JP2005119647A - Driving force control device for wheel independent drive system vehicle - Google Patents

Driving force control device for wheel independent drive system vehicle Download PDF

Info

Publication number
JP2005119647A
JP2005119647A JP2004261904A JP2004261904A JP2005119647A JP 2005119647 A JP2005119647 A JP 2005119647A JP 2004261904 A JP2004261904 A JP 2004261904A JP 2004261904 A JP2004261904 A JP 2004261904A JP 2005119647 A JP2005119647 A JP 2005119647A
Authority
JP
Japan
Prior art keywords
driving force
driving
drive
vehicle
force control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004261904A
Other languages
Japanese (ja)
Inventor
Takeshi Fujita
武志 藤田
Masahiro Miura
雅博 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004261904A priority Critical patent/JP2005119647A/en
Publication of JP2005119647A publication Critical patent/JP2005119647A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To prevent behavior change, enable travelling and ensure safety, when drive of part of wheels of an independent drive system vehicle becomes impossible during travelling. <P>SOLUTION: When recognizing drive incapability of the wheels 2FL, 2FR, 2RL, 2RR, a control unit 6 determines whether the vehicle 1 performs straight traveling or turning traveling, and whether vehicle speed VSP is creeping speed, low speed or high speed, and classifies a traveling state of the vehicle 1. In accordance with this classification, target driving force of other normal wheels is corrected, and a driving force command is outputted to motor controllers 5FL, 5FR, 5RL, 5RR. The correction method is performed such that a ratio of a total of driving force of left side wheels to a total of driving force of right side wheels during normal time becomes equal to that during drive incapability. As a rule, the correction method is performed such that a total of the target driving force of the normal wheels after correction becomes equal to driving force corresponding to an accelerator opening APO. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車輪を個々のモータなどの駆動源で独立に駆動する、車輪独立駆動式電気自動車などの車輪独立駆動式車両につき、走行中、車輪駆動源の万一の故障によって、一部の車輪が駆動不能に陥った場合であっても、故障前の走行状態を維持することができるようにする技術に関するものである。   The present invention relates to a wheel independent drive type vehicle such as a wheel independent drive type electric vehicle in which the wheels are independently driven by a drive source such as an individual motor. The present invention relates to a technique that enables a traveling state before a failure to be maintained even when a wheel is incapable of being driven.

車輪独立駆動式車両の駆動系が失陥した場合に対する制御の発明としては従来、例えば特許文献1に記載のごときものが知られている。
特開平8−168112号公報
As a control invention for a case where a drive system of a wheel independent drive type vehicle has failed, there has been known one as described in Patent Document 1, for example.
JP-A-8-168112

特許文献1に記載の駆動力制御装置は、旋回走行中に、左右側に個々に設けた駆動源のうちの一方が駆動不能になった場合には、他方の駆動源の駆動力を瞬時に、あるいは徐々に減少させながら停止せしめ、車両の唐突な挙動変化を防止し、もって走行安定性および安全性の向上を図るものである。   In the driving force control device described in Patent Document 1, when one of the driving sources individually provided on the left and right sides cannot be driven during turning, the driving force of the other driving source is instantaneously generated. Alternatively, the vehicle is stopped while gradually decreasing to prevent sudden changes in the behavior of the vehicle, thereby improving running stability and safety.

しかし、上記従来のような駆動力制御装置にあっては、以下に説明するような問題を生ずる。つまり、特許文献1の制御に従って駆動力を停止するのみでは、車両の唐突な挙動変化によって生じる車両の不安定な走行を抑制することはできるものの、車両の挙動変化そのものまで防止することはできない。
このため、車両の走行性能が変化してしまい、駆動不能に陥る前の直進走行や、旋回半径、ヨーレート挙動などの旋回走行、つまり車両の走行方向および駆動力を含む走行状態を維持することができず、運転性能が低下してしまうことにはかわりはない。
また、車輪の駆動力をすべて停止するため、走行を続けることができなくなり、修理可能箇所までの自走が不可能となるなど、不便であることを否めない。
However, the conventional driving force control apparatus has the following problems. That is, only stopping the driving force according to the control of Patent Document 1 can suppress the unstable traveling of the vehicle caused by the sudden behavior change of the vehicle, but cannot prevent the behavior change of the vehicle itself.
For this reason, it is possible to maintain a traveling state including a straight traveling before turning into a drive-disabled state and a turning traveling such as a turning radius and a yaw rate behavior, that is, a traveling state including the traveling direction and driving force of the vehicle. It cannot be done and the driving performance is not lowered.
Moreover, since all the driving forces of the wheels are stopped, it is impossible to continue traveling, and it is impossible to deny that it is inconvenient such that self-propulsion to a repairable location becomes impossible.

本発明は、一部の車輪が走行中に駆動不能に陥った場合には、他の正常な車輪を用いて、運転状態に対応した車両の走行状態を実現し、当該失陥時は勿論、その後も運転状態に応じた走行を続けることできるようにすることを目的とする。   The present invention realizes the traveling state of the vehicle corresponding to the driving state by using other normal wheels when some of the wheels become unable to drive during traveling, The purpose is to allow the vehicle to continue running according to the driving state.

この目的のため本発明による車両は、請求項1に記載のごとく、
車輪を個々の駆動源で独立に駆動する車輪独立駆動式車両に用いられ、該車輪の駆動力を個々に制御する駆動力制御装置において、
前記車輪独立駆動式車両の運転状態を検出する運転状態検出手段と、
前記駆動源の失陥を検出する駆動源失陥検出手段とを具え、
該手段によりいずれかの駆動源の失陥が検出される間は、他の正常な駆動源を用いて車両の走行状態を、前記運転状態検出手段で検出される運転状態に対応した走行状態となすよう、正常な駆動源を駆動力制御する構成にしたことを特徴としたものである。
For this purpose, the vehicle according to the invention is as claimed in claim 1,
In a driving force control device that is used in a wheel independent driving type vehicle that independently drives a wheel with an individual driving source, and individually controls the driving force of the wheel,
Driving state detecting means for detecting the driving state of the wheel independent drive vehicle;
Drive source failure detection means for detecting the drive source failure,
While the failure of one of the drive sources is detected by the means, the running state of the vehicle using another normal drive source is changed to a running state corresponding to the driving state detected by the driving state detecting means. As a result, the driving force is controlled by a normal driving source.

かかる本発明の構成によれば、一部の車輪が走行中に駆動不能に陥った時には、他の正常な車輪を用いて失陥検出時固有の駆動力制御により、運転状態に対応した車両の走行状態を実現するため、
当該失陥に伴う運転性能の低下を回避することができるとともに、走行安定性および安全性が損なわれるのを回避することができる。
また、他の正常な車輪を上記の駆動力制御下に駆動して、車両の走行を続けることが可能なため、目的地まで自走することができ、運転者にとっては有益である。
According to such a configuration of the present invention, when some of the wheels become unable to drive during traveling, the driving force control inherent in the detection of the failure using other normal wheels causes the vehicle corresponding to the driving state. To realize the running state,
It is possible to avoid a decrease in driving performance due to the failure and to prevent the running stability and safety from being impaired.
In addition, since other normal wheels can be driven under the above driving force control and the vehicle can continue to travel, the vehicle can travel to its destination and is beneficial to the driver.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は本発明の一実施例になる駆動力制御装置を具えた4輪独立駆動方式の電気自動車を、その駆動系と共に示す要部平面図である。
この電気自動車1は、左前輪2FL、右前輪2FR、左後輪2RL、および右後輪2RRの4つの車輪具え、これら車輪2FL,2FR,2RL,2RRをそれぞれ、個々の駆動源であるモータ3FL,3FR,3RL,3RRにより個別に駆動するものとし、これらモータを介して車輪2FL,2FR,2RL,2RRの駆動力を個別に制御可能とする。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
FIG. 1 is a plan view showing a main part of a four-wheel independent drive type electric vehicle equipped with a drive force control device according to an embodiment of the present invention, together with its drive system.
The electric vehicle 1 has four wheels, a left front wheel 2FL, a right front wheel 2FR, a left rear wheel 2RL, and a right rear wheel 2RR. These wheels 2FL, 2FR, 2RL, and 2RR are motors 3FL that are individual drive sources. , 3FR, 3RL, 3RR, and the driving force of wheels 2FL, 2FR, 2RL, 2RR can be individually controlled via these motors.

モータ3FL,3FR,3RL,3RRの共通な電源としてバッテリ4を設け、モータ制御器5FL,5FR,5RL,5RRを介してこのバッテリ4と、モータ3FL,3FR,3RL,3RRとの間を図1の太線で示すように接続する。
モータ制御器5FL,5FR,5RL,5RRはそれぞれ、コントロールユニット6から駆動力指令F1,F2,F3,F4を受け、これらの指令に応じた電力をバッテリ4から対応するモータ3FL,3FR,3RL,3RRに供給し、モータ3FL,3FR,3RL,3RRの駆動力(車輪2FL,2FR,2RL,2RRの駆動力)をそれぞれ駆動力指令F1,F2,F3,F4に一致させるものとする。
A battery 4 is provided as a common power source for the motors 3FL, 3FR, 3RL, 3RR, and the battery 4 is connected to the motors 3FL, 3FR, 3RL, 3RR via the motor controller 5FL, 5FR, 5RL, 5RR as shown in FIG. Connect as shown by the bold line.
The motor controllers 5FL, 5FR, 5RL, and 5RR receive driving force commands F1, F2, F3, and F4 from the control unit 6, respectively, and power corresponding to these commands is supplied from the battery 4 to the corresponding motors 3FL, 3FR, 3RL, The driving force of the motors 3FL, 3FR, 3RL, and 3RR (the driving force of the wheels 2FL, 2FR, 2RL, and 2RR) is made to coincide with the driving force commands F1, F2, F3, and F4, respectively.

モータ3FL,3FR,3RL,3RRには、個々の駆動不能検出センサ7FL,7FR,7RL,7RRを設け、これらセンサは、モータ3FL,3FR,3RL,3RRの駆動不能を検出した時、駆動不能信号をコントロールユニット6へ出力する。
駆動不能検出センサ7FL,7FR,7RL,7RRによる駆動不能の検出方法は、例えば、モータコイルの抵抗値を監視し、抵抗値が無限大となった場合にはコイル断線と判断し、駆動不能を判別する。
The motors 3FL, 3FR, 3RL, 3RR are provided with individual incompetence detection sensors 7FL, 7FR, 7RL, 7RR. These sensors detect the inability to drive the motors 3FL, 3FR, 3RL, 3RR when they cannot be driven. Is output to the control unit 6.
Non-drive detection sensor 7FL, 7FR, 7RL, 7RR detection method of non-drive, for example, by monitoring the resistance value of the motor coil, if the resistance value becomes infinite, it is determined that the coil is disconnected, Determine.

コントロールユニット6には、上記したモータ駆動不能検出センサ7FL,7FR,7RL,7RRからの信号のほかに、ステアリングホイール8の操舵角θを検出する操舵角センサ9からの信号と、車速VSPを検出する車速センサ10からの信号と、アクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ11からの信号とを入力する。
なお、コントロールユニット6の出力には更に、モータ3FL,3FR,3RL,3RRの駆動不能を適宜警報するための警報器として、インジケータ12を接続する。
The control unit 6 detects a signal from the steering angle sensor 9 that detects the steering angle θ of the steering wheel 8 and the vehicle speed VSP in addition to the signals from the motor drive impossibility detection sensors 7FL, 7FR, 7RL, and 7RR. A signal from the vehicle speed sensor 10 and a signal from the accelerator opening sensor 11 for detecting the accelerator pedal depression amount (accelerator opening) APO are input.
The output of the control unit 6 is further connected with an indicator 12 as an alarm device for appropriately warning that the motors 3FL, 3FR, 3RL, 3RR cannot be driven.

コントロールユニット6は、基本的にはアクセル開度APOおよび車速VSPに基づいて前記の目標駆動力F1,F2,F3,F4を算出し、これらを駆動力指令としてモータ制御器5FL,5FR,5RL,5RRへ出力する。また必要に応じて、操舵角θに基づく車両の走行方向を好適に実現するよう、上記算出した目標駆動力を補正し、これら補正後の目標駆動力F1,F2,F3,F4を駆動力指令として出力するが、
モータ駆動不能検出センサ7FL,7FR,7RL,7RRから、モータ3FL,3FR,3RL,3RRのいずれかが駆動不能になったことを示す信号を受けるとき、目標駆動力F1,F2,F3,F4を後述するごとくに決定するものとする。
The control unit 6 basically calculates the target driving force F1, F2, F3, F4 based on the accelerator opening APO and the vehicle speed VSP, and uses these as driving force commands to control the motor controllers 5FL, 5FR, 5RL, Output to 5RR. Further, if necessary, the calculated target driving force is corrected so that the traveling direction of the vehicle based on the steering angle θ is suitably realized, and these corrected target driving forces F1, F2, F3, and F4 are set as driving force commands. Output as
When a signal indicating that one of the motors 3FL, 3FR, 3RL, 3RR has become incapable of driving is received from the motor inoperability detection sensors 7FL, 7FR, 7RL, 7RR, the target driving forces F1, F2, F3, F4 are It will be decided as described later.

コントロールユニット6は、機能別ブロック線図により示すと図2に示すごときもので、各輪駆動源監視部21と、旋回/直進判断部22と、車速領域判断部23と、異常駆動源判断部24と、駆動力補正部25とを具え、車輪2FL,2FR,2RL,2RRのうち、いずれか1つ以上の車輪の駆動不能を検出した場合には、図3および以下に説明する制御プログラムに基づき、上述の目標駆動力F1,F2,F3,F4を補正し、補正後の目標駆動力指令を、制御器5a,5b,5c,5dへ出力する。
各輪駆動源監視部21は、モータ3FL,3FR,3RL,3RRが駆動不能であるか否かをモニタする。そして、モータ駆動不能検出センサ7FL,7FR,7RL,7RRからの信号により、モータ3FL,3FR,3RL,3RRの駆動不能を認識した場合には、駆動不能検出信号を旋回/直進判断部22へ出力する。
旋回/直進判断部22は、操舵角センサ9から入力される操舵角θを参照し、車両の運転状態が旋回走行中か、または直進走行中かを判断し、判断結果を車速領域判断部23へ出力する。
The control unit 6 is as shown in FIG. 2 in terms of a functional block diagram, and each wheel drive source monitoring unit 21, turning / straight running determination unit 22, vehicle speed region determination unit 23, and abnormal drive source determination unit 24 and the driving force correction unit 25, and when it is detected that one or more of the wheels 2FL, 2FR, 2RL, and 2RR cannot be driven, the control program described in FIG. Based on the above, the target driving forces F1, F2, F3, and F4 are corrected, and the corrected target driving force commands are output to the controllers 5a, 5b, 5c, and 5d.
Each wheel drive source monitoring unit 21 monitors whether the motors 3FL, 3FR, 3RL, and 3RR cannot be driven. When it is recognized that the motors 3FL, 3FR, 3RL, and 3RR cannot be driven by signals from the motor drivability detection sensors 7FL, 7FR, 7RL, and 7RR, the drivability detection signal is output to the turning / straight advance determination unit 22. To do.
The turning / straight-ahead determination unit 22 refers to the steering angle θ input from the steering angle sensor 9 to determine whether the driving state of the vehicle is turning or traveling straight, and the determination result is the vehicle speed region determination unit 23. Output to.

車速領域判断部23は、車速センサ10が検出した車速VSPに基づき、電気自動車1が微速走行中か、低速走行中か、または高速走行中かを判断し、判断結果を異常駆動源判断部24へ出力する。異常駆動源判断部24は、モータ3FL,3FR,3RL,3RRのうち、駆動不能が発生したモータの位置を判断し、判断結果を駆動力補正部25へ出力する。駆動力補正部25は、図示せざる別の制御プログラムで算出した通常走行の目標駆動力F1,F2,F3,F4を補正し、補正後の目標駆動力指令を、モータ制御器5FL,5FR,5RL,5RRへ出力する。このとき、駆動不能のモータの目標駆動力については補正せず、正常なモータの目標駆動力を補正することはいうまでもない。モータ制御器5FL,5FR,5RL,5RRは補正後の目標駆動力指令を実行すべくモータ3FL,3FR,3RL,3RRを制御する。   The vehicle speed area determination unit 23 determines whether the electric vehicle 1 is traveling at a low speed, a low speed, or a high speed based on the vehicle speed VSP detected by the vehicle speed sensor 10, and the determination result is an abnormal drive source determination unit 24. Output to. The abnormal drive source determination unit 24 determines the position of the motor that has become unable to drive among the motors 3FL, 3FR, 3RL, and 3RR, and outputs the determination result to the drive force correction unit 25. The driving force correction unit 25 corrects the normal driving target driving forces F1, F2, F3, and F4 calculated by another control program (not shown), and outputs the corrected target driving force commands to the motor controllers 5FL, 5FR, Output to 5RL, 5RR. At this time, it goes without saying that the target driving force of a motor that cannot be driven is not corrected, but the target driving force of a normal motor is corrected. The motor controllers 5FL, 5FR, 5RL, and 5RR control the motors 3FL, 3FR, 3RL, and 3RR to execute the corrected target driving force command.

図2に説明したコントロールユニット6が車両走行中にモータ3FL,3FR,3RL,3RRの駆動不能に備えて実行する駆動力制御プログラムを、図3にフローチャートで示す。本プログラムは定時間隔で繰り返し実行される。
ステップS1においては、モータ3FL,3FR,3RL,3RRのうち、いずれか1つ以上のモータが駆動不能であるか否かを判断する。すべてのモータ3FL,3FR,3RL,3RRが駆動不能でなく、正常であれば、本プログラムを終了する。一方、モータ3FL,3FR,3RL,3RRのいずれか1つ以上が駆動不能であれば、駆動不能状態と判断し、次のステップS2において、操舵角θに基づき、車両が直進中か否かを判断する。操舵角θが±5°以内であれば、車両は直進中と判断し、ステップS3へ進む。一方、操舵角θが±5°以外であれば、車両は旋回中と判断し、ステップS7へ進む。
FIG. 3 is a flowchart showing a driving force control program executed by the control unit 6 described in FIG. 2 in preparation for the inability to drive the motors 3FL, 3FR, 3RL, 3RR while the vehicle is running. This program is executed repeatedly at regular intervals.
In step S1, it is determined whether or not any one or more of motors 3FL, 3FR, 3RL, and 3RR cannot be driven. If all motors 3FL, 3FR, 3RL, 3RR are not driveable and are normal, this program ends. On the other hand, if any one or more of motors 3FL, 3FR, 3RL, and 3RR cannot be driven, it is determined that the vehicle cannot be driven, and in the next step S2, whether or not the vehicle is traveling straight is determined based on the steering angle θ. to decide. If the steering angle θ is within ± 5 °, it is determined that the vehicle is traveling straight, and the process proceeds to step S3. On the other hand, if the steering angle θ is other than ± 5 °, it is determined that the vehicle is turning, and the process proceeds to step S7.

ステップS3においては、車速VSPに基づいて、車両が微速で走行中か、低速で走行中か、あるいは高速で走行中かを判断する。車速Vが10km/h未満であれば微速と判断しステップS4へ進む。車速Vが10km/h以上であって60km/h未満であれば低速と判断しステップS5へ進む。車速Vが60km/h以上であれば高速と判断しステップS6へ進む。なおここで、低速領域と高速領域の境界は、一般道の制限速度である60km/hとした。   In step S3, it is determined whether the vehicle is traveling at a slow speed, traveling at a low speed, or traveling at a high speed based on the vehicle speed VSP. If the vehicle speed V is less than 10 km / h, it is determined that the vehicle speed is very low, and the process proceeds to step S4. If the vehicle speed V is 10 km / h or more and less than 60 km / h, it is determined that the vehicle speed is low and the process proceeds to step S5. If the vehicle speed V is 60 km / h or higher, it is determined that the vehicle speed is high, and the process proceeds to step S6. Here, the boundary between the low speed region and the high speed region was set to 60 km / h, which is a speed limit for general roads.

ステップS4においては、微速直進時の駆動力制御を行う。具体的には、インジケータ12を作動させて運転者に警告を与える。車両が微速で直進走行中であることから、1対の左右輪2FL,2FR間(あるいは2RL,2RR間)に駆動力差が生じていても走行安定性が損なわれることとはならないため、目標駆動力の補正を行わない。このとき駆動不能のモータ(3FL,3FR,3RL,3RRのいずれか)位置を運転者へ知らせる。   In step S4, driving force control is performed when the vehicle travels at a slow speed. Specifically, the indicator 12 is activated to give a warning to the driver. Since the vehicle is traveling straight at a slow speed, even if there is a difference in driving force between the pair of left and right wheels 2FL and 2FR (or between 2RL and 2RR), the running stability will not be impaired. The driving force is not corrected. At this time, the driver is informed of the position of the motor (3FL, 3FR, 3RL, or 3RR) that cannot be driven.

ステップS5においては、低速直進時の駆動力制御を行う。具体的には、インジケータ12を作動させて運転者に警告を与える。運転状態が低速で直進走行中であることから、左側の車輪2FL,2RLの駆動力の合計が、右側の車輪2FR,2RRの駆動力の合計と等しくなるよう、他の正常なモータ(3FL,3FR,3RL,3RRのいずれか)の目標駆動力の補正を行って、直進走行状態を維持する。さらに、駆動不能になる前(正常時)と同様の駆動力を出力するよう、他の正常なモータ(3FL,3FR,3RL,3RRのいずれか)の目標駆動力の補正を行って、アクセル開度APOに対応した目標駆動力を実現する。また、応答性が極めてよい電動モータの特性を活かし、モータ制御器5FL,5FR,5RL,5RRへの目標駆動力指令に、振動成分を加算し、モータ3FL,3FR,3RL,3RRのいずれかに駆動不能が生じていることを運転者に体感的に認知させ、乗員への認知性を向上させる。振動成分の周波数としては、車両の固有値以下で走行状態に悪影響を与えないものであって、車体を伝達しやすく、人体の固有振動数に近く敏感に感じることができる5〜10Hzを採用する。振動成分の方向は、路面からの車両上下振動と区別するため、駆動力正負制御による車両前後振動とすることが望ましい。   In step S5, driving force control is performed when the vehicle travels straight at a low speed. Specifically, the indicator 12 is activated to give a warning to the driver. Since the driving state is low speed and straight running, other normal motors (3FL, 2FL, 2RL) are adjusted so that the total driving force of the left wheels 2FL, 2RL is equal to the total driving force of the right wheels 2FR, 2RR. The target driving force of 3FR, 3RL, or 3RR) is corrected to maintain the straight running state. In addition, the target driving force of another normal motor (any of 3FL, 3FR, 3RL, or 3RR) is corrected to output the same driving force as before driving is disabled (during normal operation), and the accelerator is opened. Achieving the target driving force corresponding to the degree APO. Also, taking advantage of the characteristics of an electric motor with extremely good responsiveness, add a vibration component to the target driving force command to the motor controller 5FL, 5FR, 5RL, 5RR, and add it to any of the motors 3FL, 3FR, 3RL, 3RR. The driver is made aware of the impossibility of driving, and the cognition to the passenger is improved. The frequency of the vibration component is 5 to 10 Hz, which is less than the eigenvalue of the vehicle and does not adversely affect the running state, can easily transmit the vehicle body, and can feel close to the natural frequency of the human body. In order to distinguish the direction of the vibration component from the vehicle vertical vibration from the road surface, it is desirable to make the vehicle longitudinal vibration by driving force positive / negative control.

ステップS6においては、高速直進時の駆動力制御を行う。具体的には、インジケータ12を作動させて運転者に警告を与える。運転状態が高速で直進走行中であることから、左側の車輪2FL,2RLの駆動力の合計が、右側の車輪2FR,2RRの駆動力の合計と等しくなるよう、他の正常なモータ(3FL,3FR,3RL,3RRのいずれか)の目標駆動力の補正を行って、直進走行状態を実現する。また、走行安定性の悪化を防ぐため、振動成分の加算による運転者への認知は行わない。そのかわりゲインを用いて他の正常なモータ(3FL,3FR,3RL,3RRのいずれか)の目標駆動力を、アクセル開度APOに対応する目標駆動力(駆動不能になる前の正常時の目標駆動力)よりも低くなるように補正して、モータ3FL,3FR,3RL,3RRのいずれかに駆動不能が生じていることを運転者に認知させるとともに、加速性能を低下させて走行安全性を確保する。運転者は、すべての駆動モータが正常な時と同じアクセルペダル踏み込み量(アクセル開度APO)を入力しても、車両の前後方向加速度が鈍いことを気付くため、駆動不能が生じていることを認知することが可能となる。   In step S6, driving force control during high speed straight traveling is performed. Specifically, the indicator 12 is activated to give a warning to the driver. Since the driving state is high speed and straight running, other normal motors (3FL, 2FL, 2RL) are adjusted so that the total driving force of the left wheels 2FL, 2RL is equal to the total driving force of the right wheels 2FR, 2RR. The target driving force of 3FR, 3RL, or 3RR) is corrected to achieve a straight traveling state. In addition, in order to prevent deterioration in running stability, the driver is not recognized by adding vibration components. Instead, the target driving force of another normal motor (any of 3FL, 3FR, 3RL, or 3RR) using the gain is changed to the target driving force corresponding to the accelerator opening APO (the target in the normal state before driving becomes impossible). The driving force is corrected to be lower than the driving force), and the driver is made aware that the motor 3FL, 3FR, 3RL, 3RR has become unable to drive, and the acceleration performance is reduced to improve driving safety. Secure. Even if the driver inputs the same accelerator pedal depression amount (accelerator opening APO) as when all the drive motors are normal, the driver notices that the longitudinal acceleration of the vehicle is slow, so that the driver is unable to drive. It becomes possible to recognize.

一方ステップS2において、車両は旋回中と判断した場合、次のステップS7では、車速VSPに基づいて、車両が微速で走行中か、低速で走行中か、あるいは高速で走行中かを判断する。判断手法は上述したステップS3と同様である。   On the other hand, if it is determined in step S2 that the vehicle is turning, in the next step S7, it is determined whether the vehicle is traveling at a slow speed, traveling at a low speed, or traveling at a high speed based on the vehicle speed VSP. The determination method is the same as step S3 described above.

ステップS8においては、微速旋回時の駆動力制御を行う。具体的には、インジケータ12を作動させて運転者に警告を与える。運転状態が微速で旋回走行中であり、直進走行よりも不安定になることから、モータが駆動不能になる前の走行状態、すなわち、運転状態(操舵角θ)に対応した旋回走行を実現すべく、左側の車輪2FL,2RLの駆動力の合計と、右側の車輪2FR,2RRの駆動力の合計が一致するよう、他の正常なモータ(3FL,3FR,3RL,3RRのいずれか)の目標駆動力を補正する。そして、アクセル開度APOに対応した目標駆動力(駆動不能になる前の正常時の目標駆動力)に上記ステップS5で説明した振動成分を加算して、運転者にモータ3FL,3FR,3RL,3RRのいずれかが駆動不能になったことを体感的に認知させる。   In step S8, driving force control during slow turn is performed. Specifically, the indicator 12 is activated to give a warning to the driver. Since the driving state is turning at a slow speed and is more unstable than the straight running, the turning state corresponding to the driving state before the motor becomes unable to drive, that is, the driving state (steering angle θ) is realized. Therefore, the target of other normal motors (either 3FL, 3FR, 3RL, or 3RR) should be set so that the sum of the driving forces of the left wheels 2FL and 2RL matches the sum of the driving forces of the right wheels 2FR and 2RR. Correct the driving force. Then, the vibration component described in the above step S5 is added to the target driving force corresponding to the accelerator opening APO (the target driving force in a normal state before driving becomes impossible), and the motors 3FL, 3FR, 3RL, Sensefully recognize that one of the 3RRs has become unable to drive.

ステップS9においては、低速旋回時の駆動力制御を行う。具体的には、インジケータ12を作動させて運転者に警告を与える。運転状態が低速で旋回走行中であることから、運転状態(操舵角θ)に対応した旋回走行を実現すべく、左側の車輪2FL,2RLの駆動力の合計と、右側の車輪2FR,2RRの駆動力の合計が一致するよう、他の正常なモータ(3FL,3FR,3RL,3RRのいずれか)の目標駆動力を補正する。さらに、走行安定性の悪化を防ぐため、振動成分の加算による運転者への認知は行わない。そのかわり、ゲインを用いて目標駆動力を、アクセル開度APOに対応する目標駆動力(駆動不能になる前の正常時の目標駆動力)よりも低くなるように補正して、モータ3FL,3FR,3RL,3RRに駆動不能が生じていることを運転者に認知させるとともに、加速性能を低下させて走行安全性を確保する。運転者は、すべての駆動モータが正常な時と同じアクセルペダル踏み込み量(アクセル開度APO)を入力しても、車両の前後方向加速度が鈍いことを気付くため、駆動不能が生じていることを認知することが可能となる。   In step S9, driving force control during low-speed turning is performed. Specifically, the indicator 12 is activated to give a warning to the driver. Since the driving state is turning at low speed, the total driving force of the left wheels 2FL, 2RL and the right wheels 2FR, 2RR of the right wheels 2FR, 2RR are required to realize turning driving corresponding to the driving state (steering angle θ). The target driving force of another normal motor (3FL, 3FR, 3RL, or 3RR) is corrected so that the total driving force is the same. Furthermore, in order to prevent deterioration in running stability, the driver is not recognized by adding vibration components. Instead, the target driving force is corrected using gain to be lower than the target driving force corresponding to the accelerator opening APO (normal target driving force before driving becomes impossible), and the motors 3FL, 3FR , 3RL, 3RR to make the driver aware that inability to drive, and to reduce the acceleration performance to ensure driving safety. Even if the driver inputs the same accelerator pedal depression amount (accelerator opening APO) as when all the drive motors are normal, the driver notices that the longitudinal acceleration of the vehicle is slow, so that the driver is unable to drive. It becomes possible to recognize.

ステップS10では、高速旋回時の駆動力制御を行う。具体的には、車両が高速で旋回走行中であることから、運転者による不用意な運転操作によって走行が不安定になることを防止するため、インジケータ12を作動させず運転者に警告を与えない。運転状態が高速で旋回走行中であることから、運転状態(操舵角θ)に対応した旋回走行を実現すべく、左側の車輪2FL,2RLの駆動力の合計と、右側の車輪2FR,2RRの駆動力の合計が一致するよう、他の正常なモータの目標駆動力を補正する。さらに、走行安定性の悪化を防ぐため、振動成分の加算による運転者への認知は行わない。そのかわり、ゲインを用いて目標駆動力を、アクセル開度APOに対応する目標駆動力(駆動不能になる前の正常時の目標駆動力)よりも低くなるように補正して、モータ3FL,3FR,3RL,3RRに駆動不能が生じていることを運転者に認知させるとともに、加速性能を低下させて走行安全性を確保する。   In step S10, driving force control during high-speed turning is performed. Specifically, since the vehicle is turning at a high speed, a warning is given to the driver without operating the indicator 12 in order to prevent the driving from becoming unstable due to an inadvertent driving operation by the driver. Absent. Since the driving state is turning at a high speed, in order to realize turning traveling corresponding to the driving state (steering angle θ), the total driving force of the left wheels 2FL and 2RL and the right wheels 2FR and 2RR are The target driving force of other normal motors is corrected so that the total driving force matches. Furthermore, in order to prevent deterioration in running stability, the driver is not recognized by adding vibration components. Instead, the target driving force is corrected using gain to be lower than the target driving force corresponding to the accelerator opening APO (normal target driving force before driving becomes impossible), and the motors 3FL, 3FR , 3RL, 3RR to make the driver aware that inability to drive, and to reduce the acceleration performance to ensure driving safety.

なお上記したステップS4〜S6,S8〜S10の駆動力制御において、モータ3FL,3FR,3RL,3RRのいずれかの最大駆動力不足や、左右いずれか一方のモータ(3FL,3RLまたは3FR,3RR)がすべて駆動不能になった場合などの駆動不能モータ位置のバランスに起因して、上記制御を行うことが不可能な場合は、他の正常なモータ(3FR,3RRまたは3FL,3RL)を用いて、目標駆動力を、アクセル開度APOに対応する目標駆動力(駆動不能になる前の正常時の目標駆動力)よりも低くなるように補正し、アクセル開度APOに対する前後方向加速度や、操舵角θに対する旋回走行状態等、運転状態に対応した走行状態のうち車両の走行方向を実現するよう駆動力制御を行って、走行安定性を確保する。   In the driving force control in steps S4 to S6 and S8 to S10 described above, the maximum driving force of any of the motors 3FL, 3FR, 3RL, and 3RR is insufficient, and either the left or right motor (3FL, 3RL or 3FR, 3RR) If it is impossible to perform the above control due to the balance of the non-driveable motor position, such as when all the motors cannot be driven, use another normal motor (3FR, 3RR or 3FL, 3RL). The target driving force is corrected to be lower than the target driving force corresponding to the accelerator opening APO (the normal target driving force before driving becomes impossible), and the longitudinal acceleration with respect to the accelerator opening APO or steering Driving force control is performed so as to realize the traveling direction of the vehicle in the traveling state corresponding to the driving state, such as the turning traveling state with respect to the angle θ, and the traveling stability is ensured.

以上は本発明になる駆動力制御を、車速および走行方向別に説明したものである。
次に駆動モータの失陥(フェール)に対する駆動力制御およびその効果を、駆動不能モータ位置のバランス毎に分類して説明する。
図5の図表左側で補正方法1と記載した部分は、駆動モータが駆動不能となった場合に、他の正常な駆動モータの駆動力を補正することにより目標駆動力を維持するものである。
1輪の駆動不能に陥った状態、例えば最上段に示すように、左後輪cのモータが駆動不能である状態について説明する。正常走行では、4輪a,b,c,dのそれぞれに1ずつの駆動力を与えていたとする。この場合、正常な左前輪aに2の駆動力を与えるよう補正し、正常な右前輪b,右後輪dにそれぞれ1ずつの駆動力を与えれば、左前輪aのモータの最大出力を超えない限り、正常時と同様に、運転状態に対応した走行状態を実現して、直進走行および旋回走行が可能になる。
つまり、左側の車輪の駆動力の合計と、右側の車輪の駆動力の合計との比が、正常時も1:1であり、駆動不能時も1:1であり、左右の比が変化しないので、走行状態を維持することができる。そして、正常時の車輪駆動力の合計と駆動不能時との車輪駆動力の合計を同じとすれば、車速を維持することができる。
あるいは、モータ出力に余裕がない場合には、駆動不能時との車輪駆動力の合計を、正常時の車輪駆動力の合計よりも低減することにより、車速および加速性能を低下させて走行安定性を確保する。例えば、図5に示す補正方法1の上段において、左前輪aの駆動モータの最大駆動力は、1.5であるとすれば、図5に示すように正常な左前輪aに2の駆動力を与えるよう補正し得ない。この場合には、左前輪aにはその最大駆動力である1.5を与え、右車輪b,dの駆動力合計が左車輪aに一致するようそれぞれ0.75ずつに補正する。これにより、車速および加速性能は運転状態(アクセル入力、アクセル開度APO)よりも低下するものの、運転状態(操舵入力、操舵角θ)に対応した車両の走行方向を実現することが可能になり、走行安定性を確保できる。
The driving force control according to the present invention has been described above for each vehicle speed and traveling direction.
Next, the driving force control and the effect on the failure (failure) of the drive motor will be described by classifying them according to the balance of the undriveable motor positions.
The portion described as the correction method 1 on the left side of the diagram of FIG. 5 is to maintain the target driving force by correcting the driving force of another normal driving motor when the driving motor becomes inoperable.
A state where one wheel cannot be driven will be described, for example, a state where the motor of the left rear wheel c cannot be driven as shown in the uppermost stage. In normal running, it is assumed that one driving force is applied to each of the four wheels a, b, c, and d. In this case, if the normal left front wheel a is corrected to give a driving force of 2, and if the normal right front wheel b and the right rear wheel d are each given one driving force, the maximum output of the motor of the left front wheel a will be exceeded. As long as there is no normal state, a traveling state corresponding to the driving state is realized and straight traveling and turning traveling are possible as in the normal state.
That is, the ratio of the total driving force of the left wheel and the total driving force of the right wheel is 1: 1 when normal and 1: 1 when unable to drive, and the left / right ratio does not change. Therefore, the running state can be maintained. And if the sum of the wheel driving force at the normal time and the sum of the wheel driving force at the time when the driving is impossible are made the same, the vehicle speed can be maintained.
Alternatively, when there is no margin in motor output, the vehicle driving speed and acceleration performance are reduced by reducing the total wheel driving force when driving is impossible compared to the total wheel driving force during normal operation. Secure. For example, in the upper stage of the correction method 1 shown in FIG. 5, if the maximum driving force of the driving motor for the left front wheel a is 1.5, a driving force of 2 is applied to the normal left front wheel a as shown in FIG. Cannot be corrected to give In this case, the maximum driving force of 1.5 is given to the left front wheel a, and the total driving force of the right wheels b and d is corrected by 0.75 each so as to match the left wheel a. As a result, although the vehicle speed and acceleration performance are lower than the driving state (accelerator input, accelerator opening APO), it becomes possible to realize the traveling direction of the vehicle corresponding to the driving state (steering input, steering angle θ). , Driving stability can be ensured.

2輪の駆動不能に陥った状態、例えば図5中段に示すように、左後輪cのモータおよび右後輪dのモータが駆動不能である状態について説明する。正常時には、4輪a,b,c,dのそれぞれに1ずつの駆動力を与えていたとする。この場合、正常な左前輪aおよび右前輪bにそれぞれ2ずつの駆動力を与えるよう補正すれば、左前輪aのモータおよび右前輪bのモータの最大出力を超えない限り、正常時と同様、運転状態に対応する走行状態を実現して、直進走行および旋回走行が可能になる。   A state in which the two wheels cannot be driven, for example, as shown in the middle part of FIG. 5, will be described in which the left rear wheel c motor and the right rear wheel d motor cannot be driven. It is assumed that one driving force is applied to each of the four wheels a, b, c, d during normal operation. In this case, if correction is made so that two normal driving forces are applied to the left front wheel a and the right front wheel b, respectively, as long as the maximum output of the motor of the left front wheel a and the motor of the right front wheel b is not exceeded, A traveling state corresponding to the driving state is realized, and straight traveling and turning traveling are possible.

また、図5中段に示すように、左前輪aのモータおよび右後輪dのモータが駆動不能である状態について説明すると、正常な左後輪cおよび右前輪bにそれぞれ2ずつの駆動力を与えるよう補正すれば、左後輪cのモータおよび右前輪bのモータの最大出力を超えない限り、正常時と同様、運転状態に対応する走行状態を実現して、直進走行および旋回走行が可能になる。
あるいは、モータ出力に余裕がなかったり、運転状態が高速の車速領域であったりする場合には、駆動不能時との車輪駆動力の合計を、正常時の車輪駆動力の合計よりも低減することにより、車速および加速性能を低下させて走行安定性を確保する。
Further, as shown in the middle part of FIG. 5, the state in which the motor of the left front wheel a and the motor of the right rear wheel d cannot be driven will be described. Two normal driving forces are applied to the left rear wheel c and the right front wheel b, respectively. As long as the maximum output of the motor of the left rear wheel c and the motor of the right front wheel b is not exceeded, the traveling state corresponding to the driving state is realized and the vehicle can travel straight and turn as long as normal. become.
Or, when there is no margin in motor output or the driving state is a high speed vehicle speed range, reduce the total wheel driving force when driving is impossible compared to the total wheel driving force when normal As a result, the vehicle speed and acceleration performance are reduced to ensure running stability.

しかし、駆動不能モータ位置のバランス上、左側の駆動力の合計と右側の駆動力の合計との比を適切に補正することが不可能な場合、例えば図5下段に示すように、左前輪aのモータおよび左後輪cのモータが駆動不能である状態について説明すると、駆動輪の配置が右側に片寄っているため、正常な右前輪bおよび右後輪dにそれぞれ2ずつの駆動力を与えるよう補正すれば、直線走行および右旋回走行を実現することが不可能となるため、運転状態(操舵角θ)が左旋回であれば、右前輪bの駆動力をαまで減少させ、右後輪dの駆動力をβまで減少させて、走行安定性を損なわないように走行を続ける。なおここで、α<1かつβ<1である。   However, in the case where it is impossible to appropriately correct the ratio of the left driving force and the right driving force due to the balance of the non-driveable motor position, for example, as shown in the lower part of FIG. The state in which the motor of the left and rear left wheels c cannot be driven will be described. Since the drive wheels are shifted to the right side, two normal driving forces are applied to the right front wheel b and the right rear wheel d, respectively. If the correction is made as described above, it becomes impossible to achieve straight traveling and right turn traveling. Therefore, if the driving state (steering angle θ) is left turning, the driving force of the right front wheel b is decreased to α, The driving force of the rear wheel d is decreased to β, and the vehicle continues to travel without impairing the traveling stability. Here, α <1 and β <1.

次に本発明の他の実施例について説明する。
図4は他の実施例になる車輪独立駆動式車両のシステム構成図であり、図1に示す実施例と同様の部品については、共通の符号を付し、相違する部品については新たに符号を付して詳説する。
各モータ3FL,3FR,3RL,3RRと、共通電源としてのバッテリ4とを接続する電力線上には、個々のインバータ13FL,13FR,13RL,13RRと、ターミナルボックスとして駆動電流切替部15とを挿置する。コントロールユニット16は、車輪2Flの目標駆動力を算出し、制御指令をインバータ13FLへ出力する。インバータ13FLはバッテリ4からの供給電力を、目標駆動力を発生するようインバータ制御して、駆動電流切替部15へ供給する。駆動電流切替部15は、正常時はインバータ13FLとモータ3FLを接続しており、インバータ制御された電力をモータ3FLへ供給する。モータ3FLは目標駆動力を発生し、車輪2Flは目標駆動力を接地面に伝達するよう駆動する。
Next, another embodiment of the present invention will be described.
FIG. 4 is a system configuration diagram of a wheel independent drive type vehicle according to another embodiment. Components similar to those of the embodiment shown in FIG. 1 are denoted by common reference numerals, and different components are newly denoted by reference numerals. A detailed explanation will be given.
Individual inverters 13FL, 13FR, 13RL, 13RR and a drive current switching unit 15 are inserted as terminal boxes on the power line connecting the motors 3FL, 3FR, 3RL, 3RR and the battery 4 as a common power source. To do. Control unit 16 calculates the target driving force of wheel 2Fl and outputs a control command to inverter 13FL. The inverter 13FL performs inverter control so that the power supplied from the battery 4 is generated so as to generate the target driving force, and supplies it to the driving current switching unit 15. The drive current switching unit 15 normally connects the inverter 13FL and the motor 3FL, and supplies inverter-controlled power to the motor 3FL. The motor 3FL generates a target driving force, and the wheel 2Fl is driven to transmit the target driving force to the ground plane.

残る車輪2FR,2RL,2RRも上記と同様に、目標駆動力を接地面に伝達するよう駆動する。このため駆動電流切替部15は、正常時はインバータ13FRとモータ3FRを接続し、インバータ13RLとモータ3RLを接続しており、インバータ13RRとモータ3RRを接続する。   The remaining wheels 2FR, 2RL, and 2RR are also driven to transmit the target driving force to the ground plane in the same manner as described above. Therefore, the drive current switching unit 15 normally connects the inverter 13FR and the motor 3FR, connects the inverter 13RL and the motor 3RL, and connects the inverter 13RR and the motor 3RR.

インバータ13FL,13FR,13RL,13RRには失陥検出センサ14FL,14FR,14RL,14RRを設ける。失陥検出センサ14FL,14FR,14RL,14RRは、インバータ13FL,13FR,13RL,13RRから駆動電流切替部15への供給電流をモニターすることによって、インバータ13FL,13FR,13RL,13RRの失陥を個々に検出可能である。失陥検出の際には、失陥検出センサ14FL,14FR,14RL,14RRが信号をコントロールユニット16へ出力する。   The inverters 13FL, 13FR, 13RL, and 13RR are provided with failure detection sensors 14FL, 14FR, 14RL, and 14RR. The failure detection sensors 14FL, 14FR, 14RL, and 14RR individually monitor the failure of the inverters 13FL, 13FR, 13RL, and 13RR by monitoring the current supplied from the inverters 13FL, 13FR, 13RL, and 13RR to the drive current switching unit 15. Can be detected. When detecting a failure, the failure detection sensors 14FL, 14FR, 14RL, and 14RR output signals to the control unit 16.

失陥検出の信号が入力される間、コントロールユニット16はインバータ切替制御を実行する。つまり、コントロールユニット16は駆動電流切替部15に切替指令を出力し、後述のように正常なインバータを前輪2FL,2FRの駆動モータ3FL,3FRに優先して割り当てる。これにより、車両は前輪(2輪)駆動車と同等の安定走行を確保することができる。   While the failure detection signal is input, the control unit 16 performs inverter switching control. That is, the control unit 16 outputs a switching command to the driving current switching unit 15 and assigns a normal inverter with priority over the driving motors 3FL and 3FR of the front wheels 2FL and 2FR as will be described later. Thereby, the vehicle can ensure the stable running equivalent to the front wheel (two-wheel) drive vehicle.

図5の図表右側で補正方法2と記載した部分は、インバータの失陥(フェール)に対するインバータ切替制御を、失陥インバータ位置のバランス毎に分類して示す図表である。この図表に基づき、インバータの切替方法について次に詳述する。
1輪の駆動不能に陥った状態、つまりインバータ13FL,13FR,13RL,13RRのうちいずれか1つのインバータが失陥(フェール)し例えば図5上段に示すように、左後輪c(図4の車輪2RLに相当)の駆動モータのインバータ13RLが失陥した状態について説明する。正常走行では、4輪a,b,c,dのそれぞれに1ずつの駆動力を与えていたとする。この場合、インバータ切替制御を実行せず、前述および図5中補正方法1に示した駆動モータのフェールと同様、正常な左前輪aに2の駆動力を与えるよう補正し、正常な右前輪b,右後輪dにそれぞれ1ずつの駆動力を与える。
あるいは、正常な左前輪aに2の駆動力を与え、正常な右前輪bに2の駆動力を与え、右後輪dに0の駆動力を与えるよう補正してもよく、前輪(2輪)駆動車と同等の安定走行を確保できる。
The part described as the correction method 2 on the right side of the chart of FIG. 5 is a chart showing the inverter switching control for the failure (failure) of the inverter classified by the balance of the failed inverter position. Based on this chart, the inverter switching method will be described in detail below.
In a state where one wheel cannot be driven, that is, any one of the inverters 13FL, 13FR, 13RL, and 13RR has failed (failed), for example, as shown in the upper part of FIG. A state in which the inverter 13RL of the drive motor of the wheel 2RL) has failed will be described. In normal running, it is assumed that one driving force is applied to each of the four wheels a, b, c, and d. In this case, the inverter switching control is not executed, and the normal left front wheel b is corrected by applying a driving force of 2 to the normal left front wheel a as in the case of the drive motor failure described above and in the correction method 1 in FIG. , One driving force is applied to each of the right rear wheels d.
Alternatively, the normal left front wheel a may be corrected so that a driving force of 2 is applied, a driving force of 2 is applied to the normal right front wheel b, and a driving force of 0 is applied to the right rear wheel d. ) Ensures stable running equivalent to the driving vehicle.

2輪の駆動不能に陥った状態、つまりインバータ13FL,13FR,13RL,13RRのうちいずれか2つのインバータが失陥(フェール)し例えば図5中段に示すように、左後輪c(図4の車輪2RLに相当)の駆動モータのインバータ13RLおよび右後輪d(図4の車輪2RRに相当)の駆動モータのインバータ13RRが失陥した状態について説明する。正常時には、4輪a,b,c,dのそれぞれに1ずつの駆動力を与えていたとする。この場合、インバータ切替制御を実行せず、前述および図5中補正方法1に示した駆動モータのフェールと同様、正常な左前輪aおよび右前輪bにそれぞれ2ずつの駆動力を与えるよう補正する。
図5上段および中段に示す上記インバータのフェールにおいては、いずれの場合にあっても、左右一対の車輪a、bに係わるインバータがいずれも正常に作動するため、インバータ切替制御を実行するまでもなく、図5左側に示す前述の駆動力制御で対処可能である。
In a state in which the two wheels cannot be driven, that is, any two inverters among the inverters 13FL, 13FR, 13RL, and 13RR fail (fail) and, for example, as shown in the middle part of FIG. A state in which the inverter 13RL of the drive motor of the drive motor corresponding to the wheel 2RL and the inverter 13RR of the drive motor of the right rear wheel d (corresponding to the wheel 2RR in FIG. 4) have been lost will be described. It is assumed that one driving force is applied to each of the four wheels a, b, c, d during normal operation. In this case, the inverter switching control is not executed, and correction is performed so that two normal driving forces are applied to the left front wheel a and the right front wheel b, respectively, in the same manner as the driving motor failure described above and in the correction method 1 in FIG. .
In the above-mentioned inverter failures shown in the upper and middle stages of FIG. 5, in any case, since the inverters related to the pair of left and right wheels a and b operate normally, there is no need to execute inverter switching control. This can be dealt with by the aforementioned driving force control shown on the left side of FIG.

これに対し、図5中段に示すように、左前輪a(図4の車輪2FLに相当)の駆動モータのインバータ13FLおよび右後輪d(図4の車輪2RRに相当)の駆動モータのインバータ13RRが失陥した状態について説明すると、インバータ切替制御を実行せず、正常な左後輪cおよび右前輪bにそれぞれ2ずつの駆動力を与えるよう単に駆動力配分のみを補正すれば、正常時と同様、運転状態に対応する走行状態を実現して、理論上直進走行および旋回走行が可能になるものの、駆動輪c,bが左右対称に配置されてなく斜めに配置されていることから駆動力制御は容易ではなく、車両に水平面挙動(ヨー角)が発生する懸念がある等、走行特性が必ずしも運転者の望みどおりになるとは限らない。   On the other hand, as shown in the middle of FIG. 5, the inverter 13FL of the drive motor for the left front wheel a (corresponding to the wheel 2FL in FIG. 4) and the inverter 13RR of the drive motor for the right rear wheel d (corresponding to the wheel 2RR in FIG. 4). In the case of failure, the inverter switching control is not executed, and if only the driving force distribution is corrected so that two normal driving forces are applied to the left rear wheel c and the right front wheel b, respectively, Similarly, although the traveling state corresponding to the driving state is realized and theoretically straight traveling and turning traveling are possible, the driving wheels c and b are not arranged symmetrically but are arranged obliquely, so that the driving force Control is not easy, and there is a concern that a horizontal plane behavior (yaw angle) may occur in the vehicle.

そこで図5中段の右側に示すように、左前輪a(図4の車輪2FLに相当)の駆動モータのインバータ13FLおよび右後輪d(図4の車輪2RRに相当)の駆動モータのインバータ13RRが失陥した場合には、正常なインバータを前輪2FLの駆動モータ3FLに優先して割り当てる。つまり、駆動電流切替部15が駆動モータ3FLおよび失陥したインバータ13FL間の接続を切り、他の駆動モータ3RLおよび正常なインバータ13RL間の接続を切り、駆動モータ3FLと他の正常なインバータ13RLとを接続するインバータ切替制御を実行する。このように駆動電流切替部15がモータ3FLと失陥中のインバータ13FLとの間の接続を切断し、このモータ3FLに他のモータ3RLの正常なインバータ13RLを接続することにより、コントロールユニット16はインバータ13RLを用いて左前輪aの駆動モータ3FLを駆動力制御し、左右対称に配置した左前輪aおよび右前輪bのそれぞれに2ずつの駆動力を与えることにより、走行特性が運転者の操作する運転状態に追従することが可能になるとともに、車両は前輪(2輪)駆動車と同等の安定走行を確保できる。   Therefore, as shown on the right side of the middle stage in FIG. 5, the inverter 13FL of the drive motor for the left front wheel a (corresponding to the wheel 2FL in FIG. 4) and the inverter 13RR of the drive motor for the right rear wheel d (corresponding to the wheel 2RR in FIG. 4) In the case of failure, a normal inverter is assigned with priority over the drive motor 3FL of the front wheels 2FL. That is, the drive current switching unit 15 disconnects the drive motor 3FL and the failed inverter 13FL, disconnects the other drive motor 3RL and the normal inverter 13RL, and connects the drive motor 3FL and the other normal inverter 13RL to each other. Inverter switching control for connecting is executed. In this way, the drive current switching unit 15 disconnects the connection between the motor 3FL and the inverter 13FL that is in failure, and the control unit 16 connects the normal inverter 13RL of the other motor 3RL to the motor 3FL. By controlling the driving force of the driving motor 3FL of the left front wheel a using the inverter 13RL and applying two driving forces to each of the left front wheel a and the right front wheel b arranged symmetrically, the driving characteristics are controlled by the driver. It is possible to follow the driving state to be performed, and the vehicle can ensure a stable traveling equivalent to that of a front wheel (two-wheel) drive vehicle.

あるいは図5下段に示すように、左前輪aの駆動モータのインバータ13FLおよび左後輪cの駆動モータのインバータ13RLが失陥した場合には、駆動電流切替部15が駆動モータ3FLおよび失陥したインバータ13FL間の接続を切り、駆動モータ3FLと残りの正常なインバータ13RRとを接続するインバータ切替制御を実行する。このようにコントロールユニット16はインバータ13RRを用いて左前輪aの駆動モータ3FLを駆動力制御し、左前輪aおよび右前輪bのそれぞれに2ずつの駆動力を与えて、車両は前輪(2輪)駆動車と同等の安定走行を確保することが可能になる。したがってこの場合におけるインバータ切替制御(図5の補正方法2)によれば、直線走行および右旋回走行を実現することが可能となり、図5下段の左側に示した補正方法1と比較して好適に安定走行を実現することができる。   Alternatively, as shown in the lower part of FIG. 5, when the inverter 13FL of the drive motor for the left front wheel a and the inverter 13RL of the drive motor for the left rear wheel c have failed, the drive current switching unit 15 has failed with the drive motor 3FL. The inverter 13FL is disconnected, and inverter switching control for connecting the drive motor 3FL and the remaining normal inverter 13RR is executed. Thus, the control unit 16 controls the driving force of the driving motor 3FL for the left front wheel a using the inverter 13RR, and applies two driving forces to each of the left front wheel a and the right front wheel b. ) It is possible to ensure stable running equivalent to the driving vehicle. Therefore, according to the inverter switching control in this case (correction method 2 in FIG. 5), it is possible to realize straight traveling and right turn traveling, which is preferable compared to the correction method 1 shown on the left side in the lower part of FIG. It is possible to achieve stable running.

なお、上記のインバータ切替制御(図5の補正方法2)は、左右対称に配置された車輪a,bを駆動力制御して前輪(2輪)駆動車と同等の走行安定性を得るものであるが、この他、後輪c,dを駆動力制御して後輪(2輪)駆動車と同等の走行安定性を確保してもよい。あるいは、図には示さなかったが、左右対称に配置された一対の車輪を3軸以上複数組具えた車両にあっては、インバータ切替制御により、左右対称に配置されたいずれか一組の車輪を駆動力制御することにより走行安定性を得ることができる。
また図には示さなかったが、インバータ13FL,13FR,13RL,13RRの他、予備のインバータを備えておき、失陥したインバータに代えて、駆動力制御の対象となるモータに予備のインバータを接続してもよい。
ここで付言すると、上記のインバータ切替制御(図5の補正方法2)においても、駆動モータの目標駆動力が正常なインバータの最大電力容量(最大出力)を超えてしまい駆動力不足となる場合には、正常なインバータが発生可能な最大電力容量を駆動モータに出力している状態のもとで、他の正常な駆動源の駆動力制御により、運転状態に対応した走行状態のうち車両の走行方向を実現するよう、駆動力の補正制御を行う。
Note that the above inverter switching control (correction method 2 in FIG. 5) obtains traveling stability equivalent to that of a front-wheel (two-wheel) drive vehicle by controlling the driving force of the wheels a and b arranged symmetrically. In addition, the driving stability of the rear wheels c and d may be controlled to ensure traveling stability equivalent to that of a rear wheel (two-wheel) drive vehicle. Alternatively, although not shown in the figure, in a vehicle having a plurality of pairs of three or more pairs of wheels arranged symmetrically in the left-right direction, any one set of wheels arranged symmetrically by the inverter switching control Driving stability can be obtained by controlling the driving force.
Although not shown in the figure, in addition to inverters 13FL, 13FR, 13RL, and 13RR, a spare inverter is provided, and a spare inverter is connected to the motor that is the target of driving force control instead of the failed inverter. May be.
In addition, in the above inverter switching control (correction method 2 in FIG. 5), when the target driving force of the drive motor exceeds the maximum power capacity (maximum output) of the normal inverter and the driving force is insufficient. In the state in which the maximum power capacity that can be generated by a normal inverter is output to the drive motor, the driving force of the other normal drive source controls the driving state of the vehicle corresponding to the driving state. Driving force correction control is performed to realize the direction.

ところで、上記した本実施例によれば、低速直進時と微速旋回時において、操舵角センサ9からの操舵角θと、アクセル開度センサ11からのアクセル開度AP0から、コントロールユニット6が走行方向と総駆動力からなる運転状態を検出し、モータ駆動不能検出センサ7FL,7FR,7RL,7RRからの信号により、モータ3FL,3FR,3RL,3RRのいずれかの駆動不能を検出した場合には、コントロールユニット6が、残りの正常なモータ(3FL,3FR,3RL,3RRのいずれか)の目標駆動力を補正して、アクセル開度APOに対応する目標駆動力を実行することから、図5に示すように駆動不能状態でも、正常時と同じ駆動力を出力することが可能となり、従来のように、車輪の駆動力を停止することなく、駆動不能が発生した後でも車速が変化するのを防止して、正常時と同様のアクセル操作で走行を続けることができる。   By the way, according to the above-described embodiment, the control unit 6 travels in the traveling direction from the steering angle θ from the steering angle sensor 9 and the accelerator opening AP0 from the accelerator opening sensor 11 during low-speed straight travel and slow turn. When the driving state of the motor 3FL, 3FR, 3RL, 3RR is detected by the signal from the motor driving failure detection sensor 7FL, 7FR, 7RL, 7RR, Since the control unit 6 corrects the target driving force of the remaining normal motors (any of 3FL, 3FR, 3RL, and 3RR) and executes the target driving force corresponding to the accelerator opening APO, FIG. As shown in the figure, it is possible to output the same driving force as in the normal state even when the vehicle cannot be driven, and the vehicle speed can be changed even after the driving failure occurs without stopping the wheel driving force as in the conventional case. Prevent You can continue to travel in normal operation the same accelerator operation.

そして、左側の車輪2の駆動力の合計と、右側の車輪2の駆動力の合計が、駆動不能状態でも一致するよう、残りの正常な車輪2の駆動力を補正することから、駆動不能が発生した後でも旋回方向が不安定になることを防止して、正常時と同様のステアリング操作で直進走行あるいは旋回走行を続けることができる。   Then, since the driving force of the remaining normal wheels 2 is corrected so that the sum of the driving forces of the left wheel 2 and the driving force of the right wheel 2 match even in a non-driveable state, the drive is impossible. Even after it occurs, the turning direction can be prevented from becoming unstable, and straight running or turning can be continued by the same steering operation as in normal times.

また、本実施例によれば、高速直進時と低速旋回時と高速旋回時においては、駆動力補正部25がゲインを用いてアクセル開度APOに対応した目標駆動力F1,F2,F3,F4を減少側に補正することから、加速性能を低減させて、駆動不能が発生した後でも走行安定性を損なうことなく走行を続けることができる。したがって、駆動不能状態の安全性を高めることができる。また、運転者は、アクセルペダル踏み込み量(アクセル開度APO)に対する車両加速度が鈍化したことを認識することで、走行安定性を損なうことなくモータ3FL,3FR,3RL,3RRの失陥を知ることができる。   Also, according to the present embodiment, the target driving force F1, F2, F3, F4 corresponding to the accelerator opening APO using the gain by the driving force correction unit 25 during high-speed straight traveling, low-speed turning, and high-speed turning. Therefore, the acceleration performance can be reduced, and the vehicle can continue to travel without impairing the traveling stability even after the inability to drive. Therefore, it is possible to improve the safety of the drive impossible state. In addition, the driver knows that the motor 3FL, 3FR, 3RL, 3RR has failed without impairing the running stability by recognizing that the vehicle acceleration has slowed with respect to the accelerator pedal depression amount (accelerator opening APO). Can do.

上記および図5中の補正方法1に記載した駆動力制御においては、他の正常な駆動モータの出力に余裕があることを前提とするものであるが、他の正常な駆動モータ(3FL,3FR,3RL,3RRのいずれか)の最大出力不足のため、補正後の目標駆動力を実現することができない場合には、最大出力不足となったモータ(3FL,3FR,3RL,3RRのいずれか)が最大駆動力を出力するとともに左右方向反対側のモータの目標駆動力合計が当該最大駆動力に一致するよう駆動力指令F1,F2,F3,F4を減少側に補正することにより、走行安定性を損なうことなく走行を続けることができる。   The driving force control described above and described in the correction method 1 in FIG. 5 is based on the premise that there is a margin in the output of other normal drive motors, but other normal drive motors (3FL, 3FR , 3RL, 3RR) If the target drive force after correction cannot be realized due to insufficient maximum output (any of 3FL, 3FR, 3RL, 3RR) Outputs the maximum driving force and corrects the driving force commands F1, F2, F3, and F4 to the decreasing side so that the total target driving force of the motor on the opposite side in the left-right direction matches the maximum driving force. You can continue running without compromising your performance.

また、モータ3FL,3FR,3RL,3RRの駆動不能状態では、インジケータ12による警告走行安定性を損なわない車速領域において、車両前後方向の振動成分を駆動力に付加することから、運転者はモータ3FL,3FR,3RL,3RRの駆動不能を体感的に認識することができ、インジケータ12による警告のみでは運転者が駆動不能状態に気づかない、あるいは、駆動不能状態に気づきながら強引に運転を続行するといった問題を解消し、利便性と安全性の両立を図ることができる。   When the motors 3FL, 3FR, 3RL, and 3RR cannot be driven, a vibration component in the vehicle front-rear direction is added to the driving force in a vehicle speed range that does not impair warning running stability by the indicator 12. , 3FR, 3RL, 3RR can not be driven sensibly, only the warning by the indicator 12, the driver does not notice the driving impossible state, or continue to drive forcibly while noticing the driving impossible state The problem can be solved and both convenience and safety can be achieved.

あるいは、モータ3FL,3FR,3RL,3RRが駆動不能となっても運転者が走行状態の変化を感じない微速直進中では、インジケータ12による警告を行うのみで、本実施例になる駆動力制御を行わないことで、発進・停止間際や徐行時に、運転者に注意を促すことができる。   Alternatively, when the motors 3FL, 3FR, 3RL, and 3RR cannot be driven, the driver does not feel a change in the running state. By not doing so, the driver can be alerted at the time of starting / stopping or slowing down.

また、図4および図5右側に示した上記実施例によれば、インバータ13FL,13FR,13RL,13RRのうちいずれかのインバータの失陥が検出される間は、モータと失陥中のインバータとの間の接続を切断し、該モータと他のモータに具わる正常なインバータとを接続することにより、センサ9,10,11で検出される運転状態に対応した走行状態となすよう、モータを駆動力制御することから、インバータが失陥した状態でも、残りの正常なインバータを用いて正常時と同じ駆動力を出力することが可能となり、従来のように、車輪の駆動力を停止することなく、駆動不能が発生した後でも車速が変化するのを防止して、正常時と同様のアクセル操作で走行を続けることができる。   Further, according to the above-described embodiment shown on the right side of FIGS. 4 and 5, while the failure of any one of the inverters 13FL, 13FR, 13RL, and 13RR is detected, the motor and the failed inverter are By disconnecting the connection between the motor and a normal inverter included in the other motor, so that the motor is brought into a running state corresponding to the driving state detected by the sensors 9, 10, and 11. By controlling the driving force, it is possible to output the same driving force as normal using the remaining normal inverters even when the inverter has failed, and stop the wheel driving force as before. In addition, the vehicle speed can be prevented from changing even after driving failure occurs, and the vehicle can continue to travel with the same accelerator operation as during normal operation.

特に本実施例では、図5右側(補正方法2)の中段に示すようにインバータ切替制御を実行して、左右対称に配置した一対の車輪a,bの駆動モータ3FL,3FRを駆動力制御することから、駆動輪の配置が斜めになることを回避し、車両に水平面挙動(ヨー角)が発生する懸念を払拭して、前輪(2輪)駆動車と同等の安定走行を確保することができる。   In particular, in this embodiment, inverter switching control is executed as shown in the middle of FIG. 5 (correction method 2) to control the driving force of the driving motors 3FL and 3FR of the pair of wheels a and b arranged symmetrically. Therefore, it is possible to avoid the oblique arrangement of the drive wheels, to eliminate the concern that the horizontal plane behavior (yaw angle) occurs in the vehicle, and to ensure the stable running equivalent to the front wheel (two-wheel) drive vehicle. it can.

また、図5右側(補正方法2)の下段に示すように、左右対称に配置された一対の車輪a,bの駆動モータに係わるインバータ13FL,13FRのうち、車輪aのインバータ13FLの失陥が検出される場合は、右車輪dの駆動モータに係わる正常なインバータ13RRと左前輪aの駆動モータ3FLとを接続し、左右双方のモータ3FL,3FRの駆動力制御を成し得るよう構成にしたことから、駆動輪の配置が左右どちらか一方に片寄ることを回避して、直線走行および旋回走行が可能となり、駆動力配分の補正のみを行う図5左側に示した補正方法1の場合と比較して好適に安定走行を実現することができる。
また前輪a,bを優先的に駆動力制御する上記実施例の他、後輪c,dを優先的に駆動力制御するものであってもよい。
Further, as shown in the lower part of the right side of FIG. 5 (correction method 2), the failure of the inverter 13FL of the wheel a out of the inverters 13FL and 13FR related to the drive motors of the pair of wheels a and b arranged symmetrically. If detected, a normal inverter 13RR related to the drive motor for the right wheel d is connected to the drive motor 3FL for the left front wheel a so that the drive force control of both the left and right motors 3FL, 3FR can be achieved. Therefore, it is possible to perform straight running and turning while avoiding the displacement of the drive wheels to the left or right, and compared with the correction method 1 shown on the left side of FIG. Thus, stable running can be suitably realized.
In addition to the above-described embodiment that preferentially controls the driving force of the front wheels a and b, the driving force of the rear wheels c and d may be controlled preferentially.

本発明になる車輪独立駆動式車両の駆動力制御装置を具えた、4輪独立駆動方式の電気自動車の駆動系を示す要部平面図である。It is a principal part top view which shows the drive system of the electric vehicle of a four-wheel independent drive system provided with the drive force control apparatus of the wheel independent drive type vehicle which becomes this invention. 同駆動力制御装置を構成するコントロールユニットを示す機能別ブロック線図である。It is a block diagram according to function which shows the control unit which comprises the driving force control apparatus. 同駆動力制御装置が実行する制御プログラムを示すフローチャートである。It is a flowchart which shows the control program which the same driving force control apparatus performs. 本発明の他の実施例になる車輪独立駆動式車両の駆動力制御装置を具えた、4輪独立駆動方式の電気自動車の配電図である。FIG. 6 is a power distribution diagram of a four-wheel independent drive type electric vehicle including a drive force control device for a wheel independent drive type vehicle according to another embodiment of the present invention. 同駆動力制御装置が実行する駆動力制御を、駆動不能モータ位置ごとに分類して示す図表である。It is a graph which classifies and shows the driving force control which the same driving force control apparatus performs according to a non-driveable motor position.

符号の説明Explanation of symbols

1 電気自動車(車体)
2FL 左側前方の車輪
2FR 右側前方の車輪
2RL 左側後方の車輪
2RR 右側後方の車輪
3FL 左側前方車輪の駆動モータ
3FR 右側前方車輪の駆動モータ
3RL 左側後方車輪の駆動モータ
3RR 右側後方車輪の駆動モータ
4 駆動モータ用バッテリ
5FL 左側前方車輪用駆動モータのモータ制御器
5FR 右側前方車輪用駆動モータのモータ制御器
5RL 左側後方車輪用駆動モータのモータ制御器
5RR 右側後方車輪用駆動モータのモータ制御器
6 コントロールユニット
7FL 左側前方車輪のモータ駆動不能検出センサ
7FR 右側前方車輪のモータ駆動不能検出センサ
7RL 左側後方車輪のモータ駆動不能検出センサ
7RR 右側後方車輪のモータ駆動不能検出センサ
8 ステアリングホイール
9 操舵角センサ
10 車速センサ
11 アクセル開度センサ
12 インジケータ
13FL 左側前方車輪の駆動モータのインバータ
13FR 右側前方車輪用駆動モータのインバータ
13RL 左側後方車輪用駆動モータのインバータ
13RR 右側後方車輪用駆動モータのインバータ
15 駆動電流切替部
21 各輪駆動源監視部
22 旋回/直進判断部
23 車速領域判断部
24 異常駆動源判断部
25 駆動力補正部
1 Electric car (body)
2FL Left front wheel 2FR Right front wheel 2RL Left rear wheel 2RR Right rear wheel 3FL Left front wheel drive motor 3FR Right front wheel drive motor 3RL Left rear wheel drive motor 3RR Right rear wheel drive motor 4 Drive Motor battery 5FL Motor controller for left front wheel drive motor 5FR Motor controller for right front wheel drive motor 5RL Motor controller for left rear wheel drive motor 5RR Motor controller for right rear wheel drive motor 6 Control unit
7FL Motor drive inability detection sensor for left front wheel
7FR Motor drive inability detection sensor for right front wheel
7RL Motor drive inability detection sensor for left rear wheel
7RR Motor drive inability detection sensor for right rear wheel 8 Steering wheel 9 Steering angle sensor 10 Vehicle speed sensor 11 Accelerator opening sensor 12 Indicator
13FL Left front wheel drive motor inverter
13FR Inverter for right front wheel drive motor
13RL Inverter for drive motor for left rear wheel
13RR Inverter for right rear wheel drive motor 15 Drive current switching unit 21 Each wheel drive source monitoring unit 22 Turning / straight running determination unit 23 Vehicle speed region determination unit 24 Abnormal drive source determination unit 25 Drive force correction unit

Claims (10)

車輪を個々の駆動源で独立に駆動する車輪独立駆動式車両に用いられ、該車輪の駆動力を個々に制御する駆動力制御装置において、
前記車輪独立駆動式車両の運転状態を検出する運転状態検出手段と、
前記各駆動源の失陥を検出する駆動源失陥検出手段とを具え、
該手段によりいずれかの駆動源の失陥が検出される間は、他の正常な駆動源を用いて車両の走行状態を、前記運転状態検出手段で検出される運転状態に対応した走行状態となすよう、正常な駆動源を駆動力制御する構成にしたことを特徴とする車輪独立駆動式車両の駆動力制御装置。
In a driving force control device that is used in a wheel independent driving type vehicle that independently drives a wheel with an individual driving source, and individually controls the driving force of the wheel,
Driving state detecting means for detecting the driving state of the wheel independent drive vehicle;
Drive source failure detection means for detecting the failure of each drive source,
While the failure of one of the drive sources is detected by the means, the running state of the vehicle using another normal drive source is changed to a running state corresponding to the driving state detected by the driving state detecting means. A driving force control device for a wheel independent drive type vehicle, wherein the driving force control is performed for a normal driving source so as to achieve the above.
請求項1に記載の駆動力制御装置において、前記走行状態は車両の走行方向および車両の総駆動力を含むことを特徴とする車輪独立駆動式車両の駆動力制御装置。   2. The driving force control apparatus according to claim 1, wherein the traveling state includes a traveling direction of the vehicle and a total driving force of the vehicle. 請求項1または2に記載の駆動力制御装置において、前記正常な駆動源の駆動力制御により運転状態に対応した走行状態を実現し得る場合、アクセルペダル踏み込み量に対する正常な駆動源の駆動力出力特性である駆動力ゲインを低下させて車両の挙動不安定が生じ難くなるよう構成したことを特徴とする駆動力制御装置。   3. The driving force control device according to claim 1 or 2, wherein a driving state corresponding to a driving state can be realized by controlling the driving force of the normal driving source, the driving force output of the normal driving source with respect to the depression amount of the accelerator pedal. A driving force control device, characterized in that a driving force gain, which is a characteristic, is lowered so that vehicle behavior is less likely to be unstable. 請求項1乃至3のいずれか1項に記載の駆動力制御装置において、前記正常な駆動源の最大駆動力不足に起因して運転状態に対応した走行状態を実現することができない場合には、該最大駆動力不足を生じた駆動源が発生可能な最大駆動力を出力している状態のもとで、他の正常な駆動源の駆動力制御により、運転状態に対応した走行状態のうち車両の走行方向を実現するよう構成したことを特徴とする車輪独立駆動式車両の駆動力制御装置。   In the driving force control device according to any one of claims 1 to 3, when a running state corresponding to the driving state cannot be realized due to a shortage of the maximum driving force of the normal driving source, The vehicle in the driving state corresponding to the driving state is controlled by the driving force control of another normal driving source under the state that the driving source which has generated the shortage of the maximum driving force outputs the maximum driving force. A driving force control device for a wheel independent drive type vehicle, characterized in that it is configured to realize the traveling direction of the vehicle. 請求項1乃至4のいずれか1項に記載の駆動力制御装置において、前記駆動源失陥検出手段による失陥検出中は、他の正常な駆動源に振動的な駆動力を発生させて該失陥を運転者に認知させるよう構成したことを特徴とする駆動力制御装置。   5. The driving force control apparatus according to claim 1, wherein during the detection of the failure by the driving source failure detecting means, a vibrational driving force is generated in another normal driving source. A driving force control apparatus configured to make a driver recognize a failure. 請求項1乃至5のいずれか1項に記載の駆動力制御装置において、前記駆動源の失陥によっても走行状態の変化を運転者に感じさせない微速直進中の駆動源の失陥時は、前記正常な駆動源の駆動力制御を禁止するよう構成したことを特徴とする駆動力制御装置。   The driving force control apparatus according to any one of claims 1 to 5, wherein when the drive source fails during a slow speed straight line that does not cause the driver to feel a change in traveling state due to a failure of the drive source, A driving force control apparatus configured to prohibit driving force control of a normal driving source. 請求項6に記載の駆動力制御装置において、前記微速直進中の駆動源の失陥を運転者に警報して認知させる警報器を設けたことを特徴とする駆動力制御装置。   7. The driving force control device according to claim 6, further comprising an alarm device for warning and recognizing a driver of a failure of the driving source that is traveling at a slow speed. 請求項1乃至7のいずれか1項に記載の駆動力制御装置において、
前記駆動源は個々のインバータを具えたモータであって、
前記駆動源失陥検出手段によりいずれかのインバータの失陥が検出される間は、失陥中のインバータに代えて正常なインバータをモータに接続することにより、運転状態検出手段で検出される運転状態に対応した走行状態となすよう、モータを駆動力制御する構成にしたことを特徴とする車輪独立駆動式車両の駆動力制御装置。
In the driving force control device according to any one of claims 1 to 7,
The drive source is a motor having individual inverters,
While the failure of one of the inverters is detected by the drive source failure detection means, the operation detected by the operation state detection means is performed by connecting a normal inverter to the motor instead of the inverter that has failed. A drive force control device for a wheel independent drive type vehicle, wherein the drive force of the motor is controlled so as to achieve a running state corresponding to the state.
請求項8に記載の駆動力制御装置において、
前記駆動源失陥検出手段によりいずれかのインバータの失陥が検出される間は、モータと失陥中のインバータとの間の接続を切断し、
該モータに、他のモータに具わる正常なインバータを接続することにより、失陥中のインバータに代えて正常なインバータをモータに接続することを特徴とする車輪独立駆動式車両の駆動力制御装置。
The driving force control apparatus according to claim 8,
While the failure of any inverter is detected by the drive source failure detection means, the connection between the motor and the failed inverter is disconnected,
A driving force control device for a wheel independent drive type vehicle characterized in that a normal inverter connected to another motor is connected to the motor so that a normal inverter is connected to the motor instead of the failed inverter. .
請求項9に記載の駆動力制御装置において、
前記車輪は、左右対称に配置された一対の車輪を少なくとも1組具え、
前記駆動源失陥検出手段により該一組の車輪を駆動するモータに具わるインバータの失陥が検出される間は、他の車輪を駆動するモータに具わる正常なインバータと前記1組の車輪を駆動するモータとを接続し、左右対称に配置された一対の車輪を駆動するモータの駆動力制御を成し得るよう構成にしたことを特徴とする車輪独立駆動式車両の駆動力制御装置。
The driving force control apparatus according to claim 9,
The wheel comprises at least one pair of wheels arranged symmetrically,
While the drive source failure detecting means detects the failure of the inverter included in the motor driving the set of wheels, the normal inverter included in the motor driving the other wheel and the set of wheels. A drive force control device for a wheel independent drive type vehicle, wherein the drive force control of a motor for driving a pair of wheels arranged symmetrically is connected to a motor for driving the vehicle.
JP2004261904A 2003-09-25 2004-09-09 Driving force control device for wheel independent drive system vehicle Withdrawn JP2005119647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261904A JP2005119647A (en) 2003-09-25 2004-09-09 Driving force control device for wheel independent drive system vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003333399 2003-09-25
JP2004261904A JP2005119647A (en) 2003-09-25 2004-09-09 Driving force control device for wheel independent drive system vehicle

Publications (1)

Publication Number Publication Date
JP2005119647A true JP2005119647A (en) 2005-05-12

Family

ID=34622018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261904A Withdrawn JP2005119647A (en) 2003-09-25 2004-09-09 Driving force control device for wheel independent drive system vehicle

Country Status (1)

Country Link
JP (1) JP2005119647A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001330A (en) * 2005-06-21 2007-01-11 Nissan Motor Co Ltd Braking and driving force distribution device of four wheel independent driving vehicle
JP2007203998A (en) * 2006-02-06 2007-08-16 Toyota Motor Corp Vehicle and its control method
JP2008228361A (en) * 2007-03-08 2008-09-25 Tokyo Metropolitan Univ Environmentally friendly vehicle
DE112006003236T5 (en) 2005-11-30 2008-10-02 Aisin Seiki K.K. A power output control apparatus for a vehicle that independently drives wheel units
JP2008245360A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Control device of wheel-independent drive vehicle
JP2011036062A (en) * 2009-08-04 2011-02-17 Toyota Motor Corp Control device for four-wheel independent drive vehicle
WO2012121200A1 (en) * 2011-03-07 2012-09-13 Ntn株式会社 Diagnostic method for motor
JP2013500698A (en) * 2009-07-29 2013-01-07 プロティアン エレクトリック リミテッド Torque control system
CN103935231A (en) * 2014-01-24 2014-07-23 钟巍 Motor direct drive system
WO2016031663A1 (en) * 2014-08-27 2016-03-03 Ntn株式会社 Drive control device for wheel independent driving vehicle
JP2017005899A (en) * 2015-06-11 2017-01-05 Ntn株式会社 Drive control device of wheel independent drive type vehicle
WO2023002607A1 (en) * 2021-07-21 2023-01-26 株式会社Subaru Vehicle control device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001330A (en) * 2005-06-21 2007-01-11 Nissan Motor Co Ltd Braking and driving force distribution device of four wheel independent driving vehicle
DE112006003236T5 (en) 2005-11-30 2008-10-02 Aisin Seiki K.K. A power output control apparatus for a vehicle that independently drives wheel units
US7958960B2 (en) 2005-11-30 2011-06-14 Toyota Jidosha Kabushiki Kaisha Driving force control apparatus for a vehicle that drives wheel units independently
JP2007203998A (en) * 2006-02-06 2007-08-16 Toyota Motor Corp Vehicle and its control method
JP2008228361A (en) * 2007-03-08 2008-09-25 Tokyo Metropolitan Univ Environmentally friendly vehicle
JP4565228B2 (en) * 2007-03-08 2010-10-20 公立大学法人首都大学東京 Environmentally-friendly vehicle
JP2008245360A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Control device of wheel-independent drive vehicle
JP2013500698A (en) * 2009-07-29 2013-01-07 プロティアン エレクトリック リミテッド Torque control system
JP2013226040A (en) * 2009-07-29 2013-10-31 Protean Electric Ltd Torque control system
JP2011036062A (en) * 2009-08-04 2011-02-17 Toyota Motor Corp Control device for four-wheel independent drive vehicle
WO2012121200A1 (en) * 2011-03-07 2012-09-13 Ntn株式会社 Diagnostic method for motor
JP2012186930A (en) * 2011-03-07 2012-09-27 Ntn Corp Diagnostic method for motor
CN103415413A (en) * 2011-03-07 2013-11-27 Ntn株式会社 Diagnostic method for motor
US8701803B2 (en) 2011-03-07 2014-04-22 Ntn Corporation Diagnostic apparatus and method for motor
CN103935231A (en) * 2014-01-24 2014-07-23 钟巍 Motor direct drive system
WO2016031663A1 (en) * 2014-08-27 2016-03-03 Ntn株式会社 Drive control device for wheel independent driving vehicle
JP2016048987A (en) * 2014-08-27 2016-04-07 Ntn株式会社 Drive control device for wheel independent drive type vehicle
JP2017005899A (en) * 2015-06-11 2017-01-05 Ntn株式会社 Drive control device of wheel independent drive type vehicle
WO2023002607A1 (en) * 2021-07-21 2023-01-26 株式会社Subaru Vehicle control device

Similar Documents

Publication Publication Date Title
JP4956800B2 (en) Driving force control device for wheel independent electric vehicle
JP2005204436A (en) Drive force control device of wheel independently driven type electric vehicle
US5816669A (en) Vehicle motion control system
US7762562B2 (en) Vehicle attitude control apparatus
JP2005119647A (en) Driving force control device for wheel independent drive system vehicle
WO2006093242A1 (en) Braking-driving force control device of vehicle
US20150014081A1 (en) Vehicle, and vehicle control method
JP6296016B2 (en) Electric vehicle
JP4582031B2 (en) Driving force control device for four-wheel drive vehicle
JPH0238123A (en) Damping force control device for shock absorber
JP4797513B2 (en) Vehicle driving force distribution control device
JP5397119B2 (en) Driving force control device for left and right independent driving vehicle
JP3829409B2 (en) Body behavior control device
JP4687471B2 (en) Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle
JP2007124832A (en) Drive force controller of electric vehicle
JP2007125998A (en) Driving force distribution control device of four-wheel-drive vehicle
JP2005168184A (en) Determing system of degradation in motor performance of vehicle driven by motor
JP4412476B2 (en) Travel control device for a four-wheel independent drive vehicle
JP2009035221A (en) Running controller for vehicle and method therefor
JP2005343256A (en) Vehicle behavior controlling device
CN114801772A (en) Vehicle control device and control method
JP3393121B2 (en) Power supply device for electric vehicles
JP2005223970A (en) Ground load estimation system of wheel
JP6803197B2 (en) Vehicle control device
JP2007106218A (en) Steering control device of vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060602

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204