JP2005118837A - Method and apparatus for controlled cooling of hot rolled steel - Google Patents

Method and apparatus for controlled cooling of hot rolled steel Download PDF

Info

Publication number
JP2005118837A
JP2005118837A JP2003358388A JP2003358388A JP2005118837A JP 2005118837 A JP2005118837 A JP 2005118837A JP 2003358388 A JP2003358388 A JP 2003358388A JP 2003358388 A JP2003358388 A JP 2003358388A JP 2005118837 A JP2005118837 A JP 2005118837A
Authority
JP
Japan
Prior art keywords
steel
cooling
temperature
steel material
ultrasonic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003358388A
Other languages
Japanese (ja)
Other versions
JP3955009B2 (en
Inventor
Ryuji Yamamoto
龍司 山本
Yoshihiro Serizawa
良洋 芹澤
Yasuaki Nagata
泰昭 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003358388A priority Critical patent/JP3955009B2/en
Publication of JP2005118837A publication Critical patent/JP2005118837A/en
Application granted granted Critical
Publication of JP3955009B2 publication Critical patent/JP3955009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlled cooling of a hot rolled steel which can secure uniformity in both shape characteristics and material characteristics in the transverse direction, through enhancement of accuracy of cooling control by estimating an internal temperature distribution (temperature distribution through the thickness) of a heavy steel plate highly accurately, when the controlled cooling is performed by jetting a coolant on the hot rolled steel, and apparatus therefor. <P>SOLUTION: In the controlled cooling apparatus for the steel which comprises a group of nozzles to jet the coolant, a supply control means of the coolant jetted from the group of nozzles, and a conveying speed control means, ultrasonic waves are transmitted and propagated by an ultrasonic sensor into the steel being cooled. Based on a relationship between a propagation speed of the ultrasonic wave and the temperature of steel, the internal temperature distribution (temperature distribution through the thickness) of the steel is estimated highly accurately. Based on the estimation result, the internal temperature of the steel (average temperature) is obtained and the jetting coolant quantity from the group of nozzles or both of the jetting coolant quantity and the conveying speed are controlled so as to match a target average temperature or cooling speed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば熱間圧延して得られた熱間鋼材の制御冷却に関し、より詳しくは、形状特性が良好で材質が均一な鋼材を得るために適用される熱間鋼材の制御冷却方法および制御冷却装置に関するものである。   The present invention relates to controlled cooling of a hot steel material obtained by, for example, hot rolling, and more specifically, a controlled cooling method of a hot steel material applied to obtain a steel material having good shape characteristics and a uniform material, and The present invention relates to a control cooling device.

例えば、熱間圧延により厚鋼板を製造する場合、熱間圧延された熱間厚鋼板は、巻取や酸洗工程に搬送する際に冷却されるが、この際に、均一な材質特性および形状特性(平坦度)を確保することが重要であることから、特に板幅方向の温度分布が一様となるように制御冷却を行う必要がある。
このような制御冷却を行うための冷却装置として、例えば、特許文献1には、熱間圧延された鋼板をその長手方向に移送しながら該鋼板の上下の全面に指向するように配置された複数のノズルから前記鋼板に冷却水を制御供給する方法において、前記鋼板の少なくとも上下方向および幅方向の中央部と側端部における水冷開始前、水冷途中および水冷終了後の温度を検出して各測温点の温度と温度差を求め、各測温点の温度と各測温点間の温度差に対応して予め定めた関係式に基づき前記鋼板の常温域における変化量を予測・演算し、該予測値が目標値の許容範囲内となるように前記複数のノズルに対する冷却水の供給量を制御することが開示されている。
For example, when producing a thick steel plate by hot rolling, the hot rolled steel plate is cooled when transported to a winding or pickling process, and in this case, uniform material properties and shape Since it is important to ensure the characteristics (flatness), it is necessary to perform the controlled cooling so that the temperature distribution in the sheet width direction is uniform.
As a cooling device for performing such controlled cooling, for example, in Patent Document 1, a plurality of steel plates are arranged so as to be directed to the upper and lower surfaces of the steel sheet while transferring the hot-rolled steel sheet in the longitudinal direction. In the method of controlling and supplying the cooling water to the steel plate from the nozzles of each of the steel plates, each temperature is measured by detecting the temperature before starting water cooling, at the middle of water cooling, and after the end of water cooling at the center and side edges in the vertical direction and width direction of the steel plate. Find the temperature and temperature difference of the hot spot, predict and calculate the amount of change in the normal temperature range of the steel sheet based on the relational expression corresponding to the temperature difference between each temperature measuring point and the temperature point, It is disclosed that the amount of cooling water supplied to the plurality of nozzles is controlled so that the predicted value falls within the allowable range of the target value.

また、特許文献2には、(a)熱間圧延後の鋼板の面温度分布を測定する工程と、(b)前記後半の制御冷却中において鋼板の形状を超音波により測定する工程と、(c)前記面温度分布の測定結果と、前記鋼板の面形状の測定結果に基づいて制御冷却水を制御する工程からなる鋼板の冷却方法が開示されている。
また、そのための制御冷却装置として、(a)圧延直後の鋼板の面温度分布を測定する温度測定装置と、(b)冷却ヘッダーまたは冷却水配水管内に設置された鋼板の板形状を測定するための超音波センサーと、(c)前記冷却ヘッダーと該冷却水量を制御する手段とこれに接続されたラミナー状の冷却水を供給するノズルを含む冷却装置と、(d)鋼板の前記温度測定装置と前記超音波センサーからの信号を受けて記憶し、所定の計算プログラムにしたがって鋼板を平坦にし、かつ、鋼板の面温度分布を均一化するように冷却水量を制御する冷却水の制御装置が開示されている。
Patent Document 2 includes (a) a step of measuring the surface temperature distribution of a steel plate after hot rolling, (b) a step of measuring the shape of the steel plate with ultrasonic waves during the latter half of the control cooling, c) A method for cooling a steel sheet comprising a step of controlling control cooling water based on the measurement result of the surface temperature distribution and the measurement result of the surface shape of the steel sheet is disclosed.
Moreover, as a control cooling device for that purpose, (a) a temperature measuring device for measuring the surface temperature distribution of the steel plate immediately after rolling, and (b) for measuring the plate shape of the steel plate installed in the cooling header or the cooling water distribution pipe. An ultrasonic sensor; (c) a cooling device including a cooling header, a means for controlling the cooling water amount, and a nozzle for supplying laminar cooling water connected thereto; and (d) the temperature measuring device for a steel plate. And a control apparatus for cooling water that receives and stores signals from the ultrasonic sensor, flattens the steel sheet according to a predetermined calculation program, and controls the cooling water amount so as to make the surface temperature distribution of the steel sheet uniform. Has been.

しかし、この特許文献1および特許文献2の冷却方法では、温度測定には熱放射によって発生する電磁波を測定する非接触式の表面温度計や放射温度計を用いており、この表面温度を伝熱計算式に導入して鋼板内部温度の推定が可能であるが、十分な精度を得るためには鋼板の冷却過程をすべて正確に把握する必要がある。
また、熱放射を用いた温度測定方法では、鋼板と温度計との間に冷却水や蒸気が介在した場合に測定精度が低下し、特に鋼板表面にスケールが存在する場合には、表面のスケール層のみが急激に温度が低下し、さらに、このスケールの厚み、生成分布が不均一であるため、著しく測定精度が低下する。
よって、ベースになる測定値自体の信頼性に問題があることから、表面温度をベースにして制御冷却を行う場合には、制御精度の安定確保が難しいという問題がある。
特開昭62−158825号公報(請求項、図1) 特開平8−294717号公報(請求項、図1) 特開昭57−24834号公報(請求項、図1〜図3)
However, in the cooling methods of Patent Document 1 and Patent Document 2, a non-contact surface thermometer or a radiation thermometer that measures electromagnetic waves generated by thermal radiation is used for temperature measurement. It is possible to estimate the internal temperature of the steel sheet by introducing it into the calculation formula, but in order to obtain sufficient accuracy, it is necessary to accurately grasp the cooling process of the steel sheet.
In addition, in the temperature measurement method using thermal radiation, the measurement accuracy decreases when cooling water or steam is interposed between the steel plate and the thermometer, especially when a scale exists on the steel plate surface. Only the layer suddenly drops in temperature, and the thickness of this scale and the generation distribution are non-uniform, resulting in a significant reduction in measurement accuracy.
Therefore, since there is a problem in the reliability of the measurement value itself as a base, there is a problem that it is difficult to ensure stable control accuracy when performing control cooling based on the surface temperature.
Japanese Patent Laid-Open No. 62-158825 (claim, FIG. 1) JP-A-8-294717 (claim, FIG. 1) JP-A-57-24834 (Claims, FIGS. 1 to 3)

本発明は、表面にスケールや冷媒、蒸気などが介在する熱間鋼材を噴射冷媒によって冷却する場合においても、冷却中に鋼材の内部温度分布(厚み方向温度分布)を高精度に予測して制御精度を高め、特に熱間鋼材の幅方向の形状特性および材質特性の均一性を確保できる熱間鋼材の制御冷却方法と制御冷却装置を提供するものである。   The present invention predicts and controls the internal temperature distribution (thickness direction temperature distribution) of steel with high accuracy during cooling even when hot steel with a scale, refrigerant, steam, etc. on its surface is cooled by an injection refrigerant. It is an object of the present invention to provide a control cooling method and a control cooling device for hot steel that can improve accuracy and in particular ensure uniformity of shape characteristics and material characteristics in the width direction of the hot steel.

本発明は、上記課題の解決のため、以下の(1)〜(8)を要旨とするものである。
(1) 鋼材をノズル群からの噴射冷媒により冷却中に、鋼材の内部に超音波センサーによって超音波を入射・伝播させ、伝播した超音波を受信しこの伝播速度と鋼材内部温度との関係から鋼材内部温度分布を予測し、この予測結果から求めた鋼材内部温度(平均温度)に基づいて噴射冷媒量を制御することを特徴とする熱間鋼材の制御冷却方法。
(2) 鋼材をノズル群からの噴射冷媒により冷却中に、鋼材の表面温度を測定するとともに、鋼材の内部に超音波センサーによって超音波を入射・伝播させ、伝播した超音波を受信しこの伝播速度と鋼材表面温度から鋼材内部温度分布を予測し、この予測結果から求めた鋼材内部温度(平均温度)と鋼材表面温度の実測値に基づいて噴射冷媒量を制御することを特徴とする熱間鋼材の制御冷却方法。
(3) (1)または(2)において、鋼材を搬送状態で冷却する場合において、鋼材内部温度分布の予測結果から求めた鋼材内部温度(平均温度)に基づいて噴射冷媒量および搬送速度を制御することを特徴とする熱間鋼材の制御冷却方法。
The present invention is summarized as the following (1) to (8) in order to solve the above problems.
(1) While cooling the steel material with the jet refrigerant from the nozzle group, the ultrasonic wave is incident and propagated inside the steel material by the ultrasonic sensor, the propagated ultrasonic wave is received, and the relationship between the propagation speed and the steel material internal temperature A method for controlling cooling of hot steel, which predicts a steel material internal temperature distribution and controls the amount of refrigerant injected based on the steel material internal temperature (average temperature) obtained from the prediction result.
(2) While the steel material is being cooled by the jet refrigerant from the nozzle group, the surface temperature of the steel material is measured, and ultrasonic waves are incident and propagated by an ultrasonic sensor inside the steel material, and the propagated ultrasonic wave is received and propagated. Predicts the steel internal temperature distribution from the speed and the steel surface temperature, and controls the amount of refrigerant injected based on the measured steel internal temperature (average temperature) and the steel surface temperature obtained from this prediction result. Controlled cooling method for steel.
(3) In (1) or (2), when cooling the steel material in the conveying state, the amount of the injected refrigerant and the conveying speed are controlled based on the steel material internal temperature (average temperature) obtained from the prediction result of the steel material internal temperature distribution. A method for controlling and cooling hot steel material.

(4) 冷媒を噴射するノズル群と、このノズル群からの噴射冷媒の供給制御手段と、搬送速度制御手段を備えた鋼材の冷却装置において、冷却中の鋼材の内部に超音波を入射・伝播させ、受信する超音波センサーと、超音波センサーからの超音波伝播速度と鋼材内部温度との関係から鋼材内部温度分布を予測して鋼材内部温度 (平均温度)を演算し噴射冷媒量および搬送速度を演算制御する演算制御装置とを備えたことを特徴とする熱間鋼材の制御冷却装置。
(5) 冷媒を噴射するノズル群と、このノズル群からの噴射冷媒の供給制御手段と、搬送速度制御手段を備えた鋼材の冷却装置において、冷却中の鋼材表面温度を測定する温度測定装置と、鋼材内部に超音波を入射・伝播させ、受信する超音波センサーと、超音波センサーからの超音波伝播速度と温度測定装置からの鋼材表面温度により鋼材内部温度分布を予測して鋼材内部温度(平均温度)を演算し、この鋼材内部温度(平均温度)と表面温度測定装置からの鋼材表面温度の実測値とから噴射冷媒量および搬送速度を演算制御する演算制御装置とを備えたことを特徴とする熱間鋼材の制御冷却装置。
(4) In a cooling apparatus for steel material provided with a nozzle group for injecting refrigerant, supply control means for the injection refrigerant from this nozzle group, and a conveyance speed control means, ultrasonic waves are incident and propagated inside the steel material being cooled. The internal temperature of the steel material (average temperature) is calculated by predicting the internal temperature distribution of the steel material from the relationship between the ultrasonic sensor to receive, the ultrasonic wave propagation speed from the ultrasonic sensor and the internal temperature of the steel material, and the injected refrigerant amount and the conveyance speed A control cooling device for hot steel, comprising: an arithmetic control device for calculating and controlling the above.
(5) Nozzle group for injecting refrigerant, supply control means for jetting refrigerant from this nozzle group, and a steel material cooling device provided with a conveying speed control means, and a temperature measuring device for measuring the steel surface temperature during cooling, The temperature inside the steel is estimated by predicting the internal temperature distribution of the steel based on the ultrasonic sensor that receives and propagates ultrasonic waves inside the steel, and the ultrasonic propagation velocity from the ultrasonic sensor and the surface temperature of the steel from the temperature measuring device. And an arithmetic control device for calculating and controlling the amount of refrigerant injected and the conveyance speed from the internal temperature (average temperature) of the steel material and the measured value of the steel surface temperature from the surface temperature measuring device. Controlled cooling device for hot steel.

(6) (4)または(5)において、超音波センサーとして、電磁超音波センサーを使用したことを特徴とする熱間鋼材の制御冷却装置。
(7) (6)において、鋼材を拘束ロール間で拘束して冷却する場合において、電磁超音波センサーを拘束ロールの外周部に設けたことを特徴とする熱間鋼材の制御冷却装置。
(8) (4)または(5)において、超音波センサーとして、水柱超音波センサーを使用したことを特徴とする請求項4または5に記載の熱間鋼材の制御冷却装置。
(6) A controlled cooling device for hot steel, wherein an electromagnetic ultrasonic sensor is used as the ultrasonic sensor in (4) or (5).
(7) In (6), in the case where steel material is restrained and restrained between restraining rolls, an electromagnetic ultrasonic sensor is provided on the outer peripheral portion of the restraining roll, and the control cooling device for hot steel materials.
(8) The controlled cooling device for hot steel according to claim 4 or 5, wherein a water column ultrasonic sensor is used as the ultrasonic sensor in (4) or (5).

本発明では、熱間鋼材、例えば、表面にスケールや冷却水、蒸気などが介在する熱間厚鋼板を、スプレーノズル群からの噴射冷却水により制御冷却する場合において、冷却中にも超音波センサー、または超音波センサーと表面温度測定装置を用いて鋼材の内部温度分布(厚み方向温度分布)を高精度で予測することができ、この内部温度分布に適応して噴射冷却水量、または噴射冷却水量と搬送速度を制御して制御冷却精度を高めることができ、特に熱間厚鋼板の幅方向の形状特性および材質特性の均一性を安定確保できる。   In the present invention, when a hot steel plate, for example, a hot thick steel plate having a scale, cooling water, steam, or the like on its surface is controlled and cooled by spray cooling water from a spray nozzle group, an ultrasonic sensor is also used during cooling. In addition, the internal temperature distribution (thickness direction temperature distribution) of steel can be predicted with high accuracy using an ultrasonic sensor and a surface temperature measuring device, and the amount of jet cooling water or the amount of jet cooling water adapted to this internal temperature distribution The cooling speed can be increased by controlling the conveying speed, and in particular, the uniformity of the shape characteristics and material characteristics in the width direction of the hot thick steel plate can be secured stably.

本発明は、熱間鋼材、例えば、図1に示すように、熱間圧延機2で熱間圧延して得られた温度が800〜1000℃の厚鋼板3を、搬送状態で、熱間圧延機2の後段に配置した拘束ロール4a、4b間で、スプレーノズル群を備えた制御冷却装置1からの冷媒、例えば噴射冷却水により、450〜200℃に制御冷却する場合に適用できるものである。
本発明は、概念的には、制御冷却装置1で噴射冷却水により冷却中において、生成スケールや冷却水、蒸気などの影響を受けにくい超音波センサーを用いて、またはこの超音波センサーと表面温度測定装置を併用して、厚鋼板3の内部温度分布(厚み方向の温度分布)を高精度で予測して、この予測結果から求めた厚鋼板3の平均温度に基づいて、例えば厚鋼板3の平均温度あるいは冷却速度が目標範囲になるように、噴射冷却水量、搬送速度の制御精度を安定確保して、熱間厚鋼板の形状特性および材質特性の均一性を安定確保できるものである。
In the present invention, a hot steel material, for example, a thick steel plate 3 having a temperature of 800 to 1000 ° C. obtained by hot rolling with a hot rolling mill 2 as shown in FIG. It can be applied to a case where controlled cooling is performed at 450 to 200 ° C. with a refrigerant, for example, jet cooling water, from the control cooling device 1 having a spray nozzle group between the restraining rolls 4 a and 4 b disposed in the subsequent stage of the machine 2. .
The present invention conceptually uses an ultrasonic sensor that is not easily affected by the generation scale, cooling water, steam, or the like during the cooling with the jet cooling water in the control cooling device 1, or the ultrasonic sensor and the surface temperature. The internal temperature distribution (temperature distribution in the thickness direction) of the thick steel plate 3 is predicted with high accuracy by using the measuring device together, and based on the average temperature of the thick steel plate 3 obtained from this prediction result, for example, It is possible to stably ensure the uniformity of the shape characteristics and material characteristics of the hot thick steel plate by ensuring stable control accuracy of the jet cooling water amount and the conveyance speed so that the average temperature or the cooling rate is within the target range.

なお、厚鋼板3を搬送状態で制御冷却する場合には、搬送速度を一定にして噴射冷却水量を制御する方法や、噴射冷却水量を一定にして搬送速度を制御する方法があるが、よりきめ細かい制御冷却を実現するために、噴射冷却水量と搬送速度の両方を制御することが有効であり、厚鋼板3を非搬送状態で制御冷却する場合には、噴射冷却水量のみを制御する。
本発明では、鋼材内部に超音波センサーから超音波を入射・伝播させ、伝播速度を測定して鋼材内部温度分布を予測することから、本発明の適用は、内部温度分布予測部位が、少なくとも3mm以上の厚みを有し、温度が800〜1000℃である熱間鋼材を冷却対象とする場合に特に有効である。
In addition, when controlling and cooling the thick steel plate 3 in the transport state, there are a method of controlling the jet cooling water amount with a constant transport speed and a method of controlling the transport speed with a constant jet cooling water amount. In order to realize controlled cooling, it is effective to control both the amount of jet cooling water and the conveyance speed. When the steel plate 3 is controlled and cooled in a non-conveyance state, only the amount of jet cooling water is controlled.
In the present invention, ultrasonic waves are incident / propagated from an ultrasonic sensor inside a steel material, and the propagation speed is measured to predict the steel material internal temperature distribution. Therefore, the application of the present invention has an internal temperature distribution prediction portion of at least 3 mm. This is particularly effective when a hot steel material having the above thickness and a temperature of 800 to 1000 ° C. is to be cooled.

以下に、本発明を、図2に示すように、搬送方向に3つの冷却列を配置した熱間厚鋼板の制御冷却装置の構造例に基づいて具体的に説明する。
この制御冷却装置1は、基本的には、厚鋼板3の上下に配置したヘッダー管6に連結され冷却水を噴射するスプレーノズル5群と、このスプレーノズル5群からの冷却水の供給制御装置11と、搬送速度制御装置12を備えた制御冷却装置であって、各冷却列で、それぞれ拘束ロール4a、4b間で拘束され搬送状態の厚鋼板3に対して、上面側と下面側にスプレーノズル5群から冷却水を噴射して、この冷却水噴流5aを衝突させ、該厚鋼板3を制御冷却するように構成したものである。
Below, as shown in FIG. 2, this invention is demonstrated concretely based on the structural example of the control cooling apparatus of the hot thick steel plate which has arrange | positioned three cooling rows in the conveyance direction.
The control cooling device 1 basically includes a group of spray nozzles 5 that are connected to header pipes 6 arranged above and below the thick steel plate 3 and injects cooling water, and a cooling water supply control device from the spray nozzles 5 group. 11 and a control cooling device provided with a transport speed control device 12, sprayed on the upper surface side and the lower surface side with respect to the thick steel plate 3 in the cooling state, restrained between the restraining rolls 4 a and 4 b, respectively. Cooling water is jetted from the nozzle 5 group, the cooling water jet 5a is made to collide, and the thick steel plate 3 is controlled and cooled.

この制御冷却装置1においては、厚鋼板3の上下面を冷却するようにスプレーノズル5群を厚鋼板3の上面側と下面側にそれぞれ配置して、上面側と下面側を同時冷却するものであり、基本的には、スプレーノズル5群を上面側の場合と同様に配置して、それぞれ、厚鋼板温度(平均温度)あるいは冷却速度が目標範囲になる(近付ける)ように、冷却の途中または次(後続)の厚鋼板に対する噴射冷却水量を制御(冷却列全体の場合は搬送速度の制御も考慮)するものである。
ただし、下面側では冷却水噴射流の挙動が異なり上面側のように板上冷却水のような冷却水流がないことから、下面側の噴射冷却水量は、上面側の冷却と好ましい冷却バランスを確保する別途の条件で制御するものである。ここでは、上面側の冷却を主体に説明する。
ここで用いたスプレーノズル5群は、公知のフラットノズルであり、複数単位でヘッダー管6に連結されており、各冷却列において厚鋼板3の幅方向と搬送方向に複数列配置してスプレーノズル5群を形成しており、ヘッダー管6単位で冷却条件を変えられるようにしている。ここでは、各冷却列単位および厚鋼板3の幅方向で中心部とその両側で噴射冷却水量を変えることができる。搬送速度は冷却列全体で制御することになる。
In this controlled cooling device 1, spray nozzles 5 are arranged on the upper surface side and the lower surface side of the thick steel plate 3 so as to cool the upper and lower surfaces of the thick steel plate 3, and simultaneously cool the upper surface side and the lower surface side. Yes, basically, the spray nozzles 5 group are arranged in the same manner as the upper surface side, and the cooling plate or the steel plate temperature (average temperature) or the cooling rate is in the target range (closer), respectively, The amount of cooling water injected for the next (subsequent) thick steel plate is controlled (in the case of the entire cooling train, the control of the conveyance speed is also taken into consideration).
However, since the behavior of the cooling water jet flow is different on the lower surface side and there is no cooling water flow like the cooling water on the plate like the upper surface side, the amount of injected cooling water on the lower surface side ensures a favorable cooling balance with the cooling on the upper surface side. Control is performed under separate conditions. Here, the cooling on the upper surface side will be mainly described.
The spray nozzle group 5 used here is a known flat nozzle, which is connected to the header pipe 6 in a plurality of units, and is arranged in a plurality of rows in the width direction and the transport direction of the thick steel plate 3 in each cooling row. Five groups are formed so that the cooling conditions can be changed in units of six header tubes. Here, the amount of injected cooling water can be changed at the center portion and both sides in the width direction of each cooling row unit and the thick steel plate 3. The conveyance speed is controlled in the entire cooling row.

この制御冷却装置1においては、中間の冷却列の後部側の拘束ロール4bの手前に、水柱超音波センサー8を備えており、この水柱超音波センサー8から冷却中または冷却後の厚鋼板3の内部に超音波を入射・伝播させ、伝播した超音波を受信して伝播速度を測定し、この測定値を演算装置10に入力して、伝播速度の測定値から厚鋼板内部温度分布(厚み方向温度分布)を演算・予測し、この予測結果から冷却後の目標の厚鋼板内部温度分布範囲と比較演算し、目標の厚鋼板内部温度分布範囲から外れている場合には、目標の厚鋼板内部温度分布範囲にする適切な冷却速度になるように、冷却水供給制御装置11を介してノズル5群からの噴射冷却水量を制御(補正)し、搬送速度制御装置12を介して搬送速度を制御できるように構成している。   In this controlled cooling device 1, a water column ultrasonic sensor 8 is provided in front of the restraining roll 4b on the rear side of the intermediate cooling row, and the steel plate 3 being cooled or cooled by the water column ultrasonic sensor 8 is cooled. The ultrasonic wave is incident and propagated inside, the propagated ultrasonic wave is received and the propagation velocity is measured, and the measured value is input to the arithmetic unit 10, and the internal temperature distribution (thickness direction) of the measured value of the propagation velocity is calculated. (Temperature distribution) is calculated and predicted, and compared with the target steel plate internal temperature distribution range after cooling from this prediction result. If it is outside the target steel plate internal temperature distribution range, The amount of jet cooling water from the nozzle 5 group is controlled (corrected) via the cooling water supply control device 11 so as to achieve an appropriate cooling speed within the temperature distribution range, and the conveyance speed is controlled via the conveyance speed control device 12. Configure as you can There.

また、この冷却列の前部の拘束ロール4aと後部の拘束ロール4b間に、電磁超音波センサー7を、常に厚鋼板3近傍に配置する装置とともに配置、または常に厚鋼板3と接触している後部側の拘束ロール4bの外周部に配置し、冷却中または冷却後の厚鋼板3の内部に超音波を入射・伝播させ、伝播した超音波を受信して伝播速度を測定し、この測定値を演算装置10に入力して、伝播速度の測定値から厚鋼板内部温度分布(厚み方向温度分布)を演算・予測し、この予測結果から予め設定した目標の厚鋼板内部温度分布にする冷却速度になるように、冷却水供給制御装置11を介してノズル5群からの噴射冷却水量を制御(補正)し、搬送速度制御装置12を介して搬送速度を制御する構成を有している。   In addition, the electromagnetic ultrasonic sensor 7 is disposed with a device that is always disposed in the vicinity of the thick steel plate 3 or is always in contact with the thick steel plate 3 between the front restraint roll 4a and the rear restraint roll 4b. This is arranged on the outer peripheral part of the restraining roll 4b on the rear side, makes ultrasonic waves enter and propagate inside the thick steel plate 3 during or after cooling, receives the propagated ultrasonic waves, measures the propagation velocity, and measures this measured value. Is input to the arithmetic unit 10 to calculate / predict the steel plate internal temperature distribution (thickness direction temperature distribution) from the measured value of the propagation speed, and from this prediction result, the cooling rate to obtain a preset target thick steel plate internal temperature distribution Thus, the jet cooling water amount from the nozzle 5 group is controlled (corrected) via the cooling water supply control device 11, and the transport speed is controlled via the transport speed control device 12.

本発明で用いる超音波センサーとしての水柱超音波センサー8は、厚鋼板に対してラミナーまたはジェット水流を介して探触子からの超音波を入射・伝播させ、伝播した超音波を受信する噴流探傷法の原理を利用するものであり、厚鋼板内部温度測定法の概念としては、図3に示すように、厚鋼板3に超音波を複数の斜角入射条件(例えばθ1〜θ4)で、超音波を入射・伝播させ、超音波伝播時間(T1、T2、T3、T4)と、発生点と検出点1、2、3、4間距離X1、X2、X3、X4を測定、以下の非線形連立方程式より、厚鋼板3の分厚d1、d2、d3、d4における伝播速度(m/秒)v1、v2、v3、v4を算出し、下式に基づいて厚鋼板の厚み方向の音速分布を求めることができる。
Tj=Fj(v1、v2、v3、v4)
Xj=Gj(v1 、v2 、v3 、v4 )
ただし、j:検出点1、2、3、4
F:音速と温度の関係式
G:音速と伝播距離の関係式
この伝播速度は、厚鋼板の温度(℃)と密接な相関があるとの知見から、これを厚鋼板内部温度(厚み方向温度分布)の測定に適用する。
このように、厚鋼板3に超音波を複数の斜角入射条件(例えばθ1 〜θ4 )で、超音波を入射・伝播させる方法を用いる場合には、不可欠ではないが、厚鋼板の内部温度測定位置の近くに、表面温度測定装置13を配置して、厚鋼板3の表面温度を実測し、この実測値を信号処理器9で処理して演算装置10に入力し、伝播速度(m/秒)から算出した厚鋼板3の内部温度分布に反映させる(補正を加える)ことが、さらに高精度で厚鋼板の内部温度分布を予測する上で有効である。
The water column ultrasonic sensor 8 as an ultrasonic sensor used in the present invention is a jet flaw detector that makes ultrasonic waves from a probe incident and propagate through a laminar or jet water flow on a thick steel plate and receives the propagated ultrasonic waves. The principle of the method of measuring the internal temperature of the thick steel plate is as follows. As shown in FIG. 3, the ultrasonic wave is applied to the thick steel plate 3 under a plurality of oblique incidence conditions (for example, θ1 to θ4). Incidence and propagation of sound waves, ultrasonic propagation time (T1, T2, T3, T4) and distances X1, X2, X3, X4 between generation point and detection points 1, 2, 3, 4 are measured. Calculate the propagation velocity (m / sec) v1, v2, v3, v4 at the thicknesses d1, d2, d3, d4 of the thick steel plate 3 from the equation, and obtain the sound velocity distribution in the thickness direction of the thick steel plate based on the following equation. Can do.
Tj = Fj (v1, v2, v3, v4)
Xj = Gj (v1, v2, v3, v4)
Where j: detection points 1, 2, 3, 4
F: Relation between sound speed and temperature
G: Relational expression between sound velocity and propagation distance Based on the knowledge that this propagation velocity has a close correlation with the temperature (° C.) of the thick steel plate, this is applied to the measurement of the internal temperature (thickness direction temperature distribution) of the thick steel plate.
As described above, when using a method in which ultrasonic waves are incident and propagated on the thick steel plate 3 under a plurality of oblique incidence conditions (for example, θ1 to θ4), the internal temperature measurement of the thick steel plate is not indispensable. The surface temperature measuring device 13 is arranged near the position, the surface temperature of the thick steel plate 3 is measured, this measured value is processed by the signal processor 9 and input to the arithmetic device 10, and the propagation velocity (m / second) Reflecting (adding correction) to the internal temperature distribution of the thick steel plate 3 calculated from (2) is effective in predicting the internal temperature distribution of the thick steel plate with higher accuracy.

また、簡易に厚鋼板の内部温度を予測する方法として、厚鋼板3に垂直に超音波を入射・伝播させ、超音波伝播時間と予め測定した厚鋼板3の板厚から厚鋼板内部の平均伝播速度を算出し、伝播速度と厚鋼板内部温度との関係から厚鋼板内部の平均温度を平均伝播速度から予測する方法があるが、この方法を用いる場合には特に、表面温度測定装置13を配置して、厚鋼板3の表面温度を実測し、この実測値と垂直に超音波を入射・伝播させて測定した厚鋼板内部の平均温度を併用することにより、厚鋼板3の内部温度分布を2次曲線近似により予測することが有効である。
厚鋼板3の表面温度を実測する場合には、厚鋼板と温度測定装置との間に冷却水や蒸気やスケールができるだけ介在しない条件下で行うことが好ましい。例えば冷却水の噴射領域中で実測する場合では、一時的に冷却水の噴射を停止することも考慮する。
また、水柱超音波センサー8による厚鋼板の内部温度測定と同時に表面温度を測定する場合は、水柱超音波センサー8の水流により表面温度測定精度が悪化しないように、表面温度測定装置13を水柱超音波センサー8よりも上流側に設置することが望ましい。
Further, as a method for easily predicting the internal temperature of the thick steel plate, ultrasonic waves are incident and propagated perpendicularly to the thick steel plate 3, and the average propagation inside the thick steel plate is determined from the ultrasonic propagation time and the thickness of the thick steel plate 3 measured in advance. There is a method of calculating the velocity and predicting the average temperature inside the thick steel plate from the average propagation velocity based on the relationship between the propagation velocity and the internal temperature of the thick steel plate. Especially when this method is used, the surface temperature measuring device 13 is arranged. Then, the surface temperature of the thick steel plate 3 is measured, and the internal temperature distribution of the thick steel plate 3 is set to 2 by using together the average temperature inside the thick steel plate measured by incident and propagating ultrasonic waves perpendicularly to this measured value. Predicting by quadratic curve approximation is effective.
When the surface temperature of the thick steel plate 3 is actually measured, it is preferable to carry out under the condition that cooling water, steam and scale are not interposed as much as possible between the thick steel plate and the temperature measuring device. For example, when actually measuring in the cooling water injection region, it is also considered to temporarily stop the injection of cooling water.
When the surface temperature is measured simultaneously with the internal temperature measurement of the thick steel plate by the water column ultrasonic sensor 8, the surface temperature measuring device 13 is used to prevent the surface temperature measurement accuracy from being deteriorated by the water flow of the water column ultrasonic sensor 8. It is desirable to install on the upstream side of the sonic sensor 8.

電磁超音波センサー7は、基本的には、特許文献3に開示されるようなものであり、原理的には厚鋼板3に対し超音波を電磁誘導的に入射・伝播させ、伝播した超音波を受信する電磁超音波探傷法の原理を利用するものであり、水柱超音波センサー8とは、超音波の送・受信方法が異なるものであるが、厚鋼板に超音波を入射伝播させるところからは、基本的には、水柱超音波センサー8と概ね共通の内容を有し、同様にして厚鋼板3の内部温度分布(厚み方向温度分布)を高精度で予測することができる。表面温度測定装置13による厚鋼板3の表面温度の実測値の併用効果も水柱超音波センサー8を用いる場合と同様である。
この電磁超音波センサー7は、非接触測定が可能で水柱を介す必要がないため、流れの速い冷却媒体が存在する場合や厚鋼板表面に蒸気膜が存在する場合でも測定精度が悪化しないため、冷却中の測定や厚鋼板表面の温度が高い場合の測定に有効であるが、厚鋼板3の極く近傍にセンサー自体を配置する必要があるので、ここでは常に厚鋼板近傍にあるセンサーを配置できる装置または常に厚鋼板3に接触する後部側の拘束ロール4bの外周部に配置している。
The electromagnetic ultrasonic sensor 7 is basically as disclosed in Patent Document 3, and in principle, ultrasonic waves are incident and propagated electromagnetically to the thick steel plate 3 and propagated. This is based on the principle of electromagnetic ultrasonic flaw detection method for receiving water, and the water column ultrasonic sensor 8 is different in ultrasonic transmission / reception method. Basically, the water column ultrasonic sensor 8 has almost the same contents, and the internal temperature distribution (thickness direction temperature distribution) of the thick steel plate 3 can be predicted with high accuracy in the same manner. The combined effect of the actual measured value of the surface temperature of the thick steel plate 3 by the surface temperature measuring device 13 is also the same as when the water column ultrasonic sensor 8 is used.
Since this electromagnetic ultrasonic sensor 7 can perform non-contact measurement and does not need to pass through a water column, the measurement accuracy does not deteriorate even when a fast-flowing cooling medium is present or a vapor film is present on the surface of a thick steel plate. It is effective for measurement during cooling and when the temperature of the steel plate surface is high. However, since it is necessary to place the sensor itself in the very vicinity of the steel plate 3, the sensor always in the vicinity of the steel plate is used here. It arrange | positions to the outer peripheral part of the restraint roll 4b of the rear part side which always contacts the apparatus which can be arrange | positioned, and the thick steel plate 3. FIG.

本発明で用いる水柱超音波センサー8、電磁超音波センサー7、表面温度測定装置13は、その組み合わせを選択して使用するものであり、幅方向で温度管理位置を複数にして、厚鋼板3の幅方向で冷却条件を制御することもできる。
また、厚鋼板のサイズ変更がある場合には、厚鋼板3の幅方向の配置位置を変更する必要がある。そのために厚鋼板3の表面に対して変位可能にし、また厚鋼板3の幅方向に幅中心線を中心として対称に変位可能にすることを考慮する。また、スプレーノズル5群も、同様に変位可能とすることを考慮する。
The water column ultrasonic sensor 8, electromagnetic ultrasonic sensor 7, and surface temperature measuring device 13 used in the present invention are selected and used in combination, and a plurality of temperature management positions in the width direction are used. Cooling conditions can also be controlled in the width direction.
Moreover, when there is a size change of the thick steel plate, it is necessary to change the arrangement position of the thick steel plate 3 in the width direction. Therefore, it is considered to be displaceable with respect to the surface of the thick steel plate 3 and to be displaceable symmetrically about the width center line in the width direction of the thick steel plate 3. In addition, it is considered that the spray nozzle group 5 can be similarly displaced.

この実施例は、本発明による電磁超音波センサーと水柱超音波センサーによる厚鋼板内部温度測定を指標として用いた場合と、従来の光温度計による表面温度測定値を指標とした場合のスケール厚変動に起因する停止温度変動幅を数値シミュレーションにより比較したものである。
ここでは、900℃に均一加熱した板厚20mmの溶接構造用圧延鋼板SM490をモデルとして、50μmの厚みのスケールがあるものと、ないものをそれぞれ水冷し、冷却終了の指標として表面温度を用いたものと内部平均温度を用いたものを比較した。比較結果を表1に示す。
In this example, the thickness variation in the thickness when the internal temperature measurement of the thick steel plate by the electromagnetic ultrasonic sensor and the water column ultrasonic sensor according to the present invention is used as an index and the surface temperature measurement value by the conventional optical thermometer is used as an index. This is a comparison of the fluctuation range of the stop temperature caused by this by numerical simulation.
Here, using a rolled steel sheet SM490 for welded structure with a thickness of 20 mm uniformly heated to 900 ° C. as a model, those with and without a 50 μm thickness were each cooled with water, and the surface temperature was used as an indicator of the end of cooling. The one using the internal average temperature was compared with the one using the internal average temperature. The comparison results are shown in Table 1.

Figure 2005118837
Figure 2005118837

表1から明らかなように、表面にスケールが存在する場合は、熱伝導率の低いスケール層のみ温度が低下するため、表面の温度を指標として冷却条件を定めると、スケール厚の変動により、冷却後の厚鋼板温度に約100℃程度のバラツキが生じる。しかし内部平均温度を指標として冷却条件を定めると、冷却後の厚鋼板温度のバラツキは約10℃程度となる。
このことは、表面温度を指標とした場合に比べて内部平均温度を指標とした場合は、冷却後の厚鋼板温度のバラツキが小さくなることを意味しており、冷却中または冷却後に厚鋼板内部温度の測定を行う有効性を示している。
As can be seen from Table 1, when scale exists on the surface, the temperature of only the scale layer with low thermal conductivity is lowered. A variation of about 100 ° C. occurs in the later thick steel plate temperature. However, when the cooling condition is determined using the internal average temperature as an index, the variation in the temperature of the thick steel plate after cooling is about 10 ° C.
This means that when the internal average temperature is used as an index compared to the case where the surface temperature is used as an index, the variation in the temperature of the thick steel plate after cooling is reduced. It shows the effectiveness of measuring temperature.

なお、本発明は、上記の内容に限定されるものではない。例えば、上記の例では冷却対象を搬送状態の厚鋼板として説明したが、冷却対象は他の鋼材であっても適用可能であり、また、非搬送状態の鋼材であっても適用可能である。
また、超音波センサー、表面温度測定装置の種類、これらの組み合わせ、配置条件、冷却列配置、ノズル群を形成するノズルの種類、構造、配置条件、冷却水などの冷媒の種類およびその噴射条件などは、冷却対象の鋼材条件(材質、形状、サイズ、温度)、鋼材に要求される形状特性、材質特性などを考慮して設定される冷却条件などに応じて、上記請求項を満足する範囲内で変更のあるものである。
In addition, this invention is not limited to said content. For example, in the above example, the cooling target is described as a thick steel plate in a transport state, but the cooling target can be applied to other steel materials, and can be applied to a steel material in a non-transport state.
Also, types of ultrasonic sensors, surface temperature measuring devices, combinations thereof, arrangement conditions, cooling row arrangements, types of nozzles forming nozzle groups, structure, arrangement conditions, types of refrigerants such as cooling water, and injection conditions thereof Is within the range that satisfies the above claims, depending on the steel conditions (material, shape, size, temperature) to be cooled, the cooling conditions set in consideration of the shape characteristics and material characteristics required for the steel materials, etc. There are some changes.

本発明の熱間厚鋼板の制御冷却装置を適用する熱間圧延ラインの配置例を示す概念説明図。The conceptual explanatory drawing which shows the example of arrangement | positioning of the hot rolling line which applies the control cooling apparatus of the hot thick steel plate of this invention. 本発明の熱間厚鋼板の制御冷却装置の構造例を示す側面概念説明図。Side surface explanatory drawing which shows the structural example of the control cooling apparatus of the hot thick steel plate of this invention. 本発明で用いる水柱超音波センサーによる超音波の入射・伝播と厚鋼板内部温度分布予測の原理説明図。The principle explanatory drawing of the incidence and propagation of the ultrasonic wave by the water column ultrasonic sensor used in the present invention and the prediction of the internal temperature distribution of the thick steel plate.

符号の説明Explanation of symbols

1 制御冷却装置 2 熱間仕上圧延機
3 厚鋼板 4a、4b 拘束ロール
5 スプレーノズル 5a 冷却水噴流
6 ヘッダー管 7 電磁超音波センサー
8 水柱超音波センサー 9 信号処理器
10 演算制御装置 11 冷却水供給制御装置
12 搬送速度制御装置 13 表面温度測定装置
DESCRIPTION OF SYMBOLS 1 Control cooling device 2 Hot finishing rolling mill 3 Thick steel plate 4a, 4b Restraining roll 5 Spray nozzle 5a Cooling water jet 6 Header pipe 7 Electromagnetic ultrasonic sensor 8 Water column ultrasonic sensor 9 Signal processor 10 Arithmetic control device 11 Cooling water supply Control device 12 Transport speed control device 13 Surface temperature measurement device

Claims (8)

鋼材をノズル群からの噴射冷媒により冷却中に、鋼材の内部に超音波センサーによって超音波を入射・伝播させ、伝播した超音波を受信しこの伝播速度と鋼材温度との関係から鋼材内部温度分布の予測を行い、この予測結果から求めた鋼材内部温度(平均温度)に基づいて噴射冷媒量を制御することを特徴とする熱間鋼材の制御冷却方法。   While cooling the steel with the jet refrigerant from the nozzle group, ultrasonic waves are incident and propagated inside the steel by an ultrasonic sensor, and the propagated ultrasonic waves are received and the internal temperature distribution of the steel from the relationship between the propagation speed and the steel temperature. A control cooling method for hot steel, characterized in that the amount of refrigerant injected is controlled based on the internal temperature (average temperature) of the steel obtained from this prediction result. 鋼材をノズル群からの噴射冷媒により冷却中に、鋼材の表面温度を測定するとともに、鋼材の内部に超音波センサーによって超音波を入射・伝播させ、伝播した超音波を受信しこの伝播速度と鋼材温度との関係から鋼材内部温度分布の予測を行い、この予測結果から求めた鋼材内部温度(平均温度)と鋼材表面温度の実測値に基づいて噴射冷媒量を制御することを特徴とする熱間鋼材の制御冷却方法。   While the steel material is being cooled by the jet refrigerant from the nozzle group, the surface temperature of the steel material is measured, and ultrasonic waves are incident and propagated by the ultrasonic sensor inside the steel material. Predicting the steel internal temperature distribution from the relationship with the temperature, and controlling the amount of injected refrigerant based on the measured steel internal temperature (average temperature) and the steel surface temperature obtained from this prediction result Controlled cooling method for steel. 鋼材を搬送状態で冷却する場合において、鋼材内部温度分布の予測結果から求めた鋼材内部温度(平均温度)に基づいて噴射冷媒量および搬送速度を制御することを特徴とする請求項1または2に記載の熱間鋼材の制御冷却方法。   The cooling medium amount and the conveying speed are controlled based on the steel material internal temperature (average temperature) obtained from the prediction result of the steel material internal temperature distribution when cooling the steel material in the conveying state. The control cooling method of hot steel materials as described. 冷媒を噴射するノズル群と、このノズル群からの噴射冷媒の供給制御手段と、搬送速度制御手段を備えた鋼材の冷却装置において、冷却中の鋼材の内部に超音波を入射・伝播させ、受信する超音波センサーと、超音波センサーからの超音波伝播速度と鋼材温度との関係から鋼材内部温度分布を予測して鋼材内部温度(平均温度)を演算し噴射冷媒量および搬送速度を演算制御する演算制御装置とを備えたことを特徴とする熱間鋼材の制御冷却装置。   In a steel material cooling device equipped with a nozzle group for injecting refrigerant, a supply control means for the refrigerant injected from the nozzle group, and a conveyance speed control means, ultrasonic waves are incident and propagated inside the steel material being cooled, and received. Predicts the internal temperature distribution of the steel material from the relationship between the ultrasonic sensor and the ultrasonic wave propagation speed from the ultrasonic sensor and the steel material temperature, calculates the steel material internal temperature (average temperature), and controls the injection refrigerant amount and the conveyance speed. A control cooling device for hot steel, comprising an arithmetic control device. 冷媒を噴射するノズル群と、このノズル群からの噴射冷媒の供給制御手段と、搬送速度制御手段を備えた鋼材の冷却装置において、冷却中の鋼材表面温度を測定する温度測定装置と、鋼材内部に超音波を入射・伝播させ、受信する超音波センサーと、超音波センサーからの超音波伝播速度と鋼材内部温度分布を予測して鋼材内部温度(平均温度)を演算し、この鋼材内部温度(平均温度)と表面温度測定装置からの鋼材表面温度の実測値とから噴射冷媒量および搬送速度を演算制御する演算制御装置とを備えたことを特徴とする熱間鋼材の制御冷却装置。   Nozzle group for injecting refrigerant, supply control means for jetting refrigerant from this nozzle group, and steel material cooling device provided with transport speed control means, temperature measuring device for measuring steel surface temperature during cooling, and internal steel material Calculates the internal temperature (average temperature) of the steel material by predicting the ultrasonic wave velocity and the internal temperature distribution of the ultrasonic material that is incident / propagated to and received by the ultrasonic sensor. A control and cooling device for hot steel material, comprising: an arithmetic control device for calculating and controlling the amount of refrigerant injected and the conveying speed from the average temperature) and the measured value of the steel material surface temperature from the surface temperature measuring device. 超音波センサーとして、電磁超音波センサーを使用したことを特徴とする請求項4または5に記載の熱間鋼材の制御冷却装置。   The controlled cooling device for hot steel according to claim 4 or 5, wherein an electromagnetic ultrasonic sensor is used as the ultrasonic sensor. 鋼材を拘束ロール間で拘束して冷却する場合において、電磁超音波センサーを拘束ロールの外周部に設けたことを特徴とする請求項6に記載の熱間鋼材の制御冷却装置。   The apparatus for controlling and cooling hot steel material according to claim 6, wherein an electromagnetic ultrasonic sensor is provided on an outer peripheral portion of the restraining roll when the steel material is restrained between the restraining rolls for cooling. 超音波センサーとして、水柱超音波センサーを使用したことを特徴とする請求項4または5に記載の熱間鋼材の制御冷却装置。   The controlled cooling device for hot steel materials according to claim 4 or 5, wherein a water column ultrasonic sensor is used as the ultrasonic sensor.
JP2003358388A 2003-10-17 2003-10-17 Controlled cooling system for hot steel Expired - Fee Related JP3955009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358388A JP3955009B2 (en) 2003-10-17 2003-10-17 Controlled cooling system for hot steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358388A JP3955009B2 (en) 2003-10-17 2003-10-17 Controlled cooling system for hot steel

Publications (2)

Publication Number Publication Date
JP2005118837A true JP2005118837A (en) 2005-05-12
JP3955009B2 JP3955009B2 (en) 2007-08-08

Family

ID=34614974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358388A Expired - Fee Related JP3955009B2 (en) 2003-10-17 2003-10-17 Controlled cooling system for hot steel

Country Status (1)

Country Link
JP (1) JP3955009B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811144B (en) * 2009-02-24 2012-05-30 宝山钢铁股份有限公司 Laminar flow water cooling device and control method
RU2549811C1 (en) * 2013-10-29 2015-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Юго-Западный государственный университет Device for cooling control of item during rolling
CN106825060A (en) * 2016-12-28 2017-06-13 中南大学 The coding method of Heat Working Rolls chilling spray amount control system and spray flux record

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811144B (en) * 2009-02-24 2012-05-30 宝山钢铁股份有限公司 Laminar flow water cooling device and control method
RU2549811C1 (en) * 2013-10-29 2015-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Юго-Западный государственный университет Device for cooling control of item during rolling
CN106825060A (en) * 2016-12-28 2017-06-13 中南大学 The coding method of Heat Working Rolls chilling spray amount control system and spray flux record
CN106825060B (en) * 2016-12-28 2018-05-15 中南大学 The coding method of Heat Working Rolls chilling spray amount control system and spray flux record

Also Published As

Publication number Publication date
JP3955009B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JPS62158825A (en) Method for cooling hot rolled steel plate
US20180281039A1 (en) Measuring thermal expansion and the thermal crown of rolls
JP2007190597A (en) Method and device for controlling cooling and device for calculating quantity of cooling water
JP7040497B2 (en) Heating furnace extraction temperature prediction method for steel pieces and heating furnace extraction temperature prediction device
JP5811046B2 (en) Method for predicting temperature unevenness of hot-rolled steel sheet, method for controlling flatness, method for controlling temperature unevenness, and manufacturing method
KR101298763B1 (en) System for measuring slab size
JP3955009B2 (en) Controlled cooling system for hot steel
JPH0534093B2 (en)
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP6558060B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
CN100464886C (en) Device and method for controllably cooling thick steel plate
JP5104247B2 (en) Manufacturing method of continuous cast slab
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP3460755B2 (en) Controlled cooling method and apparatus for hot rolled steel sheet
JP4123582B2 (en) Steel plate shape prediction method and apparatus
JP3783396B2 (en) Cooling method for high temperature steel sheet
JP3206533B2 (en) Controlled cooling method and apparatus for thick steel plate
JP2009160620A (en) Short side shape measuring device for continuously cast slab
JP2009195937A (en) Method for producing continuously cast slab, and continuous casting machine
JP4296946B2 (en) Method and device for detecting solidification completion position of continuous cast slab
JP3282714B2 (en) Cooling method for hot steel sheet
JP2005262312A (en) Method for estimating thermal crown of rolling roll in hot rolling and method for manufacturing hot-rolled steel sheet
JPH08243622A (en) Method for estimating temperature of hot rolled stock cooled with liquid
SERIZAWA et al. Heat Transfer Technology for Steel Rolling Process
JP2013126669A (en) Method and device for estimating temperature of slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R151 Written notification of patent or utility model registration

Ref document number: 3955009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees