JP2005116905A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor Download PDF

Info

Publication number
JP2005116905A
JP2005116905A JP2003351451A JP2003351451A JP2005116905A JP 2005116905 A JP2005116905 A JP 2005116905A JP 2003351451 A JP2003351451 A JP 2003351451A JP 2003351451 A JP2003351451 A JP 2003351451A JP 2005116905 A JP2005116905 A JP 2005116905A
Authority
JP
Japan
Prior art keywords
acid
allyl alcohol
electrolytic solution
alcohol copolymer
crotonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003351451A
Other languages
Japanese (ja)
Other versions
JP4366170B2 (en
Inventor
Akifumi Sakai
陽文 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2003351451A priority Critical patent/JP4366170B2/en
Publication of JP2005116905A publication Critical patent/JP2005116905A/en
Application granted granted Critical
Publication of JP4366170B2 publication Critical patent/JP4366170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte for driving an electrolytic capacitor which can improve a breakdown voltage while suppressing the rise of a specific resistance. <P>SOLUTION: An organic carboxylic acid, such as, an adipic acid, an azelaic acid, a sebacic acid, a benzoic acid or its salt, a boric acid or its ammonium salt, and 1.0-20.0 wt% of acrylic acid-allyl alcohol copolymer (average molecular weight: 2.000-20,000) represented by a chemical formula are dissolved in a solvent containing an ethylene glycol as a main component. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)に関するものであり、特に電解液の耐電圧の向上と、製品での長期信頼性を改善するものである。   The present invention relates to an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and in particular, improves the withstand voltage of the electrolytic solution and improves long-term reliability of a product.

従来、中高圧用電解コンデンサの電解液としては、エチレングリコールを主成分とする溶媒に、安息香酸、有機カルボン酸、ホウ酸またはそのアンモニウム塩を溶解し、さらに耐電圧向上を目的としてマンニトール、ソルビトール等の炭素数6程度の多価アルコール類、または、合成高分子であるポリエチレングリコールやポリビニルアルコールを添加していた(例えば特許文献1、2参照)。
特開平1−220426号公報 特公平7−48460号公報
Conventionally, as an electrolytic solution for an electrolytic capacitor for medium to high voltage, benzoic acid, organic carboxylic acid, boric acid or ammonium salt thereof is dissolved in a solvent mainly composed of ethylene glycol, and mannitol and sorbitol are further used for the purpose of improving withstand voltage. Polyhydric alcohols having about 6 carbon atoms such as polyethylene glycol or polyvinyl alcohol, which are synthetic polymers, have been added (see, for example, Patent Documents 1 and 2).
JP-A-1-220426 Japanese Patent Publication No. 7-48460

上記のマンニトール、ソルビトール等は、電解液の耐電圧を向上させるためには、多量の添加が必要であるが、多量に添加すると比抵抗が上昇するという問題があった。
また、ポリエチレングリコールは、平均分子量が1,000以下の比較的重合度の小さいものは、電解液に対する溶解性は高いが耐電圧向上の効果が小さい。一方、平均分子量が1,000を超えると、耐電圧向上の効果は高いが、電解液に対する溶解性が低く、多量に添加できないという問題があった。
そして、ポリビニルアルコールは、少量の添加で電解液の耐電圧向上を図ることができるが、電解液に対する溶解性が著しく低いため、長時間の加熱、撹拌を必要とし、作業面で問題があった。
したがって、比抵抗の上昇を抑制しつつ、耐電圧の向上を図ることができ、かつ溶解性の向上も可能な電解液が求められていた。
The mannitol, sorbitol, etc. need to be added in a large amount in order to improve the withstand voltage of the electrolyte, but there is a problem that the specific resistance increases when added in a large amount.
In addition, polyethylene glycol having an average molecular weight of 1,000 or less and having a relatively low degree of polymerization has high solubility in an electrolytic solution, but has a small effect of improving withstand voltage. On the other hand, when the average molecular weight exceeds 1,000, the effect of improving the withstand voltage is high, but there is a problem that the solubility in the electrolytic solution is low and a large amount cannot be added.
Polyvinyl alcohol can improve the withstand voltage of the electrolytic solution with a small amount of addition, but the solubility in the electrolytic solution is remarkably low. .
Therefore, there has been a demand for an electrolytic solution that can improve the withstand voltage while suppressing an increase in specific resistance and can also improve solubility.

本発明は、上記の課題を解決するため各種検討した結果、見出されたものであり、クロトン酸とアリルアルコールの共重合体が、ポリエチレングリコールやポリビニルアルコールよりも、エチレングリコールに対する溶解性が高く、耐電圧の向上が図れることに着目し、その特性を電解液に適用しようとするものである。
すなわち、エチレングリコールを主成分とする溶媒に、有機カルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩と、以下の化学式で示されるクロトン酸−アリルアルコール共重合体とを溶解したことを特徴とする電解コンデンサの駆動用電解液である。
The present invention has been found as a result of various studies in order to solve the above-mentioned problems, and a copolymer of crotonic acid and allyl alcohol has higher solubility in ethylene glycol than polyethylene glycol or polyvinyl alcohol. Focusing on the fact that the withstand voltage can be improved, the characteristics are to be applied to the electrolytic solution.
That is, the organic carboxylic acid or a salt thereof, boric acid or an ammonium salt thereof, and a crotonic acid-allyl alcohol copolymer represented by the following chemical formula are dissolved in a solvent mainly composed of ethylene glycol. This is an electrolyte for driving an electrolytic capacitor.

Figure 2005116905
Figure 2005116905

そして、上記クロトン酸−アリルアルコール共重合体の平均分子量が、2,000〜20,000であることを特徴とする電解コンデンサの駆動用電解液である。   And the average molecular weight of the said crotonic acid-allyl alcohol copolymer is 2,000-20,000, It is an electrolyte solution for a drive of the electrolytic capacitor characterized by the above-mentioned.

また、上記クロトン酸−アリルアルコール共重合体の量が、1.0〜20.0wt%であることを特徴とする電解コンデンサの駆動用電解液である。   The electrolytic solution for driving an electrolytic capacitor is characterized in that the amount of the crotonic acid-allyl alcohol copolymer is 1.0 to 20.0 wt%.

上記有機カルボン酸としては、安息香酸、アジピン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を例示することができる。   Examples of the organic carboxylic acid include benzoic acid, adipic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid and the like. be able to.

さらに、有機カルボン酸の塩としては、アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミン等の一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等の四級アンモニウム塩等を例示することができる。   Furthermore, as salts of organic carboxylic acids, in addition to ammonium salts, primary amine salts such as methylamine, ethylamine and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine and diethylamine, trimethylamine, diethylmethylamine, Examples thereof include tertiary amine salts such as ethyldimethylamine and triethylamine, and quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium.

また、エチレングリコールに混合する副溶媒としては、水の他、プロピレングリコール等のグリコール類、γ−ブチロラクトン、N−メチル−2−ピロリドン等のラクトン類、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミド等のアミド類、エチレンカーボネート、プロピレンカーボネート等の炭酸類、アセトニトリル等のニトリル類、ジメチルスルホキシド等のオキシド類、エーテル類、ケトン類、エステル類等を例示することができる。   As a co-solvent mixed with ethylene glycol, water, glycols such as propylene glycol, lactones such as γ-butyrolactone and N-methyl-2-pyrrolidone, N-methylformamide, N, N-dimethylformamide Amides such as N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, hexamethylphosphoric amide, ethylene carbonate, Examples thereof include carbonates such as propylene carbonate, nitriles such as acetonitrile, oxides such as dimethyl sulfoxide, ethers, ketones, esters and the like.

クロトン酸−アリルアルコール共重合体は、クロトン酸とアリルアルコールを付加重合して得られるポリマーであり、クロトン酸とアリルアルコールの共重合体の構造を併せ持つことにより、エチレングリコールを主成分とする溶媒に容易に溶解し、電解液の比抵抗上昇を抑えながら耐電圧の向上を図ることができる。
また、上記重合体を用いた電解液は、高温下でも分解しにくく、アリルアルコールの水酸基が電極箔に対する保護作用を示すため、製品での長期信頼性が改善される。
A crotonic acid-allyl alcohol copolymer is a polymer obtained by addition polymerization of crotonic acid and allyl alcohol, and has a structure of a copolymer of crotonic acid and allyl alcohol, thereby having a solvent mainly composed of ethylene glycol. Therefore, the withstand voltage can be improved while suppressing an increase in the specific resistance of the electrolytic solution.
In addition, the electrolytic solution using the polymer is not easily decomposed even at a high temperature, and the hydroxyl group of allyl alcohol exhibits a protective action against the electrode foil, so that the long-term reliability of the product is improved.

エチレングリコールを主成分とする溶媒に、有機カルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩とを溶解した電解液に、クロトン酸−アリルアルコール共重合体(平均分子量:2,000〜20,000)を1.0〜20.0wt%溶解する。   In an electrolyte solution in which an organic carboxylic acid or a salt thereof and boric acid or an ammonium salt thereof are dissolved in a solvent mainly composed of ethylene glycol, a crotonic acid-allyl alcohol copolymer (average molecular weight: 2,000 to 20, 000) is dissolved in an amount of 1.0 to 20.0 wt%.

以下、本発明を実施例に基づき具体的に説明する。
表1、2の組成で電解液を調合し、30℃における電解液の比抵抗および85℃における電解液の火花発生電圧(耐電圧)を測定し、表1、2の結果を得た。
Hereinafter, the present invention will be specifically described based on examples.
The electrolyte solutions were prepared with the compositions shown in Tables 1 and 2, and the specific resistance of the electrolyte solution at 30 ° C. and the spark generation voltage (withstand voltage) of the electrolyte solution at 85 ° C. were measured.

Figure 2005116905
Figure 2005116905

Figure 2005116905
Figure 2005116905

表1より明らかなように、クロトン酸−アリルアルコール共重合体を10.0wt%溶解した実施例4は、マンニトールを同量溶解した従来例2よりも比抵抗が20Ω・cm小さく、耐電圧が55V高くなっていることが分かる。
また、クロトン酸−アリルアルコール共重合体を1.0wt%溶解した実施例2は、ポリビニルアルコールを同量溶解した従来例5よりも比抵抗が10Ω・cm小さく、耐電圧が10V高くなっていることが分かる。
また、ポリエチレングリコールを10.0wt%、ポリビニルアルコールを5.0wt%とすると、完全に溶解しなかった。
As is clear from Table 1, Example 4 in which 10.0 wt% of crotonic acid-allyl alcohol copolymer was dissolved had a specific resistance of 20 Ω · cm smaller than that of Conventional Example 2 in which the same amount of mannitol was dissolved, and the withstand voltage was low. It can be seen that it is 55V higher.
Further, in Example 2 in which 1.0 wt% of crotonic acid-allyl alcohol copolymer was dissolved, the specific resistance was 10 Ω · cm smaller and the withstand voltage was higher by 10 V than in Conventional Example 5 in which the same amount of polyvinyl alcohol was dissolved. I understand that.
Further, when polyethylene glycol was 10.0 wt% and polyvinyl alcohol was 5.0 wt%, it was not completely dissolved.

ここで、クロトン酸−アリルアルコール共重合体の溶解量は、1.0〜20.0wt%の範囲が好ましい。1.0wt%未満では耐電圧上昇の効果が小さく、20.0wt%を超えると耐電圧は向上するが、比抵抗が高くなるので、低比抵抗用途に不向きとなる。   Here, the dissolution amount of the crotonic acid-allyl alcohol copolymer is preferably in the range of 1.0 to 20.0 wt%. If it is less than 1.0 wt%, the effect of increasing the withstand voltage is small, and if it exceeds 20.0 wt%, the withstand voltage is improved.

次に、実施例4の電解液組成で、クロトン酸−アリルアルコール共重合体の平均分子量と電解液の耐電圧との関係を検討し、図1の結果を得た。
図1より明らかなように、平均分子量が1,000未満では耐電圧上昇の効果が小さいが、2,000以上で耐電圧向上の効果が得られることが分かる。
ただし、平均分子量が20,000を超えると、クロトン酸−アリルアルコール共重合体の粘度が高くなるため、電解液の調合に時間がかかるようになる。
よって、クロトン酸−アリルアルコール共重合体の平均分子量は、2,000〜20,000の範囲が好ましい。
Next, with the electrolytic solution composition of Example 4, the relationship between the average molecular weight of the crotonic acid-allyl alcohol copolymer and the withstand voltage of the electrolytic solution was examined, and the result of FIG. 1 was obtained.
As is apparent from FIG. 1, when the average molecular weight is less than 1,000, the effect of increasing the withstand voltage is small, but when the average molecular weight is 2,000 or more, the effect of improving the withstand voltage is obtained.
However, if the average molecular weight exceeds 20,000, the viscosity of the crotonic acid-allyl alcohol copolymer becomes high, so that it takes time to prepare the electrolytic solution.
Therefore, the average molecular weight of the crotonic acid-allyl alcohol copolymer is preferably in the range of 2,000 to 20,000.

また、表2では、クロトン酸−アリルアルコール共重合体の平均分子量を変えたもの、有機カルボン酸またはその塩の種類を変えたものを、実施例7〜14として従来例と比較した。実施例7〜14も比抵抗の上昇を抑制しながら耐電圧が向上していることが分かる。   Moreover, in Table 2, what changed the average molecular weight of the crotonic acid-allyl alcohol copolymer and what changed the kind of organic carboxylic acid or its salt were compared with the prior art example as Examples 7-14. It turns out that the withstand voltage is improving also in Examples 7-14, suppressing the raise of a specific resistance.

上記の結果を踏まえ、陽極箔および陰極箔にタブ端子を固着し、セパレータを介して巻回したコンデンサ素子に、表1の電解液を各々含浸した後、アルミニウム製外装ケース内に封口ゴムと共に挿入し、直径35.0mm、長さ35.0mm、定格電圧400V、静電容量390μFの電解コンデンサを各10個作製し、エージングを行った。
これらの製品を 105℃の恒温槽中で定格電圧を2000時間印加し、静電容量、tanδ、漏れ電流を測定し表3の結果を得た。
なお、上記の電解液において、クロトン酸−アリルアルコール共重合体、ポリエチレングリコール、およびポリビニルアルコールの平均分子量は、各々3,000として比較した。
Based on the above results, a tab terminal was fixed to the anode foil and the cathode foil, and each capacitor element wound through a separator was impregnated with the electrolytic solution shown in Table 1, and then inserted into the aluminum outer case together with the sealing rubber. Then, 10 electrolytic capacitors each having a diameter of 35.0 mm, a length of 35.0 mm, a rated voltage of 400 V, and a capacitance of 390 μF were produced and aged.
The rated voltage was applied to these products in a constant temperature bath at 105 ° C. for 2000 hours, and the capacitance, tan δ, and leakage current were measured, and the results shown in Table 3 were obtained.
In the above electrolytic solutions, the average molecular weights of crotonic acid-allyl alcohol copolymer, polyethylene glycol, and polyvinyl alcohol were each compared as 3,000.

Figure 2005116905
Figure 2005116905

表3より明らかなように、本発明のクロトン酸−アリルアルコール共重合体を溶解した実施例1〜6は、製品の容量減少、tanδ上昇が抑えられ、安定した特性を示している。
しかし、クロトン酸−アリルアルコール共重合体を溶解しなかった従来例1、2、または、これの代わりにポリエチレングリコール、ポリビニルアルコールを溶解した従来例3、5は、製品のtanδ上昇および容量減少が大きかった。
As is apparent from Table 3, Examples 1 to 6 in which the crotonic acid-allyl alcohol copolymer of the present invention was dissolved exhibited a stable characteristic in which a decrease in the volume of the product and an increase in tan δ were suppressed.
However, in the conventional examples 1 and 2 in which the crotonic acid-allyl alcohol copolymer was not dissolved, or in the conventional examples 3 and 5 in which polyethylene glycol and polyvinyl alcohol were dissolved instead, the tan δ increase and the volume decrease of the product It was big.

なお、本発明による電解液に、火花発生電圧安定化のために、マンニトールの他、ソルビトール、キシリトール、ズルシトール等の多価アルコールや、リン酸エステルまたは亜リン酸の塩を溶解してもよい。   In addition, in order to stabilize the spark generation voltage, in addition to mannitol, polyhydric alcohols such as sorbitol, xylitol, and dulcitol, phosphate esters, or salts of phosphorous acid may be dissolved in the electrolytic solution according to the present invention.

また、本発明による電解液が含有する水分量は、低いほどよいが、8.0wt%以下が好ましい。
さらに、電解液のpHは、必要に応じアンモニア水等のpH調整剤でpH4〜8、好ましくはpH5〜7に調整する。
Further, the lower the water content of the electrolytic solution according to the present invention, the better, but 8.0 wt% or less is preferable.
Furthermore, the pH of the electrolytic solution is adjusted to pH 4 to 8, preferably pH 5 to 7, with a pH adjusting agent such as aqueous ammonia as required.

クロトン酸−アリルアルコール共重合体の平均分子量と電解液の耐電圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the average molecular weight of a crotonic acid-allyl alcohol copolymer, and the withstand voltage of electrolyte solution.

Claims (3)

エチレングリコールを主成分とする溶媒に、有機カルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩と、以下の化学式で示されるクロトン酸−アリルアルコール共重合体とを溶解したことを特徴とする電解コンデンサの駆動用電解液。
Figure 2005116905
Electrolysis characterized by dissolving an organic carboxylic acid or a salt thereof, boric acid or an ammonium salt thereof, and a crotonic acid-allyl alcohol copolymer represented by the following chemical formula in a solvent mainly composed of ethylene glycol. Electrolytic solution for driving capacitors.
Figure 2005116905
請求項1記載のクロトン酸−アリルアルコール共重合体の平均分子量が、2,000〜20,000であることを特徴とする電解コンデンサの駆動用電解液。   2. An electrolytic solution for driving an electrolytic capacitor, wherein the average molecular weight of the crotonic acid-allyl alcohol copolymer according to claim 1 is 2,000 to 20,000. 請求項1記載のクロトン酸−アリルアルコール共重合体の溶解量が、1.0〜20.0wt%であることを特徴とする電解コンデンサの駆動用電解液。   The electrolytic solution for driving an electrolytic capacitor, wherein the amount of the crotonic acid-allyl alcohol copolymer according to claim 1 is 1.0 to 20.0 wt%.
JP2003351451A 2003-10-10 2003-10-10 Electrolytic solution for electrolytic capacitor drive Expired - Fee Related JP4366170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351451A JP4366170B2 (en) 2003-10-10 2003-10-10 Electrolytic solution for electrolytic capacitor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351451A JP4366170B2 (en) 2003-10-10 2003-10-10 Electrolytic solution for electrolytic capacitor drive

Publications (2)

Publication Number Publication Date
JP2005116905A true JP2005116905A (en) 2005-04-28
JP4366170B2 JP4366170B2 (en) 2009-11-18

Family

ID=34542687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351451A Expired - Fee Related JP4366170B2 (en) 2003-10-10 2003-10-10 Electrolytic solution for electrolytic capacitor drive

Country Status (1)

Country Link
JP (1) JP4366170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088362A (en) * 2005-09-26 2007-04-05 Nichicon Corp Electrolyte for drive of electrolytic capacitor
WO2021149751A1 (en) * 2020-01-24 2021-07-29 パナソニックIpマネジメント株式会社 Electrolytic capacitor, method for manufacturing same, and electrolytic capacitor module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188913A (en) * 1975-02-03 1976-08-04 HORIOKISHIKARUHONSANNO SEIZOHO
JPS6286098A (en) * 1985-10-11 1987-04-20 株式会社日本触媒 Detergent builder and detergent composition containing the same
JPH0745482A (en) * 1993-07-29 1995-02-14 Sanyo Chem Ind Ltd Electrolyte for driving electrolytic capacitor
JP2002289475A (en) * 2001-03-28 2002-10-04 Nichicon Corp Electrolyte for driving electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188913A (en) * 1975-02-03 1976-08-04 HORIOKISHIKARUHONSANNO SEIZOHO
JPS6286098A (en) * 1985-10-11 1987-04-20 株式会社日本触媒 Detergent builder and detergent composition containing the same
JPH0745482A (en) * 1993-07-29 1995-02-14 Sanyo Chem Ind Ltd Electrolyte for driving electrolytic capacitor
JP2002289475A (en) * 2001-03-28 2002-10-04 Nichicon Corp Electrolyte for driving electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088362A (en) * 2005-09-26 2007-04-05 Nichicon Corp Electrolyte for drive of electrolytic capacitor
JP4637701B2 (en) * 2005-09-26 2011-02-23 ニチコン株式会社 Electrolytic solution for electrolytic capacitor drive
WO2021149751A1 (en) * 2020-01-24 2021-07-29 パナソニックIpマネジメント株式会社 Electrolytic capacitor, method for manufacturing same, and electrolytic capacitor module

Also Published As

Publication number Publication date
JP4366170B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4366170B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4063650B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4354244B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2009182275A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
JP4020776B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2007184303A (en) Electrolytic capacitor, and electrolyte for driving same
JP4540244B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4699652B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4589148B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4122178B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4271528B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4441400B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3976587B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2003022939A (en) Electrolyte for driving electrolytic capacitor
JP3963775B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4150248B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4441393B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP4612241B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4699650B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4085009B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4641455B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4576070B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4699649B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4637701B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4090907B2 (en) Electrolytic solution for driving electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4366170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees