JP2005114400A - Method for measuring optical characteristic, antireflection film, optical system, and projection aligner - Google Patents

Method for measuring optical characteristic, antireflection film, optical system, and projection aligner Download PDF

Info

Publication number
JP2005114400A
JP2005114400A JP2003345466A JP2003345466A JP2005114400A JP 2005114400 A JP2005114400 A JP 2005114400A JP 2003345466 A JP2003345466 A JP 2003345466A JP 2003345466 A JP2003345466 A JP 2003345466A JP 2005114400 A JP2005114400 A JP 2005114400A
Authority
JP
Japan
Prior art keywords
measured
antireflection film
measurement
film
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003345466A
Other languages
Japanese (ja)
Inventor
Takeshi Murata
剛 村田
Masaki Harada
壮基 原田
Hitoshi Ishizawa
均 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003345466A priority Critical patent/JP2005114400A/en
Publication of JP2005114400A publication Critical patent/JP2005114400A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To control a refractive index value which meets requests for precise measurements, when measuring optical characteristics of a set of quasi-parallel flat plates by using an antireflection film as a measurement auxiliary means, and to enable the antireflection film to be removed after completing the measurement, without changing surface states of an object to be measured. <P>SOLUTION: The antireflection film 12 which has an antireflective function corresponding to the wavelength of incident light 13 used for measuring the object to be measured, and which can be removed without grinding the surface of the object to be measured, is formed on the object to be measured, and then the optical characteristics of the object to be measured is measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、干渉計計測の補助手段として用いられる反射防止膜を用いて実施する計測方法、光学部品の反射を防止する反射防止膜、この計測方法により計測されたレンズ、プリズム、反射鏡等の光学素子を備えた光学系、及びこの光学系を備えた投影露光装置に関する。   The present invention relates to a measurement method implemented using an antireflection film used as an auxiliary means for interferometer measurement, an antireflection film for preventing reflection of optical components, a lens, a prism, a reflector, and the like measured by this measurement method. The present invention relates to an optical system including an optical element and a projection exposure apparatus including the optical system.

光学部品は一般的に研磨、もしくはプレスにより所望の形に加工され、その形状が設計精度内に入っていることを確認して使用される。特に精密な光学系に用いられる光学部品の場合、加工技術と同じくらい計測精度の良否が光学系の性能に影響を与えるため、特許文献1に示すように、より精度の高い計測技術が求められてきた。   Optical parts are generally processed by grinding or pressing into a desired shape, and used after confirming that the shape is within the design accuracy. In particular, in the case of an optical component used in a precision optical system, the accuracy of measurement accuracy affects the performance of the optical system as much as the processing technology. Therefore, as shown in Patent Document 1, a measurement technology with higher accuracy is required. I came.

ところが、準平行平面板のような形状の被計測物を評価する場合、光入射面と光出射面との間で、光が何度も反射を繰り返す多重反射により、干渉計の観察像に必要な情報以外の縞が発生するという問題が存在した。ここでいう、準平行平面板とは、2つの光学研磨面の双方、又はどちらか一方に微妙なパワーを持ったものを含む平行平面形状の光学基板を意味する。以下、PP板(Plane Parallel)と略す。   However, when evaluating an object to be measured such as a quasi-parallel flat plate, it is necessary for the observation image of the interferometer due to multiple reflections in which light is repeatedly reflected between the light incident surface and the light exit surface. There was a problem that fringes other than unnecessary information were generated. The term “quasi-parallel plate” as used herein means an optical substrate having a parallel plane shape including a subtle power on both or one of the two optical polishing surfaces. Hereinafter, it is abbreviated as a PP plate (Plane Parallel).

図7は、反射波面計測時の概念図である。以下、基板面10aを参照面11a側に設置した場合を例に説明する。図7に示すように、PP板10を干渉計で観察すると、PP板10の基板面10aからの反射光22、裏面10bからの反射光22の他に多重反射光23が参照面11aに到達する。そのため、様々な干渉縞が現れる。   FIG. 7 is a conceptual diagram at the time of reflected wavefront measurement. Hereinafter, a case where the substrate surface 10a is installed on the reference surface 11a side will be described as an example. As shown in FIG. 7, when the PP plate 10 is observed with an interferometer, the multiple reflected light 23 reaches the reference surface 11a in addition to the reflected light 22 from the substrate surface 10a of the PP plate 10 and the reflected light 22 from the back surface 10b. To do. Therefore, various interference fringes appear.

このような多重反射光23等による干渉縞は、本来計測したい情報に重なるため、ノイズとなってしまい、これまでPP板10の計測評価の大きな障害となっていた。この問題を回避するため、これまでは、例えば、目視評価によって多重干渉の影響を推定により除去していたが、必要な情報とノイズとを完全に分離することは難しく、PP板10に対して高精度な計測を行うことは実質不可能であった。   Such interference fringes due to the multiple reflected light 23 and the like overlap with information to be originally measured and thus become noise, which has been a major obstacle to the measurement evaluation of the PP plate 10 so far. In order to avoid this problem, for example, the influence of multiple interference has been removed by estimation, for example, by visual evaluation. However, it is difficult to completely separate necessary information and noise. It was virtually impossible to perform highly accurate measurements.

図8は、透過波面計測時の概念図である。図8に示すように、透過波面計測では、基板を透過した透過光21が、反射ミラー14で折り返されてきた光の波面のみを求める必要がある。しかし、実際にはPP板10の基板面10aでの反射光22と裏面10bでの反射光22、また、基板面10aと裏面10bと反射ミラー14間での多重反射光23も参照面11aに到達する。   FIG. 8 is a conceptual diagram at the time of transmitted wavefront measurement. As shown in FIG. 8, in the transmitted wavefront measurement, it is necessary to obtain only the wavefront of the light that has been transmitted by the reflection mirror 14 from the transmitted light 21 that has passed through the substrate. However, actually, the reflected light 22 on the substrate surface 10a and the reflected light 22 on the back surface 10b of the PP plate 10, and the multiple reflected light 23 between the substrate surface 10a, the back surface 10b, and the reflecting mirror 14 are also formed on the reference surface 11a. To reach.

これらのうち、PP板10の基板面10aでの反射光22と裏面10bでの反射光22については、PP板10を微少角傾けて測定することによって参照面11aでの干渉計測を回避する方法が考えられる。すなわち、PP板10を1°以下の角度傾けると、基板面10aでの反射光22と裏面10bでの反射光22は、干渉計の分解能を越えるため、測定値に影響を与えず反射光22のノイズを無視することができる。この処方によって、反射光22の影響を排除する事が考えられる。   Among these, the reflected light 22 on the substrate surface 10a of the PP plate 10 and the reflected light 22 on the back surface 10b are measured by tilting the PP plate 10 at a slight angle to avoid interference measurement on the reference surface 11a. Can be considered. That is, when the PP plate 10 is tilted at an angle of 1 ° or less, the reflected light 22 on the substrate surface 10a and the reflected light 22 on the back surface 10b exceed the resolution of the interferometer. Noise can be ignored. It is conceivable to eliminate the influence of the reflected light 22 by this prescription.

しかし、多重反射光23に関しては、上記のように単にPP板10を傾けただけでは、無視することはできない。そのため、測定データに多重反射光23の情報が重なってしまい、正確な波面計測を行うことができない。そこで、上記反射波面計測で記述したのと同様に、反射防止膜を用いて多重反射光23を計測に問題ないレベルまで低減することによって、透過光21aを計測する必要がある。   However, the multiple reflected light 23 cannot be ignored simply by tilting the PP plate 10 as described above. For this reason, the information of the multiple reflected light 23 overlaps the measurement data, and accurate wavefront measurement cannot be performed. Therefore, as described in the reflected wavefront measurement, it is necessary to measure the transmitted light 21a by reducing the multiple reflected light 23 to a level that does not cause a problem in the measurement using an antireflection film.

ところで、この反射防止膜の膜厚や屈折率の均一性が良好であれば、被計測物表面に反射防止膜が存在しても透過波面計測時に計測結果に影響は与えない。具体的には両面コートでの透過率が98%以上あれば、計測に用いることができる。   By the way, if the film thickness and refractive index uniformity of the antireflection film are good, even if the antireflection film exists on the surface of the object to be measured, the measurement result is not affected during the transmission wavefront measurement. Specifically, if the transmittance of the double-sided coat is 98% or more, it can be used for measurement.

しかし、従来の蒸着法やスパッタ法により形成された反射防止膜は、計測終了後に、被計測物から膜を除去するのに再研磨が必要であり、計測後に被計測物の表面形状を変化させてしまうことになる。これでは、計測を実施した意味がないため、計測のための反射防止膜には、被計測物の形状や光学特性を変化させることなく除去できることが要求される。さらに、たとえ容易に膜を除去できたとしても、反射防止膜が単層膜の場合、単に膜厚を対象波長λの1/4にしただけでは残存反射を0%近くまで下げることはできない。   However, the antireflection film formed by the conventional vapor deposition method or sputtering method needs to be re-polished after the measurement to remove the film from the object to be measured, and the surface shape of the object to be measured is changed after the measurement. Will end up. In this case, since there is no meaning of carrying out the measurement, the antireflection film for measurement is required to be removable without changing the shape or optical characteristics of the measurement object. Furthermore, even if the film can be easily removed, if the antireflection film is a single layer film, the residual reflection cannot be reduced to nearly 0% simply by setting the film thickness to ¼ of the target wavelength λ.

一般に、単層膜の屈折率をnfilm、媒質の屈折率をn、被計測物の屈折率をnsub とすると、反射0%での屈折率は下記の関係で表される。 In general, assuming that the refractive index of a single layer film is n film , the refractive index of a medium is n, and the refractive index of an object to be measured is n sub , the refractive index at 0% reflection is expressed by the following relationship.

film = n×nsub (1) n film 2 = n × n sub (1)

媒質が空気の場合に、単層膜で直射入射光13の残存反射を0%にするためには、膜の屈折率nfilm が以下に示す条件を満たすことが必要条件となる。 When the medium is air, in order for the residual reflection of the direct incident light 13 to be 0% in the single layer film, it is necessary that the refractive index n film of the film satisfies the following conditions.

film ≒(nsub1/2 (2) n film ≈ (n sub ) 1/2 (2)

多くの光学基板の屈折率の典型的な値は、1.4〜1.5であるので、単層膜の屈折率は、1.25以下となる。ところが、一般的に知られている光学薄膜の屈折率は、可視領域で1.35以上であり、上記単層膜に求められる条件を満たす膜を得ることは非常に困難であった。   Since the typical value of the refractive index of many optical substrates is 1.4 to 1.5, the refractive index of a single layer film is 1.25 or less. However, the refractive index of a generally known optical thin film is 1.35 or more in the visible region, and it is very difficult to obtain a film that satisfies the requirements for the single-layer film.

溶液から出発し、溶液−ゾル−ゲルの変化に基づいて、ゲル、ガラス、セラミックス、有機−無機複合材料、ナノコンポジットなどの材料を合成する方法でゾルゲル法がある。ゾルゲル法により作製される製品は、バルク、粉体、薄膜と多岐に渡るが、これらのうち薄膜については、低温で大面積に安価に成膜を行う方法として、ゾルゲル法が利用される。   There is a sol-gel method in which a material such as a gel, glass, ceramics, an organic-inorganic composite material, or a nanocomposite is synthesized based on a solution-sol-gel change starting from a solution. Products manufactured by the sol-gel method are diverse, including bulk, powder, and thin film. Among these, for the thin film, the sol-gel method is used as a method for forming a film over a large area at a low temperature at a low cost.

また、ゾルゲル法により形成される薄膜の他の特徴として、微細構造の制御により屈折率を任意に変更できることが挙げられる。発明者らは、既に超低屈折率薄膜の作製法と、それを利用した高性能反射防止膜について、特許文献2、特許文献3で報告している。薄膜の屈折率を変更出来るのは以下の原理に基づいている。   Another feature of the thin film formed by the sol-gel method is that the refractive index can be arbitrarily changed by controlling the fine structure. The inventors have already reported a method for producing an ultra-low refractive index thin film and a high-performance antireflection film using the same in Patent Document 2 and Patent Document 3. The fact that the refractive index of the thin film can be changed is based on the following principle.

一般に薄膜は、複数の微小孔が固体物質で隔てられている構造体としてモデル化できるので、薄膜の充填密度と屈折率の関係は、非特許文献1及び非特許文献2で記載されているように、次のように表すことができる。   In general, a thin film can be modeled as a structure in which a plurality of micropores are separated by a solid substance, so that the relationship between the packing density and the refractive index of the thin film is described in Non-Patent Document 1 and Non-Patent Document 2. Can be expressed as follows.

=p(n −1)+1 (3)
ここで、nは薄膜の見かけの屈折率(充填密度に依存する)、nは薄膜層を構成する固体物質の屈折率、pは薄膜の空間充填率である。さらに、空間充填率は以下のように定義される。
n f 2 = p (n 0 2 −1) +1 (3)
Here, n f is the apparent refractive index (depending on the packing density) of the thin film, n 0 is the refractive index of the solid substance constituting the thin film layer, and p is the space filling ratio of the thin film. Furthermore, the space filling factor is defined as follows.

p=(膜の固体部分の体積)/(膜の総体積) (4)
ここで、膜の総体積は膜の固体部分の体積と膜の微小孔部分の体積の総和である。式(3)及び式(4)より、膜の微細構造を変更することにより、空間充填率pを変化させ、したがって、膜の屈折率を制御することができる。
特開2000−356508 特開2002−523646 特開2001−823914 金原 粲、藤原英夫:薄膜(応用物理学選書 裳華房 P.199) 高橋康隆、他:ゾル−ゲル法による薄膜コーティング(技術情報協会 p.327)
p = (volume of solid part of membrane) / (total volume of membrane) (4)
Here, the total volume of the membrane is the sum of the volume of the solid portion of the membrane and the volume of the micropores of the membrane. From the formulas (3) and (4), the space filling factor p can be changed by changing the fine structure of the film, and therefore the refractive index of the film can be controlled.
JP 2000-356508 A JP 2002-523646 A JP 2001-823914 A Satoshi Kanehara, Hideo Fujiwara: Thin film (Applied physics book, Hanakabo P.199) Yasutaka Takahashi, et al .: Thin film coating by sol-gel method (Technical Information Association p.327)

本発明は、被計測物の光入射面、その裏面の双方又はどちらか一方に、計測に使用する光の波長において反射防止効果を有する光学薄膜を形成することを課題とする。   An object of the present invention is to form an optical thin film having an antireflection effect at the wavelength of light used for measurement on the light incident surface and / or the back surface of the object to be measured.

これにより、多重反射の原因となる光学基板/媒質界面の反射がほぼ無くなり、多重反射を計測に問題ないレベルまで低減することができる、被計測物の計測面に反射防止膜を設ける方法を提供することを課題とする。   As a result, there is provided a method of providing an antireflection film on the measurement surface of the object to be measured, in which the reflection at the optical substrate / medium interface causing multiple reflections is almost eliminated and the multiple reflections can be reduced to a level that does not cause a problem in measurement. The task is to do.

すなわち、本発明は、計測の補助手段として反射防止膜を用いた被計測物の光特性の計測において、高精度な計測の要求を満たす屈折率値をコントロールし、被計測物の表面状態を変えずに計測後に反射防止膜を除去することが可能である反射防止膜を用いた光学特性計測方法を提供することを課題とする。   That is, the present invention controls the refractive index value that satisfies the requirements for high-precision measurement and changes the surface state of the measurement object in measuring the optical characteristics of the measurement object using an antireflection film as an auxiliary means for measurement. It is an object of the present invention to provide an optical property measurement method using an antireflection film that can remove the antireflection film after measurement.

請求項1に記載の発明は、被計測物の計測に使用する計測光の波長に対して反射防止機能を有し、かつ、前記被計測物の表面を研磨することなく除去可能な反射防止膜を、前記被計測物の表面に成膜した後に、前記被計測物の光学特性を計測することを特徴とする。   The invention according to claim 1 is an antireflection film having an antireflection function with respect to the wavelength of measurement light used for measurement of an object to be measured and capable of being removed without polishing the surface of the object to be measured. Is formed on the surface of the object to be measured, and then optical characteristics of the object to be measured are measured.

請求項2に記載の発明は、請求項1の構成に加えて、前記反射防止膜は、ゾルゲル法により形成することを特徴とする。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, the antireflection film is formed by a sol-gel method.

請求項3に記載の発明は、請求項1又は2の構成に加えて、前記反射防止膜は、粒径100nm以下のフッ化物粒子により構成されることを特徴とする。   The invention according to claim 3 is characterized in that, in addition to the structure of claim 1 or 2, the antireflection film is composed of fluoride particles having a particle diameter of 100 nm or less.

請求項4に記載の発明は、請求項1乃至3のいずれか一つの構成に加えて、前記反射防止膜は、ふき取りなどの物理的手段で除去することが可能であることを特徴とする。   According to a fourth aspect of the invention, in addition to any one of the first to third aspects, the antireflection film can be removed by physical means such as wiping.

請求項5に記載の発明は、請求項1乃至3のいずれか一つの構成に加えて、前記反射防止膜は、溶媒による洗浄などの化学的手段で除去することが可能な反射防止膜であることを特徴とする。   According to a fifth aspect of the present invention, in addition to the structure of any one of the first to third aspects, the antireflection film is an antireflection film that can be removed by chemical means such as cleaning with a solvent. It is characterized by that.

請求項6に記載の発明は、請求項1乃至5のいずれか一つの構成に加えて、前記被計測物の光学特性を計測する際の基準となる参照面が前記被計測物の一方の側に設けられ、前記反射防止膜が前記被計測物の一方の側に成膜され、前記被計測物に前記参照面側から前記計測光を入射させることによって、前記被計測物の反射波面を計測することを特徴とする。   According to a sixth aspect of the present invention, in addition to the configuration of any one of the first to fifth aspects, a reference surface serving as a reference when measuring the optical characteristics of the measurement object is one side of the measurement object. The antireflection film is formed on one side of the object to be measured, and the reflected wavefront of the object to be measured is measured by causing the measurement light to enter the object to be measured from the reference surface side. It is characterized by doing.

請求項7に記載の発明は、請求項1乃至5のいずれか一つの構成に加えて、反射ミラーが前記被計測物の一方の側に設けられ、前記参照面が前記被計測物の他方の側に設けられ、前記反射防止膜が前記反射ミラー側に成膜され、前記被計測物に前記参照面側から前記計測光を入射させることによって、前記被計測物の透過波面を計測することを特徴とする。   According to a seventh aspect of the present invention, in addition to the configuration of any one of the first to fifth aspects, a reflection mirror is provided on one side of the object to be measured, and the reference surface is the other side of the object to be measured. Measuring the transmitted wavefront of the object to be measured by allowing the measurement light to enter the object to be measured from the reference surface side. Features.

請求項8に記載の発明は、請求項1乃至7のいずれか一つの構成に加えて、前記被計測物は、計測光が透過する方向の厚みが1cm以下の準平行平板であり、前記反射防止膜の透過率は98%以上、屈折率は1.40以下であることを特徴とする。   According to an eighth aspect of the present invention, in addition to the configuration according to any one of the first to seventh aspects, the object to be measured is a quasi-parallel plate having a thickness of 1 cm or less in a direction in which the measurement light is transmitted, and the reflection The transmittance of the prevention film is 98% or more, and the refractive index is 1.40 or less.

請求項9に記載の発明は、フッ化物溶液を用いてゾルゲル法によって作製した調製液を対象物に塗布後乾燥させることによって成膜され、所定の光の波長に対して反射防止機能を有し、かつ、前記対象物の表面を研磨することなく除去可能であることを特徴とする。   The invention according to claim 9 is formed by applying a preparation solution prepared by a sol-gel method using a fluoride solution to an object and then drying, and has an antireflection function for a predetermined wavelength of light. In addition, the surface of the object can be removed without polishing.

請求項10に記載の発明は、前記請求項1乃至8のいずれか一つに記載の測定方法により評価され、所定値以上の精度を有する少なくとも二つ以上の光学素子を具えたことを特徴とする。   The invention according to claim 10 is characterized by comprising at least two or more optical elements evaluated by the measurement method according to any one of claims 1 to 8 and having an accuracy of a predetermined value or more. To do.

請求項11に記載の発明は、請求項10の構成に加えて、前記光学素子は、N.A.>0.80であることを特徴とする。   According to an eleventh aspect of the present invention, in addition to the configuration of the tenth aspect, the optical element includes an N.P. A. > 0.80.

請求項12に記載の発明は、投影光学系を用いてマスクのパターン像を基板上に投影露光する装置であって、紫外線を露光光としてマスクを照明する照明光学系と、請求項10又は11に記載の光学系を含み、前記マスクのパターン像を基板上に形成する投影光学系とを備えたことを特徴とする。   The invention described in claim 12 is an apparatus for projecting and exposing a pattern image of a mask onto a substrate using a projection optical system, and an illumination optical system that illuminates the mask using ultraviolet light as exposure light, and claim 10 or 11 And a projection optical system for forming a pattern image of the mask on a substrate.

請求項1に記載の発明によれば、被計測物の計測に使用する計測光の波長に対して反射防止機能を有し、かつ、前記被計測物の表面を研磨することなく除去可能な反射防止膜を、前記被計測物の表面に成膜した後に、前記被計測物の光学特性を計測する。したがって、反射防止膜除去後に被計測物の表面状態を変えないので、信頼度が高く、かつ高精度な光学測定を行うことができる。   According to the first aspect of the present invention, the reflection having an antireflection function with respect to the wavelength of the measurement light used for measurement of the object to be measured, and removable without polishing the surface of the object to be measured. After the prevention film is formed on the surface of the object to be measured, the optical characteristics of the object to be measured are measured. Therefore, since the surface state of the object to be measured is not changed after the antireflection film is removed, highly reliable and highly accurate optical measurement can be performed.

請求項2に記載の発明は、請求項1の効果に加えて、前記反射防止膜は、ゾルゲル法により形成するので、屈折率を制御でき、かつ良質な反射防止膜を提供できる。   According to the second aspect of the invention, in addition to the effect of the first aspect, since the antireflection film is formed by a sol-gel method, the refractive index can be controlled and a high-quality antireflection film can be provided.

請求項3に記載の発明によれば、請求項1又は2の効果に加えて、前記反射防止膜は、粒径100nm以下のフッ化物粒子により構成されるので、散乱損失を抑えることができ、精度の高い計測を行うことができる。   According to the invention of claim 3, in addition to the effect of claim 1 or 2, the antireflection film is composed of fluoride particles having a particle size of 100 nm or less, so that scattering loss can be suppressed, Highly accurate measurement can be performed.

請求項4〜5に記載の発明は、請求項1乃至3のいずれか一つの効果に加えて、前記反射防止膜は、ふき取りなどの物理的手段又は溶媒による洗浄などの化学的手段で除去することが可能なので、計測後に被計測物の表面状態を損ねることなく平易に被計測物から反射防止膜を除去できる。   In addition to the effect of any one of claims 1 to 3, the antireflection film is removed by physical means such as wiping or chemical means such as cleaning with a solvent. Therefore, the antireflection film can be easily removed from the measurement object without damaging the surface state of the measurement object after measurement.

請求項6に記載の発明によれば、請求項1乃至5のいずれか一つの効果に加えて、前記被計測物の光学特性を計測する際の基準となる参照面が前記被計測物の一方の側に設けられ、前記反射防止膜が前記被計測物の一方の側に成膜され、前記被計測物に前記参照面側から前記計測光を入射させることによって、前記被計測物の反射波面を計測するので、信頼性の高い、反射波面測定を行うことができる。   According to the sixth aspect of the present invention, in addition to the effect of any one of the first to fifth aspects, a reference surface serving as a reference when measuring the optical characteristics of the measured object is one of the measured objects. The antireflection film is formed on one side of the object to be measured, and the measurement light is incident on the object to be measured from the reference surface side. Therefore, the reflected wavefront measurement with high reliability can be performed.

請求項7に記載の発明によれば、請求項1乃至5のいずれか一つの効果に加えて、反射ミラーが前記被計測物の一方の側に設けられ、前記参照面が前記被計測物の他方の側に設けられ、前記反射防止膜が前記反射ミラー側に成膜され、前記被計測物に前記参照面側から前記計測光を入射させることによって、前記被計測物の透過波面を計測するので、信頼性の高い、透過波面測定を行うことができる。   According to the seventh aspect of the present invention, in addition to the effect of any one of the first to fifth aspects, a reflection mirror is provided on one side of the object to be measured, and the reference surface of the object to be measured is provided. Provided on the other side, the antireflection film is formed on the reflection mirror side, and the measurement wave is incident on the object to be measured from the reference surface side, thereby measuring the transmitted wavefront of the object to be measured. Therefore, it is possible to perform transmission wavefront measurement with high reliability.

請求項8に記載の発明によれば、請求項1乃至7のいずれか一つの効果に加えて、前記被計測物は、計測光が透過する方向の厚みが1cm以下の準平行平板であり、前記反射防止膜の透過率は98%以上、屈折率は1.40以下であるので、反射防止膜の屈折率を制御することができるので、透過率の高い、したがって、高品質の反射防止膜を提供できる。さらに、ゾルゲル法により形成された多孔質膜を計測の補助手段として用いることにより、従来は計測できなかった測定面とそれに向かい合う裏面とがほぼ平行であるような基板に対しても、従来仕様の干渉計での計測が可能とる。   According to the invention described in claim 8, in addition to the effect of any one of claims 1 to 7, the object to be measured is a quasi-parallel plate having a thickness of 1 cm or less in a direction in which the measurement light is transmitted. Since the transmittance of the antireflection film is 98% or more and the refractive index is 1.40 or less, the refractive index of the antireflection film can be controlled. Therefore, the antireflection film has a high transmittance and, therefore, a high quality antireflection film. Can provide. Furthermore, by using a porous film formed by the sol-gel method as an auxiliary means for measurement, even for a substrate where the measurement surface that could not be measured conventionally and the back surface facing it are almost parallel, Measurement with an interferometer is possible.

請求項9に記載の発明によれば、フッ化物溶液を用いてゾルゲル法によって作製した調製液を対象物に塗布後乾燥させることによって成膜され、所定の光の波長に対して反射防止機能を有し、かつ、前記対象物の表面を研磨することなく除去可能であるので、計測後に被計測物の表面状態を損ねることなく平易に被計測物から反射防止膜を除去できる。   According to the ninth aspect of the present invention, the film is formed by applying a preparation solution prepared by a sol-gel method using a fluoride solution to an object and then drying, and has an antireflection function for a predetermined wavelength of light. In addition, since the surface of the object can be removed without polishing, the antireflection film can be easily removed from the object to be measured without damaging the surface state of the object to be measured after measurement.

請求項10に記載の発明によれば、前記請求項1乃至8のいずれか一つに記載の測定方法により評価され、所定値以上の精度を有する光学素子を具えているので、光学系に組み込む前に予め性能の悪い素子を排除可能であり、光学系を組み立てた後に光学素子の性能未達による光学系の性能未達により、別の光学素子を再度作製しなくてはならないというトラブルを防止することができ、光学系製品の製造コストを抑えることができる。   According to the invention described in claim 10, since the optical element evaluated by the measurement method according to any one of claims 1 to 8 and having an accuracy of a predetermined value or more is provided, it is incorporated in the optical system. Elements with poor performance can be eliminated in advance, preventing the trouble of having to re-create another optical element due to the failure of the optical system performance after the optical system has been assembled. The manufacturing cost of the optical system product can be suppressed.

請求項11に記載の発明によれば、請求項10の構成に加えて、前記光学素子は、N.A.>0.80であるので、高解像度の結像が可能となる。   According to the eleventh aspect of the present invention, in addition to the configuration of the tenth aspect, the optical element includes N.P. A. Since> 0.80, high resolution imaging is possible.

請求項12に記載の発明によれば、投影光学系を用いてマスクのパターン像を基板上に投影露光する装置であって、紫外線を露光光としてマスクを照明する照明光学系と、請求項10又は11に記載の光学系を含み、前記マスクのパターン像を基板上に形成する投影光学系とを備えているので、投影露光装置として組み立てる前に、予め性能の悪い照明光学系又は投影光学系を排除できるので、投影露光装置に照明光学系又は投影光学系を組み立て工程後に照明光学系又は投影光学系の性能評価後、性能未達の際には別の照明光学系又は投影光学系を再度組み立てるというトラブルを防止することができ、投影露光装置の製造コストを抑えることができる。   According to a twelfth aspect of the present invention, there is provided an apparatus for projecting and exposing a pattern image of a mask onto a substrate using a projection optical system, the illumination optical system illuminating the mask using ultraviolet light as exposure light, and tenth aspect. Or a projection optical system that includes the optical system described in claim 11 and that forms a pattern image of the mask on a substrate. Therefore, before assembling as a projection exposure apparatus, an illumination optical system or projection optical system having poor performance is assembled in advance. Therefore, after the assembly of the illumination optical system or the projection optical system in the projection exposure apparatus, after the performance evaluation of the illumination optical system or the projection optical system, if another performance is not achieved, another illumination optical system or projection optical system is connected again. The trouble of assembling can be prevented, and the manufacturing cost of the projection exposure apparatus can be reduced.

以下、本発明の実施の形態について説明する。
[発明の実施の形態1]
Embodiments of the present invention will be described below.
Embodiment 1 of the Invention

以下、本発明の実施の形態1について、図1及び図9を用いて説明する。   Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 9.

図1は、本発明の実施の形態1に係る反射防止膜を用いたPP板の基板面の反射波面計測時の概念図である。   FIG. 1 is a conceptual diagram when measuring a reflected wavefront of a substrate surface of a PP plate using an antireflection film according to Embodiment 1 of the present invention.

まず構成を説明する。計測対象となるPP板10は、光学特性を計測する際の基準となる参照面11aがPP板10の基板面10a側に位置するように設けられ、反射防止膜12がPP板10の裏面10bに成膜されている。   First, the configuration will be described. The PP plate 10 to be measured is provided so that a reference surface 11a serving as a reference for measuring optical characteristics is located on the substrate surface 10a side of the PP plate 10, and an antireflection film 12 is provided on the back surface 10b of the PP plate 10. It is formed into a film.

図1に示すように、PP板10に参照面11a側から計測のための入射光13を入射させると、基板面10aで反射した反射光22は、参照面11aで参照光11と干渉を起こし、干渉縞として計測可能となる。一方、裏面10bに到達した入射光13は、反射防止膜12によって反射を阻止され透過光21として透過する。したがって、図7で示した、PP板10の裏面10bからの反射光22及び多重反射光23を排除することができ、PP板10の基板面10aの反射波面測定を高精度に行うことができる。   As shown in FIG. 1, when incident light 13 for measurement is incident on the PP plate 10 from the reference surface 11a side, the reflected light 22 reflected by the substrate surface 10a causes interference with the reference light 11 on the reference surface 11a. It becomes possible to measure as interference fringes. On the other hand, the incident light 13 that has reached the back surface 10 b is prevented from being reflected by the antireflection film 12 and transmitted as transmitted light 21. Accordingly, the reflected light 22 and the multiple reflected light 23 from the back surface 10b of the PP plate 10 shown in FIG. 7 can be eliminated, and the reflected wavefront measurement of the substrate surface 10a of the PP plate 10 can be performed with high accuracy. .

図9は、本発明の実施の形態1に係る投影露光装置の全体構成を概略図である。図に示すように、投影露光装置1は、光源2、照明光学系3、マスク部4、投影光学系6、ウエハ部7から構成される。反射防止膜12で評価されたPP板10は、光学素子として、光学系全般、あるいは、照明光学系3や投影光学系6に組み込まれ使用される。   FIG. 9 is a schematic diagram showing the overall configuration of the projection exposure apparatus according to Embodiment 1 of the present invention. As shown in the figure, the projection exposure apparatus 1 includes a light source 2, an illumination optical system 3, a mask unit 4, a projection optical system 6, and a wafer unit 7. The PP plate 10 evaluated with the antireflection film 12 is used as an optical element by being incorporated in the entire optical system, or in the illumination optical system 3 and the projection optical system 6.

次に、屈折率1.25程度、PP板10に成膜計測後、表面状態を変えずに除去できる反射防止膜12を形成する方法として、ゾルゲル法が好適であることを見出したので、以下に説明する。   Next, since it was found that the sol-gel method is suitable as a method of forming the antireflection film 12 having a refractive index of about 1.25 and can be removed without changing the surface state after film formation measurement on the PP plate 10, Explained.

以下、実施例に本発明による計測方法を開示する。これら実施例は実例によって説明されているが、本発明はこれらに限定されるものではない。
[実施例1]
Hereinafter, the measuring method according to the present invention will be disclosed in Examples. These examples are described by way of illustration, but the invention is not limited thereto.
[Example 1]

本発明の実施の形態1を実施した例を実施例1として、以下に示す。   An example in which Embodiment 1 of the present invention is implemented is shown below as Example 1.

ここでは、PP板10として、合成石英ガラス基板を用い、その基板面10aについて、反射波面計測を実施した例を示す。   Here, an example in which a synthetic quartz glass substrate is used as the PP plate 10 and the reflected wavefront measurement is performed on the substrate surface 10a is shown.

最初に、反射防止膜12の作製方法を示す。得られる液のフッ化マグネシウム濃度が1.0%となるよう、酢酸マグネシウムのメタノール溶液にフッ酸のメタノール希釈液を十分撹拌しながら添加した。この液をポリテトラフルオロエチレン(PTFE)製のセルに入れ、さらにステンレス製の圧力容器に入れて、135℃で24時間加熱・加圧処理した。冷却後、液を取り出し、エバポレーターで3.0wt%まで濃縮し、塗布液とした。次いで、被計測物の基板をスピンコーターにセットし、直径80mm、厚さ4mmの円板状の基板の裏面10bに塗布液を滴下後、液が乾くまで1500r.p.m.で回転して成膜を行った。得られた膜の633nmでの屈折率は1.290、透過率は99.98%であった。   First, a method for producing the antireflection film 12 will be described. A methanol dilution of hydrofluoric acid was added to a methanol solution of magnesium acetate with sufficient stirring so that the magnesium fluoride concentration of the resulting liquid was 1.0%. This liquid was put into a cell made of polytetrafluoroethylene (PTFE), and further put into a stainless steel pressure vessel, and heated and pressurized at 135 ° C. for 24 hours. After cooling, the liquid was taken out and concentrated to 3.0 wt% with an evaporator to obtain a coating liquid. Next, the substrate of the object to be measured was set on a spin coater, and after applying the coating liquid onto the back surface 10b of the disk-shaped substrate having a diameter of 80 mm and a thickness of 4 mm, 1500 r. p. m. Was rotated to form a film. The obtained film had a refractive index of 1.290 and a transmittance of 99.98% at 633 nm.

次に、この基板面10aについて、反射波計測を実施した例を示す。   Next, an example in which reflected wave measurement is performed on the substrate surface 10a will be described.

裏面10bに反射防止膜12を成膜する。次に、図1に示すように、参照面11a側に基板面10aが来るように、参照面11aに対してほぼ平行に基板面10aを設置する。そして、基板面10aを参照面11aに合わせて基板面10aの反射光22計測する。最後に、反射防止膜12を拭き取り除去或いは洗浄除去する。   An antireflection film 12 is formed on the back surface 10b. Next, as shown in FIG. 1, the substrate surface 10a is installed substantially parallel to the reference surface 11a so that the substrate surface 10a comes to the reference surface 11a side. Then, the reflected light 22 of the substrate surface 10a is measured with the substrate surface 10a aligned with the reference surface 11a. Finally, the antireflection film 12 is removed by wiping or cleaning.

本発明のゾルゲル膜は、熱処理(ベーキング)を施さないので膜強度が低い。よって、膜強度を上げずにゾルゲル膜を計測の補助手段として利用し、不要となった際には、簡単な方法で膜を除去することを考えた。上記屈折率の必要条件を満たす膜は多孔質となるため、もともと膜強度が低く、むしろ後で除去するには好適である。また、本発明による計測手段は、従来よりレンズ等の計測に用いられていた干渉計がそのまま利用できるため、計測装置そのものへの新たな投資が不要となるという利点も兼ね備えている。
[比較例1]
Since the sol-gel film of the present invention is not subjected to heat treatment (baking), the film strength is low. Therefore, the sol-gel film was used as an auxiliary means for measurement without increasing the film strength, and when it became unnecessary, it was considered to remove the film by a simple method. Since the film satisfying the refractive index requirement is porous, the film strength is originally low, and is rather suitable for removal later. The measuring means according to the present invention also has the advantage that a new investment in the measuring apparatus itself is not required because an interferometer that has been conventionally used for measuring a lens or the like can be used as it is.
[Comparative Example 1]

比較例1として、図2aは、本発明の実施の形態1に係る、図1で示した反射防止膜を用いた場合の反射波面計測時の干渉縞図、図2bは、図7で示した反射防止膜無しの場合の反射波面計測時の干渉縞図を示す。   As Comparative Example 1, FIG. 2a is an interference fringe diagram at the time of reflected wavefront measurement when the antireflection film shown in FIG. 1 is used according to Embodiment 1 of the present invention, and FIG. 2b is shown in FIG. The interference fringe figure at the time of reflected wavefront measurement in the case of no antireflection film is shown.

図2bに示すように、反射防止膜12を形成しない場合、基板面10a、裏面10b両方からの反射光22が参照面11aに到達するため、中心に同心円状の多重干渉縞となる。それに対して、図2aに示すように、反射防止膜12により、裏面10bに到達した計測光は、反射防止膜12の機能により透過していく。その結果、裏面10bからの反射光22及び多重反射光23は、参照面11aに到達しないため、基板面10aからの干渉縞のみが得られる。   As shown in FIG. 2b, when the antireflection film 12 is not formed, the reflected light 22 from both the substrate surface 10a and the back surface 10b reaches the reference surface 11a, resulting in a concentric multiple interference fringe at the center. On the other hand, as shown in FIG. 2 a, the measurement light reaching the back surface 10 b is transmitted by the function of the antireflection film 12 by the antireflection film 12. As a result, since the reflected light 22 and the multiple reflected light 23 from the back surface 10b do not reach the reference surface 11a, only interference fringes from the substrate surface 10a are obtained.

なお、今回作製した反射防止膜12の透過率は、99.98%であったので、反射は0.02%の割合で起こるが、参照面11aでの分解能を越える値であるので、干渉縞には現れず、基板面10aからの反射波と参照光11による干渉縞のみが得られる。
[発明の実施の形態2]
Since the transmittance of the antireflection film 12 produced this time was 99.98%, reflection occurs at a rate of 0.02%, but the value exceeds the resolution at the reference surface 11a. And only interference fringes due to the reflected wave from the substrate surface 10a and the reference light 11 are obtained.
[Embodiment 2 of the Invention]

以下、本発明の実施の形態2について、図3を用いて説明する。   Hereinafter, Embodiment 2 of the present invention will be described with reference to FIG.

図3は、本発明の実施の形態2に係る反射防止膜を用いたPP板の裏面の反射波面計測時の概念図である。   FIG. 3 is a conceptual diagram at the time of measurement of the reflected wavefront of the back surface of the PP plate using the antireflection film according to Embodiment 2 of the present invention.

まず構成を説明する。計測対象となるPP板10は、参照面11aがPP板10の基板面10a側に位置するように設けられ、反射防止膜12がPP板10の基板面10aに成膜されている。   First, the configuration will be described. The PP plate 10 to be measured is provided such that the reference surface 11a is positioned on the substrate surface 10a side of the PP plate 10, and the antireflection film 12 is formed on the substrate surface 10a of the PP plate 10.

図3に示すように、PP板10に参照面11a側から計測のための入射光13を入射させると、裏面10bで反射した反射光22は、参照面11aで参照光11と干渉を起こし、干渉縞として計測可能となる。一方、基板面10aに到達した入射光13は、反射防止膜12によって反射を阻止され透過光21として透過する。したがって、図7で示した、PP板10の基板面10aからの反射光22を排除することができ、PP板10の基板面10aの反射波面測定を高精度に行うことができる。   As shown in FIG. 3, when incident light 13 for measurement is incident on the PP plate 10 from the reference surface 11a side, the reflected light 22 reflected by the back surface 10b causes interference with the reference light 11 on the reference surface 11a. Measurement is possible as interference fringes. On the other hand, the incident light 13 that has reached the substrate surface 10 a is prevented from being reflected by the antireflection film 12 and transmitted as transmitted light 21. Therefore, the reflected light 22 from the substrate surface 10a of the PP plate 10 shown in FIG. 7 can be eliminated, and the reflected wavefront measurement of the substrate surface 10a of the PP plate 10 can be performed with high accuracy.

図1に示すように、PP板10に参照面11a側から計測のための入射光13を入射させると、基板面10aで反射した反射光22は、参照面11aで参照光11と干渉を起こし、干渉縞として計測可能となる。一方、裏面10bに到達した入射光13は、反射防止膜12によって反射を阻止され透過光21として透過する。したがって、図7で示した、PP板10の裏面10bからの反射光22及び多重反射光23を排除することができ、PP板10の基板面10aの反射波面測定を高精度に行うことができる。   As shown in FIG. 1, when incident light 13 for measurement is incident on the PP plate 10 from the reference surface 11a side, the reflected light 22 reflected by the substrate surface 10a causes interference with the reference light 11 on the reference surface 11a. It becomes possible to measure as interference fringes. On the other hand, the incident light 13 that has reached the back surface 10 b is prevented from being reflected by the antireflection film 12 and transmitted as transmitted light 21. Accordingly, the reflected light 22 and the multiple reflected light 23 from the back surface 10b of the PP plate 10 shown in FIG. 7 can be eliminated, and the reflected wavefront measurement of the substrate surface 10a of the PP plate 10 can be performed with high accuracy. .

なお、同一の構成及び作用は、本発明の実施の形態1と同様であるので、同一の構成には同一の符号を付して、その説明を省略する。
[実施例2]
In addition, since the same structure and effect | action are the same as that of Embodiment 1 of this invention, the same code | symbol is attached | subjected to the same structure and the description is abbreviate | omitted.
[Example 2]

本発明の実施の形態2を実施した例を実施例2として、以下に示す。   An example in which Embodiment 2 of the present invention is implemented is shown below as Example 2.

ここでは、PP板10として、実施例1と同様に合成ガラス基板を用い、基板の裏面10bについて、反射波面計測を実施した例を示す。   Here, a synthetic glass substrate is used as the PP plate 10 in the same manner as in Example 1, and the reflected wavefront measurement is performed on the back surface 10b of the substrate.

実施例1で示した方法と同様の方法で、反射防止液を作製する。次に、直径80mm、厚さ4mmの円板状の合成石英ガラス基板面10aに塗布液を滴下後、液が乾くまで1500r.p.m.で回転して基板面10aに成膜を行った。   An antireflection liquid is prepared by the same method as that described in Example 1. Next, after dropping the coating solution onto the disc-shaped synthetic quartz glass substrate surface 10a having a diameter of 80 mm and a thickness of 4 mm, 1500 r. p. m. Was rotated to form a film on the substrate surface 10a.

次に、この基板面10aについて、反射波計測を実施した例を示す。   Next, an example in which reflected wave measurement is performed on the substrate surface 10a will be described.

図3は、本発明の実施の形態1に係る反射防止膜を用いたPP板の裏面10bの反射波面計測時の概念図である。図3に示すように、参照面11a側に基板面10aが来るように、参照面11aに対してほぼ平行に基板面10aを設置する。反射防止膜12は、基板面10a側に成膜されている。さらに、基板面10aを参照面11aに合わせて裏面10bの反射光22を計測する。最後に、反射防止膜12を除去する。反射防止膜12の除去方法は、実施例1と同様である。
[発明の実施の形態3]
FIG. 3 is a conceptual diagram when measuring the reflected wavefront of the back surface 10b of the PP plate using the antireflection film according to Embodiment 1 of the present invention. As shown in FIG. 3, the substrate surface 10a is installed substantially parallel to the reference surface 11a so that the substrate surface 10a comes to the reference surface 11a side. The antireflection film 12 is formed on the substrate surface 10a side. Further, the reflected light 22 of the back surface 10b is measured with the substrate surface 10a aligned with the reference surface 11a. Finally, the antireflection film 12 is removed. The removal method of the antireflection film 12 is the same as that of the first embodiment.
Embodiment 3 of the Invention

以下、本発明の実施の形態3について、図4a、図4b及び図5を用いて説明する。   Hereinafter, Embodiment 3 of the present invention will be described with reference to FIGS. 4a, 4b and 5. FIG.

図4aは、本発明の実施の形態3に係る、反射防止膜が均一に成膜された場合の、PP板の両面に反射防止膜を成膜した場合の透過波面計測時の概念図である。図4bは、反射防止膜に膜厚ムラができた場合の透過波面計測時の概念図に対応する。   FIG. 4a is a conceptual diagram at the time of transmission wavefront measurement in the case where an antireflection film is formed on both surfaces of a PP plate when the antireflection film is uniformly formed according to Embodiment 3 of the present invention. . FIG. 4 b corresponds to a conceptual diagram at the time of transmission wavefront measurement when film thickness unevenness is generated in the antireflection film.

図5は、本発明の実施の形態3に係る、PP板の裏面に反射防止膜を成膜した場合の透過波面計測時の概念図である。   FIG. 5 is a conceptual diagram at the time of transmission wavefront measurement when an antireflection film is formed on the back surface of the PP plate according to Embodiment 3 of the present invention.

以下、図4a及び図5を用いて構成を説明する。   Hereinafter, the configuration will be described with reference to FIGS. 4A and 5.

図4aにおいて、反射ミラー14と参照面11aとがPP板10を挟んで対向する位置になるように反射ミラー14を設置する。参照面11aはPP板10の基板面10a側に設けられ、PP板10の基板面10a及び裏面10bの両面に反射防止膜12が成膜されている。   In FIG. 4a, the reflection mirror 14 is installed so that the reflection mirror 14 and the reference surface 11a face each other with the PP plate 10 in between. The reference surface 11 a is provided on the substrate surface 10 a side of the PP plate 10, and antireflection films 12 are formed on both the substrate surface 10 a and the back surface 10 b of the PP plate 10.

図5において、図4aで示した、PP板10の基板面10aの反射防止膜12が除去され、裏面10bのみに反射防止膜12が成膜されている。   In FIG. 5, the antireflection film 12 on the substrate surface 10a of the PP plate 10 shown in FIG. 4a is removed, and the antireflection film 12 is formed only on the back surface 10b.

図4及び図5において、参照面11aに対してPP板10を1°傾けて設置する。これによって、図5において、基板面10aからの反射光22(不図示)を排除することができる。また、図4と図5の構成を用いて検証を行うので、図4も図5と同一条件にする必要があるため、1°傾けて測定を行っている。   4 and 5, the PP plate 10 is installed with an inclination of 1 ° with respect to the reference surface 11a. Thereby, in FIG. 5, the reflected light 22 (not shown) from the substrate surface 10a can be eliminated. Further, since verification is performed using the configuration of FIGS. 4 and 5, it is necessary to make the same conditions as FIG.

PP板10に参照面11a側から計測のための入射光13を入射させると、図4aに示すように、裏面10bに到達した光は、反射防止膜12によって反射を阻止され、透過光21として、参照面11aの反対側へと透過していく。その後、透過光21は、反射ミラー14で反射され、再び反射防止膜12を透過し、参照面11aへ透過光21aとして到達する。こうしてPP板10の透過光21aと参照光11の干渉縞を参照面11aにて得ることができる。   When incident light 13 for measurement is incident on the PP plate 10 from the reference surface 11a side, the light reaching the back surface 10b is prevented from being reflected by the antireflection film 12 as transmitted light 21 as shown in FIG. The light passes through the opposite side of the reference surface 11a. Thereafter, the transmitted light 21 is reflected by the reflection mirror 14, passes through the antireflection film 12 again, and reaches the reference surface 11a as transmitted light 21a. Thus, interference fringes between the transmitted light 21a of the PP plate 10 and the reference light 11 can be obtained on the reference surface 11a.

一方、図4bに示すように、反射防止膜12自体に膜厚Hや屈折率のムラによって生じる光24があると波面にそれらが反映され、結果として測定波面に偏りが生じる。したがって、偏りが十分小さいことを確認することによって、反射防止膜12が膜厚ムラや屈折率ムラを起こさず、反射防止膜12としての機能を有しているかを確認する必要がある。   On the other hand, as shown in FIG. 4b, when the antireflection film 12 itself has the light 24 generated by the film thickness H and the refractive index unevenness, they are reflected on the wavefront, and as a result, the measurement wavefront is biased. Therefore, by confirming that the deviation is sufficiently small, it is necessary to confirm whether the antireflection film 12 has a function as the antireflection film 12 without causing unevenness in film thickness and refractive index.

図5に示すように、裏面10bのみに反射防止膜12を形成することで多重反射が完全に除去できているか否かも確認する必要がある。   As shown in FIG. 5, it is necessary to confirm whether or not multiple reflections can be completely removed by forming the antireflection film 12 only on the back surface 10b.

以下に、本発明により透過波面計測を実施した例と同時に透過波面計測の確かさを検証した結果を示す。他の計測手法でPP板10の表面形状を変えずに透過波面計測が出来れば、その結果と本発明とによる方法とを比較することで、本発明の方法の確かさを確認できるが、本発明の方法以外で信頼性の高い計測手段がないため、以下のような推論を行った。
(推論)
Below, the result of having verified the certainty of the transmitted wavefront measurement simultaneously with the example of performing the transmitted wavefront measurement according to the present invention is shown. If transmitted wavefront measurement can be performed without changing the surface shape of the PP plate 10 by other measurement methods, the reliability of the method according to the present invention can be confirmed by comparing the result with the method according to the present invention. Since there is no highly reliable measuring means other than the method of the invention, the following inference was performed.
(inference)

1.多重反射は、PP板10の表面の反射をなくせば消えるはずである。   1. The multiple reflection should disappear if the reflection on the surface of the PP plate 10 is eliminated.

2.透過波面測定において、反射防止膜12を裏面10bのみに成膜した場合に比べて両面に成膜した場合の方が多重反射は少ないはずである。   2. In the transmitted wavefront measurement, multiple reflections should be less when the antireflection film 12 is formed on both surfaces than when the antireflection film 12 is formed only on the back surface 10b.

3.反射防止膜12が無い場合の多重反射の影響は十分大きく、かつ、裏面10bのみに反射防止膜12を成膜したの場合の多重反射の影響が、両面共に反射防止膜12を成膜した場合の多重反射の影響と同程度であれば、両面共に反射防止膜12を成膜した場合の計測は、多重反射の影響が十分小さく、なおかつ、透過波面の測定結果に含まれる反射防止膜12由来の誤差も小さいといえるはずである。   3. The effect of multiple reflection when there is no antireflection film 12 is sufficiently large, and the effect of multiple reflection when the antireflection film 12 is formed only on the back surface 10b is the case where the antireflection film 12 is formed on both sides. If the antireflection film 12 is formed on both surfaces, the measurement of the effect of multiple reflection is sufficiently small, and the measurement is derived from the antireflection film 12 included in the measurement result of the transmitted wavefront. It should be said that the error of is small.

推論1及び2は、原理から明らかであるが、図2に示した反射防止膜12が有りの場合と反射防止膜12が無しの場合の測定結果を比較することにより、十分確からしいといえる。   Inferences 1 and 2 are apparent from the principle, but it can be said that the inferences 1 and 2 are sufficiently probable by comparing the measurement results with and without the antireflection film 12 shown in FIG.

推論3については、換言すると、反射防止膜12が無しの場合の多重反射の影響と片面のみ反射防止膜12の膜厚ムラ等による多重反射の影響の差の値の程度が、反射防止膜12なしの場合の影響から両面反射防止膜12の膜厚ムラ等による多重反射の影響に比較すると十分に大きく、かつ、両面に成膜した反射膜の影響と片面のみ反射膜の場合の影響の差がほぼ0であるということになる。そこで、この推論が正しいことを確認するため、実施例3に示すような検証実験を行った。
[実施例3]
Regarding reasoning 3, in other words, the degree of the value of the difference between the influence of multiple reflection when the antireflection film 12 is not present and the influence of multiple reflection due to film thickness unevenness of the antireflection film 12 only on one side is the antireflection film 12. Compared to the influence of multiple reflection due to film thickness unevenness etc. of the double-sided antireflection coating 12, the difference between the influence of the reflection film formed on both sides and the effect of the reflection film only on one side is large Is almost zero. Therefore, in order to confirm that this inference is correct, a verification experiment as shown in Example 3 was performed.
[Example 3]

本発明の実施の形態3を実施した例を実施例3として、以下に示す。   An example in which Embodiment 3 of the present invention is implemented is shown below as Example 3.

実施例1で示したのと同様の手順を用いて、フッ化物溶液を用いてゾルゲル法によって反射防止溶膜を作製する。   Using a procedure similar to that shown in Example 1, an antireflection film is prepared by a sol-gel method using a fluoride solution.

最初に、図4に示すように、基板面10a、裏面10bの両面に反射防止膜12を成膜して透過波面を計測する。次に、図5に示すように、片面の反射防止膜12を除去して、再度透過波面を計測する。最後に、この二つの透過波面データの差を求める。この差分が十分小さければ、上記の多重反射以外は無く、また、反射防止膜12自体の膜厚ムラや屈折率ムラが小さいことが検証される。   First, as shown in FIG. 4, an antireflection film 12 is formed on both the substrate surface 10a and the back surface 10b, and the transmitted wavefront is measured. Next, as shown in FIG. 5, the one-side antireflection film 12 is removed, and the transmitted wavefront is measured again. Finally, the difference between the two transmitted wavefront data is obtained. If this difference is sufficiently small, it is verified that there is no other than the multiple reflection described above, and that the film thickness unevenness and refractive index unevenness of the antireflection film 12 itself are small.

図6に、透過波面計測時の検証実験の結果を示す。図6において、横軸はツェルニケ(Zernike)多項式で計測結果をフィッティングした際のフィッティング成分を表し、縦軸はフィッティングされた計測結果を自乗和平均(RMS:Root Mean Square)で表現したものである。このZernike多項式によるフィッティングとは、レンズの面形状や透過波面結果を表現するのによく利用されている方法である。光軸に対して回転対称な成分の項(0θ)と回転非対称な成分の項(EVEN、ODD)を、ゆるやかな成分(低次)〜(中次)〜細かい成分(高次)、フィッティングできなかった非常に細かい成分(残渣)に分けて表現する。   FIG. 6 shows the result of the verification experiment at the time of transmission wavefront measurement. In FIG. 6, the horizontal axis represents the fitting component when the measurement result is fitted with a Zernike polynomial, and the vertical axis represents the fitted measurement result as a root mean square (RMS). . The fitting by the Zernike polynomial is a method that is often used to express the lens surface shape and the transmitted wavefront result. It is possible to fit a loose component (low order) to (medium order) to a fine component (high order) between a rotationally symmetric component term (0θ) and a rotationally asymmetric component term (EVEN, ODD). It is expressed by dividing it into very fine components (residues) that did not exist.

◆印は、PP板10に成膜せず実施した透過波面計測結果とPP板10の片面のみに成膜して実施した透過波面計測結果の差を示す。□印は、PP板10に成膜せず実施した透過波面計測結果とPP板10の両面に成膜して実施した透過波面計測結果の差を示す。図6に示すように、◆印と□印のRMS値は有意の値存在していることがわかる。また、各成分項での両者の値をそれぞれ比較すると、それらはほとんど変わらない。したがって、両面共に反射防止膜12を成膜した場合の計測は、多重反射の影響が十分小さく、透過波面の測定結果に含まれる反射防止膜12由来の誤差も小さいことがわかる。   The mark “♦” indicates the difference between the transmission wavefront measurement result performed without film formation on the PP plate 10 and the transmission wavefront measurement result performed with film formation only on one side of the PP plate 10. A square indicates a difference between a transmission wavefront measurement result performed without film formation on the PP plate 10 and a transmission wavefront measurement result performed with film formation on both surfaces of the PP plate 10. As shown in FIG. 6, it can be seen that there is a significant value of the RMS values of the ♦ and □ marks. Moreover, when both values in each component term are compared, they are hardly changed. Therefore, it can be seen that the measurement when the antireflection film 12 is formed on both sides has a sufficiently small influence of the multiple reflection, and the error derived from the antireflection film 12 included in the measurement result of the transmitted wavefront is also small.

△印は、両面に反射防止膜12を成膜して実施した透過波面計測結果と片面の反射防止膜12を除去後に実施した透過波面計測結果との差を示す。図6に示すように、RMS値は、非常に小さいことがわかる。したがって、これらの結果から、膜厚ムラや屈折率ムラによる影響は十分低減されており、しかも反射防止膜12自体による誤差も十分小さいことが推測される。   The Δ mark indicates the difference between the transmission wavefront measurement result obtained by forming the antireflection film 12 on both surfaces and the transmission wavefront measurement result carried out after removing the one-side antireflection film 12. As shown in FIG. 6, it can be seen that the RMS value is very small. Therefore, from these results, it is estimated that the influence due to the film thickness unevenness and the refractive index unevenness is sufficiently reduced, and the error due to the antireflection film 12 itself is sufficiently small.

×印は、成膜前に実施した透過波面計測結果と成膜後に膜を除去した際の計測結果の差を示す。図6に示すように、波面、透過率ともに測定再現性レベルであり、光学性能に影響は与えていないことがわかる。   A cross indicates a difference between a transmission wavefront measurement result performed before film formation and a measurement result when the film is removed after film formation. As shown in FIG. 6, it can be seen that both the wavefront and the transmittance are at the level of measurement reproducibility and do not affect the optical performance.

これらの結果から、透過波面計測において本発明による反射防止膜12を利用することで、高精度な計測が可能となる。   From these results, it is possible to perform highly accurate measurement by using the antireflection film 12 according to the present invention in transmitted wavefront measurement.

以上述べた理由により、本発明に従いゾルゲル法により形成された多孔質膜を計測の補助手段として用いることにより、従来は計測できなかった測定面とそれに向かい合う裏面10bとがほぼ平行であるような基板に対しても、従来仕様の干渉計での計測が可能とる。   For the reasons described above, by using a porous film formed by the sol-gel method according to the present invention as an auxiliary means for measurement, a measurement surface that could not be measured conventionally and a back surface 10b facing it are substantially parallel to each other. However, measurement with a conventional interferometer is possible.

さらに、反射防止膜12を除去後に被計測物の表面状態を変えないので、信頼度の高い高精度な光学測定を行うことができる。   Furthermore, since the surface state of the object to be measured is not changed after the antireflection film 12 is removed, highly reliable optical measurement with high reliability can be performed.

さらに、反射防止膜12をゾルゲル法により形成するので、屈折率を制御でき、かつ良質な反射防止膜12を提供できる。また、粒径100nm以下のフッ化物粒子により構成されるので、散乱損失を抑えることができ、精度の高い計測を行うことができる。   Furthermore, since the antireflection film 12 is formed by a sol-gel method, the refractive index can be controlled and a high quality antireflection film 12 can be provided. Moreover, since it is comprised with the fluoride particle | grains with a particle size of 100 nm or less, a scattering loss can be suppressed and a highly accurate measurement can be performed.

さらに、ふき取りなどの物理的手段又は溶媒による洗浄などの化学的手段で除去することが可能な反射防止膜12を用いるので、計測後に被計測物の表面状態を損ねることなく平易に被計測物から反射防止膜12を除去できる。   Furthermore, since the antireflection film 12 that can be removed by physical means such as wiping or chemical means such as cleaning with a solvent is used, the surface state of the object to be measured can be easily removed from the object to be measured after measurement. The antireflection film 12 can be removed.

さらに、本発明の測定方法により評価され、所定値以上の精度を有する光学素子を具えている光学製品に対しては、光学系に組み込む前に予め性能の悪い素子を排除できるので、光学系に組み込む前に予め性能の悪い素子を排除可能であり、光学系を組み立てた後に光学素子の性能未達による光学系の性能未達により、別の光学素子を再度作製しなくてはならないというトラブルを防止することができ、光学系製品の製造コストを抑えることができる。   Furthermore, for optical products having optical elements that are evaluated by the measurement method of the present invention and have an accuracy of a predetermined value or higher, elements with poor performance can be eliminated in advance before being incorporated into the optical system. It is possible to eliminate in advance elements that have poor performance before installation, and after assembling the optical system, the optical system has failed to achieve the performance of the optical system, so another optical element has to be produced again. This can prevent the manufacturing cost of the optical system product.

光学系は、N.A.>0.80であるので、高解像度での結像が可能となる。   The optical system is N.I. A. Since> 0.80, high-resolution imaging is possible.

さらに、本発明によれば、投影露光装置1として組み立てる前に、予め性能の悪い照明光学系3を排除できるので、投影露光装置1に照明光学系3及び投影光学系6を組み立て工程後に照明光学系3及び投影光学系6の性能評価後、性能未達の際には別の照明光学系3及び投影光学系6を再度組み立てるというトラブルを防止することができ、投影露光装置1の製造コストを抑えることができる。   Furthermore, according to the present invention, the illumination optical system 3 having poor performance can be eliminated in advance before the projection exposure apparatus 1 is assembled. Therefore, the illumination optical system 3 and the projection optical system 6 are assembled in the projection exposure apparatus 1 after the assembly process. After the performance evaluation of the system 3 and the projection optical system 6, it is possible to prevent the trouble of reassembling another illumination optical system 3 and the projection optical system 6 when the performance is not achieved, and the production cost of the projection exposure apparatus 1 can be reduced. Can be suppressed.

本発明の実施の形態1に係る反射防止膜を用いたPP板の基板面の反射波面計測時の概念図である。It is a conceptual diagram at the time of the reflected wavefront measurement of the board | substrate surface of PP board using the antireflection film which concerns on Embodiment 1 of this invention. 同実施の形態1に係る図1で示した反射防止膜を用いた場合の反射波面計測時の干渉縞図である。It is an interference fringe figure at the time of reflected wavefront measurement at the time of using the anti-reflective film shown in FIG. 図7で示した反射防止膜無しの場合の反射波面計測時の干渉縞図である。It is an interference fringe figure at the time of reflected wavefront measurement in the case of no antireflection film shown in FIG. 本発明の形態2に係る反射防止膜を用いたPP板の裏面の反射波面計測時の概念図である。It is a conceptual diagram at the time of the reflected wavefront measurement of the back surface of PP board using the antireflection film which concerns on form 2 of this invention. 本発明の実施の形態3に係る、反射防止膜が均一に成膜された場合の、PP板の両面に反射防止膜を成膜した場合の透過波面計測時の概念図である。It is a conceptual diagram at the time of transmission wavefront measurement at the time of forming an antireflection film on both surfaces of a PP plate when an antireflection film is uniformly formed according to Embodiment 3 of the present invention. 反射防止膜に膜厚ムラができた場合の透過波面計測時の概念図である。It is a conceptual diagram at the time of transmission wavefront measurement when film thickness nonuniformity has been made in the antireflection film. 同実施の形態3に係る裏面反射防止膜を成膜した場合の透過波面計測時の概念図である。It is a conceptual diagram at the time of the transmission wavefront measurement at the time of forming the back surface anti-reflective film which concerns on the same Embodiment 3. FIG. 同実施の形態3に係る透過波面計測時の検証実験の結果を示す図である。It is a figure which shows the result of the verification experiment at the time of the transmitted wavefront measurement which concerns on the same Embodiment 3. 従来の反射波面計測時の概念図である。It is a conceptual diagram at the time of the conventional reflected wavefront measurement. 従来の透過波面計測時の概念図である。It is a conceptual diagram at the time of the conventional transmitted wavefront measurement. 投影露光装置の概念図である。It is a conceptual diagram of a projection exposure apparatus.

符号の説明Explanation of symbols

10 PP板
10a 基板面
10b 裏面
11 参照光
11a 参照面
12 反射防止膜
13 入射光
14 反射ミラー
21、21a 透過光
22 反射光
23 多重反射光
24 屈折率のムラによって生じる光24
H 膜厚
DESCRIPTION OF SYMBOLS 10 PP board 10a Substrate surface 10b Back surface 11 Reference light 11a Reference surface 12 Antireflection film 13 Incident light 14 Reflection mirror 21, 21a Transmitted light 22 Reflected light 23 Multiple reflected light 24 Light 24 generated by uneven refractive index
H film thickness

Claims (12)

被計測物の計測に使用する計測光の波長に対して反射防止機能を有し、かつ、前記被計測物の表面を研磨することなく除去可能な反射防止膜を、前記被計測物の表面に成膜した後に、前記被計測物の光学特性を計測することを特徴とする光学特性の計測方法。 An antireflection film having an antireflection function with respect to the wavelength of measurement light used for measurement of the object to be measured and removable without polishing the surface of the object to be measured is provided on the surface of the object to be measured. An optical property measuring method, comprising: measuring an optical property of the object to be measured after film formation. 前記反射防止膜は、ゾルゲル法により形成することを特徴とする請求項1に記載の光学特性の計測方法。 The optical property measuring method according to claim 1, wherein the antireflection film is formed by a sol-gel method. 前記反射防止膜は、粒径100nm以下のフッ化物粒子により構成されることを特徴とする請求項1又は2に記載の光学特性の計測方法。 The optical property measuring method according to claim 1, wherein the antireflection film is made of fluoride particles having a particle diameter of 100 nm or less. 前記反射防止膜は、ふき取りなどの物理的手段で除去することが可能であることを特徴とする請求項1乃至3のいずれか一つに記載の光学特性の計測方法。 4. The optical property measuring method according to claim 1, wherein the antireflection film can be removed by physical means such as wiping. 前記反射防止膜は、溶媒による洗浄などの化学的手段で除去することが可能であることを特徴とする請求項1乃至3のいずれか一つに記載の光学特性の計測方法。 4. The optical property measuring method according to claim 1, wherein the antireflection film can be removed by chemical means such as cleaning with a solvent. 前記被計測物の光学特性を計測する際の基準となる参照面が前記被計測物の一方の側に設けられ、
前記反射防止膜が前記被計測物の一方の側に成膜され、
前記被計測物に前記参照面側から前記計測光を入射させることによって、
前記被計測物の反射波面を計測することを特徴とする請求項1乃至5のいずれか一つに記載の光学特性の計測方法。
A reference surface serving as a reference when measuring the optical characteristics of the measurement object is provided on one side of the measurement object,
The antireflection film is formed on one side of the object to be measured,
By making the measurement light incident on the object to be measured from the reference surface side,
6. The optical property measuring method according to claim 1, wherein a reflected wavefront of the object to be measured is measured.
反射ミラーが前記被計測物の一方の側に設けられ、
前記参照面が前記被計測物の他方の側に設けられ、
前記反射防止膜が前記反射ミラー側に成膜され、
前記被計測物に前記参照面側から前記計測光を入射させることによって、
前記被計測物の透過波面を計測することを特徴とする請求項1乃至5のいずれか一つに記載の光学特性の計測方法。
A reflection mirror is provided on one side of the object to be measured;
The reference surface is provided on the other side of the object to be measured;
The antireflection film is formed on the reflection mirror side,
By making the measurement light incident on the object to be measured from the reference surface side,
6. The optical property measuring method according to claim 1, wherein a transmitted wavefront of the object to be measured is measured.
前記被計測物は、計測光が透過する方向の厚みが1cm以下の準平行平板であり、前記反射防止膜の透過率は98%以上、屈折率は1.40以下であることを特徴とする請求項1乃至7のいずれか一つに記載の光学特性の計測方法。 The object to be measured is a quasi-parallel plate having a thickness of 1 cm or less in a direction in which measurement light is transmitted, and the transmittance of the antireflection film is 98% or more and the refractive index is 1.40 or less. The method for measuring optical characteristics according to claim 1. フッ化物溶液を用いてゾルゲル法によって作製した調製液を対象物に塗布後乾燥させることによって成膜され、所定の光の波長に対して反射防止機能を有し、かつ、前記対象物の表面を研磨することなく除去可能であることを特徴とする反射防止膜。 It is formed into a film by applying a preparation prepared by a sol-gel method using a fluoride solution to an object and then drying, and has an antireflection function for a predetermined wavelength of light, and the surface of the object is An antireflection film, which can be removed without polishing. 前記請求項1乃至8のいずれか一つに記載の測定方法により評価され、所定値以上の精度を有する光学素子を具えたことを特徴とする光学系。 An optical system comprising an optical element evaluated by the measurement method according to any one of claims 1 to 8 and having an accuracy equal to or higher than a predetermined value. 前記光学素子は、N.A.>0.80であることを特徴とする請求項10に記載の光学系。 The optical element includes N.I. A. The optical system according to claim 10, wherein> 0.80. 投影光学系を用いてマスクのパターン像を基板上に投影露光する装置であって、紫外線を露光光としてマスクを照明する照明光学系と、請求項10又は11に記載の光学系を含み、前記マスクのパターン像を基板上に形成する投影光学系とを備えた投影露光装置。 An apparatus for projecting and exposing a pattern image of a mask onto a substrate using a projection optical system, comprising: an illumination optical system that illuminates the mask using ultraviolet light as exposure light; and the optical system according to claim 10 or 11, A projection exposure apparatus comprising: a projection optical system that forms a pattern image of a mask on a substrate.
JP2003345466A 2003-10-03 2003-10-03 Method for measuring optical characteristic, antireflection film, optical system, and projection aligner Pending JP2005114400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345466A JP2005114400A (en) 2003-10-03 2003-10-03 Method for measuring optical characteristic, antireflection film, optical system, and projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345466A JP2005114400A (en) 2003-10-03 2003-10-03 Method for measuring optical characteristic, antireflection film, optical system, and projection aligner

Publications (1)

Publication Number Publication Date
JP2005114400A true JP2005114400A (en) 2005-04-28

Family

ID=34538733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345466A Pending JP2005114400A (en) 2003-10-03 2003-10-03 Method for measuring optical characteristic, antireflection film, optical system, and projection aligner

Country Status (1)

Country Link
JP (1) JP2005114400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282663A (en) * 2007-05-10 2008-11-20 National Institute Of Advanced Industrial & Technology Light source device and pseudo-sunlight irradiator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249938A (en) * 1989-03-24 1990-10-05 Fuji Photo Optical Co Ltd Device for inspecting optical parts
JPH08110401A (en) * 1994-10-07 1996-04-30 Sumitomo Osaka Cement Co Ltd Transparent high refractive index film and transparent laminated body
JP2000089471A (en) * 1998-09-14 2000-03-31 Sharp Corp Forming method of resist pattern
JP2000356508A (en) * 1999-06-14 2000-12-26 Nikon Corp Interferometer
WO2001023914A1 (en) * 1999-09-30 2001-04-05 Nikon Corporation Optical device with multilayer thin film and aligner with the device
JP2001183812A (en) * 1999-12-24 2001-07-06 Hitachi Ltd Method of producing semiconductor integrated circuit device and method of inspecting photomask
JP2001274083A (en) * 2000-03-03 2001-10-05 Carl Zeiss:Fa Tangential polarization type projection exposure by microlithography
JP2001526402A (en) * 1997-12-09 2001-12-18 コミツサリア タ レネルジー アトミーク Antireflection treatment method and material having antireflection properties
WO2002018981A1 (en) * 2000-08-29 2002-03-07 Japan Science And Technology Corporation Method of forming optical thin film
WO2002018982A1 (en) * 2000-08-30 2002-03-07 Nikon Corporation Method of forming optical thin film and optical element provided with optical thin film
JP2002175964A (en) * 2000-12-06 2002-06-21 Nikon Corp Observation system and method of manufacturing the same, aligner, and method of manufacturing microdevice
JP2002195913A (en) * 2000-12-27 2002-07-10 Nikon Corp Apparatus and method for measuring aberration, exposure apparatus and method for producing device
JP2002244035A (en) * 2000-12-11 2002-08-28 Nikon Corp Projection optical system and exposure device provided with it

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249938A (en) * 1989-03-24 1990-10-05 Fuji Photo Optical Co Ltd Device for inspecting optical parts
JPH08110401A (en) * 1994-10-07 1996-04-30 Sumitomo Osaka Cement Co Ltd Transparent high refractive index film and transparent laminated body
JP2001526402A (en) * 1997-12-09 2001-12-18 コミツサリア タ レネルジー アトミーク Antireflection treatment method and material having antireflection properties
JP2000089471A (en) * 1998-09-14 2000-03-31 Sharp Corp Forming method of resist pattern
JP2000356508A (en) * 1999-06-14 2000-12-26 Nikon Corp Interferometer
WO2001023914A1 (en) * 1999-09-30 2001-04-05 Nikon Corporation Optical device with multilayer thin film and aligner with the device
JP2001183812A (en) * 1999-12-24 2001-07-06 Hitachi Ltd Method of producing semiconductor integrated circuit device and method of inspecting photomask
JP2001274083A (en) * 2000-03-03 2001-10-05 Carl Zeiss:Fa Tangential polarization type projection exposure by microlithography
WO2002018981A1 (en) * 2000-08-29 2002-03-07 Japan Science And Technology Corporation Method of forming optical thin film
WO2002018982A1 (en) * 2000-08-30 2002-03-07 Nikon Corporation Method of forming optical thin film and optical element provided with optical thin film
JP2002175964A (en) * 2000-12-06 2002-06-21 Nikon Corp Observation system and method of manufacturing the same, aligner, and method of manufacturing microdevice
JP2002244035A (en) * 2000-12-11 2002-08-28 Nikon Corp Projection optical system and exposure device provided with it
JP2002195913A (en) * 2000-12-27 2002-07-10 Nikon Corp Apparatus and method for measuring aberration, exposure apparatus and method for producing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282663A (en) * 2007-05-10 2008-11-20 National Institute Of Advanced Industrial & Technology Light source device and pseudo-sunlight irradiator

Similar Documents

Publication Publication Date Title
JP5061903B2 (en) MULTILAYER REFLECTOR, MULTILAYER REFLECTOR MANUFACTURING METHOD, OPTICAL SYSTEM, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
US8854731B2 (en) Carbon dioxide laser light optical component
JP2007113091A (en) Method for forming multilayer film
EP0552648B1 (en) Method of and apparatus for forming a multi-layer film
TW200941148A (en) Exposure mirror and exposure apparatus having same
US20070076297A1 (en) Transmission type optical element
US6187445B1 (en) Birefringent plate
Vergöhl et al. Industrial-scale deposition of highly uniform and precise optical interference filters by the use of an improved cylindrical magnetron sputtering system
US9921483B2 (en) Surface correction of mirrors with decoupling coating
JP2009157145A (en) Liquid crystal lens apparatus
CN107462941B (en) Method for producing optical element
JP2005114400A (en) Method for measuring optical characteristic, antireflection film, optical system, and projection aligner
CN106707715B (en) A kind of semiconductor devices and preparation method thereof
RU2654991C1 (en) Method of coating application in vacuum
TWI391507B (en) Apparatus for vacuum deposition
JP2004302112A (en) Optical thin film, optical member, optical system, projection exposure apparatus and manufacturing method for optical thin film
Luo et al. Figure correction of a quartz sub-mirror for a transmissive diffractive segmented telescope by Reactive Ion Figuring
CN112817070A (en) Surface shape correction method of planar optical element
JP2007156485A (en) Optical system, in particular illumination device or projection objective of microlithographic projection exposure apparatus
JP2008009117A (en) Method of forming dielectric multilayer film
Chu et al. Measuring the phase transfer function of a phase-shifting interferometer
JP4924311B2 (en) Film forming apparatus and film forming method using the same
JP7239271B2 (en) Method for manufacturing an optical filter
JP2005301032A (en) Optical thin film forming apparatus, optical thin film forming method and optical element
JP4623711B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device, and camera having the light quantity diaphragm device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818