JP2005115165A - Reflection mirror - Google Patents

Reflection mirror Download PDF

Info

Publication number
JP2005115165A
JP2005115165A JP2003351193A JP2003351193A JP2005115165A JP 2005115165 A JP2005115165 A JP 2005115165A JP 2003351193 A JP2003351193 A JP 2003351193A JP 2003351193 A JP2003351193 A JP 2003351193A JP 2005115165 A JP2005115165 A JP 2005115165A
Authority
JP
Japan
Prior art keywords
optical
mold
resin
cavity
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003351193A
Other languages
Japanese (ja)
Inventor
Masakatsu Okubo
正勝 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeuchi Manufacturing Co Ltd
Original Assignee
Takeuchi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeuchi Manufacturing Co Ltd filed Critical Takeuchi Manufacturing Co Ltd
Priority to JP2003351193A priority Critical patent/JP2005115165A/en
Publication of JP2005115165A publication Critical patent/JP2005115165A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain ≥95% reflectance in an optical reflection mirror made of a thermoplastic resin. <P>SOLUTION: In an injection molding mold, the cavity face corresponding to the reflective face of the reflection mirror is formed from ceramics such as zirconia polished to ≤5 nm surface roughness, while other cavity face is formed from a steel material. As the thermoplastic resin, a polyphenylene sulfide resin composition or a cyclic olefin resin is used and injection molded to obtain a reflection mirror body having ≤7 nm surface roughness on the reflective face. The reflectance of ≥95% is obtained by vapor depositing Al as extremely thin as 0.2 μm on the reflective face having the above surface roughness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、反射率の極めて優れた光学的反射面を有する熱可塑性樹脂からなる反射鏡および、その製造方法に関する。   The present invention relates to a reflecting mirror made of a thermoplastic resin having an optical reflecting surface with extremely excellent reflectivity, and a manufacturing method thereof.

各種の光学機器において使用される光走査反射鏡など高精度を要求されるものから自動車、単車のバックミラーなど高反射率を求められるものなど種々の光学的反射鏡があり、従来、この種のものはガラスを用いて作製されていたが、コストダウンの要請や軽量化、耐衝撃性の向上、成形の容易性および取り扱いの簡易性などの点から熱可塑性樹脂製のものが使用されるようになってきた。   There are various optical reflectors such as optical scanning reflectors used in various optical devices, such as those requiring high accuracy, automobiles, single-vehicle rearview mirrors, etc. that require high reflectivity. Products were made using glass, but those made of thermoplastic resin seem to be used from the standpoints of cost reduction, weight reduction, impact resistance improvement, ease of molding and ease of handling. It has become.

この熱可塑性樹脂製反射鏡の本体は、射出成形方法によって成形されるのが一般的である。この成形方法は、成形機のシリンダー内で可塑化された溶融樹脂が金型内のゲート、ランナーを流動して成形品を模ったキャビテイ内に入り、そこでキャビテイおよびコアとの接触面を通じて冷却され、固化し、成形品となるのである。この溶融樹脂の流動中の挙動を説明すると、ゲート、ランナーおよびキャビテイ面に接触した樹脂は極薄い表面部分において温度が急速に低下し、流動性を失ってその場で固化し、表面層を形成する。その表面層より中心側にある溶融樹脂が前記の固化層より前方に押し出されてその先のキャビテイ面に接触してその瞬間に前記同様、固化し表面に固化層を形成する。この充填と固化の繰り返しによってキャビテイへの充填が完了し、成形品の内部まで所定温度に冷却されてキャビテイから取り出され成形品が得られるのであるが、この充填時における樹脂の冷却と充填の繰り返しにより生じる成形品表面の細かいフローマークが鏡面精度を低下させることになる。更に、このように射出成形が樹脂の加熱と冷却によってなされることから成形品に収縮、ヒケ、歪み等が生じることは避け得ないものとされている。 The main body of the thermoplastic resin reflecting mirror is generally molded by an injection molding method. In this molding method, the molten resin plasticized in the cylinder of the molding machine flows through the gates and runners in the mold and enters the cavity that simulates the molded product, where it is cooled through the contact surface between the cavity and the core. It solidifies and becomes a molded product. Explaining the behavior of the molten resin during flow, the resin that contacts the gate, runner and cavity surface rapidly decreases in temperature at the extremely thin surface, loses fluidity and solidifies in situ, forming a surface layer. To do. The molten resin located on the center side of the surface layer is pushed forward from the solidified layer and comes into contact with the cavity surface ahead of the solidified layer, and at the moment, as in the case described above, the solidified layer is formed on the surface. By repeating this filling and solidification, the filling of the cavity is completed, the inside of the molded product is cooled to a predetermined temperature and taken out from the cavity to obtain a molded product. The cooling and filling of the resin during the filling are repeated. The fine flow mark on the surface of the molded product generated by the above will lower the mirror surface accuracy. Further, since the injection molding is performed by heating and cooling the resin as described above, it is inevitable that shrinkage, sink marks, distortion, and the like occur in the molded product.

このようにして成形された熱可塑性樹脂製反射鏡の本体表面にアルミニューム(Al)などの金属を蒸着することによって光学反射面を得るのであるが、反射鏡の性能として重要な形状精度と光学的反射率は従来のガラス製のものと比べて優れているとは言えないのが現状であり、その原因は反射鏡の本体の表面粗さと金属蒸着層の厚さに原因があるものと考えられる。   The optical reflecting surface is obtained by vapor-depositing a metal such as aluminum (Al) on the surface of the thermoplastic resin reflecting mirror molded in this way. The current reflectivity is not superior to that of conventional glass, and the cause is thought to be due to the surface roughness of the reflector body and the thickness of the metal deposition layer. It is done.

そこで、熱可塑性樹脂の射出成形による成形品(反射鏡本体)のより良い鏡面(または、転写)精度を得る方法として次のようなものが提案されている。その1は、熱可塑性樹脂のガラス転移温度以上に加熱された金型のキャビテイに溶融樹脂を射出充填し、該キャビテイ内でこの樹脂を熱変形温度以下まで徐冷して成形品を取り出すもの。その2は、溶融樹脂をキャビテイ内に射出すると共に該樹脂中に加圧流体を導入して中空状の成形品(光学的反射部材)を得るもの。その3は、金型のキャビテイ面の一方を前後方向に摺動可能なキャビテイ駒とし、キャビテイに溶融樹脂を充填後、この駒を後退させて樹脂との間に空隙を形成すると共に他の樹脂面の一つ以上の樹脂面の熱伝導を他の金型に接している樹脂面と比較して低下させるものなどがある。 Therefore, the following method has been proposed as a method for obtaining better mirror surface (or transfer) accuracy of a molded product (reflecting mirror body) by injection molding of a thermoplastic resin. No. 1 is one in which a molten resin is injected and filled into a cavity of a mold heated to a glass transition temperature or higher of a thermoplastic resin, and the molded article is taken out by gradually cooling the resin to a temperature equal to or lower than the thermal deformation temperature in the cavity. The second is to inject a molten resin into the cavity and introduce a pressurized fluid into the resin to obtain a hollow molded product (optical reflection member). Part 3 is a cavity piece slidable in the front-rear direction on one of the mold cavity surfaces. After filling the cavity with molten resin, the piece is moved backward to form a gap with the resin and another resin. There are those that reduce the thermal conductivity of one or more resin surfaces of a surface as compared to a resin surface in contact with another mold.

また、その4として、反射鏡本体の成形材料として、無機充填材を含有するポリフェニレンサルファイド樹脂、充填材を実質的に含有しないポリエーテルサルフォン樹脂および充填材を実質的に含有しないポリエーテルイミド樹脂の何れかを用いると共に、反射鏡本体のアルミニューム蒸着層と接触する部分を表面粗度Ry0.1μ以下に研磨された金型で成形する技術が開示されている。
特開昭64−38421号公報 特開2002−086517公報 特開2001−105449公報 特開平3−208201号公報
Further, as No. 4, as a molding material for the reflector body, a polyphenylene sulfide resin containing an inorganic filler, a polyether sulfone resin substantially free of a filler, and a polyetherimide resin substantially free of a filler In addition, a technique is disclosed in which a portion of the reflector body that is in contact with the aluminum vapor deposition layer is molded with a mold having a surface roughness Ry of 0.1 μm or less.
JP-A-64-38421 JP 2002-086517 A JP 2001-105449 A JP-A-3-208201

熱可塑性樹脂からなる反射鏡基材のより良い鏡面を得ようとする前記方法の1においては、成形品中に応力ひずみが小さくなり主としてプラスチックレンズの成形に利用されているが成形時間が長くなり、能率的ではない。前記成形方法のその2は成形品に生じるヒケを加圧流体で形成した中空状部で吸収することによって、キャビテイ面に密着する成形品の表面のヒケを解消しようとするもので転写性には優れるが、金型構造、成形操作共に複雑で製品のコストアップにつながる。前記その3の方法においては、キャビテイ中の成形品すなわち反射鏡基材の片面とキャビテイ面との間に間隙を設けることから、その樹脂面は熱伝導による冷却がなされないことになり、この面に優先的にヒケが発生することになるが、成形ショット時間が長くなり、コストアップにつながることは前記と同様である。また、その4は、成形材料および金型キャビテイ面の両面から表面平滑性を実現するもので優れたものであるが、射出成形方法に特有な流動中の樹脂の冷却によるフローマークの発生があり十分な鏡面が得られないのが現状である。   In one of the above methods for obtaining a better mirror surface of a reflecting mirror base material made of a thermoplastic resin, the stress strain is reduced in the molded product, which is mainly used for molding a plastic lens, but the molding time becomes longer. Not efficient. Part 2 of the molding method is to absorb the sink marks generated in the molded product with a hollow portion formed of a pressurized fluid, thereby eliminating the sink marks on the surface of the molded product that is in close contact with the cavity surface. Although excellent, both the mold structure and molding operation are complex, leading to increased product costs. In the third method, since a gap is provided between one side of the molded article in the cavity, that is, the reflector base and the cavity surface, the resin surface is not cooled by heat conduction. In the same manner as described above, the sink mark is preferentially generated, but the molding shot time becomes longer and the cost is increased. In addition, No. 4 achieves surface smoothness from both sides of the molding material and mold cavity surface, and is excellent. However, there is a flow mark due to cooling of the resin during the flow, which is peculiar to the injection molding method. The current situation is that a sufficient mirror surface cannot be obtained.

本発明に係る光学反射鏡における反射鏡本体には、内部離型剤を含有せず、且つ、球状の無機質充填材を添加した耐熱性のポリフェニレンサルファイド樹脂組成物(以下、PPSと称す)を使用し、且つ、所要キャビテイ面に鏡面研磨のセラミックスを付設した射出成形用金型内を使用して樹脂の流動性とキャビテイ面への密着性を確保したもので、鏡面転写性がよく、また、無可塑の樹脂材料を使用したことにより成形品からの可塑剤の揮発がないものとして鏡面の品質を安定化した。 The reflecting mirror body in the optical reflecting mirror according to the present invention uses a heat-resistant polyphenylene sulfide resin composition (hereinafter referred to as PPS) that does not contain an internal mold release agent and that contains a spherical inorganic filler. In addition, the fluidity of the resin and the adhesion to the cavity surface are ensured by using the inside of an injection mold with mirror-polished ceramics attached to the required cavity surface, and the mirror surface transferability is good. By using an unplasticized resin material, the quality of the mirror surface was stabilized on the assumption that the plasticizer from the molded product was not volatilized.

耐熱性を要しない光学反射鏡においては、環状オレフィン系樹脂材料を用いた。この環状オレフィン系樹脂および上記のPPSにより成形する反射鏡本体の厚さを2mm以下とすることによって厚さ方向の成形収縮を極小とし、反射面にヒケが生じないものとした。 In an optical reflector that does not require heat resistance, a cyclic olefin-based resin material was used. By making the thickness of the reflector main body molded with this cyclic olefin-based resin and the above PPS 2 mm or less, molding shrinkage in the thickness direction is minimized, and sink marks are not generated on the reflecting surface.

なお、その製造手段として、射出成形用金型のキャビテイ面の一部、すなわち、光学的反射面を転写形成するキャビテイ面を、硬度HRc62以上に焼入れをしてその表面粗さを5nm以下にまで鏡面研磨した鋼材で構成した場合にも比較的よい鏡面性が得られた。 As a manufacturing method thereof, a part of the cavity surface of the injection mold, that is, the cavity surface that transfers and forms the optical reflecting surface is quenched to a hardness of HRc62 or more, and the surface roughness is reduced to 5 nm or less. A relatively good specularity was also obtained when the mirror-polished steel material was used.

上記のように、キャビテイの光学的反射面形成部をセラミックスとしたことによりキャビテイ内を流動中の樹脂は金型との熱伝導が抑制されて早期の固化層形成が抑えられフローマークの発生を最小限に止めることになった。したがって、光学的反射面の鏡面性が向上した。このようにして、熱可塑性樹脂からなる光学反射鏡本体の表面粗さを5nm以下にしたことにより、その表面へのAl蒸着を極めて薄く(0.2ミクロン以下)しても十分な光沢が得られ、反射鏡面にひずみを生じることなく光反射率95%以上の性能を得ることが可能になった。また、この光学反射鏡の本体に銀を蒸着することによって更に光反射率を向上させることができた。 As mentioned above, the optical reflection surface forming part of the cavity is made of ceramics, so that the resin flowing in the cavity is suppressed from heat conduction with the mold, so that early solidified layer formation is suppressed and flow marks are generated. It was to be kept to a minimum. Therefore, the specularity of the optical reflecting surface is improved. Thus, by making the surface roughness of the optical reflector body made of thermoplastic resin 5 nm or less, sufficient gloss can be obtained even if the Al deposition on the surface is extremely thin (0.2 microns or less). As a result, it is possible to obtain a performance with a light reflectance of 95% or more without causing distortion on the reflecting mirror surface. Further, the light reflectance could be further improved by depositing silver on the main body of the optical reflecting mirror.

本発明に係る熱可塑性樹脂を基材とした光学的反射鏡は、熱可塑性樹脂組成物と射出成形用金型およびAl蒸着層の三者の相互関係からなるものである。まず、熱可塑性樹脂の選定は、光学的反射鏡の使用条件において耐熱強度を必要とする場合には無機充填材を含有するPPS樹脂組成物を、耐熱性を要件としないときは環状オレフィン系樹脂を選定する。   The optical reflecting mirror based on the thermoplastic resin according to the present invention comprises a three-way relationship between a thermoplastic resin composition, an injection mold and an Al vapor deposition layer. First, the thermoplastic resin is selected by selecting a PPS resin composition containing an inorganic filler when heat resistance is required under the conditions of use of the optical reflector, and a cyclic olefin resin when heat resistance is not a requirement. Is selected.

鋼材からなる射出成形用金型において、光学的反射面を転写するキャビテイ部には表面粗さ5nm以下の鏡面に研磨されたセラミックス(ジルコニア系)のブロックを入れ子状に埋設することが望ましい(図1)。また、このキャビテイ面に鋼材を用いるときには鏡面研磨性、耐蝕性、焼入れ硬化に優れたステンレス鋼(SUS)、マルエージング鋼、ダイス鋼(SKD)を選定する。   In an injection mold made of steel, it is desirable to embed a ceramic (zirconia-based) block polished in a mirror surface with a surface roughness of 5 nm or less in a cavity to transfer the optical reflecting surface in a nested manner (see FIG. 1). Further, when using a steel material for the cavity surface, stainless steel (SUS), maraging steel, and die steel (SKD) excellent in mirror polishing, corrosion resistance, and quench hardening are selected.

射出成形された樹脂製反射鏡本体の反射鏡面に蒸着するAlは3ミクロン以下、望ましくは2.0ミクロン以下である。   Al deposited on the reflecting mirror surface of the injection-molded resin reflecting mirror body is 3 microns or less, preferably 2.0 microns or less.

本発明に係る熱可塑性樹脂製反射鏡の実施例について詳細に説明する。先ず、(a)光源に近接して設置される光学反射鏡用の成形材料としては、耐熱性を求められることから市販のPPS樹脂をマトリックスとし、これに無機質中空状充填材を前記PPS70重量%に対して30重量%を混合、充填した樹脂組成物とし、また、比較例として、(b)繊維状の無機充填材を前記PPSに対して20重量%を混練した樹脂組成物を選定した。これらのPPS樹脂組成物は耐熱性、表面光沢性、寸法安定性、および機械的強度などの諸要求特性を備えている。   Examples of the thermoplastic resin reflecting mirror according to the present invention will be described in detail. First, (a) as a molding material for an optical reflector installed in the vicinity of a light source, since heat resistance is required, a commercially available PPS resin is used as a matrix, and an inorganic hollow filler is added to the PPS 70% by weight. As a comparative example, a resin composition in which (b) 20% by weight of a fibrous inorganic filler was kneaded with respect to the PPS was selected. These PPS resin compositions have various required properties such as heat resistance, surface gloss, dimensional stability, and mechanical strength.

上記の無機質中空状充填材として使用できるものの代表的なものはガラスバルーン、シラスバルーン、アルミナシリケートバルーン、およびシリカバルーンなどがある。これらの中空体はいずれも使用できるが、破裂強度の大きいガラスバルーンがPPS樹脂に対しての濡れ性も良く、成形品の強度向上のみならず、良好な表面粗さ並びに表面光沢を得るに最適であった。上記、以外のバルーンでもよく、また、カップリング処理をしても良いことは勿論である。   Typical examples of the inorganic hollow filler that can be used include glass balloons, shirasu balloons, alumina silicate balloons, and silica balloons. Any of these hollow bodies can be used, but glass balloons with high burst strength have good wettability to PPS resin and are ideal for obtaining good surface roughness and surface gloss as well as improved strength of molded products. Met. Of course, balloons other than those described above may be used, and a coupling process may be performed.

なお、本発明においては、PPS樹脂に内部可塑剤を含有しないものを選定したところ、後工程であるAl蒸着中などに可塑剤の抽出がなく、光反射率の向上に欠かせない条件であることが分かった。 In the present invention, when a PPS resin that does not contain an internal plasticizer is selected, the plasticizer is not extracted during Al deposition, which is a subsequent process, and is a condition indispensable for improving the light reflectance. I understood that.

反射鏡本体を射出成形する金型1は、図1に示すように可動側型板2にはキャビテイ3を設け、固定側型板4には前記キャビテイ3に対向する部分にセラミックスブロックからなる入れ子5を嵌入した。この入れ子5の前記キャビテイ3との対向面(固定側のキャビテイ面)は表面粗さを5nm以下に研磨している。図1において6はスプルー、7はランナー、8はゲート、9は射出成形機のノズルであり、可動側、固定側の型板には適所に金型温度調節用の水管が穿孔され、またはヒーターが組み込まれていることは一般的な金型と同様である。 As shown in FIG. 1, the mold 1 for injection molding of the reflecting mirror body is provided with a cavity 3 on the movable side mold plate 2, and the stationary side mold plate 4 is nested with a ceramic block in a portion facing the cavity 3. 5 was inserted. The surface of the insert 5 facing the cavity 3 (the cavity surface on the fixed side) has a surface roughness of 5 nm or less. In FIG. 1, 6 is a sprue, 7 is a runner, 8 is a gate, 9 is a nozzle of an injection molding machine, and a mold tube on the movable side and the stationary side is punched with water pipes for adjusting the mold temperature at appropriate positions, or a heater. Is incorporated in the same manner as a general mold.

上記の金型を射出成形機に取り付け、前記のPPS樹脂組成物(a)および(b)を材料として光学反射鏡本体を成形した。この成形において樹脂の溶融温度を320℃になるようにシリンダー温度を設定し、前記金型の温度を140~150℃とした。この成形条件により、射出成形機のノズル9より所定圧力(1次圧)をもって射出された溶融樹脂Mは金型のスプルー6、ランナー7、ゲート8を経てキャビテイ3に至る。その間、金型面に接触した溶融樹脂の薄い表面層は金型との熱伝導によって冷却され流動性を失い薄い固化層となる。この固化した層は金型表面に張り付き前進を止め、この固化層より内径側にある溶融樹脂と金型との熱伝導を遮断する作用をなす。したがって、この固化層より内径側にある溶融樹脂は保温されて前方に押し出され、その先端の一部分が前記同様に金型面と接触して固化し新たな断熱層を形成するという前進、冷却、固化を繰り返して溶融樹脂Mはゲート8からキャビテイ3に至り、さらにキャビテイ3の鋼材で形成されたキャビテイ面側においても前記同様に金型表面との接触による冷却固化と更なる充填が繰り返される。これによって成形品の表面に細かいフローマークFが発生するが、他方のキャビテイ面、すなわち表面粗さを5nm以下に研磨されたセラミックスの入れ子5面に接触する溶融樹脂は、該セラミックスの熱伝導性が極端に小さいことから容易に固化することがなく末端までの充填中良好な流動性を保つ。   The mold was attached to an injection molding machine, and an optical reflector body was molded using the PPS resin compositions (a) and (b) as materials. In this molding, the cylinder temperature was set so that the melting temperature of the resin was 320 ° C., and the temperature of the mold was 140 to 150 ° C. Under this molding condition, the molten resin M injected at a predetermined pressure (primary pressure) from the nozzle 9 of the injection molding machine reaches the cavity 3 through the sprue 6, runner 7 and gate 8 of the mold. Meanwhile, the thin surface layer of the molten resin in contact with the mold surface is cooled by heat conduction with the mold and loses fluidity to become a thin solidified layer. The solidified layer sticks to the mold surface and stops moving forward, and acts to block the heat conduction between the molten resin located on the inner diameter side of the solidified layer and the mold. Therefore, the molten resin on the inner diameter side from the solidified layer is kept warm and pushed forward, and a part of the tip contacts the mold surface in the same manner as above to solidify and form a new heat insulating layer, cooling, The solidification is repeated, and the molten resin M reaches the cavity 3 from the gate 8. Further, on the cavity surface side formed of the steel material of the cavity 3, cooling solidification by contact with the mold surface and further filling are repeated in the same manner as described above. As a result, a fine flow mark F is generated on the surface of the molded product, but the molten resin contacting the other cavity surface, that is, the ceramic nesting surface 5 polished to a surface roughness of 5 nm or less is the thermal conductivity of the ceramic. Since it is extremely small, it does not easily solidify and maintains good fluidity during filling to the end.

キャビテイ内への樹脂の充填が終了した後、通例により射出成形機により1次圧より小さい2次圧(又は保持圧とも称される。)をこの充填樹脂に加えて成形収縮分の樹脂を補充した。この間、キャビテイ3中の溶融樹脂は金型により冷却されるまでセラミックスの入れ子5面に密着しており、金型開放後、成形品はこの面から離れ難い状態であったが、鏡面の転写性は極めて良好で成形品の表面にフローマークの発生も全くなかった。なお、光学反射面側の収縮、ヒケの発生は金型のキャビテイ3の深さ(成形品の厚さ)を2mm以下、望ましくは1.5mm以下とすべきであった。   After the filling of the resin into the cavity is completed, a secondary pressure smaller than the primary pressure (also referred to as holding pressure) is usually added to the filled resin by an injection molding machine to replenish the resin for molding shrinkage. did. During this time, the molten resin in the cavity 3 was in close contact with the surface 5 of the ceramic insert until it was cooled by the mold, and after the mold was opened, the molded product was difficult to leave from this surface. Was very good and no flow mark was generated on the surface of the molded product. The shrinkage and sink on the optical reflecting surface side should be 2 mm or less, preferably 1.5 mm or less, for the depth (cavity of the molded product) of the cavity 3 of the mold.

このように成形した光学反射鏡本体の鏡面研磨されたセラミックス面5に接していた成形品の面、すなわち光学的反射面は表面粗さ5〜7nmであった。この面に0.2μ厚さのアルミニューム蒸着を施したところ、前記(a)の材料による成形品においては95%以上、(b)の材料による成形品においては93%以上の光反射率が得られた。このように材料(a)と材料(b)とでは光反射率において1〜2%の差があった。また、特筆すべきは、従来の熱可塑性樹脂製の光学的反射鏡においては2〜3μのAl蒸着層を形成することでようやく90%程度の反射率を得ていたのに対して、本発明の反射鏡においては0.2μと非常に薄い蒸着層で93%以上の光反射率を得たことであり、また、そのように蒸着層が薄いことによって平滑な面が得られたことである。 The surface of the molded product that was in contact with the mirror-polished ceramic surface 5 of the optical reflector body thus molded, that is, the optical reflective surface, had a surface roughness of 5 to 7 nm. When 0.2 μm thick aluminum vapor deposition was applied to this surface, the light reflectance of 95% or more was obtained in the molded product made of the material (a), and 93% or higher in the molded product made of the material (b). Obtained. Thus, there was a difference of 1 to 2% in light reflectance between the material (a) and the material (b). In addition, it should be noted that, in the conventional optical reflector made of thermoplastic resin, a reflectance of about 90% was finally obtained by forming an Al deposited layer of 2 to 3 μm, whereas the present invention In this reflector, a light reflectance of 93% or more was obtained with a very thin vapor deposition layer of 0.2 μm, and a smooth surface was obtained by such a thin vapor deposition layer. .

耐熱性に問題のない用途に使用する光学反射鏡本体について、熱可塑性樹脂材料として環状オレフィン系樹脂組成物を用いた。この環状オレフィン系樹脂にはトーパス(独Ticona社製)、アペル(三井化学社製)、ゼオネックス(日本ゼオン社製)、アートン(日本合成ゴム社製)などの商品名になる市販品がある。さらに、これらの環状オレフィン樹脂に不飽和カルボン酸または不飽和カルボン酸無水物をグラフトおよび/又は共重合して変性した樹脂組成物を前記の市販PPS樹脂にブレンドしたものとして特開2003−128865に開示の樹脂もある。ここでは、環状オレフィン系樹脂としてトーパス(独Ticona社製)を使用した。 A cyclic olefin resin composition was used as the thermoplastic resin material for the optical reflector body used in applications where there was no problem with heat resistance. Examples of the cyclic olefin-based resin include commercially available products such as TOPAS (manufactured by Ticona, Germany), Apel (manufactured by Mitsui Chemicals), ZEONEX (manufactured by ZEON CORPORATION), ARTON (manufactured by Nippon Synthetic Rubber Company), and the like. Further, JP-A-2003-128865 discloses that a resin composition obtained by grafting and / or copolymerizing an unsaturated carboxylic acid or an unsaturated carboxylic acid anhydride with these cyclic olefin resins is blended with the commercially available PPS resin. There are also disclosed resins. Here, TOPAS (manufactured by Ticona) was used as the cyclic olefin resin.

上記の環状オレフィン系樹脂を射出成形機のシリンダーで溶融温度300℃加熱し、100〜110℃に加熱した金型に射出充填した。この場合、金型のキャビテイ部の厚さを2.5mm、2.0mmおよび1.5mmの3種類として成形した。これにより得られた反射鏡本体において金型のセラミックスからなるキャビテイ面5に密接した反射面は殆んどフローマークを発生することなくその表面粗さ5nm以下の鏡面が得られた。この場合、前記金型のキャビテイ部厚さ1.5mmで成形したものが最も良好であった。さらに、この反射面にAl蒸着層を0.2ミクロンの厚さに形成したところ95%以上の光反射率が得られた。この場合においても金型のキャビテイ3部の深さ(成形品の厚さ)が2mm(望ましくは1.5mm)以下とすべきことが分かった。   The above cyclic olefin-based resin was heated by a cylinder of an injection molding machine at a melting temperature of 300 ° C. and injected into a mold heated to 100 to 110 ° C. In this case, the thickness of the cavity portion of the mold was molded into three types of 2.5 mm, 2.0 mm, and 1.5 mm. As a result, the reflecting surface close to the cavity surface 5 made of the ceramics of the mold in the reflecting mirror main body obtained a mirror surface having a surface roughness of 5 nm or less with almost no flow mark. In this case, the mold molded with a cavity portion thickness of 1.5 mm was the best. Furthermore, when an Al vapor deposition layer was formed to a thickness of 0.2 microns on this reflecting surface, a light reflectance of 95% or more was obtained. Also in this case, it was found that the depth of the cavity part 3 (thickness of the molded product) of the mold should be 2 mm (preferably 1.5 mm) or less.

これに対して、市販の環状オレフィン系樹脂(ゼオネックスE48R:日本ゼオン社製)を前記環状オレフィン系樹脂組成物と同様の条件で光学反射鏡本体を射出成形した。この場合、光学反射面の表面粗さ7〜9nmと若干粗くなったが、これに前記同様のAl蒸着を施すと89%以上の光反射率が得られた。 On the other hand, a commercially available cyclic olefin resin (ZEONEX E48R: manufactured by Nippon Zeon Co., Ltd.) was injection molded on the optical reflector body under the same conditions as the cyclic olefin resin composition. In this case, the surface roughness of the optical reflecting surface was slightly roughened to 7 to 9 nm. However, when Al deposition similar to that described above was performed, a light reflectance of 89% or more was obtained.

また、前記の光反射面を転写するキャビテイ面を硬度HRc62以上に焼入れ硬化し、表面粗さを5nm以下に研磨した鋼材で形成した金型で、前記条件と前記樹脂材料で光学反射鏡本体を成形した場合の光学反射面の表面粗さは、セラミックスの入れ子5によるものより若干悪くなったが、アンダーコートおよびサーフェースコート各0.1ミクロンのAl蒸着をすることによって光反射率が89%以上の反射面が得られた。 In addition, a mold formed of a steel material in which the cavity surface for transferring the light reflecting surface is hardened by hardening to a hardness of HRc 62 or more and polished to a surface roughness of 5 nm or less, the optical reflector main body is formed with the above conditions and the resin material. The surface roughness of the optical reflecting surface when molded was slightly worse than that due to the ceramic insert 5, but the light reflectance was 89% by depositing Al of 0.1 micron each of the undercoat and the surface coat. The above reflecting surface was obtained.

キャビテイ面を平面粗さ5nm以下の鏡面に研磨した金型を用い、PPS樹脂組成物または環状オレフィン系樹脂を材料とし射出成形を行い、その光学反射面に0.2ミクロン以下のAl蒸着層を形成することによって良好な反射率が得られることになった。熱可塑性樹脂組成物による軽量な光学反射鏡として各種の光学機器に使用できる。   Using a mold whose cavity surface is polished to a mirror surface with a surface roughness of 5 nm or less, injection molding is performed using a PPS resin composition or a cyclic olefin resin as a material, and an Al vapor deposition layer of 0.2 microns or less is formed on the optical reflection surface. A good reflectance can be obtained by the formation. It can be used in various optical devices as a lightweight optical reflector made of a thermoplastic resin composition.

本発明に係る金型の一部を示した中央断面図である。It is the center sectional view showing a part of metallic mold concerning the present invention. 金型内での溶融樹脂の流動状況を示した要部の断面図である。It is sectional drawing of the principal part which showed the flow condition of the molten resin within a metal mold | die.

符号の説明Explanation of symbols

1 金型
2 可動側型板
3 キャビテイ
4 固定側型板
5 入れ子
6 スプルー
7 ランナー
8 ゲート
9 ノズル
1 Mold 2 Movable mold 3 Cavity 4 Fixed mold 5 Nest 6 Sprue 7 Runner 8 Gate 9 Nozzle

Claims (6)

熱可塑性樹脂製光学反射鏡において、その反射鏡本体はポリフェニレンサルファイド樹脂組成物または環状オレフィン系樹脂を用い、前記反射鏡本体を成形する射出成形用金型については前記反射鏡本体の光学反射面を転写形成するキャビテイ面の表面粗さを5nm以下の鏡面とし、これにより射出成形して得られた反射鏡本体の光学反射面にアルミニュームまたは銀の蒸着層を0.2μ以下の厚さに形成したことを特徴とする光学反射鏡。 In the optical reflecting mirror made of thermoplastic resin, the reflecting mirror body uses a polyphenylene sulfide resin composition or a cyclic olefin resin, and the optical reflecting surface of the reflecting mirror body is used for an injection mold for molding the reflecting mirror body. The surface roughness of the cavity surface to be transferred is 5 nm or less, and an aluminum or silver deposition layer is formed to a thickness of 0.2 μ or less on the optical reflecting surface of the reflecting mirror body obtained by injection molding. An optical reflector characterized by that. 熱可塑性樹脂製光学反射鏡において、反射鏡本体がポリフェニレンサルファイド樹脂を70〜95重量%に対して無機質中空状充填材5〜30重量%を添加し、且つ、内部可塑剤を含有しないポリフェニレンサルファイド樹脂組成物を材料としたことを特徴とする請求項1記載の光学反射鏡本体。   In an optical reflector made of a thermoplastic resin, the reflector body is a polyphenylene sulfide resin containing 5-30% by weight of an inorganic hollow filler with respect to 70-95% by weight of polyphenylene sulfide resin and containing no internal plasticizer. The optical reflector body according to claim 1, wherein the composition is a material. 熱可塑性樹脂製光学反射鏡本体の光学反射面を転写形成する金型のキャビテイ面が表面粗さ5nm以下に研磨されたセラミックスによって形成されていることを特徴とする請求項1記載の射出成形用金型。   2. The mold for injection molding according to claim 1, wherein the cavity surface of the mold for transferring and forming the optical reflecting surface of the optical reflector body made of thermoplastic resin is formed of ceramics having a surface roughness of 5 nm or less. Mold. 反射鏡本体の光学反射面を転写形成するためのキャビテイ面が硬度HRc62以上で、且つ、その表面粗さを5nm以下に研磨された鋼材によって形成されていることを特徴とする請求項1記載の射出成形用金型。 The cavity surface for transferring and forming the optical reflecting surface of the reflecting mirror body is formed of a steel material having a hardness of HRc 62 or more and a surface roughness of 5 nm or less. Injection mold. 光学反射面を転写形成する金型において、少なくとも光反射鏡面を形成する部分のキャビテイ間隙が2mm以下であることに特徴を有する請求項1、請求項2、請求項3、請求項4記載の光学反射鏡用射出成形用金型。   5. The optical device according to claim 1, wherein a cavity gap of at least a portion forming the light reflecting mirror surface is 2 mm or less in the mold for transferring and forming the optical reflecting surface. Injection mold for reflectors. 光学反射面の表面粗さが5nm以下になる熱可塑性樹脂製光学反射鏡本体にアルミニューム蒸着層を0.2μ〜0.5μの厚さに形成したことを特徴とする請求項1記載の光学反射鏡。
The optical deposition surface according to claim 1, wherein an aluminum vapor deposition layer is formed to a thickness of 0.2 μm to 0.5 μm on a thermoplastic resin optical reflecting mirror main body having a surface roughness of 5 nm or less. Reflector.
JP2003351193A 2003-10-09 2003-10-09 Reflection mirror Pending JP2005115165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351193A JP2005115165A (en) 2003-10-09 2003-10-09 Reflection mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351193A JP2005115165A (en) 2003-10-09 2003-10-09 Reflection mirror

Publications (1)

Publication Number Publication Date
JP2005115165A true JP2005115165A (en) 2005-04-28

Family

ID=34542534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351193A Pending JP2005115165A (en) 2003-10-09 2003-10-09 Reflection mirror

Country Status (1)

Country Link
JP (1) JP2005115165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343548A (en) * 2005-06-09 2006-12-21 Takeuchi Seisakusho:Kk Resin base material of resin reflecting mirror and its manufacturing method
JP2007320148A (en) * 2006-05-31 2007-12-13 Nissha Printing Co Ltd Mold for simultaneous molding and painting of cover part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343548A (en) * 2005-06-09 2006-12-21 Takeuchi Seisakusho:Kk Resin base material of resin reflecting mirror and its manufacturing method
JP2007320148A (en) * 2006-05-31 2007-12-13 Nissha Printing Co Ltd Mold for simultaneous molding and painting of cover part

Similar Documents

Publication Publication Date Title
JP3382281B2 (en) Mold for thermoplastic resin injection molding
JP4135304B2 (en) Manufacturing method of mold for molding optical element
JP5259461B2 (en) Method of forming integrally molded product of metallic glass and polymer material, and molding device for integrally molded product
JP4815897B2 (en) Injection mold and injection molding method
JP2006044244A (en) Mold for injection molding and injection molding method
JP4787549B2 (en) Resin substrate for resin reflector and method for producing the same
JP3719826B2 (en) Mold assembly and method of manufacturing molded product
JP2005115165A (en) Reflection mirror
JP4650514B2 (en) Optical element molding method
JP4130007B2 (en) Mold assembly for molding thermoplastic resin and method for producing molded article
JP4057385B2 (en) Molding method of plastic molded product and injection mold
WO2011040186A1 (en) Device for manufacturing resin molded articles for use in optical elements, and method for manufacturing optical elements
JP4371525B2 (en) Optical reflection member made of thermoplastic resin and method for manufacturing the same
JP2001079889A (en) Mold
JPH11245258A (en) Method for molding crystalline thermoplastic resin
JP2001188113A (en) Optical reflective member made of thermoplastic resin
JP3421188B2 (en) Mold assembly for injection compression molding and injection compression molding method
JP4227712B2 (en) Optical reflecting member made of thermoplastic resin
JP2010094867A (en) Injection molding die for cylindrical molding, injection molding method, and molding
JP4320179B2 (en) Injection molding method and mold for thermoplastic member having no weld line, especially spectacle lens
JP2002086517A (en) Method for manufacturing plastic molded product and mold therefor
JP2010143129A (en) Method for molding resin lens
JP2006150734A (en) Method for molding optical element and mold
JP2001096584A (en) Plastic molding apparatus
JP3549341B2 (en) Molding method of molded article made of polymer alloy material