使用することで、樹脂組成物の熱膨張特性、寸法安定性、難燃性などの特性が向上する。
(filler)
The resin composition may contain a filler in order to improve low dielectric constant properties and low dielectric loss tangent properties. As the filler, known fillers can be used as appropriate, and the type thereof is not particularly limited, and fillers commonly used in the art can be suitably used. Specifically, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerosil, hollow silica, white carbon, titanium white, zinc oxide, magnesium oxide, zirconium oxide, boron nitride, aggregated boron nitride, silicon nitride , Aluminum Nitride, Barium Sulfate, Aluminum Hydroxide, Heat Treated Aluminum Hydroxide (Aluminum Hydroxide Heat Treated to Reduce Some of the Water of Crystallization), Boehmite, Metal Hydrates such as Magnesium Hydroxide, Oxides Molybdenum and molybdenum compounds such as zinc molybdate, zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass, A-glass, NE-glass, C -Glass, L-glass, D-glass, S-glass, M-glass G20, short glass fibers (including glass fine powders such as E-glass, T-glass, D-glass, S-glass, Q-glass, etc.), hollow In addition to inorganic fillers such as glass and spherical glass, organic fillers such as styrene, butadiene, and acrylic rubber powders, core-shell rubber powders, silicone resin powders, silicone rubber powders, and silicone compound powders. is mentioned. These fillers may be used alone or in combination of two or more.
Among these, one or more selected from the group consisting of silica, aluminum hydroxide, boehmite, magnesium oxide and magnesium hydroxide is suitable. By using these fillers, properties such as thermal expansion properties, dimensional stability and flame retardancy of the resin composition are improved.
 樹脂組成物における充填材の含有量は、所望する特性に応じて適宜設定することができ、特に限定されないが、含有する場合、樹脂組成物中の樹脂固形分100質量部に対して、50質量部以上であることが好ましい。上限としては、1600質量部以下が好ましく、500質量部以下がより好ましく、300質量部以下が特に好ましい。あるいは、充填剤が、75質量部~250質量部であってもよく、100質量部~200質量部であってもよい。充填材の含有量をこの範囲とすることで、樹脂組成物の成形性が良好となる。樹脂組成物は、充填材を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The content of the filler in the resin composition can be appropriately set according to the desired properties, and is not particularly limited. It is preferably at least 1 part. The upper limit is preferably 1600 parts by mass or less, more preferably 500 parts by mass or less, and particularly preferably 300 parts by mass or less. Alternatively, the filler may be from 75 parts by weight to 250 parts by weight, or from 100 parts by weight to 200 parts by weight. By setting the content of the filler within this range, the moldability of the resin composition is improved. The resin composition may contain only one filler, or may contain two or more fillers. When two or more types are included, the total amount is preferably within the above range.
 なお、充填材を使用するにあたり、シランカップリング剤及び湿潤分散剤からなる群より選ばれる少なくとも1種を併用することが好ましい。シランカップリング剤としては、一般に無機物の表面処理に使用されているものを好適に用いることができ、その種類は特に限定されない。具体的には、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシランなどのアミノシラン系、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン系、γ-メタアクリロキシプロピルトリメトキシシラン、ビニルートリ(β-メトキシエトキシ)シランなどのビニルシラン系、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、フェニルシラン系などが挙げられる。シランカップリング剤は、単独で用いても、2種以上を併用してもよい。また、湿潤分散剤としては、一般に塗料用に使用されているものを好適に用いることができ、その種類は特に限定されない。好ましくは、共重合体ベースの湿潤分散剤が使用され、その具体例としては、ビックケミー・ジャパン株式会社製のDisperbyk-110、111、161、180、2009、2152、BYK-W996、BYK-W9010、BYK-W903、BYK-W940などが挙げられる。湿潤分散剤は、単独で用いても、2 種以上を併用してもよい。 When using fillers, it is preferable to use at least one selected from the group consisting of silane coupling agents and wetting and dispersing agents. As the silane coupling agent, those generally used for surface treatment of inorganic substances can be suitably used, and the type thereof is not particularly limited. Specifically, aminosilanes such as γ-aminopropyltriethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β-(3,4 -epoxysilanes such as epoxycyclohexyl)ethyltrimethoxysilane, vinylsilanes such as γ-methacryloxypropyltrimethoxysilane, vinyl-tri(β-methoxyethoxy)silane, N-β-(N-vinylbenzylaminoethyl)- Examples include cationic silanes such as γ-aminopropyltrimethoxysilane hydrochloride, phenylsilanes, and the like. The silane coupling agents may be used alone or in combination of two or more. As the wetting and dispersing agent, those generally used for paints can be suitably used, and the type thereof is not particularly limited. Preferably, a copolymer-based wetting and dispersing agent is used, specific examples of which include Disperbyk-110, 111, 161, 180, 2009, 2152, BYK-W996, BYK-W9010 manufactured by BYK-Chemie Japan Co., Ltd. BYK-W903, BYK-W940 and the like. Wetting and dispersing agents may be used alone or in combination of two or more.
 シランカップリング剤の含有量は、特に限定されず、樹脂組成物中の樹脂固形分100質量部に対して、1質量~5質量部程度であってもよい。分散剤(特に湿潤分散剤)の含有量は、特に限定されず、樹脂組成物中の樹脂固形分100質量部に対して、例えば、0.5質量部~5質量部程度であってもよい。 The content of the silane coupling agent is not particularly limited, and may be about 1 to 5 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. The content of the dispersant (particularly the wetting and dispersing agent) is not particularly limited, and may be, for example, about 0.5 parts by mass to 5 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. .
(スチレンオリゴマー)
 樹脂組成物は、スチレンオリゴマーを含んでいてもよい。本実施形態に係るスチレンオリゴマーは、スチレン及びスチレン誘導体、ビニルトルエンからなる群より選ばれる少なくとも1種を重合してなり、その数平均分子量は、178~1600、平均の芳香環数が2~14、芳香環数の2~14の総量が50質量%以上、沸点が300℃ 以上である分岐構造のない化合物である。スチレンオリゴマーを含むことにより、低誘電率性及び低誘電正接性を向上させることができる。なお、本実施形態で用いられる「スチレンオリゴマー」は、上述した「熱可塑性エラストマー」とは区別される。
(styrene oligomer)
The resin composition may contain a styrene oligomer. The styrene oligomer according to the present embodiment is obtained by polymerizing at least one selected from the group consisting of styrene, styrene derivatives, and vinyltoluene, and has a number average molecular weight of 178 to 1,600 and an average number of aromatic rings of 2 to 14. , the total amount of 2 to 14 aromatic rings is 50% by mass or more, and the boiling point is 300° C. or more and does not have a branched structure. By including a styrene oligomer, low dielectric constant and low dielectric loss tangent can be improved. The "styrene oligomer" used in this embodiment is distinguished from the above-mentioned "thermoplastic elastomer".
 スチレンオリゴマーとしては、例えば、スチレン重合体、ビニルトルエン重合体、α-メチルスチレン重合体、ビニルトルエン-α-メチルスチレン重合体、スチレン-α-スチレン重合体等が挙げられる。スチレン重合体としては、市販品を用いてもよく、例えばピコラスチックA5(イーストマンケミカル社製)、ピコラスチックA-75(イーストマンケミカル社製)、ピコテックス75(イーストマンケミカル社製)、FTR-8100(三井化学株式会社製)、FTR-8120(三井化学株式会社製)が挙げられる。また、ビニルトルエン-α-メチルスチレン重合体としては、ピコテックスLC(イーストマンケミカル社製)が挙げられる。また、α-メチルスチレン重合体としてはクリスタレックス3070(イーストマンケミカル社製)、クリスタレックス3085(イーストマンケミカル社製)、クリスタレックス(3100)、クリスタレックス5140(イーストマンケミカル社製)、FMR-0100(三井化学株式会社製)、FMR-0150(三井化学株式会社製)が挙げられる。また、スチレン-α-スチレン重合体としてはFTR-2120(三井化学株式会社製)が挙げられる。これらのスチレンオリゴマーは単独で用いても、2種以上を併用してもよい。 Examples of styrene oligomers include styrene polymers, vinyltoluene polymers, α-methylstyrene polymers, vinyltoluene-α-methylstyrene polymers, and styrene-α-styrene polymers. As the styrene polymer, commercially available products may be used. Examples include FTR-8100 (manufactured by Mitsui Chemicals, Inc.) and FTR-8120 (manufactured by Mitsui Chemicals, Inc.). Examples of the vinyltoluene-α-methylstyrene polymer include Picotex LC (manufactured by Eastman Chemical Co.). Examples of α-methylstyrene polymers include Crystalex 3070 (manufactured by Eastman Chemical Co.), Crystalex 3085 (manufactured by Eastman Chemical Co.), Crystalex (3100), Crystalex 5140 (manufactured by Eastman Chemical Co.) and FMR. -0100 (manufactured by Mitsui Chemicals, Inc.) and FMR-0150 (manufactured by Mitsui Chemicals, Inc.). Further, the styrene-α-styrene polymer includes FTR-2120 (manufactured by Mitsui Chemicals, Inc.). These styrene oligomers may be used alone or in combination of two or more.
 樹脂組成物におけるスチレンオリゴマーの含有量は、含有する場合、樹脂組成物の樹脂固形分100質量部に対し、1質量部以上、また、30質量部以下であることが、低誘電率性、低誘電正接性及び耐薬品性の観点から好ましく、5質量部以上、また、20質量部以下であることが特に好ましく、15質量部以下であってもよい。樹脂組成物は、スチレンオリゴマーを、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The content of the styrene oligomer in the resin composition, when it is contained, is 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the resin solid content of the resin composition. From the viewpoint of dielectric loss tangent and chemical resistance, it is preferably 5 parts by mass or more and 20 parts by mass or less, and may be 15 parts by mass or less. The resin composition may contain only one type of styrene oligomer, or may contain two or more types thereof. When two or more types are included, the total amount is preferably within the above range.
(難燃剤)
 樹脂組成物は、耐燃性の向上のため難燃剤を含んでいてもよい。難燃剤としては、公知のものが使用でき、例えば、臭素化エポキシ樹脂、臭素化ポリカーボネート、臭素化ポリスチレン、臭素化スチレン、臭素化フタルイミド、テトラブロモビスフェノールA、ペンタブロモベンジル(メタ)アクリレート、ペンタブロモトルエン、トリブロモフェノール、ヘキサブロモベンゼン、デカブロモジフェニルエーテル、ビス-1,2-ペンタブロモフェニルエタン、塩素化ポリスチレン、塩素化パラフィン等のハロゲン系難燃剤、赤リン、トリクレジルホスフェート、トリフェニルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、トリアルキルホスフェート、ジアルキルホスフェート、トリス(クロロエチル)ホスフェート、ホスファゼン、1,3-フェニレンビス(2,6-ジキシレニルホスフェート)、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド、等のリン系難燃剤、水酸化アルミニウム、水酸化マグネシウム、部分ベーマイト、ベーマイト、ほう酸亜鉛、三酸化アンチモン等の無機系難燃剤、シリコーンゴム、シリコーンレジン等のシリコーン系難燃剤が挙げられる。これらの難燃剤は単独で用いても、2種以上を併用してもよい。これらの中でも、リン系難燃剤が好ましく、特に、1,3-フェニレンビス(2,6-ジキシレニルホスフェート)が低誘電特性を損ないにくいことから好ましい。樹脂組成物中のリン含有量は0.1質量%~5質量%が好ましい。
(Flame retardants)
The resin composition may contain a flame retardant to improve flame resistance. Known flame retardants can be used, for example, brominated epoxy resin, brominated polycarbonate, brominated polystyrene, brominated styrene, brominated phthalimide, tetrabromobisphenol A, pentabromobenzyl (meth)acrylate, pentabromo Halogen flame retardants such as toluene, tribromophenol, hexabromobenzene, decabromodiphenyl ether, bis-1,2-pentabromophenylethane, chlorinated polystyrene, chlorinated paraffin, red phosphorus, tricresyl phosphate, triphenyl phosphate , cresyl diphenyl phosphate, trixylenyl phosphate, trialkyl phosphate, dialkyl phosphate, tris(chloroethyl) phosphate, phosphazene, 1,3-phenylenebis(2,6-dixylenyl phosphate), 10-(2,5- Dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, phosphorus-based flame retardants, aluminum hydroxide, magnesium hydroxide, partial boehmite, boehmite, zinc borate, antimony trioxide, etc. Silicone-based flame retardants such as flame retardants, silicone rubbers, and silicone resins can be used. These flame retardants may be used alone or in combination of two or more. Among these, phosphorus-based flame retardants are preferred, and 1,3-phenylenebis(2,6-dixylenyl phosphate) is particularly preferred because it hardly impairs low dielectric properties. The phosphorus content in the resin composition is preferably 0.1% by mass to 5% by mass.
 難燃剤の含有量は、含有する場合、樹脂組成物中の樹脂固形分100質量部に対して、1質量部以上であることが好ましく、5質量部以上であることがより好ましい。また、この含有量の上限値は、30質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であってもよい。難燃剤は、1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。 The content of the flame retardant, when contained, is preferably 1 part by mass or more, more preferably 5 parts by mass or more, relative to 100 parts by mass of the resin solid content in the resin composition. The upper limit of the content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and may be 15 parts by mass or less. Only one flame retardant may be used, or two or more flame retardants may be used. When two or more are used, the total amount is preferably within the above range.
(他の成分)
 さらに、樹脂組成物は、所期の特性が得られる範囲において、上記末端不飽和基変性ポリフェニレンエーテル以外のポリフェニレンエーテル化合物、オキセタン樹脂、ベンゾオキサジン化合物、スチレン単量体単位を含まない熱可塑性エラストマー(以下、「その他熱可塑性エラストマー」という)、硬化促進剤、有機溶剤等を含有していてもよい。これらを併用することで、低誘電性など所望する特性を向上させることができる。樹脂組成物は、上記ポリフェニレンエーテル化合物以外のポリフェニレンエーテル化合物、及び、上記その他熱可塑性エラストマーの総量が、樹脂固形分の3質量%以下であることが好ましく、1質量%以下であることがより好ましい。このような構成とすることにより、本発明の効果がより効果的に発揮される。
(other ingredients)
Furthermore, the resin composition contains a thermoplastic elastomer ( hereinafter referred to as "other thermoplastic elastomer"), a curing accelerator, an organic solvent, and the like. By using these together, desired properties such as low dielectric properties can be improved. In the resin composition, the total amount of the polyphenylene ether compound other than the polyphenylene ether compound and the other thermoplastic elastomer is preferably 3% by mass or less, more preferably 1% by mass or less, based on the solid content of the resin. . With such a configuration, the effects of the present invention are exhibited more effectively.
(オキセタン樹脂)
 オキセタン樹脂としては、特に限定されず、例えば、オキセタン、アルキルオキセタン(例えば、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキサタン等)、3-メチル-3-メトキシメチルオキセタン、3,3-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成株式会社製品)、OXT-121(東亞合成株式会社製品)等が挙げられる。これらのオキセタン樹脂は、単独で用いても、2種以上を併用してもよい。
(oxetane resin)
The oxetane resin is not particularly limited, and examples thereof include oxetane, alkyloxetane (eg, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3-dimethyloxatane, etc.), 3-methyl- 3-Methoxymethyloxetane, 3,3-di(trifluoromethyl)perfluoxetane, 2-chloromethyloxetane, 3,3-bis(chloromethyl)oxetane, biphenyl type oxetane, OXT-101 (product of Toagosei Co., Ltd.) ), OXT-121 (a product of Toagosei Co., Ltd.), and the like. These oxetane resins may be used alone or in combination of two or more.
(ベンゾオキサジン化合物)
 ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば特に限定されず、例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学株式会社製品)、ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学株式会社製品)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学株式会社製品)等が挙げられる。これらのベンゾオキサジン化合物は、単独で用いても、2種以上を併用してもよい。
(Benzoxazine compound)
The benzoxazine compound is not particularly limited as long as it is a compound having two or more dihydrobenzoxazine rings in one molecule. Benzoxazine BF-BXZ (product of Konishi Chemical Co., Ltd.), bisphenol S-type benzoxazine BS-BXZ (product of Konishi Chemical Co., Ltd.), and the like. These benzoxazine compounds may be used alone or in combination of two or more.
(その他熱可塑性エラストマー)
 その他熱可塑性エラストマーは、上述した熱可塑性エラストマー以外のエラストマーを示す。その他熱可塑性エラストマーとしては、例えばポリイソプレン、ポリブタジエン、ブチルゴム、エチレンプロピレンゴム、フッ素ゴム、シリコーンゴム、それらの水添化合物、それらのアルキル化合物からなる群より選択される少なくとも1種が挙げられる。これらの中でも、ポリフェニレンエーテル化合物との相溶性により優れる観点から、ポリイソプレン、ポリブタジエン、ブチルゴム、及びエチレンプロピレンゴムからなる群より選択される少なくとも1種であることがより好ましい。
(Other thermoplastic elastomers)
Other thermoplastic elastomers refer to elastomers other than the thermoplastic elastomers described above. Other thermoplastic elastomers include, for example, at least one selected from the group consisting of polyisoprene, polybutadiene, butyl rubber, ethylene propylene rubber, fluororubber, silicone rubber, hydrogenated compounds thereof, and alkyl compounds thereof. Among these, at least one selected from the group consisting of polyisoprene, polybutadiene, butyl rubber, and ethylene propylene rubber is more preferable from the viewpoint of better compatibility with the polyphenylene ether compound.
(硬化促進剤)
 樹脂組成物は、硬化速度を適宜調節するための硬化促進剤を含有してもよい。硬化促進剤としては、マレイミド化合物、エポキシ樹脂などの硬化促進剤として通常用いられているものが挙げられ、有機金属塩類(例えば、オクチル酸亜鉛、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、アセチルアセトン鉄、オクチル酸ニッケル、オクチル酸マンガン等)、フェノール化合物(例えば、フェノール、キシレノール、クレゾール、レゾルシン、カテコール、オクチルフェノール、ノニルフェノール等)、アルコール類(例えば、1-ブタノール、2-エチルヘキサノール等)、イミダゾール類(例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等)、及びこれらのイミダゾール類のカルボン酸若しくはその酸無水類の付加体等の誘導体、アミン類(例えば、ジシアンジアミド、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン等)、リン化合物(例えば、ホスフィン系化合物、ホスフィンオキサイド系化合物、ホスホニウム塩系化合物、ダイホスフィン系化合物等)、エポキシ-イミダゾールアダクト系化合物、過酸化物(例えば、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート等)、アゾ化合物(例えば、アゾビスイソブチロニトリル等)が挙げられる。硬化促進剤は、単独で用いても、2種以上を併用してもよい。硬化促進剤の含有量は、通常、樹脂組成物中の樹脂固形分100質量部に対し、0.005質量部~10質量部程度であってもよい。
(Curing accelerator)
The resin composition may contain a curing accelerator for appropriately adjusting the curing speed. Examples of curing accelerators include those commonly used as curing accelerators such as maleimide compounds and epoxy resins. iron, nickel octylate, manganese octylate, etc.), phenolic compounds (e.g., phenol, xylenol, cresol, resorcinol, catechol, octylphenol, nonylphenol, etc.), alcohols (e.g., 1-butanol, 2-ethylhexanol, etc.), imidazole (for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4 , 5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, etc.), derivatives such as adducts of carboxylic acids of these imidazoles or their acid anhydrides, amines (e.g., dicyandiamide, benzyldimethylamine, 4-methyl-N,N-dimethylbenzylamine, etc.), phosphorus compounds (e.g., phosphine compounds, phosphine oxide compounds, phosphonium salt compounds, diphosphine compounds, etc.), epoxy-imidazole adduct compounds , peroxides (e.g., benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropyl peroxycarbonate, di-2-ethylhexyl peroxycarbonate, etc.), azo compounds (e.g., azobisiso butyronitrile, etc.). A hardening accelerator may be used independently or may use 2 or more types together. The content of the curing accelerator may generally be about 0.005 parts by mass to 10 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
 樹脂組成物は、上記の成分以外の他の熱硬化性樹脂、熱可塑性樹脂、及びそのオリゴマー等の種々の高分子化合物、各種添加剤を含有してもよい。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、流動調整剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等が挙げられる。これらの添加剤は、単独で用いても、2種以上を併用してもよい。 In addition to the above components, the resin composition may contain thermosetting resins, thermoplastic resins, various polymer compounds such as oligomers thereof, and various additives. Additives include UV absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, flow control agents, lubricants, antifoaming agents, dispersants, and leveling agents. agents, brighteners, polymerization inhibitors, and the like. These additives may be used alone or in combination of two or more.
<有機溶剤>
 プリプレグは、有機溶剤を含有してもよい。この場合、本実施形態に係る樹脂組成物は、上述した各種樹脂成分の少なくとも一部、好ましくは全部が有機溶剤に溶解又は相溶した形態(溶液又はワニス)である。有機溶剤としては、上述した各種樹脂成分の少なくとも一部、好ましくは全部を溶解又は相溶可能な極性有機溶剤又は無極性有機溶剤であれば特に限定されず、極性有機溶剤としては、例えば、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、セロソルブ類(例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等)、エステル類(例えば、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等)アミド類(例えば、ジメトキシアセトアミド、ジメチルホルムアミド類等)が挙げられ、無極性有機溶剤としては、芳香族炭化水素(例えば、トルエン、キシレン等)が挙げられる。これらの有機溶剤は、単独で用いても、2種以上を併用してもよい。
<Organic solvent>
The prepreg may contain an organic solvent. In this case, the resin composition according to the present embodiment is in a form (solution or varnish) in which at least part, preferably all of the various resin components described above are dissolved or compatible with an organic solvent. The organic solvent is not particularly limited as long as it is a polar organic solvent or a non-polar organic solvent capable of dissolving or dissolving at least part, preferably all, of the various resin components described above. Examples of polar organic solvents include ketones. (e.g., acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), cellosolves (e.g., propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.), esters (e.g., ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, acetic acid isoamyl, ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate, etc.) amides (e.g., dimethoxyacetamide, dimethylformamides, etc.); nonpolar organic solvents include aromatic hydrocarbons (e.g., toluene, xylene etc.). These organic solvents may be used alone or in combination of two or more.
[用途]
 本実施形態に係るプリプレグは、プリント配線板の絶縁層として好適に用いることができる。
[Use]
The prepreg according to this embodiment can be suitably used as an insulating layer of a printed wiring board.
[積層板]
 積層板は、本実施形態に係る1枚以上のプリプレグを含む積層体を加熱加圧し、プリプレグを硬化させたものであり、本実施形態に係るプリプレグから形成された層、すなわち、本実施形態に係るプリプレグの硬化物を含むものである。積層板の成形方法及びその成形条件は、特に限定されず、一般的な手法及び条件を用いることができる。例えば、成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を用いることができる。成形(積層成形)において、温度は100℃~300℃、圧力は面圧2kgf/cm~100kgf/cm、加熱時間は0.05時間~5時間の範囲が一般的である。さらに、必要に応じて、150℃~300℃の温度で後硬化を行うこともできる。特に多段プレス機を用いた場合は、プリプレグの硬化を十分に促進させる観点から、温度200℃~250℃、圧力10kgf/cm~40kgf/cm、加熱時間80分~130分が好ましく、温度215℃~235℃、圧力25kgf/cm~35kgf/cm、加熱時間90分~120分がより好ましい。
[Laminate]
The laminate is obtained by heating and pressurizing a laminate containing one or more prepregs according to the present embodiment and curing the prepregs. A layer formed from the prepregs according to the present embodiment, that is, It includes a cured product of the prepreg. The method and conditions for molding the laminate are not particularly limited, and general methods and conditions can be used. For example, a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, or the like can be used for molding. In molding (laminate molding), the temperature is generally 100° C. to 300° C., the pressure is 2 kgf/cm 2 to 100 kgf/cm 2 , and the heating time is generally 0.05 to 5 hours. In addition, post-curing can be performed at a temperature of 150° C. to 300° C., if desired. Especially when a multi-stage press is used, from the viewpoint of sufficiently accelerating the curing of the prepreg, the temperature is preferably 200° C. to 250° C., the pressure is 10 kgf/cm 2 to 40 kgf/cm 2 , and the heating time is 80 minutes to 130 minutes. More preferably, the temperature is 215° C. to 235° C., the pressure is 25 kgf/cm 2 to 35 kgf/cm 2 , and the heating time is 90 minutes to 120 minutes.
[プリント配線板]
 プリント配線板は、絶縁層と、導体層とを有し、絶縁層が、本実施形態に係るプリプレグから形成された層、すなわち、本実施形態に係るプリプレグの硬化物を含むものである。このようなプリント配線板は、常法に従って製造でき、その製造方法は特に限定されない。以下、プリント配線板の製造方法の一例を示す。まず、1枚以上のプリプレグを重ねてその片面又は両面に金属箔を配置した銅張積層板等の金属箔張積層板を用意する。次に、金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述したプリプレグを所要枚数重ね、さらにその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、プリプレグの硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、さらに外層回路用の金属箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。
[Printed wiring board]
A printed wiring board has an insulating layer and a conductor layer, and the insulating layer includes a layer formed from the prepreg according to the present embodiment, that is, a cured product of the prepreg according to the present embodiment. Such a printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited. An example of a method for manufacturing a printed wiring board is shown below. First, a metal foil-clad laminate such as a copper-clad laminate is prepared by stacking one or more prepregs and placing a metal foil on one or both sides thereof. Next, the surface of the metal foil-clad laminate is etched to form an inner layer circuit, thereby producing an inner layer substrate. The surface of the inner layer circuit of this inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, and then the required number of prepregs described above are laminated on the surface of the inner layer circuit, and a metal foil for the outer layer circuit is laminated on the outer side. Then, heat and pressurize to integrally mold. In this manner, a multilayer laminate is manufactured in which an insulating layer made of the cured prepreg is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after drilling holes for through holes and via holes in this multi-layer laminate, a plated metal film is formed on the walls of the holes for conducting the inner layer circuit and the metal foil for the outer layer circuit, and further the outer layer circuit. A printed wiring board is manufactured by etching the metal foil for the purpose to form an outer layer circuit.
 このように本実施形態によれば、樹脂組成物の比率、比誘電率、及び、誘電正接を調整するようにしたので、スキュー及び伝送損失を低減することができると共に、信号速度を速くすることができる。よって、高周波に対応することができる。 As described above, according to the present embodiment, the ratio of the resin composition, the dielectric constant, and the dielectric loss tangent are adjusted, so that the skew and transmission loss can be reduced, and the signal speed can be increased. can be done. Therefore, high frequencies can be handled.
(合成例1)ナフトールアラルキル型シアン酸エステル化合物(SNCN)の合成
 1-ナフトールアラルキル樹脂(新日鉄住金化学株式会社製)300g(OH基換算1.28mol)及びトリエチルアミン194.6g(1.92mol)(ヒドロキシ基1molに対して1.5mol)をジクロロメタン1800gに溶解させ、これを溶液1とした。
 塩化シアン125.9g(2.05mol)(ヒドロキシ基1molに対して1.6mol)、ジクロロメタン293.8g、36%塩酸194.5g(1.92mol)(ヒドロキシ基1モルに対して1.5mol)、水1205.9gを、撹拌下、液温-2℃~-0.5℃に保ちながら、溶液1を30分かけて注下した。溶液1注下終了後、同温度にて30分撹拌した後、トリエチルアミン65g(0.64mol)(ヒドロキシ基1molに対して0.5mol)をジクロロメタン65gに溶解させた溶液(溶液2)を10分かけて注下した。溶液2注下終了後、同温度にて30分撹拌して反応を完結させた。
 その後反応液を静置して有機相と水相を分離した。得られた有機相を水1300gで5回洗浄した。水洗5回目の廃水の電気伝導度は5μS/cmであり、水による洗浄により、除けるイオン性化合物は十分に除けられたことを確認した。
 水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて目的とするナフトールアラルキル型のシアン酸エステル化合物(SNCN)(橙色粘性物)を331g得た。得られたSNCNの重量平均分子量Mwは600であった。また、SNCNのIR スペクトルは2250cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。
(Synthesis Example 1) Synthesis of naphthol aralkyl-type cyanate ester compound (SNCN) 1-naphthol aralkyl resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 300 g (OH group conversion 1.28 mol) and triethylamine 194.6 g (1.92 mol) ( 1.5 mol per 1 mol of hydroxy group) was dissolved in 1800 g of dichloromethane to prepare solution 1.
125.9 g (2.05 mol) of cyanogen chloride (1.6 mol per 1 mol of hydroxy group), 293.8 g of dichloromethane, 194.5 g (1.92 mol) of 36% hydrochloric acid (1.5 mol per 1 mol of hydroxy group) , and 1205.9 g of water were poured into the solution 1 over 30 minutes while maintaining the liquid temperature at -2°C to -0.5°C under stirring. After pouring solution 1, the mixture was stirred at the same temperature for 30 minutes. I ordered over. After pouring solution 2, the mixture was stirred at the same temperature for 30 minutes to complete the reaction.
After that, the reaction solution was allowed to stand to separate the organic phase and the aqueous phase. The resulting organic phase was washed 5 times with 1300 g of water. The electrical conductivity of the wastewater after the fifth washing was 5 μS/cm, and it was confirmed that the ionic compounds that could be removed were sufficiently removed by washing with water.
After washing with water, the organic phase was concentrated under reduced pressure and finally concentrated to dryness at 90° C. for 1 hour to obtain 331 g of the desired naphthol aralkyl cyanate ester compound (SNCN) (orange viscous substance). The weight average molecular weight Mw of the obtained SNCN was 600. Also, the IR spectrum of SNCN showed an absorption at 2250 cm -1 (cyanate ester group) and no absorption of a hydroxy group.
(実施例1)
 樹脂組成物の樹脂固形分として、一般式(11)において、R51及びR52が水素原子であり、nが1~3であるマレイミド化合物(BMI-2300、大和化成工業株式会社製)15質量部、合成例1より得られたシアン酸エステル化合物(SNCN)35質量部、一般式(5)において、Xが一般式(6)であり-(Y-O)n-が一般式(9)の構造単位が重合したものである末端不飽和基変性ポリフェニレンエーテル(OPE-2St1200、三菱ガス化学株式会社製、数平均分子量1187、ビニル基当量:590g/eq.)10質量部、末端不飽和基変性ポリフェニレンエーテルの2つ目の成分として、一般式(5)において、Xが一般式(6)であり-(Y-O)n-が一般式(9)の構造単位が重合したものである末端不飽和基変性ポリフェニレンエーテル(OPE-2St2200、三菱ガス化学株式会社製、数平均分子量2200、ビニル基当量:1100g/eq.)10質量部、スチレン-イソプレン-スチレンエラストマー(SEPTON2104、株式会社クラレ製、スチレン率65%)10質量部、α-メチルスチレン重合体(クリスタレックス3085、イーストマンケミカル社製)20質量部を用意した。この樹脂固形分100質量部と、充填材として球状シリカ(SC2050-MB、アドマテックス社製、平均粒子径0.5μm)150質量部とを混合し、有機溶剤であるメチルエチルケトンで希釈しワニスを得た。このワニスをガラス繊維基材である厚み32μmの低誘電ガラスクロスに含浸塗工し、乾燥機(耐圧防爆型スチーム乾燥機、株式会社高杉製作所製)を用いて165℃、5分加熱乾燥し、プリプレグを得た。プリプレグの総量に対する樹脂組成物(実施例1では樹脂固形分+充填材)の比率は87.6体積%とした。
(Example 1)
As the resin solid content of the resin composition, a maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) 15 in which R 51 and R 52 are hydrogen atoms and n 4 is 1 to 3 in the general formula (11) parts by mass, 35 parts by mass of the cyanate ester compound (SNCN) obtained in Synthesis Example 1, and in general formula (5), X is general formula (6) and -(YO)n 2 - is general formula ( 9) Terminal unsaturated group-modified polyphenylene ether (OPE-2St1200, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight 1187, vinyl group equivalent: 590 g / eq.) 10 parts by weight, terminal unsaturated group As the second component of the saturated group-modified polyphenylene ether, in the general formula (5), X is the general formula (6) and —(Y—O)n 2 — is the structural unit of the general formula (9) polymerized. Terminal unsaturated group-modified polyphenylene ether (OPE-2St2200, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight 2200, vinyl group equivalent: 1100 g / eq.) 10 parts by mass, styrene-isoprene-styrene elastomer (SEPTON2104, stock 10 parts by mass of styrene content 65% manufactured by Kuraray Co., Ltd. and 20 parts by mass of α-methylstyrene polymer (Crystarex 3085, manufactured by Eastman Chemical Co.) were prepared. 100 parts by mass of this resin solid content and 150 parts by mass of spherical silica (SC2050-MB, manufactured by Admatechs, average particle size 0.5 μm) as a filler are mixed and diluted with an organic solvent methyl ethyl ketone to obtain a varnish. rice field. This varnish is impregnated and coated on a low-dielectric glass cloth having a thickness of 32 μm, which is a glass fiber base material, and dried by heating at 165° C. for 5 minutes using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.). Got the prepreg. The ratio of the resin composition (resin solid content + filler in Example 1) to the total amount of prepreg was 87.6% by volume.
(実施例2)
 ガラス繊維基材として、厚み19μmの低誘電ガラスクロスを用い、プリプレグの総量に対する樹脂組成物(実施例2では樹脂固形分+充填材)の比率を92.1体積%としたことを除き、他は実施例1と同様にしてプリプレグを作製した。
(Example 2)
A low dielectric glass cloth with a thickness of 19 μm was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Example 2) to the total amount of prepreg was 92.1% by volume. prepared a prepreg in the same manner as in Example 1.
(実施例3)
 ガラス繊維基材として、厚み14μmの低誘電ガラスクロスを用い、プリプレグの総量に対する樹脂組成物(実施例3では樹脂固形分+充填材)の比率を95.1体積%としたことを除き、他は実施例1と同様にしてプリプレグを作製した。
(Example 3)
A low dielectric glass cloth with a thickness of 14 μm was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Example 3) to the total amount of prepreg was 95.1% by volume. prepared a prepreg in the same manner as in Example 1.
(実施例4)
 樹脂組成物の樹脂固形分として、一般式(15)で示されるマレイミド化合物(MIR-5000、日本化薬株式会社製)40質量部、一般式(5)において、Xが一般式(6)であり-(Y-O)n-が一般式(9)の構造単位が重合したものである末端不飽和基変性ポリフェニレンエーテル(OPE-2St2200、三菱ガス化学株式会社製、数平均分子量2200、ビニル基当量:1100g/eq.)35質量部、スチレン―ブタジエンブロック共重合体(TR2250、JSR株式会社製、スチレン率52%)25質量部を用意した。この樹脂固形分を混合し、有機溶剤であるメチルエチルケトンで希釈しワニスを得た。このワニスをガラス繊維基材である厚み14μmの低誘電ガラスクロスに含浸塗工し、乾燥機(耐圧防爆型スチーム乾燥機、株式会社高杉製作所製)を用いて165℃、3分加熱乾燥し、プリプレグを得た。プリプレグの総量に対する樹脂組成物(実施例4では樹脂固形分)の比率は95.1体積%とした。
(Example 4)
As the resin solid content of the resin composition, the maleimide compound (MIR-5000, manufactured by Nippon Kayaku Co., Ltd.) represented by the general formula (15) is 40 parts by mass, and in the general formula (5), X is the general formula (6). Terminal unsaturated group-modified polyphenylene ether (OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc., number average molecular weight 2200, vinyl Basic equivalent: 1100 g/eq.) 35 parts by mass, and 25 parts by mass of a styrene-butadiene block copolymer (TR2250, manufactured by JSR Corporation, styrene content: 52%) were prepared. This resin solid content was mixed and diluted with an organic solvent, methyl ethyl ketone, to obtain a varnish. This varnish is impregnated and coated on a low-dielectric glass cloth having a thickness of 14 μm, which is a glass fiber base material, and dried by heating at 165° C. for 3 minutes using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.). Got the prepreg. The ratio of the resin composition (resin solid content in Example 4) to the total amount of prepreg was 95.1% by volume.
(実施例5)
 ガラス繊維基材として、厚み9μmの低誘電ガラスクロスを用い、プリプレグの総量に対する樹脂組成物(実施例5では樹脂固形分)の比率を96.7体積%としたことを除き、他は実施例4と同様にしてプリプレグを作製した。
(Example 5)
Except that a low dielectric glass cloth with a thickness of 9 μm was used as the glass fiber base material and the ratio of the resin composition (resin solid content in Example 5) to the total amount of prepreg was 96.7% by volume. A prepreg was produced in the same manner as in 4.
(実施例6)
 樹脂組成物の樹脂固形分として、一般式(11)において、R51及びR52が水素原子であり、nが1~3であるマレイミド化合物(BMI-2300、大和化成工業株式会社製)10質量部、合成例1より得られたシアン酸エステル化合物(SNCN)30質量部、一般式(5)において、Xが一般式(6)であり-(Y-O)n-が一般式(9)の構造単位が重合したものであるポリフェニレンエーテル化合物(OPE-2St1200、三菱ガス化学株式会社製、数平均分子量1187、ビニル基当量:590g/eq.)60質量部を用意した。この樹脂固形分100質量部と、充填材として球状シリカ(SC2050-MB、アドマテックス社製、平均粒子径0.5μm)100質量部と、硬化促進剤としてオクチル酸亜鉛0.1質量部とを混合し、有機溶剤であるメチルエチルケトンで希釈しワニスを得た。このワニスをガラス繊維基材である厚み32μmの低誘電ガラスクロスに含浸塗工し、乾燥機(耐圧防爆型スチーム乾燥機、株式会社高杉製作所製)を用いて165℃、5分加熱乾燥し、プリプレグを得た。プリプレグの総量に対する樹脂組成物(実施例6では樹脂固形分+充填材+硬化促進剤)の比率は87.6体積%とした。
(Example 6)
As the resin solid content of the resin composition, 10 maleimide compounds (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) in which R 51 and R 52 are hydrogen atoms and n 4 is 1 to 3 in the general formula (11) parts by mass, 30 parts by mass of the cyanate ester compound (SNCN) obtained in Synthesis Example 1, and in general formula (5), X is general formula (6) and -(YO)n 2 - is general formula ( 60 parts by mass of a polyphenylene ether compound (OPE-2St1200, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1187, vinyl group equivalent: 590 g/eq.) obtained by polymerizing the structural units of 9) was prepared. 100 parts by mass of this resin solid content, 100 parts by mass of spherical silica (SC2050-MB, manufactured by Admatechs, average particle size 0.5 μm) as a filler, and 0.1 part by mass of zinc octylate as a curing accelerator. The mixture was mixed and diluted with an organic solvent, methyl ethyl ketone, to obtain a varnish. This varnish is impregnated and coated on a low-dielectric glass cloth having a thickness of 32 μm, which is a glass fiber base material, and dried by heating at 165° C. for 5 minutes using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.). Got the prepreg. The ratio of the resin composition (resin solid content + filler + curing accelerator in Example 6) to the total amount of prepreg was 87.6% by volume.
(比較例1)
 ガラス繊維基材として、厚み80μmの低誘電ガラスクロスを用い、プリプレグの総量に対する樹脂組成物(比較例1では樹脂固形分+充填材)の比率を69.3体積%としたことを除き、他は実施例1と同様にしてプリプレグを作製した。
(Comparative example 1)
A low dielectric glass cloth with a thickness of 80 μm was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Comparative Example 1) to the total amount of prepreg was set to 69.3% by volume. prepared a prepreg in the same manner as in Example 1.
(比較例2)
 ガラス繊維基材として、厚み49μmの低誘電ガラスクロスを用い、プリプレグの総量に対する樹脂組成物(比較例2では樹脂固形分+充填材)の比率を78.8体積%としたことを除き、他は実施例1と同様にしてプリプレグを作製した。
(Comparative example 2)
A low dielectric glass cloth with a thickness of 49 μm was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Comparative Example 2) to the total amount of prepreg was set to 78.8% by volume. prepared a prepreg in the same manner as in Example 1.
(比較例3)
 ガラス繊維基材として、厚み43μmの低誘電ガラスクロスを用い、プリプレグの総量に対する樹脂組成物(比較例3では樹脂固形分+充填材)の比率を80.9体積%としたことを除き、他は実施例1と同様にしてプリプレグを作製した。
(Comparative Example 3)
A low dielectric glass cloth with a thickness of 43 μm was used as the glass fiber base material, and the ratio of the resin composition (resin solid content + filler in Comparative Example 3) to the total amount of prepreg was set to 80.9% by volume. prepared a prepreg in the same manner as in Example 1.
(比較例4)
 実施例1と同様のワニスを、バーコーターによって厚さ12μm銅箔(3EC-M3-VLP、三井金属鉱業株式会社製)の片面に塗布を行い、銅付き樹脂シートを得た。乾燥機(耐圧防爆型スチーム乾燥機、株式会社高杉製作所製)を用いて、得られた銅付き樹脂シートを130℃、5分加熱乾燥し、樹脂厚み25μmの半硬化した銅付き樹脂シートを得た。樹脂シートの総量に対する樹脂組成物(比較例4では樹脂固形分+充填材)の比率は100体積%である。
(Comparative Example 4)
The same varnish as in Example 1 was applied to one side of a 12 μm thick copper foil (3EC-M3-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd.) using a bar coater to obtain a copper-coated resin sheet. Using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.), the obtained resin sheet with copper was dried by heating at 130° C. for 5 minutes to obtain a semi-cured resin sheet with copper having a resin thickness of 25 μm. rice field. The ratio of the resin composition (resin solid content + filler in Comparative Example 4) to the total amount of the resin sheet was 100% by volume.
(比較例5)
 実施例4と同様のワニスを、バーコーターによって厚さ12μm銅箔(3EC-M3-VLP、三井金属鉱業株式会社製)の片面に塗布を行い、銅付き樹脂シートを得た。乾燥機(耐圧防爆型スチーム乾燥機、株式会社高杉製作所製)を用いて、得られた銅付き樹脂シートを130℃、5分加熱乾燥し、樹脂厚み25μmの半硬化した銅付き樹脂シートを得た。樹脂シートの総量に対する樹脂組成物(比較例5では樹脂固形分)の比率は100体積%である。
(Comparative Example 5)
The same varnish as in Example 4 was applied to one side of a 12 μm thick copper foil (3EC-M3-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd.) using a bar coater to obtain a resin sheet with copper. Using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.), the obtained resin sheet with copper was dried by heating at 130° C. for 5 minutes to obtain a semi-cured resin sheet with copper having a resin thickness of 25 μm. rice field. The ratio of the resin composition (resin solid content in Comparative Example 5) to the total amount of the resin sheet was 100% by volume.
(比較例6)
 樹脂組成物の樹脂固形分として、合成例1より得られたシアン酸エステル化合物(SNCN)65質量部、フェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/eq.、日本化薬株式会社製)30重量部、ナフタレン骨格型エポキシ樹脂(HP-4032D、エポキシ当量:140g/eq.、DIC社製)5重量部を用意した。この樹脂固形分100質量部と、充填材として球状シリカ(SC2050-MB、アドマテックス社製、平均粒子径0.5μm)100質量部と、硬化促進剤としてオクチル酸亜鉛0.1質量部とを混合し、有機溶剤であるメチルエチルケトンで希釈しワニスを得た。このワニスをガラス繊維基材である厚み32μmのEガラスクロスに含浸塗工し、乾燥機(耐圧防爆型スチーム乾燥機、株式会社高杉製作所製)を用いて165℃、4分加熱乾燥し、プリプレグを得た。プリプレグの総量に対する樹脂組成物(比較例6では樹脂固形分+充填材+硬化促進剤)の比率は87.6体積%とした。
(Comparative Example 6)
As the resin solid content of the resin composition, 65 parts by mass of the cyanate ester compound (SNCN) obtained in Synthesis Example 1, phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent: 320 g / eq., Nippon Kayaku Yaku Co., Ltd.) and 5 parts by weight of a naphthalene skeleton type epoxy resin (HP-4032D, epoxy equivalent: 140 g/eq., manufactured by DIC) were prepared. 100 parts by mass of this resin solid content, 100 parts by mass of spherical silica (SC2050-MB, manufactured by Admatechs, average particle size 0.5 μm) as a filler, and 0.1 part by mass of zinc octylate as a curing accelerator. The mixture was mixed and diluted with an organic solvent, methyl ethyl ketone, to obtain a varnish. This varnish is impregnated and coated on an E-glass cloth having a thickness of 32 μm, which is a glass fiber base material, and dried by heating at 165 ° C. for 4 minutes using a dryer (pressure-resistant explosion-proof steam dryer, manufactured by Takasugi Seisakusho Co., Ltd.) to form a prepreg. got The ratio of the resin composition (resin solid content + filler + curing accelerator in Comparative Example 6) to the total amount of prepreg was 87.6% by volume.
(評価用サンプルの作製)
 実施例1~6及び比較例1~3、6で得られたプリプレグについて、各実施例、各比較例毎に1枚又は4枚重ね、両面に銅箔(3EC-M3-VLP、三井金属鉱業株式会社製、厚み12μm)を配置し、圧力30kgf/cm、温度210℃で150分間の真空プレス(熱硬化)を行い、プリプレグから形成された層の厚み0.1mm及び0.4mmの銅箔張積層板を得た。
 また、比較例4、5で得られた半硬化した銅付き樹脂シートについて、樹脂面が接するように2枚の半硬化した銅付き樹脂シートを加熱積層し、その後銅箔を剥離し、さらに樹脂面が接するように上下2枚の半硬化した銅付き樹脂シートを加熱積層し銅箔を剥離することを1回又は7回繰り返すことで、両面に銅箔を積層した樹脂層の厚さが0.1mmおよび0.4mmの半硬化した樹脂シートを得た。この樹脂層厚さ0.1mm及び0.4mmの半硬化した樹脂シートを圧力30kgf/cm、温度210℃で150分間真空プレスを行い、樹脂層の厚み0.1mm及び0.4mmの銅箔張積層板を得た。
(Preparation of sample for evaluation)
For the prepregs obtained in Examples 1 to 6 and Comparative Examples 1 to 3 and 6, one or four sheets were stacked for each Example and each Comparative Example, and copper foil (3EC-M3-VLP, Mitsui Kinzoku Mining Co., Ltd. Co., Ltd., thickness 12 μm) is placed, and vacuum pressing (thermosetting) is performed at a pressure of 30 kgf/cm 2 and a temperature of 210° C. for 150 minutes, and a layer of copper having a thickness of 0.1 mm and 0.4 mm is formed from the prepreg. A foil clad laminate was obtained.
Further, with respect to the semi-cured resin sheets with copper obtained in Comparative Examples 4 and 5, two semi-cured resin sheets with copper were heat-laminated so that the resin surfaces were in contact, and then the copper foil was peeled off. By repeating heating and laminating two upper and lower semi-cured resin sheets with copper so that the surfaces are in contact and peeling off the copper foil, the thickness of the resin layer with the copper foil laminated on both sides is 0. Semi-cured resin sheets of 0.1 mm and 0.4 mm were obtained. This semi-cured resin sheet with a resin layer thickness of 0.1 mm and 0.4 mm was vacuum-pressed at a pressure of 30 kgf/cm 2 and a temperature of 210° C. for 150 minutes to obtain a copper foil with a resin layer thickness of 0.1 mm and 0.4 mm. A tension laminate was obtained.
(比誘電率Dk及び誘電正接Dfの評価)
 各実施例及び各比較例について得られた厚み0.4mmの銅箔張積層板の銅箔をエッチングにより除去したサンプルを用いて、摂動法空洞共振器(アジレントテクノロジー株式会社製品、Agilent8722ES)により、10GHzの比誘電率及び誘電正接を測定した。得られた結果を表1、表2、及び、図1に示す。
(Evaluation of dielectric constant Dk and dielectric loss tangent Df)
Using a sample obtained by removing the copper foil of the copper foil-clad laminate having a thickness of 0.4 mm obtained for each example and each comparative example by etching, a perturbation method cavity resonator (Agilent Technology Co., Ltd. product, Agilent 8722ES) Relative permittivity and dielectric loss tangent at 10 GHz were measured. The results obtained are shown in Tables 1 and 2 and FIG.
(スキューの評価)
 各実施例及び各比較例について得られた厚み0.1mmの銅箔張積層板の片面のみをエッチングして回路長10cmのマイクロストリップ線路を15本形成した。15本の導体配線(インピーダンス50Ω)の10GHz~20GHzの伝送速度を測定し、最大値と最小値の差をスキュー(SKEW)として求めた。得られた結果を表1、表2、及び、図2に示す。
(Evaluation of skew)
Fifteen microstrip lines each having a circuit length of 10 cm were formed by etching only one side of the 0.1 mm-thick copper-clad laminate obtained for each example and each comparative example. The transmission speed of 10 GHz to 20 GHz of 15 conductor wirings (impedance 50Ω) was measured, and the difference between the maximum value and the minimum value was obtained as skew (SKEW). The results obtained are shown in Tables 1 and 2 and FIG.
(伝送損失の評価)
 各実施例及び各比較例について得られた厚み0.1mmの銅箔張積層板の片面のみをエッチングして回路長10cmのマイクロストリップ線路を形成した配線板を作製し、伝送特性を評価した。Keysight technology社製のネットワークアナライザN5227Bを用いて高周波信号を伝送し、20GHzにおける伝送損失を測定した。得られた結果を表1及び表2に示す。
(Evaluation of transmission loss)
Wiring boards were prepared by etching only one side of the 0.1 mm-thick copper-clad laminate obtained in each example and each comparative example to form a microstrip line with a circuit length of 10 cm, and the transmission characteristics were evaluated. A high-frequency signal was transmitted using a network analyzer N5227B manufactured by Keysight Technologies, and the transmission loss at 20 GHz was measured. The results obtained are shown in Tables 1 and 2.
(反りの評価)
 各実施例及び各比較例で得られた厚み0.1mmの銅箔張積層板の上下の銅箔上にレーザー加工機による加工を行い、化学銅メッキにて所定のビアを形成した。続いて、配線パターンにエッチングして導体層を形成し、基板のパネル(サイズ:500mm×400mm)を得た。そして、得られたパネルの4つ角合計4箇所における反り量を金尺にて測定し、その平均値を「反り」とした。得られた結果を表1、表2、及び、図3に示す。
(Evaluation of warpage)
The upper and lower copper foils of the 0.1 mm-thick copper-clad laminate obtained in each example and each comparative example were processed by a laser processing machine, and predetermined vias were formed by chemical copper plating. Subsequently, a wiring pattern was etched to form a conductor layer to obtain a substrate panel (size: 500 mm×400 mm). Then, the amount of warpage at a total of four points on the four corners of the obtained panel was measured with a metal rule, and the average value was defined as "warpage." The results obtained are shown in Tables 1, 2 and FIG.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表1,2及び図1~3に示したように、プリプレグの総量に対する樹脂組成物の比率を81体積%以上とすればスキューを低減することができると共に、比誘電率を小さくできることが分かった。また、プリプレグの総量に対する樹脂組成物の比率を98体積%以下とすれば反りを十分に小さくできることが分かった。すなわち、プリプレグの総量に対する樹脂組成物の比率は、81体積%以上98体積%以下の範囲内とすることが好ましいことが分かった。 As shown in Tables 1 and 2 and FIGS. 1 to 3, it was found that the skew can be reduced and the dielectric constant can be decreased by setting the ratio of the resin composition to the total amount of the prepreg to 81% by volume or more. . Moreover, it was found that warping can be sufficiently reduced by setting the ratio of the resin composition to the total amount of the prepreg to 98% by volume or less. That is, it was found that the ratio of the resin composition to the total amount of the prepreg is preferably in the range of 81% by volume or more and 98% by volume or less.
 また、本実施例によれば、プリプレグの硬化後における10GHzでの比誘電率を3.3以下とすることができると共に、プリプレグの硬化後における10GHzでの誘電正接を0.004以下とすることができる。 In addition, according to the present embodiment, the dielectric constant at 10 GHz after curing of the prepreg can be 3.3 or less, and the dielectric loss tangent at 10 GHz after curing of the prepreg can be 0.004 or less. can be done.

Claims (11)

  1.  熱硬化性化合物を含む樹脂組成物がガラス繊維基材に含浸又は塗布されたプリプレグであって、
     前記プリプレグの総量に対する、前記樹脂組成物の比率が81体積%以上98体積%以下の範囲内であり、
     硬化後における10GHzでの比誘電率が3.3以下、誘電正接が0.004以下であるプリプレグ。
    A prepreg in which a glass fiber substrate is impregnated or coated with a resin composition containing a thermosetting compound,
    The ratio of the resin composition to the total amount of the prepreg is in the range of 81% by volume or more and 98% by volume or less,
    A prepreg having a dielectric constant of 3.3 or less at 10 GHz and a dielectric loss tangent of 0.004 or less after curing.
  2.  前記ガラス繊維基材がEガラス、Dガラス、Sガラス、Tガラス、Qガラス、Lガラス、NEガラス、及び、HMEガラスからなる群より選択される少なくとも1種のガラス繊維を含む、請求項1に記載のプリプレグ。 2. The glass fiber base material comprises at least one glass fiber selected from the group consisting of E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, and HME glass. The prepreg described in .
  3.  前記熱硬化性化合物が、末端不飽和基変性ポリフェニレンエーテルを含む、請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the thermosetting compound contains terminal unsaturated group-modified polyphenylene ether.
  4.  前記末端不飽和基変性ポリフェニレンエーテルの含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して1~70質量部である、請求項3に記載のプリプレグ。 The prepreg according to claim 3, wherein the content of the terminal unsaturated group-modified polyphenylene ether is 1 to 70 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
  5.  前記熱硬化性化合物が、マレイミド化合物、シアン酸エステル化合物、エポキシ化合物、及びフェノール化合物、からなる群より選択される1種類以上を含む、請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the thermosetting compound contains one or more selected from the group consisting of maleimide compounds, cyanate ester compounds, epoxy compounds, and phenol compounds.
  6.  前記樹脂組成物が、さらに熱可塑性エラストマーを含む、請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the resin composition further contains a thermoplastic elastomer.
  7.  前記熱可塑性エラストマーの含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して1~45質量部である、請求項6に記載のプリプレグ。 The prepreg according to claim 6, wherein the content of said thermoplastic elastomer is 1 to 45 parts by mass with respect to 100 parts by mass of resin solid content in said resin composition.
  8.  前記樹脂組成物が、さらに充填材を含む、請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the resin composition further contains a filler.
  9.  前記充填材の含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して50~1600質量部である、請求項8に記載のプリプレグ。 The prepreg according to claim 8, wherein the content of the filler is 50 to 1600 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
  10.  請求項1に記載のプリプレグの硬化物を含む、積層板。 A laminate containing the cured prepreg according to claim 1.
  11.  絶縁層と、導体層とを有するプリント配線板であって、前記絶縁層が、請求項1に記載のプリプレグの硬化物を含む、プリント配線板。 A printed wiring board having an insulating layer and a conductor layer, wherein the insulating layer contains the cured product of the prepreg according to claim 1.
PCT/JP2022/036277 2021-09-30 2022-09-28 Prepreg, laminate and printed wiring board WO2023054518A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023551633A JPWO2023054518A1 (en) 2021-09-30 2022-09-28
CN202280065717.7A CN118043384A (en) 2021-09-30 2022-09-28 Prepreg, laminate and printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162137 2021-09-30
JP2021162137 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054518A1 true WO2023054518A1 (en) 2023-04-06

Family

ID=85780766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036277 WO2023054518A1 (en) 2021-09-30 2022-09-28 Prepreg, laminate and printed wiring board

Country Status (4)

Country Link
JP (1) JPWO2023054518A1 (en)
CN (1) CN118043384A (en)
TW (1) TW202317678A (en)
WO (1) WO2023054518A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263569A (en) * 2008-04-28 2009-11-12 Hitachi Chem Co Ltd Prepreg comprising thin layer quartz glass cloth, and wiring plate using the same
JP2017141314A (en) * 2016-02-08 2017-08-17 三菱瓦斯化学株式会社 Prepreg
WO2019065940A1 (en) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, and wiring board
WO2019230661A1 (en) * 2018-05-28 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate board, resin composite sheet, and, printed circuit board
WO2019230945A1 (en) * 2018-06-01 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2019230943A1 (en) * 2018-06-01 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-tightened laminated sheet, resin sheet, and printed wiring board
WO2020175538A1 (en) * 2019-02-28 2020-09-03 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminated sheet, composite resin sheet, and printed wiring board
WO2021172316A1 (en) * 2020-02-25 2021-09-02 三菱瓦斯化学株式会社 Resin composition, cured product, prepreg, metal foil-clad laminate board, resin sheet, and printed circuit board
JP2021188217A (en) * 2020-06-04 2021-12-13 旭化成株式会社 Dielectric property evaluation method and quality control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263569A (en) * 2008-04-28 2009-11-12 Hitachi Chem Co Ltd Prepreg comprising thin layer quartz glass cloth, and wiring plate using the same
JP2017141314A (en) * 2016-02-08 2017-08-17 三菱瓦斯化学株式会社 Prepreg
WO2019065940A1 (en) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, and wiring board
WO2019230661A1 (en) * 2018-05-28 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate board, resin composite sheet, and, printed circuit board
WO2019230945A1 (en) * 2018-06-01 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2019230943A1 (en) * 2018-06-01 2019-12-05 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-tightened laminated sheet, resin sheet, and printed wiring board
WO2020175538A1 (en) * 2019-02-28 2020-09-03 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminated sheet, composite resin sheet, and printed wiring board
WO2021172316A1 (en) * 2020-02-25 2021-09-02 三菱瓦斯化学株式会社 Resin composition, cured product, prepreg, metal foil-clad laminate board, resin sheet, and printed circuit board
JP2021188217A (en) * 2020-06-04 2021-12-13 旭化成株式会社 Dielectric property evaluation method and quality control method

Also Published As

Publication number Publication date
TW202317678A (en) 2023-05-01
CN118043384A (en) 2024-05-14
JPWO2023054518A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
TWI814832B (en) Resin compositions, prepregs, metal foil-clad laminates, resin sheets, and printed wiring boards
TWI719382B (en) Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
WO2021149733A1 (en) Resin composition, resin sheet, prepreg, and printed wiring board
WO2019230943A1 (en) Resin composition, prepreg, metal foil-tightened laminated sheet, resin sheet, and printed wiring board
CN110198968B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP2005248147A (en) Thermosetting resin composition, and prepreg, metal-laminated lamination plate and printed wire board using the same
JP7279716B2 (en) Resin composition, prepreg, metal foil clad laminate, resin sheet and printed wiring board
TWI636084B (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
WO2021172317A1 (en) Resin composition, cured product, prepreg, metal foil-clad laminate board, resin sheet, and printed circuit board
JP6531910B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2023054518A1 (en) Prepreg, laminate and printed wiring board
KR20240088777A (en) Prepreg, laminate and printed wiring board
JP7322877B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
WO2022124130A1 (en) Copper-clad laminated board and printed wiring board
JP6905683B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2022124129A1 (en) Resin composition, prepreg, resin sheet, metal foil-clad layered board, and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551633

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2401002065

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE