JP2005114240A - Cooling facility - Google Patents
Cooling facility Download PDFInfo
- Publication number
- JP2005114240A JP2005114240A JP2003348952A JP2003348952A JP2005114240A JP 2005114240 A JP2005114240 A JP 2005114240A JP 2003348952 A JP2003348952 A JP 2003348952A JP 2003348952 A JP2003348952 A JP 2003348952A JP 2005114240 A JP2005114240 A JP 2005114240A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- cooling water
- piping
- water
- water system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
Description
本発明は、火力発電設備の冷却水系統における冷却水の冷却設備に関する。 The present invention relates to a cooling water cooling facility in a cooling water system of a thermal power generation facility.
一般に、被冷却媒体と熱交換することで温度が上昇した冷却水系統の流体は、冷却塔等の冷却設備で冷却された後、循環ポンプ昇圧されて再び冷却水系統に移送される。 In general, the fluid of the cooling water system whose temperature has been raised by exchanging heat with the medium to be cooled is cooled by a cooling facility such as a cooling tower, then boosted by a circulation pump and transferred to the cooling water system again.
火力発電所等においては、蒸気タービンで仕事を終えた蒸気を復水器と呼ばれる熱交換器内にて熱交換によって復水し、再びボイラー設備に供給する給水(復水)系統がある。蒸気を復水するために必要な冷却水を復水器の冷却管(管巣)内に供給する冷却水系統では、復水器でタービン排出蒸気の冷却に用いられた温度が上昇した冷却水は冷却設備に回収され、再び復水器に移送するために適切な温度となるまで冷却が行われる。 In a thermal power plant or the like, there is a water supply (condensate) system that condenses steam that has finished work in a steam turbine by heat exchange in a heat exchanger called a condenser, and supplies the steam again to the boiler equipment. In a cooling water system that supplies the cooling water necessary for condensing steam into the condenser cooling pipe (tube nest), the cooling water whose temperature used for cooling the turbine exhaust steam in the condenser has increased. Is collected in a cooling facility and cooled until it reaches an appropriate temperature for transfer to the condenser again.
なお、大型の火力発電所では、冷却塔等の冷却設備は設置せずに海水を冷却水に用いている場合がある。この場合、取水口から取水された海水は、移送配管を通って復水器の冷却管(管巣)に移送され、蒸気タービンからの排出蒸気と間接熱交換して蒸気を復水するために用いられる。復水器で熱交換器により温度上昇した冷却水は、配送配管を介して放出口から系外(海)に排出される。 In a large thermal power plant, seawater may be used for cooling water without installing cooling equipment such as a cooling tower. In this case, the seawater taken from the intake is transferred to the condenser cooling pipe (tube nest) through the transfer pipe, and is used to condense the steam by indirect heat exchange with the steam discharged from the steam turbine. Used. The cooling water whose temperature has been increased by the heat exchanger in the condenser is discharged out of the system (sea) from the discharge port via the delivery pipe.
復水器の冷却水を冷却塔を用いて冷却する技術については、例えば特開2002−
221395号公報に記載のものがある。
As for the technology for cooling the cooling water of the condenser using a cooling tower, for example, Japanese Patent Laid-Open No. 2002-2002
No. 221395 is disclosed.
火力発電所においては復水器内の温度が上昇すると発電効率が低下してしまう為、冷却水を復水器内に移送する為には適度な温度に冷却される必要がある。冷却塔設備を有する火力発電所においては、十分な冷却性能を持った冷却塔が要求される。一般的に冷却塔設備は、空気冷却を行っている為、大気温度が高い夏季においてその性能が低下する。その為、夏季において大気温度が高い建設場所においては、大型の冷却塔設備が必要となる。これにより、冷却塔設備の建設コースト、および建設敷地面積の増加となる。 In a thermal power plant, if the temperature in the condenser rises, the power generation efficiency decreases. Therefore, in order to transfer the cooling water into the condenser, it needs to be cooled to an appropriate temperature. In a thermal power plant having a cooling tower facility, a cooling tower having sufficient cooling performance is required. In general, the cooling tower equipment performs air cooling, so that the performance is lowered in summer when the atmospheric temperature is high. Therefore, large-scale cooling tower facilities are required at construction sites where the atmospheric temperature is high in summer. As a result, the construction coast of the cooling tower facility and the construction site area are increased.
また、寒冷地においては、夏季にのみ冷却塔設備を使用し、冬季においては冷却水の凍結に対する懸念から、複数機ある冷却塔のうち、数機を停止させる場合もある。この場合、停止した冷却塔に接続されている配管内では、流体が停滞することにより冷却水の凍結の恐れがある為、冷却塔や付帯する設備および配管に凍結防止対策を施すことが必要な場合もある。 In cold regions, cooling tower equipment is used only in the summer, and in the winter, some of the cooling towers may be stopped due to concerns about freezing of the cooling water. In this case, in the piping connected to the stopped cooling tower, there is a risk of cooling water freezing due to fluid stagnation, so it is necessary to take measures to prevent freezing of the cooling tower and the accompanying equipment and piping. In some cases.
海水を冷却水として利用している火力発電所等においては、流体が海水であることから、循環水配管内の腐食防止と循環水配管内に貝等が付着することを防止する為に、循環水配管内にゴムライニングを施工するといった対策がとられるが定期的に配管内の貝類を除去することが必要となる。また、発電所の建設場所として、海水の取排水が可能な海岸に限定されてしまう。 In thermal power plants that use seawater as cooling water, the fluid is seawater. Therefore, in order to prevent corrosion in the circulating water piping and to prevent shells from attaching to the circulating water piping, Although measures such as installing rubber lining in the water pipe are taken, it is necessary to periodically remove shellfish in the pipe. Moreover, the construction site of the power plant is limited to the coast where seawater can be taken and drained.
本発明の目的は、冷却水の冷却設備のコストを低減し、発電所の建設敷地面積を縮小することができる冷却設備を提供することにある。 The objective of this invention is providing the cooling equipment which can reduce the cost of the cooling equipment of cooling water, and can reduce the construction site area of a power plant.
上記目的を達成するために、本発明は冷却水系統の一部の配管を地中、或いは河川,湖沼,海洋等の水中を通過させ、前記冷却水の冷却媒体として利用するように構成したことを特徴とする。 In order to achieve the above object, the present invention is configured such that a part of the piping of the cooling water system passes through the ground or water such as rivers, lakes, and oceans and is used as a cooling medium for the cooling water. It is characterized by.
本発明によれば、冷却塔等の冷却設備を小型化若しくは不用とすることができ、建設コストおよび建設敷地面積の低減が可能となる。 According to the present invention, cooling equipment such as a cooling tower can be reduced in size or not required, and the construction cost and the construction site area can be reduced.
以下、本発明の実施例について、図1〜図3を用いて説明する。 Embodiments of the present invention will be described below with reference to FIGS.
図1は、本発明の第1の実施形態である冷却水系統図を示す。循環ポンプ1によって昇圧された冷却水は、循環水配管2を通って移送され系内を循環する。冷却水は、循環ポンプ1を出た後、復水器3へ移送される。復水器3の内部では、図示しない蒸気タービンにて仕事を終えた蒸気が冷却水との間接熱交換によって冷却し復水している。復水器3で温度が上昇した冷却水は、再び循環ポンプ1を経由し、復水器3に移送するのに適度な温度に冷却する為に、系外の冷却媒体4(河川,池,湖沼,海洋,土中等)中に設置された循環水配管5(熱交換部)を通り、再び循環ポンプ1へ移送される。
FIG. 1 shows a cooling water system diagram according to the first embodiment of the present invention. The cooling water boosted by the
これにより系外の冷却媒体4が存在すれば、建設が可能となる。循環水配管5(熱交換部)を通る冷却水の流量は、流量調節弁6にて調整される。循環水配管5(熱交換部)の構造としては、管外面において冷却媒体との接触面積が大きくする構造にすると、熱交換量が増加して冷却効率を高めることが可能となる。冷却媒体との接触面積を大きくする為の配管の構成としては、熱交換部において管外面に冷却フインを取付けたり、管を複数本に分岐させる方法が考えられる。 Thus, if there is a cooling medium 4 outside the system, construction is possible. The flow rate of the cooling water passing through the circulating water pipe 5 (heat exchange part) is adjusted by the flow rate control valve 6. As the structure of the circulating water pipe 5 (heat exchanging section), if the contact area with the cooling medium is increased on the outer surface of the pipe, the heat exchange amount increases and the cooling efficiency can be increased. As a configuration of the pipe for increasing the contact area with the cooling medium, a method of attaching a cooling fin to the outer surface of the pipe in the heat exchanging section or branching the pipe into a plurality of pipes can be considered.
また、管内の流体の流速を下げることによっても熱交換量は増加でき、冷却効率を高めることが可能となる。管内の流体の流速を下げる為の配管の構成としては、熱交換部において管口径を大きくしたり、熱交換部において管を複数本に分岐させる方法が考えられる。 In addition, the amount of heat exchange can be increased by lowering the flow rate of the fluid in the pipe, and the cooling efficiency can be increased. As a configuration of the piping for reducing the flow velocity of the fluid in the pipe, a method of enlarging the pipe diameter in the heat exchange section or a method of branching the pipe into a plurality of pipes in the heat exchange section can be considered.
また、管材質に熱伝導率の高い材料を使用することによっても熱交換量を増加させ、冷却効率を高めることが可能となる。流量調節弁6の調整は、温度計7(復水器入口部)と温度計8(復水器出口部)における循環水配管5内部の流体の温度測定値にて制御される。 In addition, it is possible to increase the amount of heat exchange and increase the cooling efficiency by using a material having high thermal conductivity as the tube material. The adjustment of the flow rate control valve 6 is controlled by the measured temperature value of the fluid in the circulating water pipe 5 in the thermometer 7 (condenser inlet) and the thermometer 8 (condenser outlet).
図2は本発明の第2の実施形態を示すもので、図1と同一の構成についてはその説明を省略する。図2に示す本実施例は、図1の構成に冷却設備に冷却塔9を併設したものである。この実施形態をとることにより、冷却水は系外の冷却媒体4(河川,池,湖沼,海洋,土中等)中に設置された循環水配管5(熱交換部)を通って冷却された後に冷却塔9に移送されるため、夏季において大気温度が高い設置場所においても、冷却塔の負荷を低減することができ、冷却塔を小型化することが可能となる。 FIG. 2 shows a second embodiment of the present invention, and the description of the same configuration as in FIG. 1 is omitted. In the present embodiment shown in FIG. 2, a cooling tower 9 is added to the cooling facility in the configuration of FIG. By taking this embodiment, the cooling water is cooled through the circulating water pipe 5 (heat exchange section) installed in the cooling medium 4 (river, pond, lake, ocean, soil, etc.) outside the system. Since it is transferred to the cooling tower 9, the load on the cooling tower can be reduced even in an installation place where the atmospheric temperature is high in summer, and the cooling tower can be downsized.
また、図1の実施例と同様に循環水配管5(熱交換部)を通る冷却水の流量は流量調節弁6にて調整される。流量調節弁6の調整は、温度計7(復水器入口部)と温度計8(復水器出口部)における循環水配管5内部の流体の温度測定値にて制御される。すなわち、夏季などの大気温度が高い場合においては、循環水配管5(熱交換部)への流量が増加することになる。尚、冷却塔9にて冷却された冷却水は、冷却塔水槽10に貯水され、再び循環ポンプ1に移送される。
As in the embodiment of FIG. 1, the flow rate of the cooling water passing through the circulating water pipe 5 (heat exchange part) is adjusted by the flow rate control valve 6. The adjustment of the flow rate control valve 6 is controlled by the measured temperature value of the fluid in the circulating water pipe 5 in the thermometer 7 (condenser inlet) and the thermometer 8 (condenser outlet). That is, when the atmospheric temperature is high, such as in summer, the flow rate to the circulating water pipe 5 (heat exchange part) increases. The cooling water cooled in the cooling tower 9 is stored in the cooling tower water tank 10 and transferred to the
次いで、図3は本発明の第3の実施形態を示すもので、前述した実施例と同一構成部品については説明を簡略化する。図3に示す様に、この冷却設備もまた、第1の実施形態における冷却設備に冷却塔9を併設したものである。 Next, FIG. 3 shows a third embodiment of the present invention, and the description of the same components as those in the above-described example will be simplified. As shown in FIG. 3, this cooling facility also includes a cooling tower 9 in addition to the cooling facility in the first embodiment.
本実施形態においては、冷却水は系外の冷却媒体4(河川,池,湖沼,海洋,土中等)中に設置された循環水配管5(熱交換部)を通って冷却された後に、冷却塔9を介さず、直接冷却塔水槽10に移送する循環水配管5を有する。また、冷却塔入口弁11を閉じることにより、冷却塔9への冷却水の流入を遮蔽することが可能となる。この実施形態をとることにより、寒冷地の冬季においては、冷却塔9を介した場合に冷却水の温度が極度に低下して凍結する様なことがなく、冷却塔や付帯する設備および配管に凍結防止対策を施すことが不要となる。 In the present embodiment, the cooling water is cooled after being cooled through a circulating water pipe 5 (heat exchange part) installed in a cooling medium 4 (river, pond, lake, ocean, soil, etc.) outside the system. There is a circulating water pipe 5 that is directly transferred to the cooling tower water tank 10 without going through the tower 9. In addition, by closing the cooling tower inlet valve 11, it becomes possible to shield the inflow of cooling water to the cooling tower 9. By adopting this embodiment, in the winter season in cold regions, the temperature of the cooling water is not extremely reduced when frozen through the cooling tower 9, and the cooling tower and the accompanying equipment and piping are not frozen. It is not necessary to take measures to prevent freezing.
以上図1〜図3を用いて説明した実施例によれば、火力発電所の建設場所について、河川,池,湖沼,海洋、または土中等の冷却媒体が存在する場所であれば、建設が可能となる。また、海水を移送することはない為、配管内に貝類が付着することがなく、ゴムライニングを施工することや貝類を定期的に除去することを不要となる。また、冷却塔設備と併設して用いた場合、夏季における冷却塔の冷却性能の低下を補うことが可能となり、冷却塔設備を小型化することができ、建設コストおよび建設敷地面積の低減が可能となる。また、配管の接続構成によっては、冷却塔を通過させずに冷却水を冷却することが可能となる為、寒冷地において冬期の凍結防止対策が不要となる。 According to the embodiment described with reference to FIGS. 1 to 3 above, the thermal power plant can be constructed if there is a cooling medium such as a river, pond, lake, ocean, or soil. It becomes. Moreover, since seawater is not transferred, shellfish do not adhere in piping, and it becomes unnecessary to construct a rubber lining and to remove shellfish regularly. In addition, when used in combination with cooling tower equipment, it is possible to compensate for the cooling performance of the cooling tower in the summer, to reduce the size of the cooling tower equipment, and to reduce the construction cost and construction site area. It becomes. In addition, depending on the connection configuration of the piping, the cooling water can be cooled without passing through the cooling tower, so that it is not necessary to take measures to prevent freezing in winter in cold regions.
1…循環ポンプ、2,5…循環水配管、3…復水器、4…系外の冷却媒体、6…流量調節弁、7,8…温度計、9…冷却塔、10…冷却塔水槽、11…冷却塔入口弁。
DESCRIPTION OF
Claims (3)
A cooling water system of a thermal power generation facility, wherein the cooling water system includes a cooling water cooling tower, and a part of the piping of the cooling water system upstream of the cooling tower is underground or in a river or lake A cooling system characterized by being configured to pass underwater such as the ocean and to be used as a cooling medium for cooling water flowing through the inside of the pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003348952A JP2005114240A (en) | 2003-10-08 | 2003-10-08 | Cooling facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003348952A JP2005114240A (en) | 2003-10-08 | 2003-10-08 | Cooling facility |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005114240A true JP2005114240A (en) | 2005-04-28 |
Family
ID=34540953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003348952A Pending JP2005114240A (en) | 2003-10-08 | 2003-10-08 | Cooling facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005114240A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101170644B1 (en) | 2010-12-02 | 2012-08-02 | 한국중부발전(주) | Heat exchange system of closed cooling water with geothermal exchange system in power plant |
JP2014206311A (en) * | 2013-04-11 | 2014-10-30 | 三菱重工業株式会社 | Device and method for cooling steam condenser |
JP2015040751A (en) * | 2013-08-21 | 2015-03-02 | 三菱重工業株式会社 | Cooling device |
JP2016529859A (en) * | 2013-05-22 | 2016-09-23 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | DC voltage converter and fuel cell device for submersible |
-
2003
- 2003-10-08 JP JP2003348952A patent/JP2005114240A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101170644B1 (en) | 2010-12-02 | 2012-08-02 | 한국중부발전(주) | Heat exchange system of closed cooling water with geothermal exchange system in power plant |
JP2014206311A (en) * | 2013-04-11 | 2014-10-30 | 三菱重工業株式会社 | Device and method for cooling steam condenser |
JP2016529859A (en) * | 2013-05-22 | 2016-09-23 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | DC voltage converter and fuel cell device for submersible |
JP2015040751A (en) * | 2013-08-21 | 2015-03-02 | 三菱重工業株式会社 | Cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10113772B2 (en) | Ground circuit in a low-energy system | |
JP6362538B2 (en) | Heat transfer between fluids | |
US20140138093A1 (en) | Subsea cooling system | |
JP2008241226A (en) | Sewage heat collecting facility and sewage heat utilization system | |
JP2006349226A (en) | Cold utilization system for deep sea water | |
JP2005114240A (en) | Cooling facility | |
US20100212858A1 (en) | Geothermal Cooling System for an Energy-Producing Plant | |
CN102260004A (en) | Closed-loop industrial circulating cooling water device and method applying separated heat pipe technology | |
JP2011089502A (en) | Electric power generation system using solar energy | |
JPH0821205A (en) | Condenser device | |
CN114108745A (en) | Forced ventilation cooling direct current water taking and draining system | |
JP2009058153A (en) | Condenser cooling system for power-generating plant | |
KR20080093676A (en) | Utilize subterranean water heat pump source | |
KR101924322B1 (en) | Apparatus for sea water air cooling and floating marine power plant using the apparatus | |
JP4533818B2 (en) | Remodeling method for emergency auxiliary cooling system | |
CA3194331C (en) | Power plant cooling systems | |
RU140779U1 (en) | HEAT SUPPLY SYSTEM | |
CN220038415U (en) | Boiler blowdown waste heat recovery system | |
CN219265030U (en) | Shutter antifreezing device of closed cooling tower | |
Jović et al. | Review of opportunities for steam condenser performance improvements in power plants | |
CN109579560B (en) | Indirect air cooling cold-proof and freezing-proof system for harpoon Meng Shi | |
WO2015060169A1 (en) | Power generation plant | |
JP2024016544A (en) | Underwater heat exchange device and heat exchange system | |
WO2020070805A1 (en) | Water flow facility | |
Reutov et al. | Comparative analysis of cooling systems for energy equipment of combined heat and power plants and nuclear power plants |