JP2005115590A - Collision prevention control system - Google Patents

Collision prevention control system Download PDF

Info

Publication number
JP2005115590A
JP2005115590A JP2003347825A JP2003347825A JP2005115590A JP 2005115590 A JP2005115590 A JP 2005115590A JP 2003347825 A JP2003347825 A JP 2003347825A JP 2003347825 A JP2003347825 A JP 2003347825A JP 2005115590 A JP2005115590 A JP 2005115590A
Authority
JP
Japan
Prior art keywords
signal
area
communication line
receiver
identification signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003347825A
Other languages
Japanese (ja)
Other versions
JP4241306B2 (en
Inventor
Hisashi Onishi
寿 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asyst Shinko Inc
Original Assignee
Asyst Shinko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asyst Shinko Inc filed Critical Asyst Shinko Inc
Priority to JP2003347825A priority Critical patent/JP4241306B2/en
Publication of JP2005115590A publication Critical patent/JP2005115590A/en
Application granted granted Critical
Publication of JP4241306B2 publication Critical patent/JP4241306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collision prevention control system capable of avoiding a collision of carrier trucks when a communication line built in a junction area is single and also when defect occurs in the communication line. <P>SOLUTION: A carrier truck 1a entering the junction area 10 receives a signal of the communication line 7 with a receiver 3a, analyzes it, and it is decided by a control part 8a if a signal waveform transmitted by another carrier truck in another junction area has been received. When it is decided that the signal waveform transmitted by the carrier 1b has been received, running is stopped. When it is decided that the signal waveform indicating that the carrier truck 1b exits the junction area 10 is not received a signal meaning the junction area of its own car is transmitted by a transmitter 2a, a signal on the communication line 7 is received by the receiver 3a and analyzed, and it is decided if the signal transmitted by its own car can be detected by the control part 8a. When it is detected, running in the junction area 10 is continued, but when it cannot be detected, it is determined that an abnormality has occurred to the communication line 7 to stop all the carrier trucks. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、軌道上を走行する複数の搬送台車の衝突を防止するために搬送台車の走行を制御する衝突防止制御システムに関するものである。   The present invention relates to a collision prevention control system for controlling traveling of a transport carriage to prevent a collision of a plurality of transport carriages traveling on a track.

半導体製造、液晶製造、FAなどの製造プロセスにおいて、製造過程の品物をプロセスに従い装置から装置に搬送する搬送手段としては、天井より懸垂された軌道上を走行してFOUP(Front Opening Unified Pod)を搬送するOHT(Over head Hoist Transport)、OHS(Over Head Shuttle)、床上を自立走行する搬送台車を用いた搬送システムなど、軌道上を走行する搬送台車による無人搬送システムが主流となっている。   In manufacturing processes such as semiconductor manufacturing, liquid crystal manufacturing, and FA, the FOUP (Front Opening Unified Pod) runs on a track suspended from the ceiling as a transport means for transporting products in the manufacturing process from equipment to equipment according to the process. Mainly used are unmanned transport systems using transport carts that run on tracks, such as OHT (Over Head Hoist Transport), OHS (Over Head Shuttle) transport, and transport systems that use transport carts that run on the floor independently.

これらの無人搬送システムにおいて、搬送台車の走行する軌道は、製造装置の配置と整合を採って敷設される。また、軌道は、閉ループにて形成され、必要に応じて、分岐・合流が設けられる。そして、軌道を走行する台車の走行方向は、通常、一方通行である。即ち、軌道の合流点においては、複数のルートから走行して来た搬送台車が1つのルートに合流することになるので、複数のルートから搬送台車が同時に合流点に到達すると、当然衝突がおこる。従って、搬送台車を軌道上で走行させる無人搬送システムでは、従来から、合流点を含む合流領域に於ける衝突防止技術が開発されている。   In these unmanned transport systems, the track on which the transport carriage travels is laid in alignment with the arrangement of the manufacturing apparatus. The track is formed in a closed loop, and branching / merging is provided as necessary. The traveling direction of the carriage traveling on the track is usually one-way. In other words, at the junction of the tracks, the transport carts that have traveled from a plurality of routes merge into one route. Therefore, if the transport cart reaches the junction at the same time from a plurality of routes, a collision naturally occurs. . Therefore, conventionally, in an unmanned conveyance system in which a conveyance carriage travels on a track, a collision prevention technique in a merging region including a merging point has been developed.

従来の衝突防止技術として、例えば、軌道に1本の導電線(通信線)を敷設し、無人搬送車(搬送台車)に起電力を誘起させる誘導信号発信器と誘導信号受信器を搭載し、複数の無人搬送車の合流領域での衝突を防止する技術が特許文献1に記載されている。特許文献1の技術では、合流領域に到達した無人搬送車は、誘導信号受信器により信号を受信しなかった場合に前進して合流領域を走行する間に誘導信号発信器により信号を発信するとともに、誘導信号受信器により信号を受信した場合に合流領域への走行を停止することにより、複数の無人搬送車の合流領域での衝突を防止している。   As a conventional collision prevention technology, for example, a conductive wire (communication line) is laid on a track, and an induction signal transmitter and an induction signal receiver for inducing an electromotive force in an automatic guided vehicle (conveyance carriage) are mounted. Patent Document 1 describes a technique for preventing a collision in a merging region of a plurality of automatic guided vehicles. In the technique of Patent Document 1, the automatic guided vehicle that has reached the merging area moves forward when the signal is not received by the guidance signal receiver and transmits a signal by the guidance signal transmitter while traveling in the merging area. When the signal is received by the induction signal receiver, the traveling to the merging area is stopped to prevent the collision in the merging area of the plurality of automatic guided vehicles.

また、軌道の両側に2本の導電線(通信線)を敷設し、無人車(搬送台車)の両側に送受信器を搭載し、複数の無人車が合流領域内へ同時に進入した場合にも,衝突を防止するべく適切な制御を行う技術が特許文献2に記載されている。特許文献2の技術では、2本の導電線のそれぞれにおいて、一方の流入路の無人車に搭載された送信手段と他方の流入路の無人車に搭載された受信手段との間で信号を送受信できるよう構成することにより、自車の検知信号の送信と他車の検知信号の受信とを並行して行うようにし、合流領域に到達した無人車は、受信手段により信号を受信しなかった場合に前進して合流領域を走行する間に送信手段により信号を発信するとともに、受信手段により信号を受信した場合に合流領域への走行を停止することにより、複数の無人車の合流領域での衝突を防止している。また、同時に合流領域に複数の無人車が到達した場合は、あらかじめ流入路に優先順位を設けておき、優先軌道上の無人車を優先させて進入させるように構成されている。   In addition, when two conductive wires (communication lines) are laid on both sides of the track and transmitters / receivers are mounted on both sides of the unmanned vehicle (conveyance carriage), multiple unmanned vehicles enter the merge area at the same time. Patent Document 2 discloses a technique for performing appropriate control to prevent a collision. In the technique of Patent Document 2, signals are transmitted and received between the transmission means mounted on the unmanned vehicle on one inflow path and the reception means mounted on the unmanned vehicle on the other inflow path in each of the two conductive wires. By configuring so that transmission of the detection signal of the own vehicle and reception of the detection signal of the other vehicle are performed in parallel, and the unmanned vehicle that has reached the merge area does not receive the signal by the receiving means While traveling forward and traveling in the merging area, a signal is transmitted by the transmission means, and when the signal is received by the receiving means, the traveling to the merging area is stopped, thereby causing a collision in the merging area of a plurality of unmanned vehicles. Is preventing. In addition, when a plurality of unmanned vehicles arrive at the merge area at the same time, priority is given to the inflow path in advance, and the unmanned vehicles on the priority track are prioritized to enter.

実開平2−95404号公報Japanese Utility Model Publication No. 2-95404 特開平10−301626号公報JP-A-10-301626

しかしながら、従来の技術では、搬送台車が発信する信号は全て同じものであり、通信線が単線の場合、受信した信号が、自車が発信する信号であるか他車が発信する信号であるかを判断することができない。従って、特許文献1では、自車が信号を発信している場合には信号の受信をしないようにしている。かかる場合、合流領域に同時に搬送台車が進入した場合は、信号の受信ができず、衝突してしまうという問題がある。
一方、特許文献2では、通信線を単線とせず、軌道に対して通信線を右側と左側の2本設け、それぞれの搬送台車が受信用の通信線と送信用の通信線とを使い分けることができるように構成している。しかし、このような構成の場合、合流領域が複数の軌道により形成されていたり、軌道の追加工事が施されたりすると、通信線の敷設が煩雑となるという問題がある。
However, in the conventional technology, the signals transmitted by the transport carriage are all the same, and if the communication line is a single line, whether the received signal is a signal transmitted by the own vehicle or a signal transmitted by another vehicle Cannot be judged. Therefore, in patent document 1, when the own vehicle is transmitting the signal, it is made not to receive a signal. In such a case, there is a problem that when the transport carriage enters the junction area at the same time, the signal cannot be received and collides.
On the other hand, in Patent Document 2, the communication line is not a single line, but two communication lines on the right and left sides are provided for the track, and each carrier vehicle uses a communication line for reception and a communication line for transmission separately. It is configured to be able to. However, in the case of such a configuration, there is a problem in that the laying of the communication line becomes complicated if the merge area is formed by a plurality of tracks or additional work for the tracks is performed.

更に、無人搬送システムの軌道は、通常、様々な理由で追加工事を施されることが多い。そして、このような追加工事の際に、不注意により、軌道上の合流領域に敷設された通信線に損傷を与え、場合によっては通信線を断線させてしまうトラブルが少なからず発生する。かかる場合、特許文献1または特許文献2の技術では、断線など導電線に不具合が発生していた場合には、先に合流領域に進入した搬送台車から発信された信号を後から合流領域に進入した搬送台車が受信することができず、搬送台車同士が衝突してしまう可能性がある。   Furthermore, the track of the automated transport system is often subjected to additional work for various reasons. In addition, in such additional construction, there are many troubles that inadvertently damage the communication line laid in the junction area on the track, and possibly cause the communication line to be disconnected. In such a case, in the technique of Patent Document 1 or Patent Document 2, if a problem occurs in the conductive wire such as disconnection, a signal transmitted from the transport carriage that has entered the junction area first enters the junction area later. There is a possibility that the transported carriages cannot receive and the transported carriages collide with each other.

本発明は、上記問題点に鑑みてなされたものであり、合流領域に敷設された通信線が単線の場合においても、更にその通信線に不具合が生じた場合においても、搬送台車同士の衝突を回避することができる衝突防止制御システムを提供することを目的とする。   The present invention has been made in view of the above problems, and even when the communication line laid in the merge area is a single line, even when a failure occurs in the communication line, the collision between the carriages can be detected. An object is to provide a collision prevention control system that can be avoided.

課題を解決するための手段及び効果Means and effects for solving the problems

上記課題を解決するために、第一の発明に係る衝突防止制御システムは、搬送台車が走行する軌道内の複数の流入ルートが合流する合流点を含む所定の合流領域に敷設された通信手段と、前記搬送台車に設置され、前記合流領域内において前記通信手段に対して流入ルートを示す固有の識別信号を送信する送信手段と、前記搬送台車に設置され、前記合流領域内において前記通信手段から前記識別信号を受信する受信手段と、前記搬送台車に設置され、前記受信手段で受信した前記識別信号を分析して走行を制御する制御手段と、を備える衝突防止制御システムであって、前記通信手段は、前記合流領域にループ状に敷設された単線の通信手段であり、前記制御手段は、自己の流入ルートと異なる流入ルートを示す前記識別信号を前記受信手段で検知している間は走行を停止することを特徴とする。   In order to solve the above-mentioned problem, a collision prevention control system according to a first aspect of the present invention is a communication means laid in a predetermined merging area including a merging point where a plurality of inflow routes in a track on which a transport carriage travels are merged. A transmission means that is installed in the transport carriage and transmits a unique identification signal indicating an inflow route to the communication means in the junction area; and is installed in the transport carriage from the communication means in the junction area. A collision prevention control system comprising: a receiving unit that receives the identification signal; and a control unit that is installed in the transport cart and analyzes the identification signal received by the receiving unit to control traveling. Means is a single-wire communication means laid in a loop in the merge area, and the control means receives the identification signal indicating an inflow route different from its own inflow route. In the while sensing it is characterized by stopping the driving.

これにより、ループ状に敷設された単線の通信手段上で、自己の流入ルートと異なる流入ルートを示す識別信号を受信手段で検知することにより、合流領域に進入した搬送台車は他の流入ルートから進入した搬送台車が合流領域に既に存在することを確認することになる。そして、他の流入ルートから進入した先行する搬送台車が存在する場合は合流領域を通過するのを待ち、他の流入ルートから進入した先行する搬送台車が存在しない場合は自己の搭載する発信手段で通信手段に自己の流入ルートを示す識別信号を発信しながら走行することにより、合流領域における搬送台車同士の衝突を回避することができる。尚、走行する流入ルートが同一の流入ルートである場合は、複数の搬送台車の走行が可能である。また、断線など通信手段に異常がある場合は、通信手段が合流領域にループ状に敷設された単線であることから、自己の送信手段で送信した識別信号が自己の受信手段で受信できなくなり、通信手段の異常を容易に認識することができる。そして、異常が検知された時点で走行する全ての搬送台車を即時停止させることで衝突を回避することが可能となる。   Thereby, on the single-line communication means laid in a loop shape, the receiving carriage detects an identification signal indicating an inflow route different from its own inflow route. It will be confirmed that the transport cart that has entered already exists in the merge area. And if there is a preceding transport cart that has entered from another inflow route, it waits to pass through the merging area, and if there is no preceding transport cart that has entered from another inflow route, By traveling while transmitting an identification signal indicating its own inflow route to the communication means, it is possible to avoid a collision between transport carts in the merging area. In addition, when the inflow route which drive | works is the same inflow route, driving | running | working of a some conveyance trolley is possible. Also, if there is an abnormality in the communication means such as disconnection, since the communication means is a single line laid in a loop in the merge area, the identification signal transmitted by its own transmission means can not be received by its own reception means, An abnormality in the communication means can be easily recognized. And it becomes possible to avoid a collision by stopping immediately all the conveyance trolleys which drive | work at the time of abnormality being detected.

また、前記識別信号として、流入ルート毎に異なる、交流波形信号、パルス周波数波形信号、複数ビットからなるデジタル通信信号のいずれか一つまたはこれら2つ以上の組み合わせを用いることが好ましい。   Further, as the identification signal, it is preferable to use any one of an AC waveform signal, a pulse frequency waveform signal, a digital communication signal composed of a plurality of bits, or a combination of two or more thereof, which is different for each inflow route.

これにより、流入ルート毎に異なる、交流波形信号(流入ルート毎に周波数と電圧のいずれか一方または双方が異なる信号)、パルス周波数波形信号(流入ルート毎に周波数が異なる信号)、複数ビットからなるデジタル通信信号(流入ルート毎に異なる複数ビットからなるデジタル通信方式の信号)のいずれか一つの信号またはこれら2つ以上を任意に組み合わせた信号を識別信号として用いることから、双方向通信においても混線することなく、自己の流入ルートと異なる流入ルートを判別することができる。   As a result, AC waveform signals (signals having different frequencies and / or voltages for each inflow route), pulse frequency waveform signals (signals having different frequencies for each inflow route), and a plurality of bits are different for each inflow route. Since any one signal of digital communication signals (digital communication system signals composed of a plurality of bits different for each inflow route) or a signal obtained by arbitrarily combining two or more of these signals is used as an identification signal, crosstalk also occurs in bidirectional communication. It is possible to discriminate an inflow route that is different from the self inflow route.

また、制御手段は、更に、自己が送信した前記識別信号を自己の前記受信手段で検知しなかった場合は前記通信手段に異常があると判断し、自己の走行を停止すると共に、前記軌道を走行する全ての搬送台車の走行を停止することが好ましい。   In addition, the control means further determines that the communication means is abnormal when the identification signal transmitted by itself is not detected by the reception means of itself, stops its own traveling, and It is preferable to stop the travel of all the transport carts that travel.

これにより、断線など通信手段に異常がある場合は、通信手段が合流領域にループ状に敷設された単線であることから、自己の送信手段で送信した識別信号が自己の受信手段で受信できなくなり、通信手段の異常を容易に認識することができる。そして、異常が検知された時点で走行する全ての搬送台車を即時停止させることで衝突を回避することが可能となる。   As a result, when there is an abnormality in the communication means such as disconnection, the communication means is a single line laid in a loop in the merge area, so the identification signal transmitted by its own transmission means cannot be received by its own reception means. Therefore, it is possible to easily recognize the abnormality of the communication means. And it becomes possible to avoid a collision by stopping immediately all the conveyance trolleys which drive | work at the time of abnormality being detected.

また、前記通信手段に、当該通信手段のインダクタンスをほぼ補償する程度の容量を有するコンデンサを直列に接続することが好ましい。   Further, it is preferable that a capacitor having a capacity that substantially compensates the inductance of the communication means is connected in series to the communication means.

これにより、単線の通信手段の長さの増大に伴い増加するインピーダンスの増加を低減し、識別信号の信号レベルの低下を防ぐことができる。   Thereby, an increase in impedance that increases with an increase in the length of the single-wire communication means can be reduced, and a decrease in the signal level of the identification signal can be prevented.

また、前記搬送台車に、前記送信手段と前記受信手段とを電気的に短絡する結合線を敷設するとともに、当該短絡線にコンデンサを直列に接続することが好ましい。   In addition, it is preferable that a tie wire for electrically short-circuiting the transmission unit and the reception unit is laid on the transport carriage, and a capacitor is connected in series to the short-circuit line.

これにより、送信手段と受信手段を搬送台車上に近接して載置することにより発生する相互の空中を伝播する電磁界誘導干渉によるノイズを解消することができる。   Thereby, it is possible to eliminate noise caused by electromagnetic field induced interference propagating in the air generated by placing the transmitting unit and the receiving unit close to each other on the carriage.

以下、図面を参照しつつ、本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明の実施形態を、図1〜図8に基づいて説明する。
尚、本実施形態においては、半導体製品製造施設において、半導体基板や液晶表示装置用ガラス基板、フォトマスク用ガラス基板、光ディスク用基板等の処理対象物を搬送する無人搬送システムに適用した場合について説明する。
An embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, a case where the present invention is applied to an unmanned conveyance system that conveys a processing object such as a semiconductor substrate, a glass substrate for a liquid crystal display device, a glass substrate for a photomask, and an optical disk substrate in a semiconductor product manufacturing facility will be described. To do.

まず、図1に基づいて、本実施形態に係る衝突防止制御システムについて説明する。図1は、衝突防止制御システムの構成を示す図であり、OHT搬送システムの軌道における合流領域全体の上面図である。   First, a collision prevention control system according to this embodiment will be described with reference to FIG. FIG. 1 is a diagram showing the configuration of the collision prevention control system, and is a top view of the entire merging region in the track of the OHT conveyance system.

図1に示すように、後述するOHT搬送システムの軌道には、軌道Aと軌道Cを含む合流域(流入ルート)Pa、軌道Bと軌道Cを含む合流域(流入ルート)Pbとが形成されており、PaとPbを合せた領域が、軌道Aと軌道Bが軌道Cに合流する合流点を含む合流領域を構成している。また、本実施の形態では、軌道A、軌道Bを、それぞれ、OHT搬送台車(以下、「搬送台車」と略する。)1a、1bが走行するケースを想定する。合流域Paには、送信側通信線5aと受信側通信線6aが敷設され、合流域Pbには、送信側通信線5bと受信側通信線6bが敷設される。送信側通信線5a、5b、受信側通信線6a、6bは、1本のループ状導電線により、通信線7(通信手段)を構成している。尚、送信側通信線5a、5bは、合流領域内で信号を送信し続けるため、合流領域内の各合流域の始めから終わりまで敷設され、受信側通信線6a、6bは、信号の受信にのみ用いられるため、合流領域内の各合流域に対して短めに敷設される。また、軌道A、B上には、それぞれ、誘導線制御有効マーク12a、12b、送信点マーク14a、14b、停止点マーク13a、13bが設けられており、軌道C上には、誘導線制御無効マーク15が設けられる。   As shown in FIG. 1, a confluence area (inflow route) Pa including the trajectory A and the trajectory C and a confluence area (inflow route) Pb including the trajectory B and the trajectory C are formed in the trajectory of the OHT conveyance system described later. The region where Pa and Pb are combined constitutes a merge region including a merge point where the track A and the track B merge with the track C. In the present embodiment, it is assumed that the track A and the track B travel on OHT transport carts (hereinafter abbreviated as “transport carts”) 1a and 1b, respectively. A transmission side communication line 5a and a reception side communication line 6a are laid in the merge area Pa, and a transmission side communication line 5b and a reception side communication line 6b are laid in the merge area Pb. The transmission side communication lines 5a and 5b and the reception side communication lines 6a and 6b constitute a communication line 7 (communication means) by a single loop-shaped conductive line. The transmission side communication lines 5a and 5b are laid from the beginning to the end of each merge area in the merge area in order to continue transmitting signals in the merge area, and the reception side communication lines 6a and 6b are used for signal reception. Since it is only used, it is laid short with respect to each merge area in a merge area. Also, guide line control valid marks 12a and 12b, transmission point marks 14a and 14b, and stop point marks 13a and 13b are provided on the tracks A and B, respectively, and the guide line control is disabled on the track C. A mark 15 is provided.

また、図1に示すように、搬送台車1aには、右側誘導信号送受信器2a(受信手段・送信手段)と左側誘導信号送受信器3a(受信手段・送信手段)が搭載され、合流域Paでは、右側誘導信号送受信器2aが送信側通信線5aと電磁結合され、左側誘導信号送受信器3aが受信側通信線6aと電磁結合される。また、搬送台車1bには、右側誘導信号送受信器2bと左側誘導信号送受信器3bが搭載され、合流域Pbでは、左側誘導信号送受信器3bが送信側通信線5bと電磁結合され、右側誘導信号送受信器2bが受信側通信線6bと電磁結合される。尚、搬送台車1aの右側誘導信号送受信器2aと左側誘導信号送受信器3a、及び、搬送台車1bの右側誘導信号送受信器2と左側誘導信号送受信器3bは、それぞれ、進行する合流域に合わせて送信器(送信手段)と受信器(受信手段)との機能を切り替えるように構成される。図1においては、搬送台車1aは、右側誘導信号送受信器2aが送信器、左側誘導信号送受信器3aが受信器であり、搬送台車1bは、右側誘導信号送受信器2bが受信器、左側誘導信号送受信器3bが送信器である。
そして、搬送台車1a、1bには、それぞれ、マーク読取り器4a、4bが搭載され、軌道A、B上の誘導線制御有効マーク12a、12b、送信点マーク14a、14b、停止点マーク13a、13b、軌道C上の誘導線制御無効マーク15を読み取るように構成される。更に、搬送台車1a、1bには、それぞれ、制御部8a、8b(制御手段)が設けられ、後述する衝突防止制御システム11の処理(図5参照)に基づいて、右側誘導信号送受信器2a、2b又は左側誘導信号送受信器3a、3bで信号を発信又は受信・分析して運行を制御したり、マーク読取り器4a、4bで読み取ったマークにより運行を制御したりする他、後述するFOUPの移載作業についての制御も行う。
In addition, as shown in FIG. 1, the transport carriage 1a is equipped with a right induction signal transmitter / receiver 2a (reception means / transmission means) and a left induction signal transmitter / receiver 3a (reception means / transmission means). The right induction signal transmitter / receiver 2a is electromagnetically coupled to the transmission side communication line 5a, and the left induction signal transmitter / receiver 3a is electromagnetically coupled to the reception side communication line 6a. The transport carriage 1b is equipped with a right induction signal transmitter / receiver 2b and a left induction signal transmitter / receiver 3b. In the junction Pb, the left induction signal transmitter / receiver 3b is electromagnetically coupled to the transmission side communication line 5b, and the right induction signal is transmitted. The transceiver 2b is electromagnetically coupled to the receiving communication line 6b. In addition, the right side induction signal transmitter / receiver 2a and the left side induction signal transmitter / receiver 3a of the transport carriage 1a, and the right side induction signal transmitter / receiver 2 and the left side induction signal transmitter / receiver 3b of the transport carriage 1b are respectively matched to the proceeding merging area. It is comprised so that the function of a transmitter (transmission means) and a receiver (reception means) may be switched. In FIG. 1, the conveyance carriage 1a has a right induction signal transceiver 2a as a transmitter and a left induction signal transceiver 3a as a receiver, and the conveyance carriage 1b has a right induction signal transceiver 2b as a receiver and a left induction signal. The transceiver 3b is a transmitter.
The carriages 1a and 1b are equipped with mark readers 4a and 4b, respectively, and guide line control effective marks 12a and 12b on the tracks A and B, transmission point marks 14a and 14b, and stop point marks 13a and 13b. The guide line control invalid mark 15 on the trajectory C is read. Furthermore, the transport carts 1a and 1b are provided with control units 8a and 8b (control means), respectively, and based on the processing (see FIG. 5) of the collision prevention control system 11 described later, 2b or left guidance signal transmitters / receivers 3a and 3b transmit / receive / analyze signals to control the operation, control the operation according to the marks read by the mark readers 4a and 4b, and a FOUP transfer described later. It also controls the loading work.

本実施形態に係る衝突防止制御システム11は、以上に説明した通信線7、搬送台車1aの右側誘導信号送受信器2aと左側誘導信号送受信器3a、搬送台車1bの右側誘導信号送受信器2bと左側誘導信号送受信器3b、搬送台車1a及び搬送台車1bに搭載された制御部8a、8bから構成される。   The collision prevention control system 11 according to the present embodiment includes the communication line 7 described above, the right induction signal transmitter / receiver 2a and the left induction signal transmitter / receiver 3a of the transport carriage 1a, and the right induction signal transmitter / receiver 2b of the transport carriage 1b and the left side. It is comprised from the control part 8a, 8b mounted in the induction | guidance | derivation signal transmitter-receiver 3b, the conveyance trolley 1a, and the conveyance trolley 1b.

ここで、図6及び図7に基づいて、通信線についてより詳細に説明する。図6は、通信線の構成を示す図である。図7は、コンデンサの容量Cをパラメータとして、通信線の受信信号レベルの実測値を測定した結果を示す図である。
図6に示すように、通信線7はループに形成され、このループの中間にコンデンサ21が直結される。一般に、通信線7は長さが長くなる程、インダクタンスが増加しインピーダンスが増えて、誘導電流が流れにくくなり、送信器(図1に示す搬送台車1a、1bの右側誘導信号送受信器2a、2b又は左側誘導信号送受信器3a、3bのいずれか一方)で送信した信号に対して、受信器(図1に示す搬送台車1a、1bの右側誘導信号送受信器2a、2b又は左側誘導信号送受信器3a、3bのいずれかもう一方)で受信できる信号レベルも低くなる。従って、インダクタンスの増加の補償には、通信線7にコンデンサ21の直結することが有効である。
通信線7のインダクタンスLを補償するコンデンサ21の容量Cは、送信器の信号周波数をfとすると、一般的に、次式で表せる。
C=1/(2πf)2/L ・・・ (式1)
以下、図7に基づいて、コンデンサ21の容量Cをパラメータとして、実際に通信線7の受信信号レベルの実測値を測定した結果について説明する。尚、コンデンサ21の容量Cの設定値と通信線7の回路条件は、以下のように設定した。
容量Cの設定値:0、0.15、0.225、0.3、0.45μF
回路条件 L(インダクタンス):13.78μH
R(電気抵抗):1.54Ω
Z(インピーダンス):8.97Ω
送信器の信号周波数:94kHz
図7に示すように、受信信号レベルは、コンデンサ21の容量Cが0.225μF近傍で最大値となることが確認される。即ち、この受信信号レベル最大の得られた条件でインピーダンスZは最小になったと言え、この値近傍の容量値のコンデンサ21を設置することが好ましい。
Here, based on FIG.6 and FIG.7, it demonstrates in detail about a communication line. FIG. 6 is a diagram illustrating a configuration of a communication line. FIG. 7 is a diagram showing a result of measuring an actual measurement value of the received signal level of the communication line using the capacitance C of the capacitor as a parameter.
As shown in FIG. 6, the communication line 7 is formed in a loop, and a capacitor 21 is directly connected in the middle of the loop. In general, as the communication line 7 becomes longer, the inductance increases and the impedance increases, so that it becomes difficult for the induced current to flow, and the transmitter (the right-side induced signal transceivers 2a and 2b of the transport carriages 1a and 1b shown in FIG. 1). Alternatively, with respect to the signal transmitted by the left induction signal transmitter / receiver 3a, 3b), the receiver (the right induction signal transmitter / receiver 2a, 2b of the transport carriage 1a, 1b shown in FIG. 1 or the left induction signal transmitter / receiver 3a). The signal level that can be received by any one of 3b is also lowered. Therefore, it is effective to directly connect the capacitor 21 to the communication line 7 in order to compensate for the increase in inductance.
The capacitance C of the capacitor 21 that compensates for the inductance L of the communication line 7 can be generally expressed by the following equation where the signal frequency of the transmitter is f.
C = 1 / (2πf) 2 / L (Formula 1)
Hereinafter, based on FIG. 7, the result of actually measuring the actual measurement value of the received signal level of the communication line 7 using the capacitance C of the capacitor 21 as a parameter will be described. The set value of the capacitance C of the capacitor 21 and the circuit conditions of the communication line 7 were set as follows.
Set value of capacitance C: 0, 0.15, 0.225, 0.3, 0.45 μF
Circuit conditions L (inductance): 13.78 μH
R (electric resistance): 1.54Ω
Z (impedance): 8.97Ω
Transmitter signal frequency: 94 kHz
As shown in FIG. 7, it is confirmed that the received signal level reaches its maximum value when the capacitance C of the capacitor 21 is in the vicinity of 0.225 μF. That is, it can be said that the impedance Z is minimized under the condition where the maximum received signal level is obtained, and it is preferable to install a capacitor 21 having a capacitance value near this value.

ここで、図9に基づいて、制御部についてより詳細に説明する。図9は、搬送台車の制御部について説明したブロック図である。
図9に示すように、制御部8には、マーク読取部80と、識別信号受信部81と、識別信号送信部82と、識別信号分析部83と、識別信号形成部84と、走行部85a及び停止部85bとからなる走行制御部・停止部85と、が含まれる。尚、図9において、制御部8は図1における制御部8a及び8bに相当し、マーク読取り器4は図1におけるマーク読取り器4a及び4bに相当し、右側誘導信号送受信器2は図1における右側誘導信号送受信器2a及び2bに相当し、左側誘導信号送受信器3は図1における左側誘導信号送受信器3a及び3bに相当する。
マーク読取り部80は、マーク読取り器4で読み取ったマークを識別信号受信部81、識別信号送信部82、識別信号形成部84、走行制御部・停止部85に出力する。
識別信号受信部81は、マーク読取り部80で読み取った誘導線制御有効マークに基づいて、通信線7上の識別信号を右側誘導信号送受信器2又は左側誘導信号送受信器3で受信し、受信した識別信号を識別信号分析部83に出力する。
識別信号送信部82は、識別信号形成部84で形成した識別信号を右側誘導信号送受信器2又は左側誘導信号送受信器3で発信し、また、マーク読取り部80で読み取った誘導線制御無効マークに基づいて発信を停止する。
識別信号分析部83は、識別信号受信部81で受信した識別信号を分析し、識別信号形成部84、走行制御部・停止部85、台車側通信部(後述する1次側電源)50を介して運行制御装置33(図3参照)に出力する。尚、識別信号分析部83において、他の合流域の識別信号の有無及び自車の合流域の識別信号の有無の分析は、受信した識別信号が自車の合流域の識別信号と一致するか否かで判断する。
識別信号形成部84は、マーク読取り部80で読み取った送信点マークと識別信号分析部83での他の合流域の識別信号無しとの分析結果に基づいて、自己の合流域を意味する識別信号を形成し、識別信号送信部82に出力する。
走行制御部・停止部85は、運行制御装置33(図3参照)から台車側通信部50を介して入力された指令に基づいて走行機構60に対する制御を行う。その他に、識別信号分析部83での他の合流域の識別信号無しとの分析結果、或いは、自車の合流域の識別信号有りとの分析結果に基づいて、走行部85aで搬送台車1の走行を引き続き行う。また、マーク読取り部80で読み取った停止点マークと識別信号分析部83での他の合流域の識別信号有りとの分析結果、或いは、自車の合流域の識別信号無しとの分析結果に基づいて、停止部85bで搬送台車の走行を停止する。尚、走行機構60は、後述するリニアモータなどから構成され、搬送台車1を走行させるための機構である。
尚、制御部8は、その他に、OHT台車位置調製機構41、懸架装置42、キャリア把持機構43に対する制御も行う。
Here, based on FIG. 9, it demonstrates in detail about a control part. FIG. 9 is a block diagram illustrating the control unit of the transport carriage.
As shown in FIG. 9, the control unit 8 includes a mark reading unit 80, an identification signal receiving unit 81, an identification signal transmitting unit 82, an identification signal analyzing unit 83, an identification signal forming unit 84, and a traveling unit 85a. And a travel control unit / stop unit 85 including a stop unit 85b. In FIG. 9, the control unit 8 corresponds to the control units 8a and 8b in FIG. 1, the mark reader 4 corresponds to the mark readers 4a and 4b in FIG. 1, and the right induction signal transceiver 2 in FIG. The left induction signal transmitter / receiver 3a corresponds to the right induction signal transmitter / receiver 2a and 2b, and the left induction signal transmitter / receiver 3 corresponds to the left induction signal transmitter / receiver 3a and 3b in FIG.
The mark reading unit 80 outputs the mark read by the mark reader 4 to the identification signal receiving unit 81, the identification signal transmitting unit 82, the identification signal forming unit 84, and the travel control unit / stop unit 85.
Based on the guide line control effective mark read by the mark reading unit 80, the identification signal receiving unit 81 receives and receives the identification signal on the communication line 7 with the right induction signal transmitter / receiver 2 or the left induction signal transmitter / receiver 3. The identification signal is output to the identification signal analyzer 83.
The identification signal transmitting unit 82 transmits the identification signal formed by the identification signal forming unit 84 using the right induction signal transmitter / receiver 2 or the left induction signal transmitter / receiver 3, and the guide line control invalid mark read by the mark reading unit 80. Stop calling based on.
The identification signal analyzing unit 83 analyzes the identification signal received by the identification signal receiving unit 81, and passes through the identification signal forming unit 84, the travel control unit / stop unit 85, and the cart side communication unit (primary power source described later) 50. To the operation control device 33 (see FIG. 3). In the identification signal analysis unit 83, the analysis of the presence / absence of the identification signal in the other merging area and the presence / absence of the identification signal in the merging area of the own vehicle is performed according to whether the received identification signal matches the identification signal of the merging area of the own vehicle. Judge by no.
Based on the analysis result of the transmission point mark read by the mark reading unit 80 and the absence of the identification signal of the other merging area in the identification signal analyzing unit 83, the identification signal forming unit 84 identifies the own merging area. And output to the identification signal transmitter 82.
The traveling control unit / stop unit 85 controls the traveling mechanism 60 based on a command input from the operation control device 33 (see FIG. 3) via the cart side communication unit 50. In addition, based on the analysis result that there is no identification signal of another merging area in the identification signal analysis unit 83 or the analysis result that there is an identification signal of the merging area of the own vehicle, the traveling unit 85 a Continue running. Further, based on the analysis result of the stop point mark read by the mark reading unit 80 and the identification signal analysis unit 83 that there is an identification signal of another merging area, or the analysis result that there is no identification signal of the merging area of the own vehicle. Then, the travel of the transport carriage is stopped at the stop portion 85b. The traveling mechanism 60 is configured by a linear motor, which will be described later, and is a mechanism for causing the transport carriage 1 to travel.
In addition, the control unit 8 also controls the OHT carriage position adjusting mechanism 41, the suspension device 42, and the carrier gripping mechanism 43.

次に、図2に基づいて、本実施形態が適用されるOHT搬送システムについて説明する。図2は、OHT搬送システムの構成を示す断面図である。   Next, an OHT transport system to which the present embodiment is applied will be described with reference to FIG. FIG. 2 is a cross-sectional view showing the configuration of the OHT conveyance system.

図2に示すように、搬送台車1(図1における搬送台車1a及び1bに相当)は、天井54に懸垂状態に取り付けられた軌道40上を走行するように構成されている。搬送台車1には、非接触給電1次側電源線(以下、「1次側電源」と略する。)50と、非接触給電2次側鉄心49(以下、「2次側鉄心」と略する。)と、が設けられており、非接触給方式で電力供給がなされる。具体的には、1次側電源50には高周波電力が印加され、2次側鉄心49に巻回されたコイルに1次側の高周波電力が誘導され非接触で電力伝達が行われるように構成されている。尚、搬送台車1に必要な電力はすべてこの非接触給電で賄われる。   As shown in FIG. 2, the transport cart 1 (corresponding to the transport carts 1 a and 1 b in FIG. 1) is configured to travel on a track 40 that is suspended from the ceiling 54. The transport carriage 1 includes a non-contact power supply primary side power line (hereinafter abbreviated as “primary side power source”) 50 and a non-contact power supply secondary side iron core 49 (hereinafter abbreviated as “secondary side iron core”). Is provided, and power is supplied in a non-contact manner. Specifically, the high frequency power is applied to the primary power source 50, and the primary high frequency power is induced in a coil wound around the secondary iron core 49 so that power is transmitted in a non-contact manner. Has been. In addition, all the electric power required for the conveyance cart 1 is covered by this non-contact power supply.

搬送台車1のリニアモータは、軌道40に敷設されリニアモータの固定子となる2次側永久磁石46とリニアモータを構成する1次側積層鉄心47とにより構成される。走行に必要なリニアモータに供給される電力は、まず、2次側鉄心49に巻回されたコイルに誘導された高周波電流が全波整流により直流電流に変換され、さらに、電源コントローラによりPWM方式の3相交流電流に変換されて、リニアモータを構成する1次側積層鉄心47に供給される。リニアモータを構成する1次側積層鉄心47にPWM方式で作られた3相交流電流が供給されると、1次側積層鉄心47には直線状に移動する進行磁界が発生し、1次側積層鉄心47と対向配置されている2次側永久磁石46との間の磁気作用で1次側積層鉄心47に推進力が発生する。以上により、1次側積層鉄心47と2次側永久磁石46との間は一定間隔に保持され発生する推進力により、搬送台車1が軌道40上を走行する。尚、非接触給電を構成する1次側電源50は後述する運行制御装置33の通信部35と搬送台車1との通信(台車側通信部)としても使われる。   The linear motor of the transport carriage 1 includes a secondary permanent magnet 46 that is laid on the track 40 and serves as a linear motor stator, and a primary laminated core 47 that constitutes the linear motor. The electric power supplied to the linear motor required for traveling is first converted from a high-frequency current induced in a coil wound around the secondary side iron core 49 to a direct current by full-wave rectification, and further, a PWM system by a power controller. Is supplied to the primary laminated core 47 constituting the linear motor. When a three-phase alternating current generated by the PWM method is supplied to the primary laminated core 47 constituting the linear motor, a traveling magnetic field that moves linearly is generated in the primary laminated iron core 47, and the primary side A propulsive force is generated in the primary side laminated core 47 by a magnetic action between the laminated core 47 and the secondary side permanent magnet 46 arranged opposite to the laminated core 47. As described above, the conveyance carriage 1 travels on the track 40 by the propulsive force that is generated with the primary-side laminated core 47 and the secondary-side permanent magnet 46 being held at a constant interval. In addition, the primary side power supply 50 which comprises non-contact electric power feeding is used also as communication (cart side communication part) of the communication part 35 of the operation control apparatus 33 mentioned later, and the conveyance trolley | bogie 1. FIG.

搬送台車1には、走行ローラ52、走行軌道に設けられた分岐用ガイド51、分岐ローラ53が設けられており、軌道分岐部では左右に配置された分岐用ガイド51のいずれか一方を分岐ローラ53が選択することで軌道40が選択され、走行ローラ52で軌道40を走行するように構成される。具体的には、通常、搬送台車1は後述するシステムコントローラの指令を受けて目的ポイントまで走行する。途中分岐部がある部位では、軌道40に敷設された左右分岐用ガイド51のいずれか一方を分岐ローラ53で選択する方法で、ルートを選択する。   The transport carriage 1 is provided with a traveling roller 52, a branching guide 51 provided on the traveling track, and a branching roller 53. In the track branching portion, one of the branching guides 51 arranged on the left and right is used as a branching roller. By selecting 53, the track 40 is selected, and the traveling roller 52 is configured to travel on the track 40. Specifically, the transport carriage 1 normally travels to a target point in response to a command from a system controller described later. In a portion where there is a midway branch portion, a route is selected by a method in which one of the left and right branch guides 51 laid on the track 40 is selected by the branch roller 53.

また、搬送台車1には、右側送受信トランス18(図1に示す右側誘導信号送受信器2a及び2bに相当)と左側送受信トランス19(図1に示す左側誘導信号送受信器3a及び3bに相当)とが構成されており、後述する軌道40の合流領域に敷設された通信線7、即ち、送信側通信線5(図1に示す送信側通信線5a及び5bに相当)及び受信側通信線6(図1に示す受信側通信線6a及び6bに相当)に電磁結合される。   Further, the transport carriage 1 includes a right transmission / reception transformer 18 (corresponding to the right induction signal transceivers 2a and 2b shown in FIG. 1) and a left transmission / reception transformer 19 (corresponding to the left induction signal transceivers 3a and 3b shown in FIG. 1). The communication line 7 laid in the junction area of the track 40 described later, that is, the transmission side communication line 5 (corresponding to the transmission side communication lines 5a and 5b shown in FIG. 1) and the reception side communication line 6 ( Electromagnetically coupled to the receiving communication lines 6a and 6b shown in FIG.

ここで、図8及び表1に基づいて、右側送受信トランスと左側送受信トランスについてより詳細に説明する。図8は、右側送受信トランスと左側送受信トランスの構成について説明した図である。表1は、右側送受信トランスと左側送受信トランスとの間のコンデンサの有無で、空中を伝播する干渉ノイズの低減率を測定した結果について説明した図である。
図8に示すように、右側送受信トランス18と左側送受信トランス19は同一物であり、それぞれ、E形フェライトコア25にコイル26が挿入されている。また、E形フェライトコア25の連続平面部には導電性の金属で形成された取付けブラケット24がネジ止めされ、これらブラケット24には導線22がネジ止めされている。右側送受信トランス18と左側送受信トランス19の導線22とフェライトコア25とは電気的に導通短絡されている。そして、それぞれの導線22の他端はコンデンサ23の両極に接続されている。
以下、表1に基づいて、右側送受信トランス18と左側送受信トランス19との間のコンデンサ23の有無で、空中を伝播する干渉ノイズの低減率を測定した結果について説明する。尚、空中を伝播して通信線7に誘起され受信器に検出される電圧を干渉ノイズ電圧として検出する方法で測定を行ったが、通信線7と、右側送受信トランス18、左側送受信トランス19の状態により測定結果が変化するため、測定は以下の条件で行った。
E型コアサイズ:60mm(W)×15mm(D)×40mm(H)
コイルターン数:104
トランス間距離:190mm(中心間)
コンデンサ容量:100PF
発信電圧波高値:330V(Sin波、最大波高値−最小波高値)
発信周波数:94kHz
また、通信線の状態として次の4条件を設定した。
条件1: 軌道の両側に通信線あり
条件2: 送信側通信線あり、受信側軌道切れ目
条件3: 送信側のみ通信線あり
条件4: 軌道の両側ともに通信線なし
Here, based on FIG. 8 and Table 1, the right side transmission / reception transformer and the left side transmission / reception transformer will be described in more detail. FIG. 8 is a diagram illustrating the configuration of the right transmission / reception transformer and the left transmission / reception transformer. Table 1 is a diagram illustrating a result of measuring a reduction rate of interference noise propagating in the air with or without a capacitor between the right transmission / reception transformer and the left transmission / reception transformer.
As shown in FIG. 8, the right transmission / reception transformer 18 and the left transmission / reception transformer 19 are the same, and a coil 26 is inserted into the E-shaped ferrite core 25. A mounting bracket 24 made of a conductive metal is screwed to the continuous flat portion of the E-shaped ferrite core 25, and a conductive wire 22 is screwed to these brackets 24. The conducting wire 22 and the ferrite core 25 of the right transmitting / receiving transformer 18 and the left transmitting / receiving transformer 19 are electrically connected and short-circuited. The other end of each conductive wire 22 is connected to both electrodes of the capacitor 23.
Hereinafter, based on Table 1, the result of measuring the reduction rate of interference noise propagating in the air with and without the capacitor 23 between the right transmitting / receiving transformer 18 and the left transmitting / receiving transformer 19 will be described. In addition, although the measurement was performed by the method of detecting the voltage that propagates in the air and is induced in the communication line 7 and detected by the receiver as an interference noise voltage, the communication line 7, the right transmission / reception transformer 18, and the left transmission / reception transformer 19 Since the measurement result changed depending on the state, the measurement was performed under the following conditions.
E-type core size: 60 mm (W) x 15 mm (D) x 40 mm (H)
Number of coil turns: 104
Distance between transformers: 190mm (between centers)
Capacitor capacity: 100PF
Transmit voltage peak value: 330V (Sin wave, maximum peak value-minimum peak value)
Transmission frequency: 94 kHz
In addition, the following four conditions were set as the state of the communication line.
Condition 1: There is a communication line on both sides of the track Condition 2: There is a communication line on the transmission side, and there is a track break on the receiving side Condition 3: There is a communication line only on the transmission side Condition 4: No communication line on both sides of the track

Figure 2005115590
Figure 2005115590

表1の実測結果から、右側送受信トランス18と左側送受信トランス19との間にコンデンサ23を設けることにより、空中を伝播する干渉ノイズを電圧レベル値で約60〜80%カットできることが確認できる。即ち、右側送受信トランス18又は左側送受信トランス19のいずれか一方の送信器から発信される電磁界が空中を伝播して右側送受信トランス18又は左側送受信トランス19のいずれかもう一方の受信器に影響を与える干渉ノイズを回避できたと言える。   From the actual measurement results in Table 1, it can be confirmed that by providing the capacitor 23 between the right transmitting / receiving transformer 18 and the left transmitting / receiving transformer 19, interference noise propagating in the air can be cut by about 60 to 80% in terms of voltage level. In other words, the electromagnetic field transmitted from either the right transmission / reception transformer 18 or the left transmission / reception transformer 19 propagates in the air and affects the other receiver of the right transmission / reception transformer 18 or the left transmission / reception transformer 19. It can be said that the interference noise given can be avoided.

更に、図2に示すように、搬送台車1には、OHT台車位置調整機構41と、懸垂ベルト巻き上げ機能を有する懸垂装置42と、懸垂ベルト43と、懸垂ベルト43の先端に設けられたキャリア把持機構44と、キャリア把持機構44の先端部に設けられたFOUPを把持するためのフィンガー45と、が備えられている。搬送台車1は、位置調整機構41で位置合わせし、懸垂装置42にて懸垂ベルト43を巻上げ、または巻きもどしすることによりフィンガー45でFOUPを把持または把持なしの状態でキャリア把持機構44を上下させる。そして、OHT搬送システムには、半導体製造装置57と半導体製造装置57のFOUP入出ポート58とが設けられており、FOUP入出ポート58を中継点として、半導体製造装置57内部へのシリコンウエハの取込みと取り出しが行われる。
具体的には、搬送台車1は目的地に到達後、FOUPの移載作業を行う。例えば、FOUPフランジ56をフィンガー45で把持し走行して来た搬送台車1が目的地で搭載しているFOUP55をFOUP入出ポート58に降ろす場合、搬送台車1はまず移載位置に到着停止し、位置調整機構41で正確に位置合わせを行い、次いで、最上部まで巻き上げられた懸垂ベルト43を逐次巻き降ろし、FOUPを半導体製造装置57のFOUP入出ポート58まで下ろす。FOUP底面がポート面に接触すると、ポート台に取り付けられた図示していないリミットスイッチが作動する。ポート台のリミットスイッチでFOUPの着地を検知した後、把持機構44はフィンガー45を開放しFOUPをFOUP入出ポート台58上に載置する。FOUP積み下ろし作業終了後、搬送台車1は懸垂ベルト43を巻上げ、把持機構44が最上部に到達した時点で、次の指令に従って次ぎの目的地に向かう。
Further, as shown in FIG. 2, the transport carriage 1 includes an OHT carriage position adjusting mechanism 41, a suspension device 42 having a suspension belt winding function, a suspension belt 43, and a carrier grip provided at the tip of the suspension belt 43. A mechanism 44 and a finger 45 for gripping the FOUP provided at the tip of the carrier gripping mechanism 44 are provided. The transport carriage 1 is aligned by the position adjustment mechanism 41, and the carrier gripping mechanism 44 is moved up and down with the fingers 45 in a state where the FOUP is gripped or not gripped by winding or unwinding the suspension belt 43 with the suspension device 42. . The OHT transfer system is provided with a semiconductor manufacturing apparatus 57 and a FOUP input / output port 58 of the semiconductor manufacturing apparatus 57. With the FOUP input / output port 58 as a relay point, a silicon wafer can be taken into the semiconductor manufacturing apparatus 57. Removal is performed.
Specifically, the transport cart 1 performs FOUP transfer work after reaching the destination. For example, when the FOUP 55 mounted at the destination is lowered by the FOUP flange 56 mounted on the destination by the transport trolley 1 that grips the FOUP flange 56 with the fingers 45, the transport trolley 1 first stops at the transfer position, The position adjustment mechanism 41 performs accurate alignment, and then the suspension belt 43 wound up to the top is successively unwound and the FOUP is lowered to the FOUP input / output port 58 of the semiconductor manufacturing apparatus 57. When the bottom surface of the FOUP contacts the port surface, a limit switch (not shown) attached to the port base is activated. After detecting the landing of the FOUP with the limit switch on the port base, the gripping mechanism 44 opens the finger 45 and places the FOUP on the FOUP input / output port base 58. After the FOUP unloading operation is completed, the transport carriage 1 winds up the suspension belt 43, and when the gripping mechanism 44 reaches the uppermost position, it proceeds to the next destination according to the next command.

次に、図3に基づいて、本実施形態が適用されるOHT搬送システムの運行制御の構成について説明する。図3は、OHT搬送システムの運行制御の構成を示すブロック図である。   Next, based on FIG. 3, the structure of the operation control of the OHT conveyance system to which this embodiment is applied is demonstrated. FIG. 3 is a block diagram showing a configuration of operation control of the OHT conveyance system.

図3に示すように、運行制御装置33は、運行管理部34と、通信部35と、台車監視部36と、優先台車決定部37とからなる。運行管理部34は、ネットワーク38を介して半導体工場の生産管理システムを司るシステムコントローラ39とOHT搬送システムの運行管理に必要な情報のやり取りを行うものである。通信部35は、前述した1次側電源50を介して個々の搬送台車1と通信するためのものである。具体的には、各搬送台車1への搬送指令、搬送台車1からの搬送台車位置や、作業進捗報告が非接触給電1次側電線50を介して伝達される。台車監視部36は、合流領域10における搬送台車1同士の衝突を防止するための監視を行うためのものである。優先台車決定部37は、合流領域10に同時に進入する搬送台車1の優先順位を決定するものである。   As shown in FIG. 3, the operation control device 33 includes an operation management unit 34, a communication unit 35, a cart monitoring unit 36, and a priority cart determination unit 37. The operation management unit 34 exchanges information necessary for operation management of the OHT transport system with the system controller 39 that controls the production management system of the semiconductor factory via the network 38. The communication part 35 is for communicating with each conveyance cart 1 via the primary side power supply 50 mentioned above. Specifically, a conveyance command to each conveyance carriage 1, a conveyance carriage position from the conveyance carriage 1, and a work progress report are transmitted via the non-contact power supply primary side electric wire 50. The trolley monitoring unit 36 is for monitoring to prevent a collision between the transport trolleys 1 in the merging region 10. The priority cart determination unit 37 determines the priority order of the transport carts 1 that simultaneously enter the junction area 10.

次に、図3〜図5に基づいて、本実施形態に係る衝突防止制御システムの処理について説明する。
図4は、図3における合流領域の詳細説明図である。尚、図4において、図1と同一部位には同一記号を用い、その説明を省略する。また、図4における搬送台車1cの右側誘導信号送受信器2c、左側誘導信号送受信器3c、マーク読み取り器4c、制御部8cは、搬送台車1bの右側誘導信号送受信器2b、左側誘導信号送受信器3b、マーク読み取り器4b、制御部8bと同様であり、その説明を省略する。
図5は、本実施形態に係る衝突防止制御システムの処理について説明したフローチャートである。尚、図5で説明する衝突防止制御システムの処理は、搬送台車1a、1b、1cのそれぞれに搭載されている制御部8a、8b、8cにより行われるものである。
Next, processing of the collision prevention control system according to the present embodiment will be described based on FIGS.
FIG. 4 is a detailed explanatory diagram of the merging region in FIG. In FIG. 4, the same parts as those in FIG. Also, the right guide signal transmitter / receiver 2c, the left guide signal transmitter / receiver 3c, the mark reader 4c, and the control unit 8c of the transport cart 1c in FIG. 4 are the right guide signal transmitter / receiver 2b and the left guide signal transmitter / receiver 3b of the transport cart 1b. This is the same as the mark reader 4b and the controller 8b, and a description thereof will be omitted.
FIG. 5 is a flowchart illustrating the process of the collision prevention control system according to the present embodiment. In addition, the process of the collision prevention control system demonstrated in FIG. 5 is performed by control part 8a, 8b, 8c mounted in each of the conveyance trolley | bogie 1a, 1b, 1c.

図3に示すように、本実施の形態の例では、以下のような状況を示している。まず、システムコントローラ39は搬送台車1bにストッカ59から半導体製造装置57にFOUPを搬送するよう指令出した。この指令は、ネットワーク38を介して運行制御装置33の運行管理部34に伝達され、さらに通信部35を経て搬送台車1bに伝達される。搬送台車1bは、この指令を受け、ストッカ59から半導体製造装置57に向かう途中、合流領域10に差し掛かり、合流領域10に進入した所である。一方、搬送台車1bから少し遅れて、搬送台車1aが、システムコントローラ39の指令を受けて合流領域10に進入しようとしている。さらに、搬送台車1bの後に続いて、搬送台車1cが、システムコントローラ39の指令を受けて合流領域10に進入しようとしている。   As shown in FIG. 3, in the example of the present embodiment, the following situation is shown. First, the system controller 39 issued a command to transport the FOUP from the stocker 59 to the semiconductor manufacturing apparatus 57 to the transport cart 1b. This command is transmitted to the operation management unit 34 of the operation control device 33 via the network 38 and further transmitted to the transport carriage 1b via the communication unit 35. In response to this instruction, the transport carriage 1b reaches the joining area 10 and enters the joining area 10 on the way from the stocker 59 to the semiconductor manufacturing apparatus 57. On the other hand, with a little delay from the transport carriage 1b, the transport carriage 1a is about to enter the junction area 10 in response to a command from the system controller 39. Further, following the transport carriage 1b, the transport carriage 1c is about to enter the junction area 10 in response to a command from the system controller 39.

図4及び図5に示すように、まず、搬送台車1bが軌道Bを矢視方向に走行し、合流領域10内の合流域Pbに差し掛かる。そして、搬送台車1bは自車に搭載されているマーク読取り器4bで軌道Bに設置されている最初のマークとなる誘導線制御有効マーク12bを読取り(ステップS1)、合流領域10内の合流域Pbに侵入したことを認知する。そして、自車に搭載している右側誘導信号送受信器2bを作動させ(ステップS2)、受信側通信線6bに乗っている信号波形を検出・分析する(ステップS3)。続けて、誘導線制御有効マーク12bに近接して設けられている送信点マーク14bをマーク読取り器4bで読み取り(ステップS4)、ステップS3で分析した結果、他の合流域の搬送台車が送信する信号波形があるかどうかを判断する(ステップS5)。ここでは、受信した信号波形が自己の合流域Pbの信号波形と一致しないものであるかどうかで判断する。
本実施形態では他の合流域である合流域Paに搬送台車はなく、搬送台車1bが検出できる信号波形の分析結果は、他の合流域である合流域Paの搬送台車が送信する信号波形はない、即ち、他の合流域である合流域Paから合流領域10へ進入した先入車が存在しないということを意味するものである(ステップS5:NO)ので、左側誘導信号送信器3bで自車の合流域である合流域Pbを意味する信号を送信側通信線5bに乗せて送信を開始する(ステップS8)。尚、合流域Pbを意味する信号には交流波形信号(合流域毎に周波数と電圧のいずれか一方または双方が異なる信号)、パルス周波数波形信号(合流域毎に周波数が異なる信号)、複数ビットからなるデジタル通信信号(合流域毎に異なる複数ビットからなるデジタル通信方式の信号)、又は、これら2つ以上を任意に組み合わせた信号の中から必要に応じて選定する。
この時、搬送台車1bは、ステップS2において既に自車に搭載している右側誘導信号送受信器2bを作動させているので、受信側通信線6bに乗せられている信号波形を検出できる。つまり、自車が搭載する左側誘導信号送信器3bで発信する信号を自車に搭載する右側誘導信号送受信器2bで受信することができる。従って、搬送台車1bは、自車に搭載する右側誘導信号送受信器2bで、受信側通信線6bに乗っている信号波形を検出・分析し(ステップS9)、自車が搭載する左側誘導信号送信器3bで発信する信号を自車に搭載する右側誘導信号送受信器2bで受信できたかどうかが判断される(ステップS10)。ここでは、受信した信号波形が自己の合流域Pbの信号波形と一致するものであるかどうかで判断する。
搬送台車1bは、右側誘導信号送受信器2bの受信信号の分析結果、自車の発信する信号が検出できなかった場合(ステップS10:NO)、通信線7は断線などの異常ありと判断し、走行を即時停止すると共に、運行管理部34を介して全ての搬送台車に対して停止するように指令を出し(ステップS11)、処理を終了する。これにより、通信線7の断線により無制御状態に陥ることに起因する衝突事故は回避できる。一方、搬送台車1bは、右側誘導信号送受信器2bの受信信号の分析結果、自車の発信する信号が検出できた場合(ステップS10:YES)、通信線7が断線していないと判断し、合流域Pbの通過が完了するまで走行を継続させる(ステップS12)。そして、搬送台車1bは合流域Pbの終端部の軌道Cにおいて、マーク読取り器4bで誘導線制御無効マーク15読み取る(ステップS13)。即ち、誘導線制御無効マーク15は合流領域10を通過し終えたことを意味するマークであるので、搬送台車1bは左側誘導信号送受信器3bによる送信側通信線5bへの送信を停止させて(ステップS14)、処理を終了し、合流領域10を右方向に直進する。
As shown in FIGS. 4 and 5, first, the transport carriage 1 b travels on the track B in the direction of the arrow and reaches the merging area Pb in the merging area 10. Then, the transport carriage 1b reads the guide line control effective mark 12b as the first mark installed on the track B by the mark reader 4b mounted on the own vehicle (step S1), and the joining area in the joining area 10 Recognize that Pb has been invaded. Then, the right induction signal transmitter / receiver 2b mounted on the host vehicle is operated (step S2), and a signal waveform riding on the receiving communication line 6b is detected and analyzed (step S3). Subsequently, the transmission point mark 14b provided in the vicinity of the guide line control effective mark 12b is read by the mark reader 4b (step S4) and analyzed in step S3. It is determined whether there is a signal waveform (step S5). Here, the determination is made based on whether or not the received signal waveform does not match the signal waveform of its own merge area Pb.
In this embodiment, there is no conveyance carriage in the merge area Pa, which is another merge area, and the signal waveform analysis result of the signal waveform that can be detected by the conveyance carriage 1b is the signal waveform transmitted by the conveyance carriage in the merge area Pa, which is another merge area. This means that there is no first-entry vehicle that has entered the merging area 10 from the merging area Pa, which is another merging area (step S5: NO). A signal indicating the merge area Pb, which is a merge area, is put on the transmission side communication line 5b and transmission is started (step S8). The signal meaning the merge area Pb includes an AC waveform signal (a signal whose frequency or voltage is different for each merge area or both), a pulse frequency waveform signal (a signal whose frequency is different for each merge area), multiple bits A digital communication signal (digital communication system signal consisting of a plurality of bits different for each merging area) or a signal obtained by arbitrarily combining these two or more is selected as necessary.
At this time, since the carriage 1b operates the right induction signal transmitter / receiver 2b already mounted on the own vehicle in step S2, it can detect the signal waveform carried on the receiving communication line 6b. That is, the signal transmitted by the left guidance signal transmitter 3b mounted on the host vehicle can be received by the right guide signal transmitter / receiver 2b mounted on the host vehicle. Accordingly, the transport carriage 1b detects and analyzes the signal waveform on the receiving side communication line 6b by the right side induction signal transmitter / receiver 2b mounted on the own vehicle (step S9), and transmits the left side induction signal transmitted by the own vehicle. It is determined whether or not the signal transmitted by the device 3b has been received by the right guidance signal transmitter / receiver 2b mounted on the vehicle (step S10). Here, the determination is made based on whether or not the received signal waveform matches the signal waveform of its own merge zone Pb.
When the carrier cart 1b cannot detect the signal transmitted by the own vehicle as a result of the analysis of the received signal of the right guidance signal transmitter / receiver 2b (step S10: NO), it determines that the communication line 7 has an abnormality such as disconnection, Along with stopping the traveling immediately, a command is issued to stop all the carriages via the operation management unit 34 (step S11), and the process is terminated. Thereby, the collision accident resulting from falling into an uncontrolled state by the disconnection of the communication line 7 can be avoided. On the other hand, the conveyance cart 1b determines that the communication line 7 is not disconnected when the signal transmitted from the own vehicle can be detected as a result of the analysis of the received signal of the right guidance signal transceiver 2b (step S10: YES), The running is continued until the passage through the merge area Pb is completed (step S12). Then, the transport carriage 1b reads the guide line control invalid mark 15 with the mark reader 4b on the track C at the end of the merge area Pb (step S13). That is, since the guide line control invalid mark 15 is a mark that means that the passage through the merging region 10 has been completed, the transport carriage 1b stops the transmission to the transmission side communication line 5b by the left guide signal transmitter / receiver 3b ( Step S14), the process ends, and the merging area 10 goes straight in the right direction.

次に、搬送台車1aは、搬送台車1bに遅れて合流領域10に侵入する。搬送台車1aは合流領域10内の合流域Paに差し掛かり、自車に搭載されているマーク読取り器4aで軌道Aに設置されている最初のマークとなる誘導線制御有効マーク12aを読取り(ステップS1)、合流領域10の合流域Paに侵入したことを認知する。そして、自車に搭載している左側誘導信号送受信器3aを作動させ(ステップS2)、受信側通信線6aに乗せられている信号波形を検出・分析する(ステップS3)。続けて、誘導線制御有効マーク12aに近接して設けられている送信点マーク14aをマーク読取り器4aで読み取り(ステップS4)、ステップS3で分析した結果、他の合流域の搬送台車が送信する信号波形があるかどうかを判断する(ステップS5)。ここでは、受信した信号波形が自己の合流域Paの信号波形と一致しないものであるかどうかで判断する。
本実施形態では他の合流域である合流域Pbの搬送台車は搬送台車1bがあり、搬送台車1aが検出できる信号波形の分析結果は、他の合流域の搬送台車が送信する信号波形はある、即ち、他の合流域から合流領域10へ進入した先入車が存在することを意味するものであるから(ステップS5:YES)、搬送台車1aは停止点マーク13aで停止する(ステップS6)。そして、搬送台車1aは停止状態で左側誘導信号送受信器3aを作動させ続け、受信側通信線6aに乗せられている信号波形の検出・分析を継続させる(ステップS7)。尚、本実施の形態では、この停止期間中、搬送台車1bは合流域Pbの終端部に向かい走行を続けるが、搬送台車1bが合流域Pbを通過し終えない内に、搬送台車1cが合流域Pbに侵入を開始する。この時、搬送台車1aは停止点マーク13aに停止したままである。
Next, the transport carriage 1a enters the joining area 10 with a delay from the transport carriage 1b. The transport carriage 1a reaches the joining area Pa in the joining area 10, and reads the guide line control effective mark 12a which is the first mark installed on the track A by the mark reader 4a mounted on the own vehicle (step S1). ), It is recognized that it has entered the merge area Pa of the merge area 10. Then, the left induction signal transmitter / receiver 3a mounted on the own vehicle is operated (step S2), and a signal waveform placed on the receiving side communication line 6a is detected and analyzed (step S3). Subsequently, the transmission point mark 14a provided in the vicinity of the guide line control effective mark 12a is read by the mark reader 4a (step S4), and analyzed in step S3. It is determined whether there is a signal waveform (step S5). Here, the determination is made based on whether or not the received signal waveform does not match the signal waveform of its own merge zone Pa.
In this embodiment, the conveyance carriage of the merge area Pb which is another merge area is the conveyance carriage 1b, and the analysis result of the signal waveform that can be detected by the conveyance carriage 1a is the signal waveform transmitted by the conveyance carriage of the other merge area. That is, since this means that there is a first-entry vehicle that has entered the merge area 10 from another merge area (step S5: YES), the transport carriage 1a stops at the stop point mark 13a (step S6). And the conveyance cart 1a continues operating the left side induction signal transmitter / receiver 3a in a stopped state, and continues detection and analysis of the signal waveform carried on the receiving side communication line 6a (step S7). In the present embodiment, during this stop period, the transport carriage 1b continues to travel toward the end portion of the merge area Pb, but the transport carriage 1c does not finish passing through the merge area Pb. Intrusion into the basin Pb is started. At this time, the transport carriage 1a remains stopped at the stop point mark 13a.

合流域Pbに進入した搬送台車1cは、基本的には、上述した先行する搬送台車1bと同様の動作を行う。即ち、まず、自車に搭載されているマーク読取り器4cで軌道Bに設置された最初のマークとなる誘導線制御有効マーク12bを読取り(ステップS1)、合流領域10の合流域Pbに侵入したことを認知する。そして、自車に搭載している右側誘導信号送受信器2cを作動させ(ステップS2)、受信側通信線6bに乗せられている信号波形を検出・分析する(ステップS3)。続けて、誘導線制御有効マーク12bに近接して設けられている送信点マーク14bをマーク読取り器4cで読み取り(ステップS4)、ステップS3で分析した結果、他の合流域の搬送台車が送信する信号波形があるかどうかを判断する(ステップS5)。ここでは、受信した信号波形が自己の合流域Pbの信号波形と一致しないものであるかどうかで判断する。
本実施形態では他の合流域である合流域Paに搬送台車はなく、搬送台車1cが検出できる信号波形の分析結果は、他の合流域である合流域Paの搬送台車が送信する信号波形はない、即ち、他の合流域である合流域Paから合流領域10へ進入した先入車が存在しないということを意味するものである(ステップS5:NO)ので、左側誘導信号送信器3cで自車の合流域である合流域Pbを意味する信号を送信側通信線5bに乗せて送信を開始する(ステップS8)。尚、搬送台車1bがまだ合流域Pbに存在し自己の合流域Pbを示す信号波形を発信していたとしても、搬送台車1cで受信した信号波形が自己の合流域Pbの信号波形と一致するため、他の合流域の搬送台車が送信する信号波形がないものと判断して、搬送台車1cは合流域Pbに進入することが可能となる。
この時、搬送台車1cは、ステップS2において既に自車に搭載している誘導信号受信器2cを作動させているので、通信線6bに乗せられている信号波形を検出できる。つまり、自車が搭載する左側誘導信号送信器3cで発信する信号を自車に搭載する右側誘導信号送受信器2cで受信することができる。従って、搬送台車1cは、自車に搭載する右側誘導信号送受信器2cで、受信側通信線6bに乗っている信号波形を検出・分析し(ステップS9)、自車が搭載する左側誘導信号送信器3cで発信する信号を自車に搭載する右側誘導信号送受信器2cで受信できたかどうかが判断される(ステップS10)。ここでは、受信した信号波形が自己の合流域Pbの信号波形と一致するものであるかどうかで判断する。
搬送台車1cは、右側誘導信号送受信器2cの受信信号の分析結果、自車の発信する信号が検出できなかった場合(ステップS10:NO)、通信線7は断線などの異常ありと判断し、走行を即時停止すると共に、運行管理部34を介して全ての搬送台車に対して停止するように指令を出し(ステップS11)、処理を終了する。これにより、通信線7の断線により無制御状態に陥ることに起因する衝突事故は回避できる。一方、搬送台車1cは、右側誘導信号送受信器2cの受信信号の分析結果、自車の発信する信号が検出できた場合(ステップS10:YES)、通信線7が断線していないと判断し、合流域Pbの通過が完了するまで走行を継続させる(ステップS12)。尚、搬送台車1bがまだ合流域Pbに存在し自己の合流域Pbを示す信号波形を発信していると、当該信号波形が搬送台車1cで受信した信号波形が自己の合流域Pbの信号波形と一致するため、搬送台車1bが搭載する左側誘導信号送信器3bで発信する信号を自車が搭載する左側誘導信号送信器3cで発信する信号として、自車に搭載する右側誘導信号送受信器2cで受信できたと判断する場合も考えられるが、かかる場合も、通信線7は断線などの異常はないと考えられるので問題はない。そして、搬送台車1cは合流域Pbの終端部の軌道Cにおいて、マーク読取り器4cで誘導線制御無効マーク15読み取る(ステップS13)。即ち、誘導線制御無効マーク15は合流領域10を通過し終えたことを意味するマークであるので、搬送台車1cは左側誘導信号送受信器3cによる送信側通信線5bへの送信を停止させて(ステップS14)、処理を終了し、合流領域10を右方向に直進する。
The transport cart 1c that has entered the junction Pb basically performs the same operation as the preceding transport cart 1b. That is, first, the guideline control effective mark 12b, which is the first mark installed on the track B, is read by the mark reader 4c mounted on the own vehicle (step S1), and enters the joining area Pb of the joining area 10. Recognize that. Then, the right induction signal transmitter / receiver 2c mounted on the host vehicle is operated (step S2), and the signal waveform placed on the receiving communication line 6b is detected and analyzed (step S3). Subsequently, the transmission point mark 14b provided in the vicinity of the guide line control effective mark 12b is read by the mark reader 4c (step S4), and analyzed in step S3. It is determined whether there is a signal waveform (step S5). Here, the determination is made based on whether or not the received signal waveform does not match the signal waveform of its own merge area Pb.
In the present embodiment, there is no carriage in the junction area Pa, which is another junction area, and the signal waveform analysis result of the signal waveform that can be detected by the carriage 1c is the signal waveform transmitted by the carriage truck in the junction area Pa, which is another junction area. This means that there is no first-entry vehicle that has entered the merging area 10 from the merging area Pa, which is another merging area (step S5: NO). A signal indicating the merge area Pb, which is a merge area, is put on the transmission side communication line 5b and transmission is started (step S8). Even if the transport carriage 1b still exists in the merge area Pb and transmits a signal waveform indicating the own merge area Pb, the signal waveform received by the transport carriage 1c matches the signal waveform of the own merge area Pb. Therefore, it is determined that there is no signal waveform transmitted by the transport carriage in the other merging zone, and the transport cart 1c can enter the merging zone Pb.
At this time, since the conveyance carriage 1c operates the induction signal receiver 2c already mounted on the own vehicle in step S2, the signal waveform carried on the communication line 6b can be detected. In other words, a signal transmitted by the left guidance signal transmitter 3c mounted on the host vehicle can be received by the right guidance signal transmitter / receiver 2c mounted on the host vehicle. Accordingly, the transport carriage 1c detects and analyzes the signal waveform on the receiving communication line 6b by the right side induction signal transmitter / receiver 2c mounted on the own vehicle (step S9), and transmits the left side induction signal mounted on the own vehicle. It is determined whether or not the signal transmitted by the device 3c has been received by the right guidance signal transmitter / receiver 2c mounted on the host vehicle (step S10). Here, the determination is made based on whether or not the received signal waveform matches the signal waveform of its own merge zone Pb.
When the carrier cart 1c cannot detect the signal transmitted by the own vehicle as a result of the analysis of the received signal from the right guidance signal transmitter / receiver 2c (step S10: NO), it determines that the communication line 7 has an abnormality such as disconnection, Along with stopping the traveling immediately, a command is issued to stop all the carriages via the operation management unit 34 (step S11), and the process is terminated. Thereby, the collision accident resulting from falling into an uncontrolled state by the disconnection of the communication line 7 can be avoided. On the other hand, the conveyance carriage 1c determines that the communication line 7 is not disconnected when the signal transmitted by the own vehicle can be detected as a result of the analysis of the received signal of the right guidance signal transceiver 2c (step S10: YES), The running is continued until the passage through the merge area Pb is completed (step S12). If the transport carriage 1b is still present in the merge area Pb and is transmitting a signal waveform indicating the own merge area Pb, the signal waveform received by the transport carriage 1c is the signal waveform of the own merge area Pb. Therefore, the right guidance signal transmitter / receiver 2c mounted on the host vehicle is used as the signal transmitted by the left guidance signal transmitter 3c mounted on the own vehicle as a signal transmitted by the left guidance signal transmitter 3b mounted on the transport cart 1b. In this case, there is no problem because the communication line 7 is considered to have no abnormality such as disconnection. Then, the transport carriage 1c reads the guide line control invalid mark 15 by the mark reader 4c on the track C at the end of the merge area Pb (step S13). That is, since the guide line control invalid mark 15 is a mark that means that it has passed through the merging region 10, the transport carriage 1c stops the transmission to the transmission side communication line 5b by the left guide signal transmitter / receiver 3c ( Step S14), the process ends, and the merging area 10 goes straight in the right direction.

一方、ステップS5〜S7の処理を反復しながら、停止点マーク13aに停止したままでの搬送台車1aは、搬送台車1cの合流域Pbを通過して左側誘導信号送受信器3cが停止されると、始めて、搬送台車1aが検出できる信号波形の分析結果が、他の合流域である合流域Pbの搬送台車が送信する信号波形はなし、即ち、他の合流域である合流域Pbから合流領域10へ進入した先入車が存在しないことを意味するものとなる(ステップS5:NO)。そして、搬送台車1aは、直ちに、停止点マーク13aを発進して合流域Paを右方向に進み、同時に右側誘導信号送信器2aで自車の合流域である合流域Paを意味する信号を送信側通信線5aに乗せて送信を開始する(ステップS8)。尚、合流域Paを意味する信号には交流波形信号(合流域毎に周波数と電圧のいずれか一方または双方が異なる信号)、パルス周波数波形信号(合流域毎に周波数が異なる信号)、複数ビットからなるデジタル通信信号(合流域毎に異なる複数ビットからなるデジタル通信方式の信号)、又は、これら2つ以上を任意に組み合わせた信号の中から必要に応じて選定する。
この時、搬送台車1aは、ステップS2において既に自車に搭載している左側誘導信号送受信器3aを作動させているので、受信側通信線6aに乗せられている信号波形を検出できる。つまり、自車が搭載する右側誘導信号送信器2aで発信する信号を自車に搭載する左側誘導信号送受信器3aで受信することができる。従って、搬送台車1aは、自車に搭載する左側誘導信号送受信器3aで、受信側通信線6aに乗っている信号波形を検出・分析し(ステップS9)、自車が搭載する右側誘導信号送信器2aで発信する信号を自車に搭載する左側誘導信号送受信器3aで受信できたかどうかが判断される(ステップS10)。ここでは、受信した信号波形が自己の合流域Paの信号波形と一致するものであるかどうかで判断する。
搬送台車1aは、左側誘導信号送受信器3aの受信信号の分析結果、自車の発信する信号が検出できなかった場合(ステップS10:NO)、通信線7は断線などの異常ありと判断し、走行を即時停止すると共に、運行管理部34を介して全ての搬送台車に対して停止するように指令を出し(ステップS11)、処理を終了する。これにより、通信線7の断線により無制御状態に陥ることに起因する衝突事故は回避できる。一方、搬送台車1aは、左側誘導信号送受信器3aの受信信号の分析結果、自車の発信する信号が検出できた場合(ステップS10:YES)、通信線7が断線していないと判断し、合流域Paの通過が完了するまで走行を継続させる(ステップS12)。そして、搬送台車1aは合流域Paの終端部の軌道Cにおいて、マーク読取り器4aで誘導線制御無効マーク15読み取る(ステップS13)。即ち、誘導線制御無効マーク15は合流領域10を通過し終えたことを意味するマークであるので、搬送台車1aは右側誘導信号送受信器2aによる送信側通信線5aへの送信を停止させて(ステップS14)、処理を終了し、合流領域10を右方向にさらに直進する。
On the other hand, while the processing of steps S5 to S7 is repeated, the transport cart 1a that is stopped at the stop point mark 13a passes through the merge area Pb of the transport cart 1c and the left guidance signal transceiver 3c is stopped. First, the analysis result of the signal waveform that can be detected by the transport carriage 1a is no signal waveform transmitted by the transport carriage in the joining area Pb that is another joining area, that is, the joining area 10 from the joining area Pb that is another joining area. This means that there is no first-arrival vehicle that has entered (step S5: NO). Then, the transport carriage 1a immediately starts the stop point mark 13a and proceeds rightward in the merge area Pa, and at the same time transmits a signal indicating the merge area Pa that is the merge area of the own vehicle by the right guidance signal transmitter 2a. Transmission is started on the side communication line 5a (step S8). In addition, the signal meaning the merge area Pa includes an AC waveform signal (a signal in which one or both of the frequency and the voltage is different for each merge area), a pulse frequency waveform signal (a signal having a different frequency for each merge area), multiple bits A digital communication signal (digital communication system signal consisting of a plurality of bits different for each merging area) or a signal obtained by arbitrarily combining these two or more is selected as necessary.
At this time, since the transport carriage 1a operates the left-side induction signal transmitter / receiver 3a already mounted in the own vehicle in step S2, the signal waveform carried on the receiving communication line 6a can be detected. That is, the signal transmitted by the right-side induction signal transmitter 2a mounted on the own vehicle can be received by the left-side induction signal transmitter / receiver 3a mounted on the own vehicle. Accordingly, the transport carriage 1a detects and analyzes the signal waveform on the receiving communication line 6a by the left guidance signal transmitter / receiver 3a mounted on the own vehicle (step S9), and transmits the right guidance signal transmitted by the own vehicle. It is determined whether or not the signal transmitted by the device 2a has been received by the left guidance signal transmitter / receiver 3a mounted on the vehicle (step S10). Here, the determination is made based on whether or not the received signal waveform matches the signal waveform of its own merge area Pa.
The carrier cart 1a determines that the communication line 7 has an abnormality such as disconnection when the signal transmitted from the own vehicle cannot be detected as a result of analyzing the received signal of the left guidance signal transmitter / receiver 3a (step S10: NO), Along with stopping the traveling immediately, a command is issued to stop all the carriages via the operation management unit 34 (step S11), and the process is terminated. Thereby, the collision accident resulting from falling into an uncontrolled state by the disconnection of the communication line 7 can be avoided. On the other hand, the transport carriage 1a determines that the communication line 7 is not disconnected when the signal transmitted from the own vehicle can be detected as a result of the analysis of the reception signal of the left guidance signal transceiver 3a (step S10: YES), The running is continued until the passing through the merge area Pa is completed (step S12). Then, the transport carriage 1a reads the guide line control invalid mark 15 by the mark reader 4a on the track C at the end of the merge area Pa (step S13). That is, the guide line control invalid mark 15 is a mark that means that it has passed through the merging region 10, and the transport carriage 1a stops transmission to the transmission side communication line 5a by the right guide signal transceiver 2a ( Step S14), the process is terminated, and the merging area 10 is further straightened in the right direction.

このように、本実施形態に係る衝突防止制御システム11では、図1に示すように、ループ状に敷設された単線の通信線7上で、自己の合流域Paと異なる合流域Pbを示す識別信号を左側誘導信号送受信器3aで検知することにより、合流領域10に進入した搬送台車1aは他の合流域から進入した搬送台車1bが合流領域10に既に存在することを確認することになる。そして、他の合流域Pbから進入した先行する搬送台車1bが存在する場合は、先行した搬送台車1bが合流領域10を通過するのを待つ。そして、他の合流域Pbから進入した先行する搬送台車1b及びその後に他の合流域Pbから進入した搬送台車1cが存在しなくなると、自己の搭載する右側誘導信号送受信器2aで通信線7に自己の合流域Paを示す識別信号を発信しながら走行することにより、合流領域10における搬送台車1a、1b、1c同士の衝突を回避することができる。尚、搬送台車1b、1cは、走行する軌道が同一であり、合流域Pbの複数での走行が可能である。   As described above, in the collision prevention control system 11 according to the present embodiment, as shown in FIG. 1, the identification indicating the merge area Pb different from the own merge area Pa on the single-line communication line 7 laid in a loop shape. By detecting the signal with the left guidance signal transmitter / receiver 3 a, the transport carriage 1 a that has entered the joining area 10 confirms that the transport carriage 1 b that has entered from the other joining area already exists in the joining area 10. And when the preceding conveyance trolley 1b which approached from the other merging area Pb exists, it waits for the preceding conveyance trolley 1b to pass through the merging area 10. When the preceding transport carriage 1b that has entered from the other merge area Pb and the subsequent transport carriage 1c that has entered from the other merge area Pb no longer exist, the communication line 7 is connected to the communication line 7 by the right-side guidance signal transmitter / receiver 2a that is mounted on itself. By traveling while transmitting an identification signal indicating its own merged area Pa, it is possible to avoid a collision between the transport carts 1a, 1b, 1c in the merged area 10. The transport carts 1b and 1c have the same traveling track, and can travel in a plurality of merging areas Pb.

また、合流域Pa又は合流域Pbを示す識別信号は、合流域毎に異なる交流波形信号(合流域毎に周波数と電圧のいずれか一方または双方が異なる信号)、パルス周波数波形信号(合流域毎に周波数が異なる信号)、複数ビットからなるデジタル通信信号(合流域毎に異なる複数ビットからなるデジタル通信方式の信号)のいずれか一つの信号またはこれら2つ以上を任意に組み合わせた信号を識別信号として用いることから、双方向通信においても混線することなく、自己の合流域と異なる合流域を判別することができる。   Further, the identification signal indicating the merging area Pa or the merging area Pb is an AC waveform signal that is different for each merging area (a signal in which one or both of the frequency and the voltage is different for each merging area), and a pulse frequency waveform signal (for each merging area). A signal having a different frequency), a digital communication signal consisting of a plurality of bits (a digital communication system signal consisting of a plurality of bits different for each merging region), or a signal obtained by arbitrarily combining two or more of these signals. Therefore, it is possible to discriminate a merging area different from its own merging area without crosstalk even in bidirectional communication.

また、図1に示すように、断線など通信線7に異常がある場合は、通信線7が合流領域10にループ状に敷設された単線であることから、自己の送信器(右側誘導信号送受信器2a、左側誘導信号送受信器3b、左側誘導信号送受信器3c)で送信した識別信号が自己の受信器(左側誘導信号送受信器3a、右側誘導信号送受信器2b、右側誘導信号送受信器2c)で受信できなくなり、通信線7の異常を容易に認識することができる。そして、異常が検知された時点で走行する全ての搬送台車1a、1b、1cを即時停止させることで衝突を回避することが可能となる。   In addition, as shown in FIG. 1, when there is an abnormality in the communication line 7 such as disconnection, the communication line 7 is a single line laid in a loop shape in the merge region 10, so The identification signal transmitted by the receiver 2a, the left induction signal transmitter / receiver 3b, and the left induction signal transmitter / receiver 3c) is received by its own receiver (left induction signal transmitter / receiver 3a, right induction signal transmitter / receiver 2b, right induction signal transmitter / receiver 2c). It becomes impossible to receive, and the abnormality of the communication line 7 can be easily recognized. And it becomes possible to avoid a collision by stopping immediately all the conveyance trolley | bogies 1a, 1b, 1c which drive | work at the time of abnormality being detected.

また、図6に示すように、通信線7上に通信線7のインダクタンスをほぼ補償する程度の容量を有するコンデンサ21を直列に設けることにより、単線の通信線7の長さの増大に伴い増加するインピーダンスの増加を低減し、識別信号の信号レベルの低下を防ぐことができる。   Further, as shown in FIG. 6, the capacitor 21 having a capacity that substantially compensates the inductance of the communication line 7 is provided in series on the communication line 7, thereby increasing with an increase in the length of the single-line communication line 7. The increase of the impedance to be reduced can be reduced, and the decrease in the signal level of the identification signal can be prevented.

また、図8に示すように、右側送受信トランス18と左側送受信トランス19とを電気的に短絡する導線22を敷設し、導線22にコンデンサ23を設けることにより、右側送受信トランス18と左側送受信トランス19を搬送台車1上に近接して載置することにより発生する相互の空中を伝播する電磁界誘導干渉によるノイズを解消することができる。   Further, as shown in FIG. 8, a right transmission / reception transformer 18 and a left transmission / reception transformer 19 are provided by laying a conductive wire 22 that electrically short-circuits the right transmission / reception transformer 18 and the left transmission / reception transformer 19 and providing a capacitor 23 on the conductive wire 22. Can be eliminated by the electromagnetic field induced interference propagating in the air generated by placing the vehicle close to the transport carriage 1.

以上、本発明の好適な実施の形態について説明したが、本発明は、前記実施の形態に限定されるものではなく、特許請求の範囲に記載した限りにおいてさまざまな変更が可能なものである。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims.

上述の実施形態では、本発明である衝突防止制御システムを、半導体製品製造施設における、半導体基板や液晶表示装置用ガラス基板、フォトマスク用ガラス基板、光ディスク用基板等の処理対象物を搬送する搬送システムに適用しているが、それに限らない。例えば、工程内や工程間において処理対象物を搬送して処理を加えながら最終製品とする施設の搬送システムに加えて、電子部品や機械部品、化学品、食品、書類等の荷物を搬送する全業種の搬送システムに適用することができる。   In the above-described embodiment, the collision prevention control system according to the present invention is transported to transport a processing object such as a semiconductor substrate, a glass substrate for a liquid crystal display device, a glass substrate for a photomask, or an optical disk substrate in a semiconductor product manufacturing facility. Although it is applied to the system, it is not limited to this. For example, in addition to the facility transportation system that transports objects to be processed in and between processes, and processes them as final products, it also transports all electronic goods, machine parts, chemicals, food, documents, etc. It can be applied to industry transportation systems.

衝突防止制御システムの構成を示す図であり、OHT搬送システムの軌道における合流領域全体の上面図である。It is a figure which shows the structure of a collision prevention control system, and is a top view of the whole confluence | merging area | region in the track | orbit of an OHT conveyance system. OHT搬送システムの構成を示す断面図である。It is sectional drawing which shows the structure of an OHT conveyance system. OHT搬送システムの運行制御の構成を示すブロック図である。It is a block diagram which shows the structure of the operation control of an OHT conveyance system. 図3における合流領域の詳細説明図である。FIG. 4 is a detailed explanatory diagram of a merging region in FIG. 3. 本実施形態に係る衝突防止制御システムの処理について説明したフローチャートである。It is the flowchart explaining the process of the collision prevention control system which concerns on this embodiment. 通信線の構成を示す図である。It is a figure which shows the structure of a communication line. コンデンサの容量Cをパラメータとして、通信線の受信信号レベルの実測値を測定した結果を示す図である。It is a figure which shows the result of having measured the actual value of the received signal level of a communication line by using the capacity | capacitance C of a capacitor | condenser as a parameter. 右側送受信トランスと左側送受信トランスの構成について説明した図である。It is the figure explaining the structure of the right side transmission / reception transformer and the left side transmission / reception transformer. 搬送台車の制御部について説明したブロック図である。It is the block diagram explaining the control part of the conveyance trolley.

符号の説明Explanation of symbols

1、1a、1b、1c 搬送台車
2、2a、2b、2c 右側誘導信号送受信器(送信器又は受信器)
3、3a、3b、3c 左側誘導信号送受信器(送信器又は受信器)
5a、5b 送信側通信線
6a、6b 受信側通信線
7 通信線
8、8a、8b、8c 制御部
10 合流領域
11 衝突防止制御システム
18 右側送受信トランス
19 左側送受信トランス
21 コンデンサ
23 コンデンサ
40 軌道
1, 1a, 1b, 1c Carriage cart 2, 2a, 2b, 2c Right-side induction signal transmitter / receiver (transmitter or receiver)
3, 3a, 3b, 3c Left side induction signal transmitter / receiver (transmitter or receiver)
5a, 5b Transmission side communication line 6a, 6b Reception side communication line 7 Communication line 8, 8a, 8b, 8c Control unit 10 Junction area 11 Collision prevention control system 18 Right side transmission / reception transformer 19 Left side transmission / reception transformer 21 Capacitor 23 Capacitor 40 Orbit

Claims (5)

搬送台車が走行する軌道内の複数の流入ルートが合流する合流点を含む所定の合流領域に敷設された通信手段と、前記搬送台車に設置され、前記合流領域内において前記通信手段に対して流入ルートを示す固有の識別信号を送信する送信手段と、前記搬送台車に設置され、前記合流領域内において前記通信手段から前記識別信号を受信する受信手段と、前記搬送台車に設置され、前記受信手段で受信した前記識別信号を分析して走行を制御する制御手段と、を備える衝突防止制御システムであって、
前記通信手段は、前記合流領域にループ状に敷設された単線の通信手段であり、
前記制御手段は、自己の流入ルートと異なる流入ルートを示す前記識別信号を前記受信手段で検知している間は走行を停止することを特徴とする衝突防止制御システム。
A communication means laid in a predetermined merging area including a merging point where a plurality of inflow routes in a track on which the transport carriage travels, and a communication means installed in the transport trolley and flowing into the communication means in the merging area A transmitting means for transmitting a unique identification signal indicating a route; a receiving means for receiving the identification signal from the communication means in the merging area; and a receiving means for receiving the identification signal from the communication means in the merging region; A control means for controlling the running by analyzing the identification signal received in step, and a collision prevention control system comprising:
The communication means is a single-wire communication means laid in a loop in the merge area,
The collision prevention control system characterized in that the control means stops traveling while the receiving means detects the identification signal indicating an inflow route different from its own inflow route.
前記識別信号として、流入ルート毎に異なる、交流波形信号、パルス周波数波形信号、複数ビットからなるデジタル通信信号のいずれか一つまたはこれら2つ以上の組み合わせを用いることを特徴とする請求項1に記載の衝突防止制御システム。   2. The identification signal according to claim 1, wherein any one of an alternating current waveform signal, a pulse frequency waveform signal, and a digital communication signal composed of a plurality of bits, or a combination of two or more thereof, is used as the identification signal. The collision prevention control system described. 前記制御手段は、更に、自己が送信した前記識別信号を自己の前記受信手段で検知しなかった場合は前記通信手段に異常があると判断し、自己の走行を停止すると共に、前記軌道を走行する全ての搬送台車の走行を停止することを特徴とする請求項1または2に記載の衝突防止制御システム。   The control means further determines that the communication means is abnormal when the identification signal transmitted by the control means is not detected by the receiving means of the control means, stops its own travel, and travels on the track. 3. The collision prevention control system according to claim 1, wherein travel of all the transport carts to be stopped is stopped. 前記通信手段に、当該通信手段のインダクタンスをほぼ補償する程度の容量を有するコンデンサを直列に接続することを特徴とする請求項1〜3のいずれか一項に記載の衝突防止制御システム。   The collision prevention control system according to any one of claims 1 to 3, wherein a capacitor having a capacity to substantially compensate the inductance of the communication unit is connected in series to the communication unit. 前記搬送台車に、前記送信手段と前記受信手段とを電気的に短絡する結合線を敷設するとともに、当該短絡線にコンデンサを直列に接続することを特徴とする請求項1〜4のいずれか一項に記載の衝突防止制御システム。   5. A connecting wire for electrically short-circuiting the transmitting means and the receiving means is laid on the transport carriage, and a capacitor is connected in series to the short-circuited wire. The anti-collision control system according to item.
JP2003347825A 2003-10-07 2003-10-07 Anti-collision control system Expired - Fee Related JP4241306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347825A JP4241306B2 (en) 2003-10-07 2003-10-07 Anti-collision control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347825A JP4241306B2 (en) 2003-10-07 2003-10-07 Anti-collision control system

Publications (2)

Publication Number Publication Date
JP2005115590A true JP2005115590A (en) 2005-04-28
JP4241306B2 JP4241306B2 (en) 2009-03-18

Family

ID=34540222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347825A Expired - Fee Related JP4241306B2 (en) 2003-10-07 2003-10-07 Anti-collision control system

Country Status (1)

Country Link
JP (1) JP4241306B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053937A (en) * 2007-08-27 2009-03-12 Asyst Technologies Japan Inc Conveyance system and method for controlling conveyance system
WO2010131558A1 (en) * 2009-05-11 2010-11-18 株式会社ダイフク Goods transport facilities and goods transport method
WO2012108098A1 (en) * 2011-02-09 2012-08-16 村田機械株式会社 Guided transfer car system
CN107239073A (en) * 2016-03-29 2017-10-10 株式会社大福 The junction of two streams of conveying control device and conveying carrier passes through method
US9793147B2 (en) 2015-09-09 2017-10-17 Samsung Electronics Co., Ltd. Transporting system and transporting unit included therein
KR20190054688A (en) * 2017-11-14 2019-05-22 주식회사 에스에프에이 Carriage system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053937A (en) * 2007-08-27 2009-03-12 Asyst Technologies Japan Inc Conveyance system and method for controlling conveyance system
US8104722B2 (en) 2007-08-27 2012-01-31 Muratec Automation Co., Ltd Transporting system, and method of controlling the transporting system
WO2010131558A1 (en) * 2009-05-11 2010-11-18 株式会社ダイフク Goods transport facilities and goods transport method
CN102422238A (en) * 2009-05-11 2012-04-18 株式会社大福 Goods transport facilities and goods transport method
US9283935B2 (en) 2011-02-09 2016-03-15 Murata Machinery, Ltd. Rail guided vehicle system
JP2012164271A (en) * 2011-02-09 2012-08-30 Murata Mach Ltd Rail-guided truck system
WO2012108098A1 (en) * 2011-02-09 2012-08-16 村田機械株式会社 Guided transfer car system
US9793147B2 (en) 2015-09-09 2017-10-17 Samsung Electronics Co., Ltd. Transporting system and transporting unit included therein
US10056280B2 (en) 2015-09-09 2018-08-21 Samsung Electronics Co., Ltd. Transporting system and transporting unit included therein
CN107239073A (en) * 2016-03-29 2017-10-10 株式会社大福 The junction of two streams of conveying control device and conveying carrier passes through method
CN107239073B (en) * 2016-03-29 2022-12-13 株式会社大福 Conveying control device and confluence point passing method of conveying trolley
KR20190054688A (en) * 2017-11-14 2019-05-22 주식회사 에스에프에이 Carriage system
KR102010772B1 (en) * 2017-11-14 2019-10-21 주식회사 에스에프에이 Carriage system

Also Published As

Publication number Publication date
JP4241306B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
CN107239073B (en) Conveying control device and confluence point passing method of conveying trolley
US8104722B2 (en) Transporting system, and method of controlling the transporting system
JP5263613B2 (en) Goods transport equipment
JP3374668B2 (en) Mobile communication method and communication system
JP5741034B2 (en) Tracked cart system
JP4241306B2 (en) Anti-collision control system
JP3627507B2 (en) Dolly operation system
JPH0296206A (en) Sensor unit for traffic control of unmanned cart
JP3546279B2 (en) Transport equipment using moving objects
JP3491179B2 (en) Non-contact power receiving device
KR100208206B1 (en) Noncontact power distribution system
JP2002351546A (en) Unmanned carrier vehicle system
JP4352925B2 (en) Sensor control device for automatic guided vehicle and automatic guided system
JPH118904A (en) Non-contact power supply facility for carriage
JP4172160B2 (en) Dolly traveling system
US11897698B2 (en) Article transport facility
KR102641715B1 (en) Rail Integrated Induction Power Supply System
WO2023153000A1 (en) Non-contact power supply system and transport system
KR20240051048A (en) Contactless power feeding facility
JP3627506B2 (en) Dolly operation system
JPH07227004A (en) Non-contacting power feeding facility
JPH08308153A (en) Noncontact feeding facility
JPS61150952A (en) Controller for automatic coil carrying machine
JPH11327646A (en) Information transmission method and device by guide line communication
JP2001223618A (en) Truck running system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees