JP2005113260A - Heat-resistant magnesium die casting alloy and die cast product of the same - Google Patents

Heat-resistant magnesium die casting alloy and die cast product of the same Download PDF

Info

Publication number
JP2005113260A
JP2005113260A JP2004150393A JP2004150393A JP2005113260A JP 2005113260 A JP2005113260 A JP 2005113260A JP 2004150393 A JP2004150393 A JP 2004150393A JP 2004150393 A JP2004150393 A JP 2004150393A JP 2005113260 A JP2005113260 A JP 2005113260A
Authority
JP
Japan
Prior art keywords
heat
die casting
content
alloy
resistant magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004150393A
Other languages
Japanese (ja)
Other versions
JP4202298B2 (en
Inventor
Takumi Hijii
巧 肘井
Tomoyasu Kitano
智靖 北野
Koichi Ohori
紘一 大堀
Sukenori Nakaura
祐典 中浦
Harutoshi Matsuyama
晴俊 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004150393A priority Critical patent/JP4202298B2/en
Application filed by Mitsubishi Aluminum Co Ltd, Toyota Motor Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to CA2536682A priority patent/CA2536682C/en
Priority to EP04788132A priority patent/EP1685267B1/en
Priority to PCT/JP2004/013974 priority patent/WO2005028691A1/en
Priority to KR1020067005415A priority patent/KR20060040745A/en
Priority to US10/568,775 priority patent/US20060222556A1/en
Priority to DE602004008797T priority patent/DE602004008797T2/en
Priority to AU2004274799A priority patent/AU2004274799B2/en
Publication of JP2005113260A publication Critical patent/JP2005113260A/en
Priority to NO20061193A priority patent/NO20061193L/en
Application granted granted Critical
Publication of JP4202298B2 publication Critical patent/JP4202298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)
  • Forging (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant magnesium die casting alloy with an expanded range of application by improving both of the heat resistance and castability, and to provide a die cast product of the alloy. <P>SOLUTION: The heat-resistant magnesium die casting alloy has a composition comprising, by mass%, over 6 to not more than 10 of Al, 1.8 to 5 of Ca, 0.05 to 1.0 of Sr, 0.1 to 0.6 of Mn and the balance Mg and inevitable impurities, and has 0.3 to 0.5 Ca/Al ratio of the Ca content to the Al content. In order to improve the corrosion resistance, 0.1 to 3% of a REM can be added. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ダイカスト用耐熱マグネシウム合金および同合金のダイカスト製品に関する。   The present invention relates to a heat-resistant magnesium alloy for die casting and a die-cast product of the alloy.

近年、車両軽量化の要請に対応すべく、実用金属中で最軽量であるマグネシウム合金の適用拡大が望まれている。しかしながら、従来のダイカスト用マグネシウム合金は、高温時の変形が大きく、特に高温環境(120℃以上)に曝されるボルト締結部を有する部品への適用は進んでいない。これまで、種々のダイカスト用耐熱マグネシウム合金が開発されてきてはいるが、耐熱性(高温強度、耐クリープ性)と鋳造性(ダイカスト時の割れ防止性、焼付き防止性)を同時に向上させることができず、適用範囲に限界があった。   In recent years, in order to meet the demand for vehicle weight reduction, it has been desired to expand the application of magnesium alloy, which is the lightest among practical metals. However, conventional magnesium alloys for die casting are greatly deformed at high temperatures, and their application to parts having bolt fastening portions that are exposed to a high temperature environment (120 ° C. or higher) has not progressed. Various heat-resistant magnesium alloys for die casting have been developed so far, but heat resistance (high-temperature strength, creep resistance) and castability (cracking prevention and seizure prevention during die casting) must be improved at the same time. The application range was limited.

そこで、耐熱性と鋳造性を両立させるために、例えば、特許文献1(特開2001−316752号公報)には、Al:2〜6質量%、Ca:0.3〜2質量%、Sr:0.01〜1質量%、Mn:0.1〜1質量%、および残部:Mgおよび不可避不純物から成るダイカスト用マグネシウム合金が提案されている。これにより、耐熱性と鋳造性を同時に向上させることが可能になり適用範囲が拡大された。   Therefore, in order to achieve both heat resistance and castability, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2001-316752) includes Al: 2-6 mass%, Ca: 0.3-2 mass%, and Sr: A magnesium alloy for die casting composed of 0.01 to 1% by mass, Mn: 0.1 to 1% by mass, and the balance: Mg and inevitable impurities has been proposed. Thereby, it became possible to improve heat resistance and castability simultaneously, and the application range was expanded.

しかし、上記提案のマグネシウム合金であっても、要請される適用範囲を十分にカバーすることはできないため、更に耐熱性と鋳造性の組合せを向上させたダイカスト用耐熱マグネシウム合金の開発が望まれていた。   However, even the proposed magnesium alloy cannot sufficiently cover the required application range, and it is desired to develop a heat-resistant magnesium alloy for die casting that further improves the combination of heat resistance and castability. It was.

特開2001−316752号公報(特許請求の範囲)JP 2001-316752 A (Claims)

本発明は、耐熱性と鋳造性とを同時に向上させて、適用範囲を拡大したダイカスト用耐熱マグネシウム合金および同合金のダイカスト製品を提供することを目的とする。   It is an object of the present invention to provide a heat-resistant magnesium alloy for die casting and a die-cast product of the same alloy that have improved heat resistance and castability at the same time and have expanded the application range.

上記の目的を達成するために、本発明によれば、質量%で下記の組成:
Al:6%を超え10%以下、
Ca:1.8〜5%、
Sr:0.05〜1.0%、
Mn:0.1〜0.6%、および
残部:Mgおよび不可避不純物
から成り、かつ、
Al含有量に対するCa含有量の比Ca/Alが0.3〜0.5であることを特徴とするダイカスト用耐熱マグネシウム合金が提供される。
In order to achieve the above object, according to the present invention, the following composition in mass%:
Al: more than 6% and 10% or less,
Ca: 1.8 to 5%,
Sr: 0.05 to 1.0%,
Mn: 0.1 to 0.6%, and the balance: Mg and inevitable impurities, and
A heat-resistant magnesium alloy for die casting is provided, wherein a ratio Ca / Al of Ca content to Al content is 0.3 to 0.5.

本発明は更に、上記マグネシウム合金から成るダイカスト製品をも提供する。   The present invention further provides a die cast product comprising the above magnesium alloy.

本発明の特徴は、AlとCaの含有量の比Ca/Alを所定の範囲内に制限したことにより、従来は不適切とされていた高含有量までAlとCaを添加しても特性劣化を起こすことなく、耐熱性と鋳造性の組合せを従来の限界を超えて向上させた点にある。   The feature of the present invention is that the ratio Ca / Al of the content of Al and Ca is limited to a predetermined range, so that characteristics are deteriorated even when Al and Ca are added to a high content which has been considered inappropriate in the past. The combination of heat resistance and castability has been improved beyond the conventional limit without causing any problems.

例えば、前記特許文献1(特開2001−316752号公報)では、Al含有量の上限を6質量%、Ca含有量の上限を2質量%に限定している。限定の理由は、Al含有量については6質量%を超えるとクリープ特性が急激に低下するからであり、また、Ca含有量については2質量%を超えると鋳造割れが生じ易くなるからである、と説明されている(同公報段落0010〜0012参照)。   For example, in the said patent document 1 (Unexamined-Japanese-Patent No. 2001-316752), the upper limit of Al content is limited to 6 mass%, and the upper limit of Ca content is limited to 2 mass%. The reason for the limitation is that when the Al content exceeds 6% by mass, the creep characteristics are drastically lowered, and when the Ca content exceeds 2% by mass, casting cracks are likely to occur. (See paragraphs 0010 to 0012 of the same publication).

これに対して本発明者は、Al含有量に対するCa含有量の比Ca/Alを0.3〜0.5の範囲に限定すれば、上記公報の上限を超えてAlおよびCaを添加しても、高Al化によるクリープ特性低下も高Ca化による鋳造割れも起こすことなく、高Al化の主効果である高温強度および鋳造性の向上と、高Ca化の主効果である耐クリープ性の向上とを同時に達成することができることを新規に見出した。本発明はこの新規な知見に基づいて完成したものである。   On the other hand, the present inventor added Al and Ca exceeding the upper limit of the above publication if the ratio Ca / Al of Ca content to Al content is limited to a range of 0.3 to 0.5. However, the deterioration of the creep characteristics due to the high Al content and the occurrence of casting cracks due to the high Ca content do not occur, the high temperature strength and castability which are the main effects of the high Al content, and the creep resistance which is the main effect of the high Ca content. It has been newly found that improvement can be achieved at the same time. The present invention has been completed based on this novel finding.

本発明のダイカスト用耐熱マグネシウム合金の組成は、下記の理由により組成を限定した。なお、本明細書中では、特に断らない限り、成分含有量の表示における「%」は「質量%」の意である。   The composition of the heat-resistant magnesium alloy for die casting of the present invention was limited for the following reasons. In the present specification, unless otherwise specified, “%” in the component content display means “mass%”.

〔Al:6%を超え10%以下〕
Alは、Al−Ca系、Al−Sr系、Mg−Al系の金属間化合物を形成して分散強化(特に粒界強化)により室温および高温での強度を高める。また、合金の融点(液相線)を低下させて溶湯の流動性を高め、鋳造性を向上させる。本発明においては、所定範囲内のCa/Al比の下において、6%を超えてAlを存在させることにより、従来の限界を超えて室温および高温の強度を高めながら、良好な鋳造性を確保することができる。ただし、Ca/Al比を本発明の所定範囲内に制限しても、Alが過剰に存在すると耐クリープ性(高温軸力保持特性)が低下するので、Al含有量の上限は10%とする。
[Al: more than 6% and 10% or less]
Al forms Al—Ca, Al—Sr, and Mg—Al intermetallic compounds, and increases the strength at room temperature and high temperature by dispersion strengthening (particularly grain boundary strengthening). In addition, the melting point (liquidus) of the alloy is lowered to increase the fluidity of the molten metal and improve the castability. In the present invention, the presence of Al exceeding 6% under a Ca / Al ratio within a predetermined range ensures good castability while increasing the strength at room temperature and high temperature exceeding the conventional limits. can do. However, even if the Ca / Al ratio is limited within the predetermined range of the present invention, if Al is present excessively, creep resistance (high temperature axial force retention characteristics) is lowered, so the upper limit of Al content is 10%. .

〔Ca:1.8%〜5%〕
Caは、Al−Ca系の金属間化合物による粒界強化により室温および高温での耐力を向上させると同時に、特に耐クリープ性(高温軸力保持特性)を高める。本発明においては、所定範囲内のCa/Al比の下において、Ca含有量を1.8%〜5%とすることにより、Alとの共存において耐力および耐クリープ性を従来の限界を超えて高めることができる。ただし、Ca/Al比を本発明の所定範囲内に制限しても、Caが過剰に存在するとダイカスト鋳造時に割れや焼付きが発生し易くなるので、Ca含有量の上限を5%とする。Ca含有量は、望ましくは2%を超え5%以下であり、更に望ましくは2.5〜3.5%である。
[Ca: 1.8% to 5%]
Ca improves the yield strength at room temperature and high temperature by grain boundary strengthening with an Al—Ca-based intermetallic compound, and at the same time, particularly increases creep resistance (high temperature axial force retention property). In the present invention, when the Ca content is 1.8% to 5% under a Ca / Al ratio within a predetermined range, the proof stress and creep resistance exceed the conventional limits in coexistence with Al. Can be increased. However, even if the Ca / Al ratio is limited within the predetermined range of the present invention, if Ca is excessively present, cracking and seizure are likely to occur during die casting, so the upper limit of Ca content is 5%. The Ca content is desirably more than 2% and 5% or less, and more desirably 2.5 to 3.5%.

〔Al含有量に対するCa含有量の比Ca/Al:0.3〜0.5〕
本発明においては、Ca/Al比をこの範囲内に制限したことにより、高Alによる耐クリープ性の低下や高Caによる鋳造性の劣化を生ずることなく、従来の限界を超えてAl含有量およびCa含有量を増加させることが可能となり、それにより従来より更に高温強度および耐クリープ性を高めつつ、良好な鋳造性を確保できる。高い耐クリープ性を安定に確保するためにはCa/Al比を0.3以上とする必要があり、ダイカスト鋳造時の割れ発生を安定して低減するためにはCa/Al比を0.5以下にする必要がある。
[Ratio of Ca content to Al content Ca / Al: 0.3 to 0.5]
In the present invention, by limiting the Ca / Al ratio within this range, the content of Al exceeds the conventional limit without causing deterioration in creep resistance due to high Al and deterioration in castability due to high Ca. It becomes possible to increase the Ca content, thereby ensuring good castability while further increasing the high temperature strength and creep resistance. In order to stably secure high creep resistance, the Ca / Al ratio needs to be 0.3 or more, and in order to stably reduce cracking during die casting, the Ca / Al ratio is 0.5. Must be:

〔Sr:0.05%〜1.0%〕
Srは、鋳造割れ防止と耐クリープ性確保の効果を更に高めるために添加する。この効果を得るにはSrを0.05%以上添加する必要があり、添加量の増加に応じて効果も大きくなるが、1.0%を超えて添加しても効果はほとんど増大しなくなる。
[Sr: 0.05% to 1.0%]
Sr is added to further enhance the effects of preventing casting cracks and ensuring creep resistance. In order to obtain this effect, it is necessary to add 0.05% or more of Sr, and the effect increases as the addition amount increases, but the effect hardly increases even if it exceeds 1.0%.

〔Mn:0.1%〜0.6%〕
Mnは良好な耐食性を確保するために添加する。この効果を得るためにはMn含有量を0.1%以上とする必要がある。ただし、Mnが過剰に存在するとMn単相が析出して脆化するので、Mn含有量の上限を0.6%とする。
[Mn: 0.1% to 0.6%]
Mn is added to ensure good corrosion resistance. In order to obtain this effect, the Mn content needs to be 0.1% or more. However, if Mn is present excessively, the Mn single phase precipitates and becomes brittle, so the upper limit of the Mn content is set to 0.6%.

本発明のマグネシウム合金は、上記組成に更に希土類金属(REM)を0.1〜3%の範囲で添加することにより、耐食性が顕著に向上する。この効果を発現させるためにはREM添加量を0.1%以上とする必要がある。ただし、REM添加量が3%を超えると鋳造性が急激に悪化し、鋳造割れや湯廻り不良が発生してしまい、健全な鋳造品が得られないので、REM添加量は3%を上限とする。   In the magnesium alloy of the present invention, the corrosion resistance is remarkably improved by adding rare earth metal (REM) in the range of 0.1 to 3% to the above composition. In order to exhibit this effect, the REM addition amount needs to be 0.1% or more. However, if the amount of REM added exceeds 3%, the castability deteriorates rapidly, casting cracks and poor hot water occur, and a sound cast product cannot be obtained. Therefore, the amount of REM added is limited to 3%. To do.

本発明の耐熱マグネシウム合金は特にダイカスト用に限定する。ダイカスト加工を行なうことにより、Al−Ca系やAl−Sr系の金属間化合物から構成される微細なネットワークが形成され、良好な耐熱性を確保できる。   The heat-resistant magnesium alloy of the present invention is particularly limited to die casting. By performing die casting, a fine network composed of Al—Ca and Al—Sr intermetallic compounds is formed, and good heat resistance can be secured.

本発明の合金をダイカスト加工に適用して製品を得るための基本的な工程は下記のとおりである。   The basic steps for obtaining a product by applying the alloy of the present invention to die casting are as follows.

合金地金→坩堝投入(*1)→溶解→温度調整→ダイカスト(*2)→製品取り出し
*1) 坩堝は鉄製を使用する。
Alloy metal → Crucible input (* 1) → Melting → Temperature adjustment → Die casting (* 2) → Product removal
* 1) Use crucible made of iron.

*2) ダイカストは、コールドチャンバー、ホットチャンバー等による。     * 2) Die casting is based on cold chamber, hot chamber, etc.

本発明のダイカスト用耐熱マグネシウム合金は、例えば自動車エンジンの部品のうち特にオイルパン、ヘッドカバーなどの他、トランスミッションケース等の耐熱性を必要とする部品に適用すると特に有利である。   The heat-resistant magnesium alloy for die casting of the present invention is particularly advantageous when applied to, for example, parts such as an oil pan and a head cover among parts of an automobile engine, such as a transmission case, which require heat resistance.

〔実施例1〕
本発明の合金組成による鋳造性および耐熱性の向上効果を確認するために以下の実験を行なった。
表1に示す組成のMg合金を、135Tonコールドチャンバーダイカストマシンを用い、下記条件にてダイカスト鋳造した。
[Example 1]
In order to confirm the effect of improving the castability and heat resistance by the alloy composition of the present invention, the following experiment was conducted.
An Mg alloy having the composition shown in Table 1 was die-cast under the following conditions using a 135 Ton cold chamber die casting machine.

<ダイカスト鋳造条件>
型の形状・寸法:70w×150L(ゲート側から3、2、1t)…平板
15φ×120L…丸棒
型予熱:200℃
鋳造温度:700〜720℃
鋳造雰囲気:1%SF6 +CO2
<Die casting conditions>
Mold shape / dimensions: 70w x 150L (3, 2, 1t from the gate side): Flat plate
15φ × 120L… Round bar Preheating: 200 ° C
Casting temperature: 700-720 ° C
Casting atmosphere: 1% SF 6 + CO 2

得られた各合金サンプルについて、引張試験(試験温度:室温(RT)、150℃)、鋳造時割れ長さ、高温軸力保持特性を測定した。高温軸力保持特性としては、下記の条件により軸力保持率を測定した。測定結果を表2および表3に一括して示す。   About each obtained alloy sample, the tension test (test temperature: room temperature (RT), 150 degreeC), the crack length at the time of casting, and the high temperature axial force retention characteristic were measured. As the high temperature axial force retention characteristics, the axial force retention rate was measured under the following conditions. Tables 2 and 3 collectively show the measurement results.

<高温軸力保持率の測定条件>
初期軸力:8kN、保持温度:150℃、保持時間:300時間
保持率:高温保持前後の軸力を室温で測定し、軸力残存率として算出
<Measurement conditions for high temperature axial force retention>
Initial axial force: 8 kN, holding temperature: 150 ° C., holding time: 300 hours Retention ratio: axial force before and after holding at high temperature is measured at room temperature and calculated as the remaining axial force ratio

また、図1に個々の合金サンプルの高温軸力保持率、図2に高温軸力保持率とCa/Al比との関係、図3に鋳造割れ長さとCa/Al比との関係をそれぞれグラフで示す。   FIG. 1 is a graph showing the high temperature axial force retention of each alloy sample, FIG. 2 is a graph showing the relationship between the high temperature axial force retention and the Ca / Al ratio, and FIG. 3 is a graph showing the relationship between the casting crack length and the Ca / Al ratio. It shows with.

特に、図2の結果から、高温軸力保持率はCa/Al比の増加に伴い増加し、実用上必要である軸力保持率70%以上を確保するには、Ca/Al比≧0.3が必要であることが分かる。   In particular, the results shown in FIG. 2 indicate that the high temperature axial force retention increases with an increase in the Ca / Al ratio, and in order to ensure a practically necessary axial force retention of 70% or more, the Ca / Al ratio ≧ 0. 3 is necessary.

また図3の結果から、鋳造割れ長さはCa/Al比の増加に伴い増加し、実用上必要である割れ長さ600mm以下を確保するためには、Ca/Al比≦0.5が必要であることが分かる。   Further, from the results of FIG. 3, the casting crack length increases with an increase in the Ca / Al ratio, and in order to secure a crack length of 600 mm or less, which is practically necessary, a Ca / Al ratio ≦ 0.5 is necessary. It turns out that it is.

以上の結果から、各成分の含有量が本発明の範囲内であって、かつ、Ca/Al比も本発明の範囲内である場合にのみ、鋳造割れを安定して低減しながら、強度(室温、高温)および耐クリープ性(高温軸力保持率)を向上できることが分かる。   From the above results, only when the content of each component is within the scope of the present invention and the Ca / Al ratio is also within the scope of the present invention, the strength ( It can be seen that room temperature, high temperature) and creep resistance (high temperature axial force retention) can be improved.

Figure 2005113260
Figure 2005113260

Figure 2005113260
Figure 2005113260

Figure 2005113260
Figure 2005113260

〔実施例2〕
本発明の合金組成においてREM添加による耐食性の向上効果を確認するために以下の実験を行なった。
[Example 2]
In order to confirm the effect of improving corrosion resistance by adding REM in the alloy composition of the present invention, the following experiment was conducted.

表4に示す組成のMg合金を実施例1と同様にしてダイカスト鋳造した。表4に示したNo.101〜105の合金組成は、基本組成(狙い値)を7%Al−3%Ca−0.5%Sr−0.3%Mnとし、これに対するREM添加量(狙い値)を順次0%(無添加)、0.1%、0.5%、2.0%、3.0%としたものである(添加材の分析値はそれぞれ0.08%、0.44%、1.77%、2.68%であった)。REM添加には、Ceリッチ(50%)のミッシュメタルを用いた。   A Mg alloy having the composition shown in Table 4 was die cast in the same manner as in Example 1. The alloy compositions of Nos. 101 to 105 shown in Table 4 have a basic composition (target value) of 7% Al-3% Ca-0.5% Sr-0.3% Mn, and the REM addition amount (target) Value) were sequentially set to 0% (no addition), 0.1%, 0.5%, 2.0%, and 3.0% (analytical values of the additive were 0.08% and 0.00%, respectively). 44%, 1.77%, 2.68%). Ce-rich (50%) misch metal was used for REM addition.

得られた各合金サンプルについて、下記の条件により塩水噴霧試験を行なって耐食性を評価した。
<塩水噴霧試験方法>
1.鋳造したままの状態のダイカスト鋳造品から試験片(幅70mm×長さ50mm×厚さ3mm)を切り出した。
2.試験片をアセトン中に浸漬して15分間超音波洗浄した後、重量(初期重量)を測定した。
3.重量測定を済ませた試験片の鋳肌面(試験表面)以外の表面を樹脂コーティングによりマスクした。
4.塩水噴霧試験を、5%NaCl水溶液中にて、JIS Z2371に規定された条件で行なった。
5.試験終了後、試験片を15%クロム酸水溶液中で1分間煮沸洗浄することにより、試験片表面の腐食生成物を除去した。
6.乾燥後、試験片の重量を測定して、初期重量との差を腐食減量とした。また腐食減量の値を試験面積と試験日数で除した値を腐食速度とした。
About each obtained alloy sample, the salt spray test was done on condition of the following, and corrosion resistance was evaluated.
<Salt spray test method>
1. A test piece (width 70 mm × length 50 mm × thickness 3 mm) was cut out from the die-cast casting as-cast.
2. The test piece was immersed in acetone and subjected to ultrasonic cleaning for 15 minutes, and then the weight (initial weight) was measured.
3. The surface other than the cast skin surface (test surface) of the test piece that had been subjected to weight measurement was masked with a resin coating.
4). The salt spray test was conducted in a 5% NaCl aqueous solution under the conditions specified in JIS Z2371.
5). After completion of the test, the test piece was boiled and washed in a 15% chromic acid aqueous solution for 1 minute to remove corrosion products on the surface of the test piece.
6). After drying, the weight of the test piece was measured, and the difference from the initial weight was defined as corrosion weight loss. The value obtained by dividing the value of corrosion weight loss by the test area and the test days was defined as the corrosion rate.

図4(A)および図4(B)に、試験時間(日数)に対する腐食減量および腐食速度の変化をそれぞれ示す。REM無添加材101に比べて、REM添加材102〜105はいずれも腐食減量が小さく、腐食速度が小さい。腐食減量の経時変化を示す図4(A)では各曲線は上に凸であり、これを腐食速度の経時変化に変換した図4(B)では各曲線は下に凸であり、試験時間の経過に伴い腐食の進行が遅くなる傾向があることを示している。   FIGS. 4A and 4B show changes in corrosion weight loss and corrosion rate with respect to the test time (days), respectively. Compared to the REM additive-free material 101, each of the REM additive materials 102 to 105 has a smaller corrosion weight loss and a lower corrosion rate. In FIG. 4 (A) showing the time-dependent change in corrosion weight loss, each curve is convex upward, and in FIG. 4 (B), which is converted to the time-dependent change in corrosion rate, each curve is convex downward, and the test time It shows that the progress of corrosion tends to be slow with progress.

図5は、腐食の進行に対するREM添加量の影響を示すグラフであり、試験時間1日と10日についてREM添加量に対して腐食速度をプロットした。いずれの試験時間についても、REM無添加(0%)に対して、REMを0.08%添加することにより腐食速度が明瞭に減少しており、添加量を0.44%、1.77%と増加させるに伴い腐食速度が更に減少する。しかし、添加量を2.68%に増加させると腐食速度は逆に増加傾向に転ずるが、それでも無添加に比べて遥かに小さい腐食速度である。このように、本発明により0.1%〜3%の範囲でREMを添加することにより、無添加時に比べて耐食性が顕著に向上することが分かる。   FIG. 5 is a graph showing the influence of the REM addition amount on the progress of corrosion. The corrosion rate is plotted against the REM addition amount for the test times of 1 day and 10 days. In any test time, the corrosion rate was clearly reduced by adding 0.08% of REM to the case where REM was not added (0%), and the addition amount was 0.44%, 1.77%. As the rate increases, the corrosion rate further decreases. However, when the addition amount is increased to 2.68%, the corrosion rate turns to an increasing tendency, but it is still a much smaller corrosion rate than that without addition. Thus, it turns out that corrosion resistance improves notably compared with the time of no addition by adding REM in 0.1 to 3% of range by this invention.

次に、REM添加による強度特性と耐クリープ特性への影響を調べた。
REM添加材の代表組成として0.44%添加材(103)を無添加材(101)と比較した。図6に、室温から250℃までの試験温度における(A)0.2%耐力および引張強さと(B)伸びを示す。いずれの試験温度においても0.44%REM添加材(◆プロット)は無添加材(〇プロット)と同等の強度特性を備えていることが分かる。
Next, the influence of the addition of REM on strength characteristics and creep resistance characteristics was examined.
As a representative composition of the REM additive, 0.44% additive (103) was compared with the additive-free material (101). FIG. 6 shows (A) 0.2% proof stress and tensile strength and (B) elongation at test temperatures from room temperature to 250 ° C. It can be seen that the 0.44% REM additive (♦ plot) has the same strength characteristics as the additive-free material (◯ plot) at any test temperature.

図7に、0.44%REM添加材(103)、無添加材(101)、およびAZ91D(代表的な公知のダイカスト用耐熱Mg合金)について、高温軸力保持率を比較して示す。試験方法は実施例1と同様である。
まず、本発明の合金はREMの添加有無によらず汎用合金AZ91Dに比べて遥かに軸力保持率が遥かに大きいことが分かる。
また、本発明の合金において、0.44%REM添加材(103)は無添加材(101)に比べて軸力保持率が10%程度低下しているが、実用上の必要値とである70%以上を十分に確保しているので、実用上十分に耐熱性と耐食性とを兼備しており、同時に、良好な鋳造性も備えており何ら問題無くダイカスト鋳造を行なうことができた。
FIG. 7 shows a comparison of the high temperature axial force retention for 0.44% REM additive (103), additive-free material (101), and AZ91D (a typical known heat-resistant Mg alloy for die casting). The test method is the same as in Example 1.
First, it can be seen that the alloy of the present invention has a much higher axial force retention than the general-purpose alloy AZ91D regardless of the presence or absence of REM.
In addition, in the alloy of the present invention, the axial force retention rate of the 0.44% REM additive (103) is about 10% lower than that of the additive-free material (101). Since 70% or more is sufficiently secured, it has both heat resistance and corrosion resistance practically sufficient, and at the same time, it has good castability and can be die cast without any problem.

Figure 2005113260
Figure 2005113260

本発明によれば、耐熱性と鋳造性とを同時に向上させて、従来よりも広い用途範囲に適用可能なダイカスト用耐熱マグネシウム合金が提供される。
更にREM添加により、耐熱性と鋳造性に加えて耐食性も同時に向上させることができる。
ADVANTAGE OF THE INVENTION According to this invention, heat resistance and castability are improved simultaneously, and the heat-resistant magnesium alloy for die-casting applicable to the use range wider than before is provided.
Furthermore, by adding REM, in addition to heat resistance and castability, corrosion resistance can be improved at the same time.

図1は、各種Mg合金の高温軸力保持率を比較して示すグラフである。FIG. 1 is a graph showing a comparison of high temperature axial force retention rates of various Mg alloys. 図2は、高温軸力保持率とCa/Al比との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the high temperature axial force retention and the Ca / Al ratio. 図3は、鋳造割れ長さとCa/Al比との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the casting crack length and the Ca / Al ratio. 図4(A)および(B)は、種々のREM添加量のMg合金について、塩水噴霧試験の試験時間に対する(A)腐食減量の変化および(B)腐食速度の変化をそれぞれ示すグラフである。4A and 4B are graphs showing (A) change in corrosion weight loss and (B) change in corrosion rate with respect to the test time of the salt spray test for Mg alloys with various REM addition amounts, respectively. 図5は、特定の試験時間(日数)について、REM添加量に対する腐食速度の変化を示すグラフである。FIG. 5 is a graph showing the change in corrosion rate with respect to the amount of REM added for a specific test time (days). 図6(A)および(B)は、0.44%REM添加材と無添加材について、室温〜250℃の温度範囲における(A)0.2%耐力と引張強さおよび(B)伸びをそれぞれ示すグラフである。6A and 6B show (A) 0.2% proof stress and tensile strength and (B) elongation in a temperature range of room temperature to 250 ° C for 0.44% REM additive and no additive. It is a graph shown, respectively. 図7は、本発明の合金のうち0.44%REM添加材および無添加材の高温軸力保持率を両者間で比較すると共に汎用合金MZ91Dと比較して示すグラフである。FIG. 7 is a graph showing a comparison between the high temperature axial force retention ratios of 0.44% REM additive and no additive in the alloy of the present invention and the general-purpose alloy MZ91D.

Claims (5)

質量%で下記の組成:
Al:6%を超え10%以下、
Ca:1.8〜5%、
Sr:0.05〜1.0%、
Mn:0.1〜0.6%、および
残部:Mgおよび不可避不純物
から成り、かつ、
Al含有量に対するCa含有量の比Ca/Alが0.3〜0.5である
ことを特徴とするダイカスト用耐熱マグネシウム合金。
The following composition in mass%:
Al: more than 6% and 10% or less,
Ca: 1.8 to 5%,
Sr: 0.05 to 1.0%,
Mn: 0.1 to 0.6%, and the balance: Mg and inevitable impurities, and
A heat-resistant magnesium alloy for die casting, wherein a ratio Ca / Al of Ca content to Al content is 0.3 to 0.5.
Ca:2%を超え5%以下であることを特徴とする請求項1記載のダイカスト用耐熱マグネシウム合金。   The heat-resistant magnesium alloy for die casting according to claim 1, wherein Ca is more than 2% and 5% or less. Ca:2.5〜3.5%であることを特徴とする請求項1記載のダイカスト用耐熱マグネシウム合金。   2. The heat-resistant magnesium alloy for die casting according to claim 1, wherein Ca: 2.5 to 3.5%. 更に希土類金属を0.1〜3質量%含有することを特徴とする請求項1から3までのいずれか1項記載のダイカスト用耐熱マグネシウム合金。   The heat-resistant magnesium alloy for die casting according to any one of claims 1 to 3, further comprising 0.1 to 3% by mass of a rare earth metal. 請求項1から4までのいずれか1項に記載のマグネシウム合金から成るダイカスト製品。   A die-cast product made of the magnesium alloy according to any one of claims 1 to 4.
JP2004150393A 2003-09-18 2004-05-20 Heat-resistant magnesium alloy for die casting and die-cast products of the same alloy Expired - Fee Related JP4202298B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2004150393A JP4202298B2 (en) 2003-09-18 2004-05-20 Heat-resistant magnesium alloy for die casting and die-cast products of the same alloy
EP04788132A EP1685267B1 (en) 2003-09-18 2004-09-16 Heat resistant magnesium die casting alloys
PCT/JP2004/013974 WO2005028691A1 (en) 2003-09-18 2004-09-16 Heat resistant magnesium die casting alloys
KR1020067005415A KR20060040745A (en) 2003-09-18 2004-09-16 Heat resistant magnesium die casting alloys
CA2536682A CA2536682C (en) 2003-09-18 2004-09-16 Heat resistant magnesium die casting alloys
US10/568,775 US20060222556A1 (en) 2003-09-18 2004-09-16 Heat resistant magnesium die casting alloys
DE602004008797T DE602004008797T2 (en) 2003-09-18 2004-09-16 HEAT-RESISTANT DIE-CAST MAGNESIUM ALLOYS
AU2004274799A AU2004274799B2 (en) 2003-09-18 2004-09-16 Heat resistant magnesium die casting alloys
NO20061193A NO20061193L (en) 2003-09-18 2006-03-14 Heat-resistant magnesium alloys for molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003326563 2003-09-18
JP2004150393A JP4202298B2 (en) 2003-09-18 2004-05-20 Heat-resistant magnesium alloy for die casting and die-cast products of the same alloy

Publications (2)

Publication Number Publication Date
JP2005113260A true JP2005113260A (en) 2005-04-28
JP4202298B2 JP4202298B2 (en) 2008-12-24

Family

ID=34380325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150393A Expired - Fee Related JP4202298B2 (en) 2003-09-18 2004-05-20 Heat-resistant magnesium alloy for die casting and die-cast products of the same alloy

Country Status (9)

Country Link
US (1) US20060222556A1 (en)
EP (1) EP1685267B1 (en)
JP (1) JP4202298B2 (en)
KR (1) KR20060040745A (en)
AU (1) AU2004274799B2 (en)
CA (1) CA2536682C (en)
DE (1) DE602004008797T2 (en)
NO (1) NO20061193L (en)
WO (1) WO2005028691A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055897A1 (en) 2008-11-14 2010-05-20 株式会社豊田自動織機 Magnesium alloy and magnesium alloy casting
KR101325642B1 (en) 2012-11-23 2013-11-05 서울대학교산학협력단 Magnesium Casting Alloy Having Good Creep Resistance
WO2019098269A1 (en) * 2017-11-17 2019-05-23 住友電気工業株式会社 Magnesium alloy and magnesium alloy member

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539572B2 (en) * 2006-01-27 2010-09-08 株式会社豊田中央研究所 Magnesium alloys and castings for casting
US8435444B2 (en) 2009-08-26 2013-05-07 Techmag Ag Magnesium alloy
CN102304631B (en) * 2011-10-17 2013-03-20 闻喜县瑞格镁业有限公司 Preparation method of heat-resistant creep-resistant low-cost magnesium alloy
KR101941774B1 (en) 2017-05-29 2019-01-24 서울대학교산학협력단 Die-casting magnesium alloy having high strength
KR102197773B1 (en) 2018-09-06 2021-01-04 서울대학교산학협력단 Magnesium alloy having high strength and high elongation for high pressure die casting and preparing method for the same
CN109182860A (en) * 2018-11-08 2019-01-11 中信戴卡股份有限公司 A kind of magnesium alloy with high strength and ductility and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272945A (en) * 1996-04-04 1997-10-21 Mazda Motor Corp Heat resistant magnesium alloy molded member, heat resistant magnesium alloy used for the molding and molding method therefor
JP2002327231A (en) * 2001-03-02 2002-11-15 Mitsubishi Alum Co Ltd Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
JP2003064438A (en) * 2001-08-23 2003-03-05 Japan Steel Works Ltd:The Magnesium alloy having excellent corrosion resistance, and magnesium alloy member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662707B1 (en) * 1990-06-01 1992-07-31 Pechiney Electrometallurgie HIGH MECHANICAL STRENGTH-CONTAINING MAGNESIUM ALLOY AND PROCESS FOR OBTAINING BY RAPID SOLIDIFICATION.
JPH07278717A (en) * 1994-04-12 1995-10-24 Ube Ind Ltd Magnesium alloy member excellent in settling resistance in pressurized part
JP3229954B2 (en) * 1996-02-27 2001-11-19 本田技研工業株式会社 Heat resistant magnesium alloy
US6264763B1 (en) * 1999-04-30 2001-07-24 General Motors Corporation Creep-resistant magnesium alloy die castings
CA2337630C (en) * 2000-02-24 2005-02-01 Mitsubishi Aluminum Co., Ltd. Die casting magnesium alloy
IL146336A0 (en) * 2001-11-05 2002-07-25 Dead Sea Magnesium Ltd High strength creep resistant magnesium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272945A (en) * 1996-04-04 1997-10-21 Mazda Motor Corp Heat resistant magnesium alloy molded member, heat resistant magnesium alloy used for the molding and molding method therefor
JP2002327231A (en) * 2001-03-02 2002-11-15 Mitsubishi Alum Co Ltd Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
JP2003064438A (en) * 2001-08-23 2003-03-05 Japan Steel Works Ltd:The Magnesium alloy having excellent corrosion resistance, and magnesium alloy member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055897A1 (en) 2008-11-14 2010-05-20 株式会社豊田自動織機 Magnesium alloy and magnesium alloy casting
US9180515B2 (en) 2008-11-14 2015-11-10 Kabushiki Kaisha Toyota Jidoshokki Magnesium alloy and magnesium-alloy cast product
KR101325642B1 (en) 2012-11-23 2013-11-05 서울대학교산학협력단 Magnesium Casting Alloy Having Good Creep Resistance
WO2019098269A1 (en) * 2017-11-17 2019-05-23 住友電気工業株式会社 Magnesium alloy and magnesium alloy member
JPWO2019098269A1 (en) * 2017-11-17 2020-11-26 住友電気工業株式会社 Magnesium alloy and magnesium alloy members
US11268173B2 (en) 2017-11-17 2022-03-08 Sumitomo Electric Industries, Ltd. Magnesium alloy and magnesium alloy member

Also Published As

Publication number Publication date
AU2004274799A1 (en) 2005-03-31
US20060222556A1 (en) 2006-10-05
KR20060040745A (en) 2006-05-10
DE602004008797D1 (en) 2007-10-18
EP1685267B1 (en) 2007-09-05
WO2005028691A1 (en) 2005-03-31
NO20061193L (en) 2006-04-12
AU2004274799B2 (en) 2008-05-22
CA2536682A1 (en) 2005-03-31
DE602004008797T2 (en) 2008-06-12
EP1685267A1 (en) 2006-08-02
CA2536682C (en) 2010-11-23
JP4202298B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
CA3021397C (en) Die casting alloy
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
EP3819393A1 (en) Aluminium alloy for die casting, method for manufacturing same, and die casting method
JP4914225B2 (en) Aluminum alloy material, its production method and its use
CA3021123C (en) Alloy for pressure die-casting
WO2016166779A1 (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
KR101756016B1 (en) Aluminum alloy for die casting and Method for heat treatment of manufacturing aluminum alloy using thereof
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP2007197796A (en) Magnesium alloy and casting
JPH10324941A (en) Magnesium alloy having excellent high temperature characteristic and die castability
JP3808264B2 (en) Aluminum alloy casting processed plastically, manufacturing method of aluminum alloy casting, and fastening method using plastic deformation
JP4202298B2 (en) Heat-resistant magnesium alloy for die casting and die-cast products of the same alloy
JP4526768B2 (en) Magnesium alloy
JP5383314B2 (en) Creep-resistant magnesium alloy
JP2005187896A (en) Heat resistant magnesium alloy casting
WO2005118900A1 (en) Creep-resistant magnesium alloy
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2003027169A (en) Aluminum alloy and aluminum alloy casting
JP4526769B2 (en) Magnesium alloy
JP5852039B2 (en) Heat-resistant magnesium alloy
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
JP2005187895A (en) Heat resistant magnesium alloy casting
CA3135702A1 (en) Aluminium casting alloy
JP4357714B2 (en) Die-casting aluminum alloy with high strength and excellent corrosion resistance
JP2005240130A (en) Heat resistant magnesium alloy casting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees