JP2005112876A - ポリエステルならびにポリエステルの製造方法 - Google Patents

ポリエステルならびにポリエステルの製造方法 Download PDF

Info

Publication number
JP2005112876A
JP2005112876A JP2003344699A JP2003344699A JP2005112876A JP 2005112876 A JP2005112876 A JP 2005112876A JP 2003344699 A JP2003344699 A JP 2003344699A JP 2003344699 A JP2003344699 A JP 2003344699A JP 2005112876 A JP2005112876 A JP 2005112876A
Authority
JP
Japan
Prior art keywords
polyester
acid
polycondensation
aluminum
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003344699A
Other languages
English (en)
Inventor
Katsuhiko Kageyama
勝彦 蔭山
Kazuo Katayose
一夫 片寄
Shoichi Gyobu
祥一 形舞
Satoru Nakagawa
悟 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003344699A priority Critical patent/JP2005112876A/ja
Publication of JP2005112876A publication Critical patent/JP2005112876A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒で色調、透明性や熱安定性を維持し、かつカルボキシル末端基が極めて少なく耐加水分解性等に優れており、さらに触媒起因の異物生成が少なく、環状三量体含有量の少ないポリエステルを提供する。
【解決手段】アルミニウムおよびその化合物からなる群より選ばれる少なくとも1種と、リン化合物から選ばれる少なくとも1種からなるポリエステル重縮合触媒の存在下に溶融重縮合し、引き続いて固相重縮合させてポリエステルを製造する方法において、ジカルボン酸および/またはそのエステル形成性誘導体と、ジオールおよび/またはそのエステル形成性誘導体とを反応させ、全末端基に対するヒドロキシル末端基の割合が76モル%以上である生成物を得、当該生成物を溶融重縮合させることを特徴とするポリエステルの製造方法。

Description

本発明はポリエステルの製造方法に関するものであり、さらに詳しくは、ゲルマニウム、アンチモン化合物を触媒主成分として用いない新規のポリエステル重縮合触媒を用いたポリエステルの重縮合法およびそのポリエステル製品に関するものである。
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等に代表されるポリエステルは、機械的特性、及び化学的特性に優れており、それぞれのポリエステルの特性に応じて、例えば衣料用や産業資材用の繊維、包装用、磁気テープ用、光学用などのフィルムやシート、中空成形品であるボトル、電気・電子部品のケーシング、その他エンジニアリングプラスチック成形品等の広範な分野において使用されている。特に、ポリエチレンテレフタレートなどの飽和ポリエステルからなるボトルは、機械的強度、耐熱性、透明性およびガスバリヤー性に優れるため、ジュース、炭酸飲料、清涼飲料などの飲料充填用容器および目薬、化粧品などの容器として広く使用されている。
代表的なポリエステルである芳香族ジカルボン酸とアルキレングリコールを主構成成分とするポリエステルは、例えばポリエチレンテレフタレート(PET)の場合には、テレフタル酸もしくはテレフタル酸ジメチルとエチレングリコールとのエステル化反応もしくはエステル交換反応によってビス(2−ヒドロキシエチル)テレフタレートなどのオリゴマー混合物を製造し、これを高温、真空下で触媒を用いて液相重縮合させ製造されている。
従来から、このようなポリエステルの重縮合時に用いられるポリエステル重縮合触媒としては、アンチモンあるいはゲルマニウム化合物が広く用いられている。三酸化アンチモンは、安価で、かつ優れた触媒活性をもつ触媒であるが、これを主成分、即ち、実用的な重合速度が発揮される程度の添加量にて使用すると、重縮合時に金属アンチモンが析出するため、ポリエステルに黒ずみや異物が発生し、フィルムの表面欠点の原因にもなる。また、中空の成形品等の原料とした場合には、透明性の優れた中空成形品を得ることが困難である。このような経緯で、アンチモンを全く含まないか或いはアンチモンを触媒主成分として含まないポリエステルが望まれている。
アンチモン化合物以外で優れた触媒活性を有し、かつ上記の問題を有しないポリエステルを与える触媒としては、ゲルマニウム化合物がすでに実用化されているが、この触媒は非常に高価であるという問題点や、重合中に反応系から系外へ留出しやすいため反応系の触媒濃度が変化し重合の制御が困難になるという課題を有しており、触媒主成分として使用することには問題がある。
アンチモン系あるいはゲルマニウム系触媒に代わる重縮合触媒の検討も行われており、テトラアルコキシチタネートに代表されるチタン化合物がすでに提案されているが、これらを用いて製造されたポリエステルは溶融成形時に熱劣化を受けやすく、またポリエステルが著しく着色するという問題点を有する。
以上のような経緯で、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒であり、触媒活性に優れ、色調や熱安定性に優れかつ成形品の透明性に優れたポリエステルを与える重縮合触媒が望まれている。
上記の要求に答える新規の重縮合触媒として、アルミニウム化合物とリン化合物とからなる触媒系が開示されており注目されている(例えば、特許文献1〜4参照)。
特開2001−131276号公報 特開2001−163963号公報 特開2001−163964号公報 特開2002−220446号公報
また、上記重縮合触媒系によるポリエステルの製造方法に関して、該重縮合触媒系の好ましい添加時期が開示されている(例えば、特許文献5および6参照)。
特開2002−322250号公報 特開2002−327052号公報
また、上記重縮合触媒系で得られたポリエステルに関しては、固相重縮合されたポリエステルに関しても開示されている(特許文献7参照)。
特開2002−322259号公報
上記重縮合触媒系で得られたポリエステルは、色調、透明性や熱安定性が良好であり、前記要求に答えるものである。しかし、固相重縮合により環状三量体を低減する方法を講じても2900ppm以下にすることは困難であり、2500ppm以下という高度な市場要求には答えることができないという課題が残されており、その改善が強く嘱望されていた。
本発明は従来技術の課題を背景になされたもので、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒で色調、透明性や熱安定性を維持し、かつカルボキシル末端基が極めて少なく耐加水分解性等に優れており、重縮合触媒起因の異物生成が少なく、さらに環状三量体含有量の少ない高品質なポリエステルおよびポリエステルの製造方法を提供するものである。
本発明は上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに到った。即ちアルミニウムおよびその化合物からなる群より選ばれる少なくとも1種と、リン化合物から選ばれる少なくとも1種からなるポリエステル重縮合触媒の存在下に溶融重縮合し、引き続いて固相重縮合させてポリエステルを製造する方法において、ジカルボン酸および/またはそのエステル形成性誘導体と、ジオールおよび/またはそのエステル形成性誘導体とを反応させ、全末端基に対するヒドロキシル末端基の割合が76モル%以上である生成物を得、当該生成物を溶融重縮合させることを特徴とするポリエステルの製造方法である。
本発明によるポリエステルの製造方法は、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とした重縮合触媒で色調、透明性および熱安定性等が良好であり、かつ重縮合触媒起因の異物生成が少ないので、例えば衣料用や産業資材用の繊維、包装用、磁気テープ用および光学用などのフィルムやシート、中空成形品であるボトル、電気・電子部品のケーシング、その他エンジニアリングプラスチック成形品等の広範な分野において好適に使用することができる。さらに、本発明により得られたポリエステルは、環状三量体含有量の少ないポリエステルが得られる。従って、本発明の製造方法で得られたポリエステルは、環状三量体等の副生成物の含有量に対して厳しい要求のある、例えばミネラルウオーター、ジュース、ワインやウイスキー等の飲料容器、金属製の飲料缶の内張り用のフイルム、電気絶縁用フイルム等の原料用ポリエステルとして特に有用に使用することができる。また、本発明方法で製造されたポリエステルはカルボキシル末端基が著しく低く、耐加水分解安定性等の耐久性に優れた製品が得られるので、産業資材等の耐久性が高度に要求される繊維、フイルムおよび成形品分野において特に好適に用いることができるという利点がある。
以下、本発明を詳細に説明する。
本発明に言うポリエステルとは、ジカルボン酸および/またはそのエステル形成性誘導体とジオールおよび/またはそのエステル形成性誘導体とから成るものをいう。
ジカルボン酸としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、 テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3ーシクロブタンジカルボン酸、1,3ーシクロペンタンジカルボン酸、1,2ーシクロヘキサンジカルボン酸、1,3ーシクロヘキサンジカルボン酸、1,4ーシクロヘキサンジカルボン酸、2,5ーノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、5ー(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3ーナフタレンジカルボン酸、1,4ーナフタレンジカルボン酸、1,5ーナフタレンジカルボン酸、2,6ーナフタレンジカルボン酸、2,7ーナフタレンジカルボン酸、4、4’ービフェニルジカルボン酸、4、4’ービフェニルスルホンジカルボン酸、4
、4’ービフェニルエーテルジカルボン酸、1,2ービス(フェノキシ)エタンーp,p
’ージカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカ
ルボン酸またはこれらのエステル形成性誘導体が挙げられる。
これらのジカルボン酸のうちテレフタル酸およびナフタレンジカルボン酸とくに2,6ーナフタレンジカルボン酸が、得られるポリエステルの物性等の点で好ましく、必要に応じて他のジカルボン酸を構成成分とする。
これらジカルボン酸以外にも少量であれば多価カルボン酸を併用しても良い。該多価カルボン酸としては、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3、4、3’、4’ービフェ
ニルテトラカルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。
グリコールとしてはエチレングリコール、1、2ープロピレングリコール、1、3ープロピレングリコール、ジエチレングリコール、トリエチレングリコール、1、2ーブチレングリコール、1、3ーブチレングリコール、2、3ーブチレングリコール、1,4ーブチレングリコール、1、5ーペンタンジオール、ネオペンチルグリコール、1,6ーヘキサンジオール、1,2ーシクロヘキサンジオール、1,3ーシクロヘキサンジオール、1,4ーシクロヘキサンジオール、1,2ーシクロヘキサンジメタノール、1,3ーシクロヘキサンジメタノール、1,4ーシクロヘキサンジメタノール、1,4ーシクロヘキサンジエタノール、1,10ーデカメチレングリコール、1、12ードデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、ヒドロキノン、4,4’ージヒドロキシビスフェノール
、1,4ービス(βーヒドロキシエトキシ)ベンゼン、1,4ービス(βーヒドロキシエトキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)エーテル、ビス(p−ヒドロキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)メタン、1、2ービス(p−ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5ーナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコール、などに例示される芳香族グリコールが挙げられる。
これらのグリコールのうちエチレングリコール、1,3−プロピレングリコール、1,4−ブチレングリコール、1,4−シクロヘキサンジメタノールが好ましい。
これらグリコール以外に少量であれば多価アルコールを併用しても良い。該多価アルコールとしては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。
また、ヒドロキシカルボン酸を併用しても良い。該ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3ーヒドロキシ酪酸、p−ヒドロキシ安息香酸、pー( 2ーヒドロキシエトキシ)安息香酸、4ーヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体などが挙げられる。
また、環状エステルの併用も許容される。該環状エステルとしては、ε−カプロラクトン、β−プロピオラクトン、β−メチル−β−プロピオラクトン、δ−バレロラクトン、グリコリド、ラクチドなどが挙げられる。
多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体としては、これらの化合物のアルキルエステルやヒドロキシルアルキルエステル等が挙げられる。
ジオールのエステル形成性誘導体としては、ジオールの酢酸等の低級脂肪族カルボン酸とのエステルが挙げられる。
本発明のポリエステルとしてはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリ(1,4ーシクロヘキサンジメチレンテレフタレート)、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンナフタレートおよびこれらの共重合体が好ましく、これらのうちポリエチレンテレフタレートおよびこの共重合体が特に好ましい。共重合体としてはエチレンテレフタレート単位を50モル%以上よりなるものが好ましく、70モル%以上がより好ましい。
本発明の重縮合触媒を構成するアルミニウムないしアルミニウム化合物としては、金属アルミニウムのほか、公知のアルミニウム化合物は限定なく使用できる。
アルミニウム化合物としては、具体的には、ギ酸アルミニウム、酢酸アルミニウム、プロピオン酸アルミニウム、シュウ酸アルミニウム、アクリル酸アルミニウム ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、酒石酸アルミニウム、サリチル酸アルミニウムなどのカルボン酸塩、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩、アルミニウムメトキサイド、アルミニ
ウムエトキサイド、アルミニウムn−プロポキサイド、アルミニウムiso−プロポキサイド、アルミニウムn−ブトキサイド、アルミニウムt−ブトキサイドなどアルミニウムアルコキサイド、アルミニウムアセチルアセトネート、アルミニウムアセチルアセテート、アルミニウムエチルアセトアセテート、アルミニウムエチルアセトアセテートジiso−プロポキサイドなどのアルミニウムキレート化合物、トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物及びこれらの部分加水分解物、アルミニウムのアルコキサイドやアルミニウムキレート化合物とヒドロキシカルボン酸からなる反応生成物、酸化アルミニウム、超微粒子酸化アルミニウム、アルミニウムシリケート、アルミニウムとチタンやケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物などが挙げられる。これらのうちカルボン酸塩、無機酸塩及びキレート化合物が好ましく、これらの中でもさらに酢酸アルミニウム、乳酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム及びアルミニウムアセチルアセトネートがとくに好ましい。
これらのアルミニウム化合物の中でも、アルミニウム含有量が高い酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムが好ましく、さらに溶解度の観点から酢酸アルミニウム、塩化アルミニウム、水酸化塩化アルミニウムが好まし
い。さらに、装置を腐食しない観点から、酢酸アルミニウムの使用がとくに好ましい。
ここで、水酸化塩化アルミニウムは一般にポリ塩化アルミニウムや塩基性塩化アルミニウムなどとも呼ばれるものの総称であり、水道用に使われるものなどが使用できる。これらは、例えば一般構造式[Al2(OH)nCl6-nm(ただし1≦n≦5)で表される。これらの中でも、装置を腐食しない観点から塩素含有量の少ないものが好ましい。
上記の酢酸アルミニウムは、塩基性酢酸アルミニウム、トリ酢酸アルミニウム、酢酸アルミニウム溶液などに代表される酢酸のアルミニウム塩の構造を有するものの総称であり、これらの中でも、溶解性および溶液の安定性の観点から、塩基性酢酸アルミニウムの使用が好ましい。塩基性酢酸アルミニウムの中でも、モノ酢酸アルミニウム、ジ酢酸アルミニウム、あるいはこれらがホウ酸で安定化されたものが好ましい。ホウ酸で安定化されたものを用いる場合、塩基性酢酸アルミニウムに対して等モル以下の量のホウ酸で安定化されたものを用いることが好ましく、とくに1/2〜1/3モル量のホウ酸で安定化された塩基性酢酸アルミニウムの使用が好ましい。塩基性酢酸アルミニウムの安定剤としては、ホウ酸以外に尿素、チオ尿素などが挙げられる。
上記のアルミニウムまたはアルミニウム化合物は粉末状で添加しても良いが、スラリー状あるいは溶液状で添加するのが好ましい。特に溶液状で添加するのが触媒活性や得られるポリエステルの品質の観点から好ましい。すなわち、水やグリコールなどの溶媒に可溶化したもの、特に、水および/またはエチレングリコールに可溶化したものを用いることが好ましい。
以下にアルミニウム化合物の溶解方法を例示する。
(1)塩基性酢酸アルミニウムの水溶液の調製例
塩基性酢酸アルミニウムに水を加え50℃以下で3時間以上攪拌する。攪拌時間は、6時間以上であることが更に好ましい。その後、60℃以上で数時間以上攪拌を行う。この場合の温度は、60〜100℃の範囲であることが好ましい。攪拌時間は、1時間以上であることが好ましい。水溶液の濃度は、10g/l〜30g/lが好ましく、とくに15g/l〜20g/lが好ましい。
(2)塩基性酢酸アルミニウムのエチレングリコール溶液の調製例
上記の水溶液に対してエチレングリコールを加える。エチレングリコールの添加量は水溶液に対して容量比で0.5〜5倍量が好ましい。より好ましくは1〜3倍量である。該溶液を数時間常温で攪拌することで均一な水/エチレングリコール混合溶液を得る。その後、該溶液を加熱し、水を留去することでエチレングリコール溶液を得ることができる。温度は80℃以上が好ましく、200℃以下が好ましい。より好ましくは90〜150℃で数時間攪拌して水を留去することが好ましい。また留去の際に系を減圧にしても良い。減圧にすることで、より低温で迅速にエチレングリコールを留去することができる。つまり減圧下では80℃以下でも留去が可能となり、系に与える熱履歴をより少なくすることができる。
(3)乳酸アルミニウムのエチレングリコール溶液の調製例
乳酸アルミニウムの水溶液を調製する。調製は室温下でも加熱下でもよいが室温下が好ましい。水溶液の濃度は20g/l〜100g/lが好ましく、50〜80g/lが特に好ましい。該水溶液にエチレングリコールを加える。エチレングリコールの添加量は水溶液に対して容量比で1〜5倍量が好ましい。より好ましくは2〜3倍量である。該溶液を常温で攪拌し均一な水/エチレングリコール混合溶液を得た後、該溶液を加熱し、水を留去することでエチレングリコール溶液を得ることができる。温度は80℃以上が好ましく、120℃以下が好ましい。より好ましくは90〜110℃で数時間攪拌して水を留去することが好ましい。
本発明のアルミニウムないしアルミニウム化合物の使用量としては、得られるポリエステルのカルボン酸成分の全構成ユニットのモル数に対して0.001〜0.05モル%が好ましく、更に好ましくは0.005〜0.03モル%である。使用量が0.001モル%未満であると触媒活性が十分に発揮されない場合があり、使用量が0.05モル%以上になると、熱安定性や熱酸化安定性の低下、アルミニウムに起因する異物の発生や着色の増加が問題になる場合が発生する。この様にアルミニウム成分の添加量が少なくても本発明の重縮合触媒は十分な触媒活性を示す点に大きな特徴を有する。その結果熱安定性や熱酸化安定性が優れ、アルミニウムに起因する異物や着色が低減される。
本発明の重縮合触媒を構成するリン化合物としては、特に限定はされないが、リン酸ならびにトリメチルリン酸、トリエチルリン酸、フェニルリン酸、トリフェニルリン酸等のリン酸エステル、亜リン酸ならびにトリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)4,4’−ビフェニレンジ
ホスファイト等の亜リン酸エステルなどが挙げられる。
本発明のより好ましいリン化合物は、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物である。これらのリン化合物を用いることで触媒活性の向上効果が見られるとともに、ポリエステルの熱安定性等の物性が改善する効果が見られる。これらの中でも、ホスホン酸系化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。
本発明で言うホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物とは、それぞれ下記式(化1)〜(化6)で表される構造を有する化合物のことを言う。
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
本発明のホスホン酸系化合物としては、例えば、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジフェニル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジエチルなどが挙げられる。本発明のホスフィン酸系化合物としては、例えば、ジフェニルホスフィン酸、ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸フェニル、フェニルホスフィン酸、フェニルホスフィン酸メチル、フェニルホスフィン酸フェニルなどが挙げられる。本発明のホスフィンオキサイド系化合物としては、例えば、ジフェニルホスフィンオキサイド、メチルジフェニルホスフィンオキサイド、トリフェニルホスフィンオキサイドなどが挙げられる。
ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物の中では、本発明のリン化合物としては、下記式(化7)〜(化12)で表される化合物が好ましい。
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。
また、本発明のリン化合物としては、下記一般式(化13)〜(化15)で表される化合物を用いると物性改善効果や触媒活性の向上効果が特に大きく好ましい。
Figure 2005112876
Figure 2005112876
Figure 2005112876
(式(化13)〜(化15)中、R1、R4、R5、R6はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2、R3はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。ただし、炭化水素基はシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
本発明のリン化合物としては、上記式(化13)〜(化15)中、R1、R4、R5、R6が芳香環構造を有する基である化合物がとくに好ましい。
本発明のリン化合物としては、例えば、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジフェニル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジエチル、ジフェニルホスフィン酸、ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸フェニル、フェニルホスフィン酸、フェニルホスフィン酸メチル、フェニルホスフィン酸フェニル、ジフェニルホスフィンオキサイド、メチルジフェニルホスフィンオキサイド、トリフェニルホスフィンオキサイドなどが挙げられる。これらのうちで、フェニルホスホン酸ジメチル、ベンジルホスホン酸ジエチルがとくに好ましい。
上記したリン化合物の中でも、本発明では、リン化合物としてリンの金属塩化合物がとくに好ましい。リンの金属塩化合物とは、リン化合物の金属塩であれば特に限定はされないが、ホスホン酸系化合物の金属塩を用いると本発明の課題であるポリエステルの物性改善効果や触媒活性の向上効果が大きく好ましい。リン化合物の金属塩としては、モノ金属塩、ジ金属塩、トリ金属塩などが含まれる。
また、上記したリン化合物の中でも、金属塩の金属部分が、Li、Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgがとくに好ましい。
本発明のリンの金属塩化合物としては、下記一般式(化16)で表される化合物から選択される少なくとも一種を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。
Figure 2005112876
(式(化16)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、l+mは4以下である。Mは(l+m)価の金属カチオンを表す。nは1以上の整数を表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR1としては、例えば、フェニル、1―ナフチル、2―ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。上記のR2としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。R3O−としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。
上記一般式(化16)で表される化合物の中でも、下記一般式(化17)で表される化合物から選択される少なくとも一種を用いることが好ましい。
Figure 2005112876
(式(化17)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、l+mは4以下である。Mは(l+m)価の金属カチオンを表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR1としては、例えば、フェニル、1―ナフチル、2―ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。R3O−としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。
上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。
上記式(化17)の中でも、Mが、Li,Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgがとくに好ましい。
本発明のリンの金属塩化合物としては、リチウム[(1−ナフチル)メチルホスホン酸エチル]、ナトリウム[(1−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(1−ナフチル)メチルホスホン酸エチル]、カリウム[(2−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(2−ナフチル)メチルホスホン酸エチル]、リチウム[ベンジルホスホン酸エチル]、ナトリウム[ベンジルホスホン酸エチル]、マグネシウムビス[ベンジルホスホン酸エチル]、ベリリウムビス[ベンジルホスホン酸エチル]、ストロンチウムビス[ベンジルホスホン酸エチル]、マンガンビス[ベンジルホスホン酸エチル]、ベンジルホスホン酸ナトリウム、マグネシウムビス[ベンジルホスホン酸]、ナトリウム[(9−アンスリル)メチルホスホン酸エチル]、マグネシウムビス[(9−アンスリル)メチルホスホン酸エチル]、ナトリウム[4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[4−クロロベンジルホスホン酸フェニル]、マグネシウムビス[4−クロロベンジルホスホン酸エチル]、ナトリウム[4−アミノベンジルホスホン酸メチル]、マグネシウムビス[4−アミノベンジルホスホン酸メチル]、フェニルホスホン酸ナトリウム、マグネシウムビス[フェニルホスホン酸エチル]、亜鉛ビス[フェニルホスホン酸エチル]などが挙げられる。これらの中で、リチウム[(1−ナフチル)メチルホスホン酸エチル]、ナトリウム[(1−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(1−ナフチル)メチルホスホン酸エチル]、リチウム[ベンジルホスホン酸エチル]、ナトリウム[ベンジルホスホン酸エチル]、マグネシウムビス[ベンジルホスホン酸エチル]、ベンジルホスホン酸ナトリウム、マグネシウムビス[ベンジルホスホン酸]がとくに好ましい。
上記したリン化合物の中でも、本発明では、リン化合物としてP−OH結合を少なくとも一つ有するリン化合物がとくに好ましい。これらのリン化合物を含有することでポリエステルの物性改善効果がとくに高まることに加えて、ポリエステルの重合時に、これらのリン化合物を本発明のアルミニウム化合物と共存して用いることで触媒活性の向上効果が大きく見られる。
P−OH結合を少なくとも一つ有するリン化合物とは、分子内にP−OHを少なくとも一つ有するリン化合物であれば特に限定はされない。これらのリン化合物の中でも、P−OH結合を少なくとも一つ有するホスホン酸系化合物を用いるとポリエステルの物性改善効果や触媒活性の向上効果が大きく好ましい。
上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。
本発明のP−OH結合を少なくとも一つ有するリン化合物としては、下記一般式(化18)で表される化合物から選択される少なくとも一種を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。
Figure 2005112876
(式(化18)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR1としては、例えば、フェニル、1―ナフチル、2―ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。上記のR2としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。
上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。
本発明のP−OH結合を少なくとも一つ有するリン化合物としては、(1−ナフチル)メチルホスホン酸エチル、(1−ナフチル)メチルホスホン酸、(2−ナフチル)メチルホスホン酸エチル、ベンジルホスホン酸エチル、ベンジルホスホン酸、(9−アンスリル)メチルホスホン酸エチル、4−ヒドロキシベンジルホスホン酸エチル、2−メチルベンジルホスホン酸エチル、4−クロロベンジルホスホン酸フェニル、4−アミノベンジルホスホン酸メチル、4−メトキシベンジルホスホン酸エチルなどが挙げられる。これらの中で、(1−ナフチル)メチルホスホン酸エチル、ベンジルホスホン酸エチルがとくに好ましい。
本発明の好ましいリン化合物としては、化学式(化19)であらわされるリン化合物が挙げられる。
Figure 2005112876
(式(化19)中、R1は炭素数1〜49の炭化水素基、または水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜49の炭化水素基を表し、R2,R3はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基は脂環構造や分岐構造や芳香環構造を含んでいてもよい。)
また、更に好ましくは、化学式(化19)中のR1,R2,R3の少なくとも一つが芳香環構造を含む化合物である。
これらのリン化合物の具体例を以下に示す。
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
また、本発明のリン化合物は、分子量が大きいものの方が重合時に留去されにくいため効果が大きく好ましい。
本発明のリン化合物は、フェノール部を同一分子内に有するリン化合物であることが好ましい。フェノール部を同一分子内に有するリン化合物を含有することでポリエステルの物性改善効果が高まることに加えて、ポリエステルの重合時にフェノール部を同一分子内に有するリン化合物を用いることで触媒活性を高める効果がより大きく、従ってポリエステルの生産性に優れる。
フェノール部を同一分子内に有するリン化合物としては、フェノール構造を有するリン化合物であれば特に限定はされないが、フェノール部を同一分子内に有する、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる一種または二種以上の化合物を用いるとポリエステルの物性改善効果や触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上のフェノール部を同一分子内に有するホスホン酸系化合物を用いるとポリエステルの物性改善効果や触媒活性の向上効果がとくに大きく好ましい。
本発明のフェノール部を同一分子内に有するリン化合物としては、下記一般式(化26)〜(化28)で表される化合物が好ましい。
Figure 2005112876
Figure 2005112876
Figure 2005112876
(式(化26)〜(化28)中、R1はフェノール部を含む炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール部を含む炭素数1〜50の炭化水素基を表す。R4,R5,R6はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1〜50の炭化水素基を表す。R2,R3はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1〜50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。R2とR4の末端どうしは結合していてもよい。)
本発明のフェノール部を同一分子内に有するリン化合物としては、例えば、p−ヒドロキシフェニルホスホン酸、p−ヒドロキシフェニルホスホン酸ジメチル、p−ヒドロキシフェニルホスホン酸ジエチル、p−ヒドロキシフェニルホスホン酸ジフェニル、ビス(p−ヒドロキシフェニル)ホスフィン酸、ビス(p−ヒドロキシフェニル)ホスフィン酸メチル、ビス(p−ヒドロキシフェニル)ホスフィン酸フェニル、p−ヒドロキシフェニルフェニルホスフィン酸、p−ヒドロキシフェニルフェニルホスフィン酸メチル、p−ヒドロキシフェニルフェニルホスフィン酸フェニル、p−ヒドロキシフェニルホスフィン酸、p−ヒドロキシフェニルホスフィン酸メチル、p−ヒドロキシフェニルホスフィン酸フェニル、ビス(p−ヒドロキシフェニル)ホスフィンオキサイド、トリス(p−ヒドロキシフェニル)ホスフィンオキサイド、ビス(p−ヒドロキシフェニル)メチルホスフィンオキサイド、および下記式(化29)〜(化32)で表される化合物などが挙げられる。これらのうちで、下記式(化31)で表される化合物およびp−ヒドロキシフェニルホスホン酸ジメチルがとくに好ましい。
Figure 2005112876
Figure 2005112876
Figure 2005112876
Figure 2005112876
上記の式(化31)にて示される化合物としては、SANKO−220(三光株式会社
製)があり、使用可能である。
本発明のフェノール部を同一分子内に有するリン化合物の中でも、下記一般式(化33)で表される特定のリンの金属塩化合物から選択される少なくとも一種がとくに好ましい。
Figure 2005112876
(式(化33)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R4は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。R4O−としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。lは1以上の整数、mは0または1以上の整数を表し、l+mは4以下である。Mは(l+m)価の金属カチオンを表す。nは1以上の整数を表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
これらの中でも、下記一般式(化34)で表される化合物から選択される少なくとも一種が好ましい。
Figure 2005112876
(式(化34)中、Mn+はn価の金属カチオンを表す。nは1,2,3または4を表す。)
上記式(化33)または(化34)の中でも、Mが、Li,Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgがとくに好ましい。
本発明の特定のリンの金属塩化合物としては、リチウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸]、カリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸]、ベリリウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチル]、ストロンチウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、バリウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸フェニル]、マンガンビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ニッケルビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、銅ビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、亜鉛ビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]などが挙げられる。これらの中で、リチウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]がとくに好ましい。
本発明のフェノール部を同一分子内に有するリン化合物の中でも、下記一般式(化35)で表されるP−OH結合を少なくとも一つ有する特定のリン化合物から選択される少なくとも一種がとくに好ましい。
Figure 2005112876
(式(化35)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。
炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
これらの中でも、下記一般式(化36)で表される化合物から選択される少なくとも一種が好ましい。
Figure 2005112876
(式(化36)中、R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR3としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。
本発明のP−OH結合を少なくとも一つ有する特定のリン化合物としては、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸イソプロピル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸フェニル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸オクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸などが挙げられる。これらの中で、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチルがとくに好ましい。
本発明のフェノール部を同一分子内に有するリン化合物の中でも、下記一般式(化37)で表される特定のリン化合物から選ばれる少なくとも一種のリン化合物が好ましい。
Figure 2005112876
(上記式(化37)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3、R4はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記一般式(化37)の中でも、下記一般式(化38)で表される化合物から選択される少なくとも一種を用いるとポリエステルの物性改善効果や触媒活性の向上効果が高く好ましい。
Figure 2005112876
(上記式(化38)中、R3、R4はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR3、R4としては例えば、水素、メチル基、ブチル基等の短鎖の脂肪族基、オクタデシル等の長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基等の芳香族基、−CH2CH2OHで表される基などが挙げられる。
本発明の特定のリン化合物としては、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジイソプロピル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジ−n−ブチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジオクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジフェニルなどが挙げられる。これらの中で、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジオクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジフェニルがとくに好ましい。
本発明のフェノール部を同一分子内に有するリン化合物の中でも、本発明でとくに望ましい化合物は、化学式(化39)、(化40)で表される化合物から選ばれる少なくとも一種のリン化合物である。
Figure 2005112876
Figure 2005112876
上記の化学式(化39)にて示される化合物としては、Irganox1222(チバ・スペシャルティーケミカルズ社製)が市販されており、また化学式(化40)にて示される化合物としてはIrganox1425(チバ・スペシャルティーケミカルズ社製)が市販されており、使用可能である。
本発明においては、請求項2に記載のごとく、上記リン化合物が、予め水およびアルキレングリコールからなる群から選ばれた少なくとも1種の溶媒中で加熱処理されたものを用いることが好ましい実施態様である。該処理により前記のアルミニウムやアルミニウム化合物に上記のリン化合物を併用することによる重縮合触媒活性が向上すると共に、該重縮合触媒起因の異物形成性が低下する。
リン化合物を予め加熱処理する時に使用する溶媒としては、水およびアルキレングリコールからなる群から選ばれる少なくとも1種であれば限定されず任意であるが、リン化合物を溶解する溶媒を用いることが好ましい。アルキレングリコールとしては、エチレングリコール等の目的とするポリエステルの構成成分であるグリコールを用いることが好ましい。溶媒中での加熱処理は、リン化合物を溶解してから行うのが好ましいが、完全に溶解していなくてもよい。また、加熱処理の後に、化合物がもとの構造を保持している必要はなく、加熱処理による変性で溶媒に対する溶解性が向上するものであっても構わない。
加熱処理の温度は特に限定はされないが、20〜250℃の範囲であることが好ましい。より好ましくは、100〜200℃の範囲である。温度の上限は、用いる溶媒の沸点付近とすることが好ましい。加熱時間は、温度等の条件によっても異なるが、溶媒の沸点付近の温度だと1分〜50時間の範囲であることが好ましく、より好ましくは30分〜10時間、さらに好ましくは1〜5時間の範囲である。加熱処理の系の圧力は常圧、もしくはそれ以上あるいは以下であってもよく特に限定されない。溶液の濃度は、リン化合物として1〜500g/lであることが好ましく、より好ましくは5〜300g/l、さらに好ましくは10〜100g/lである。加熱処理は窒素等の不活性気体の雰囲気下で行うことが好ましい。加熱後の溶液もしくはスラリーの保管温度は特に限定はされないが、0℃〜100℃の範囲であることが好ましく、20℃〜60℃の範囲であることがより好ましい。溶液の保管は窒素等の不活性気体の雰囲気下で行うことが好ましい。
リン化合物を予め溶媒中で加熱処理する際に、本発明のアルミニウムまたはその化合物を共存してもよい。また、リン化合物を予め溶媒中で加熱処理したものに、本発明のアルミニウムまたはその化合物を粉状、溶液状、あるいはスラリー状として添加してもよい。さらに、添加後の溶液またはスラリーを加熱処理してもよい。これらの操作で得られた溶液もしくはスラリーを本発明の重縮合触媒として用いることが可能である。
本発明におけるリン化合物の使用量としては、得られるポリエステルのカルボン酸成分の全構成ユニットのモル数に対して0.0001〜0.1モル%が好ましく、0.005〜0.05モル%であることがさらに好ましい。
本発明においては、上記のアルミニウムもしくその化合物とリン化合物を併用すれば実用性の高い重縮合触媒活性を発現することができるが、さらに少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種を第2金属含有成分として共存させることが好ましい態様である。かかる第2金属含有成分を触媒系に共存させることは、ジエチレングリコールの生成を抑制する効果に加えて触媒活性を高め、従って反応速度をより高めた触媒成分が得られ、生産性向上に有効である。
アルミニウム化合物にアルカリ金属化合物又はアルカリ土類金属化合物を添加して十分な触媒活性を有する触媒とする技術は公知である。かかる公知の触媒を使用すると熱安定性に優れたポリエステルが得られるが、アルカリ金属化合物又はアルカリ土類金属化合物を併用した公知の触媒は、実用的な触媒活性を得ようとするとそれらの添加量が多く必要であり、アルカリ金属化合物を使用したときは得られるポリエステルの耐加水分解性が低下すると共にアルカリ金属化合物に起因する異物量が多くなり、繊維に使用したときには製糸性や糸物性が、またフィルムに使用したときはフィルム物性などが悪化する。またアルカリ土類金属化合物を併用した場合には、実用的な活性を得ようとすると得られたポリエステルの熱安定性が低下し、加熱による着色が大きく、異物の発生量も多くなり、耐加水分解性も低下する。
アルカリ金属、アルカリ土類金属並びにその化合物を添加する場合、その使用量M(モル%)は、ポリエステルを構成する全ポリカルボン酸ユニットのモル数に対して、1×10-6以上0.1モル%未満であることが好ましく、より好ましくは5×10-6〜0.05モル%であり、さらに好ましくは1×10-5〜0.03モル%であり、特に好ましくは、1×10-5〜0.01モル%である。アルカリ金属、アルカリ土類金属の添加量が少量であるため、熱安定性低下、異物の発生、着色、耐加水分解性の低下等の問題を発生させることなく、反応速度を高めることが可能である。アルカリ金属、アルカリ土類金属並びにその化合物の使用量Mが0.1モル%以上になると熱安定性の低下、異物発生や着色の増加、並びに耐加水分解性の低下が製品加工上問題となる場合が発生する。Mが1×10-6
未満では、添加してもその効果が明確ではない。
本発明においてアルミニウムもしくはその化合物に加えて使用することが好ましい第2金属含有成分を構成するアルカリ金属、アルカリ土類金属としては、Li,Na,K,Rb,Cs,Be,Mg,Ca,Sr,Baから選択される少なくとも1種であることが好ましく、このうちLi,Na,Mgないしその化合物から選択される少なくとも1種の使用がより好ましい。アルカリ金属やアルカリ土類金属の化合物としては、例えば、これら金属のギ酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸、クエン酸、サリチル酸などのヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸塩、1−プロパンスルホン酸、1−ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、n−プロポキシ、iso−プロポキシ、n−ブトキシ、tert−ブトキシなどのアルコキサイド、アセチルアセトネートなどとのキレート化合物、水素化物、酸化物、水酸化物などが挙げられる。
これらのアルカリ金属、アルカリ土類金属またはそれらの化合物のうち、水酸化物等のアルカリ性の強いものを用いる場合、これらはエチレングリコール等のジオールもしくはアルコール等の有機溶媒に溶解しにくい傾向があるため、水溶液で重合系に添加しなければならず重合工程上問題となる場合が有る。さらに、水酸化物等のアルカリ性の強いものを用いた場合、重合時にポリエステルが加水分解等の副反応を受け易くなるとともに、重合したポリエステルは着色し易くなる傾向があり、耐加水分解性も低下する傾向がある。従って、本発明のアルカリ金属またはそれらの化合物あるいはアルカリ土類金属またはそれらの化合物として好適なものは、アルカリ金属あるいはアルカリ土類金属の飽和脂肪族カルボン酸塩、不飽和脂肪族カルボン酸塩、芳香族カルボン塩、ハロゲン含有カルボン酸塩、ヒドロキシカルボン酸塩、硫酸、硝酸、リン酸、ホスホン酸、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸から選ばれる無機酸塩、有機スルホン酸塩、有機硫酸塩、キレート化合物、及び酸化物である。これらの中でもさらに、取り扱い易さや入手のし易さ等の観点から、アルカリ金属あるいはアルカリ土類金属の飽和脂肪族カルボン酸塩、特に酢酸塩の使用が好ましい。
本発明の重縮合触媒は、アンチモン化合物、ゲルマニウム化合物、チタン化合物などの他の重縮合触媒を、これらの成分の添加が前記のようなポリエステルの特性、加工性、色調等製品に問題を生じない添加量の範囲内において共存させて用いることは、重合時間の短縮による生産性を向上させる際に有効であり、好ましい。
アンチモン化合物は、重合して得られるポリエステルに対してアンチモン原子として50ppm以下の量で添加することが好ましい。より好ましい添加量は、30ppm以下である。アンチモンの添加量を50ppm以上にすると、金属アンチモンの析出が起こり、ポリエステルに黒ずみや異物が発生するため好ましくない。
ゲルマニウム化合物は、重合して得られるポリエステルに対してゲルマニウム原子として20ppm以下の量で添加することが好ましい。より好ましい添加量は10ppm以下である。ゲルマニウムの添加量を20ppm以上にすると、コスト的に不利になるため好ましくない。
チタン化合物は、重合して得られるポリエステルに対してチタン原子として5ppm以下の量で添加することが好ましい。より好ましい添加量は3ppm以下であり、さらに好ましくは1ppm以下である。チタンの添加量を5ppm以上にすると、得られるポリエステルの着色が顕著になり、さらに熱安定性が顕著に低下するため好ましくない。
本発明において使用可能なアンチモン化合物としては、特に限定はされないが、好適な化合物として三酸化アンチモン、五酸化アンチモン、酢酸アンチモン、アンチモングリコキサイドなどが挙げられ、特に三酸化アンチモンの使用が好ましい。また、ゲルマニウム化合物としては、特に限定はされないが、二酸化ゲルマニウム、四塩化ゲルマニウムなどが挙げられ、特に二酸化ゲルマニウムが好ましい。二酸化ゲルマニウムとしては結晶性のものと非晶性のものの両方が使用できる。
本発明において使用可能なチタン化合物としては特に限定はされないが、テトラ−n−プロピルチタネート、テトライソプロピルチタネート、テトラ−n−ブチルチタネート、テトライソブチルチタネート、テトラ−tert−ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート、蓚酸チタン酸リチウム、蓚酸チタン酸カリウム、蓚酸チタン酸アンモニウム、酸化チタン、チタンとケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物、チタンのオルトエステルまたは縮合オルトエステル、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルと少なくとも2個のヒドロキシル基を有する多価アルコール、2−ヒドロキシカルボン酸および塩基からなる反応生成物などが挙げられ、このうちチタンとケイ素の複合酸化物、チタンとマグネシウムの複合酸化物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物が好ましい。
またスズ化合物としては、ジブチルスズオキサイド、メチルフェニルスズオキサイド、テトラエチルスズ、ヘキサエチルジスズオキサイド、トリエチルスズハイドロオキサイド、モノブチルヒドロキシスズオキサイド、トリイソブチルスズアセテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、ジブチルスズサルファイド、ジブチルヒドロキシスズオキサイド、メチルスタンノン酸、エチルスタンノン酸などが挙げられ、特にモノブチルヒドロキシスズオキサイドの使用が好ましい。
本発明のポリエステルには、色調改善等の目的でコバルト化合物をコバルト原子としてポリエステルに対して10ppm未満の量で添加することが好ましい態様である。より好ましくは5ppm以下であり、さらに好ましくは3ppm以下である。コバルト化合物としては特に限定はないが、具体的には例えば、酢酸コバルト、硝酸コバルト、塩化コバルト、コバルトアセチルアセトネート、ナフテン酸コバルトおよびそれらの水和物等が挙げられる。その中でも特に酢酸コバルト四水和物が好ましい。
本発明においては、前記のジカルボン酸および/またはそのエステル形成性誘導体と、ジオールおよび/またはそのエステル形成性誘導体とを反応させ、全末端基に対するヒドロキシル末端基の割合(以下、OHV%と略称する)が76モル%以上である生成物を得、当該生成物を重縮合させることが重要である。85モル以上が好ましく、95モル%以上がより好ましい。76モル%未満では本発明の溶融重縮合により得られたポリエステルを
引き続き固相重縮合法を講じても該ポリエステル中に含有されている環状三量体の低減度合いが低く環状三量体含有量を2900ppm以下にすることが困難である。これに対して、本発明方法で得られたポリエステルを用いて固相重縮合をすることにより環状三量体含有量が2500ppm以下の低オリゴマー化されたポリエステルを得ることができる。
従って、請求項5に記載のごとく、固相重縮合ポリエステル中の環状三量体含有量が2500ppm以下であることが好ましい実施態様である。2400ppm以下がより好ましく、2300ppm以下が特に好ましい。
また、本発明方法で製造されたポリエステルはカルボキシル末端基が著しく低く、耐加水分解安定性等の耐久性の優れた製品が得られるという特徴を有している。該効果は、アンチモン化合物、ゲルマニウム化合物、チタン化合物などの従来公知の重縮合触媒系では発現されない。従って、本発明方法の重縮合触媒に固有の大きな特徴の一つである。
本発明において、OHV%を上記範囲に設定する方法は限定なく任意である。例えば、ジカルボン酸とジオールとの反応、いわゆる直接エステル化反応によりエステル化反応を行い、上記ヒドロキシル末端基の割合になった時点でエステル化反応を停止し重縮合反応を開始し、あるいは、重縮合缶に移送し重縮合反応を開始する方法が挙げられる。該エステル化反応は回分法あるいは連続法のいずれで実施しても良い。また、エステル化反応は常圧あるいは加圧のいずれで実施しても構わない。ジエチレングリコール等の副反応生成物の生成が抑制できる点より常圧ないしは微加圧で行うのが好ましい。
回分法でかつ加圧エステル化法で実施する場合には、トリエチルアミン、トリ−n−ブチルアミン、ベンジルジメチルアミンなどの第3級アミン、水酸化テトラエチルアンモニウム、水酸化テトラ−n−ブチルアンモニウム、水酸化トリメチルベンジルアンモニウムなどの水酸化第4級アンモニウムおよび炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウムなどの塩基性化合物を少量添加して実施すると、例えば、ポリエチレンテレフタレ−トの場合、主鎖中のジオキシエチレンテレフタレ−ト成分単位の割合を比較的低水準(全ジオ−ル成分に対して5モル%以下)に保持できるので好ましい。
上記の直接エステル化法による製造法を以下に例示する。
テレフタル酸またはそのエステル誘導体1モルに対して1.02〜1.5モル、好ましくは1.03〜1.4モルのエチレングリコ−ルが含まれたスラリ−を調整し、これをエステル化反応工程に連続的に供給する。
エステル化反応は、1〜3個のエステル化反応器を直列に連結した多段式装置を用いてエチレングリコ−ルが還流する条件下で、反応によって生成した水またはアルコ−ルを精留塔で系外に除去しながら実施する。第1段目のエステル化反応の温度は240〜270℃、好ましくは245〜265℃、圧力は0.2〜3kg/cm2G、好ましくは0.5〜2kg/cm2Gである。最終段目のエステル化反応の温度は通常250〜290℃好ましくは255〜275℃であり、圧力は通常0〜1.5kg/cm2G、好ましくは0〜1.3kg/cm2Gである。3段階以上で実施する場合には、中間段階のエステル化反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。これらのエステル化反応の反応率の上昇は、それぞれの段階で滑らかに分配されることが好ましい。最終的にはエステル化反応率は90%以上、好ましくは93%以上に達することが望ましい。これらのエステル化反応により分子量500〜5000程度の低次縮合物が得られる。該方法において、上記のOHV%になった時点でエステル化反応を停止し、引き続き重縮合反応器に移送し重縮合を行う。
上記のOHV%は、最終エステル化反応器から重縮合反応器への移送管にバイパス流路を設け、核磁気共鳴法で反応生成物のヒドロキシル末端基量とカルボキシル末端基量をオンラインで測定し、反応条件にフィードバックしても良いし、該反応生成物を間欠的に系外に取り出し、該取り出しサンプルのヒドロキシル末端基量とカルボキシル末端基量をオフラインで測定し、反応条件にフィードバックしても良い。
また、ジカルボン酸ジメチルエステル等のエステル形成性誘導体とジオールとの反応、いわゆるエステル交換反応により得たエステル交換反応生成物を用いるのが好ましい実施態様である。該エステル交換反応生成物にジカルボン酸を添加しエステル化反応を行いOHV%の調整を行っても良い。なお、エステル交換反応は、1〜2個のエステル交換反応器を直列に連結した装置を用いてエチレングリコ−ルが還留する条件下で、反応によって生成したメタノ−ルを精留塔で系外に除去しながら実施する。第1段目のエステル交換反応の温度は180〜250℃、好ましくは200〜240℃である。最終段目のエステル交換反応の温度は通常230〜270℃、好ましくは240〜265℃であり、エステル交換触媒として、Zn,Cd,Mg,Mn,Co,Ca,Baなどの脂肪酸塩、炭酸塩やPb,Zn,Sb,Ge酸化物等を用いる。
OHV%を上記範囲に設定するもう一つ方法として、ポリエステル樹脂からの化学分解回収で得られたジカルボン酸のジヒドロキシアルキルエステル誘導体、例えば回収PETボトルの化学分解回収で得られたビスヒドロキシエチルテレフタレート(BHET)を用いるのが好ましい実施態様である。該BHETにテレフタル酸等のジカルボン酸を添加しエステル化反応を行っても良い。該反応時にエチレングリコールや他のグリコール類を添加しOHV%や組成調整を行っても良い。
なお、本発明においては、BHETに限らず、回収PETボトルの化学分解回収法で得られたテレフタル酸、ジメチルテレフタレートあるいはエチレングリコール等のリサイクル原料を用いることは、省資源や環境保護に役立つので好ましい実施態様である。
上記のOHV%が76モル%以上である生成物である低次縮合物あるいはBHETは引き続き溶融重縮合工程に供給される。該溶融重縮合工程は回分法および連続法のどちらであっても構わない。該工程の反応器数も限定されない。一般には初期重縮合と後期重縮合の2段階方式が取られている。重縮合反応条件は、第1段階目の重縮合の反応温度は250〜290℃、好ましくは260〜280℃であり、圧力は500〜20Torr、好ましくは200〜30Torrで、最終段階の重縮合反応の温度は265〜300℃、好ましくは275〜295℃であり、圧力は10〜0.1Torr、好ましくは5〜0.5Torrである。3段階以上で実施する場合には、中間段階の重縮合反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。これらの重縮合反応工程の各々において到達される極限粘度の上昇の度合は滑らかに分配されることが好ましい。回分法の場合は、前記の低次縮合物の反応器を減圧にして重縮合反応を進める、いわゆる1缶法で実施しても良い。
本発明においては、前記の重縮合触媒の反応系への添加時期は限定されないが、低次縮合物の生成反応の末期に添加するのが重縮合活性が高くなり、かつ該重縮合触媒起因の不溶性異物形成が抑制されるので好ましい。また、該重縮合触媒は低次縮合物の反応器に直接添加しても良いし、各反応器間の移送ラインに添加しても良い。移送ラインに添加する場合はラインミキサー等の混合器を設置し、該混合器に添加し均一混合を図るのが好ましい。また、前記の重縮合触媒を構成するアルミニウムもしくはその化合物とリン化合物の添加時期も限定されないが、同時もしくはリン化合物を先に添加するのが重縮合活性や該重縮合触媒起因の不溶性異物形成抑制等の点で好ましい。また、従来公知の重縮合触媒や色調改良剤のコバルト化合物の添加時期も限定されず任意である。すなわち、これらの重縮合触媒や添加剤の添加時期は対象とするポリエステルの構造や得られるポリエステルの望まれる特性により適宜設定できる。なお、この場合OHV%は各種重合触媒や種々の添加剤が添加された後、すなわち重縮合反応直前の低次縮合物を用いて算出される。
本発明方法においては、上記溶融重縮合法により得たポリエステルを用いて、引き続き固相重縮合が行われる。該固相重縮合の実施により、ポリエステルの重合度が上げられると共に、環状三量体、ホルムアルデヒドおよびアセトアルデヒド等の溶融重縮合の折に副生した副生成物の量を低減することができる。該固相重縮合は、前記溶融重縮合法により得られたポリエステルを粉粒体状にして実施される。粉粒体とはチップ、ペレット、フレーク、粉末状のポリエステルを意味するが、好ましくはチップまたはペレットであり、通常2.0〜5.5mm、好ましくは2.2〜4.0mmの平均粒径を有することが望ましい。
上記固相重縮合は粉粒体状のポリエステルをポリエステルの融点以下の温度にて、不活性ガス流通下あるいは減圧下で加熱することにより実施される。固相重縮合工程は、少なくとも1段からなり、重縮合温度が、通常190〜235℃、好ましくは195〜230℃であり、不活性ガス流通法の場合、圧力が通常0.98MPa〜0.0013MPa、好ましくは0.49MPa〜0.013MPaの条件下で、窒素、アルゴン、二酸化炭素などの不活性ガス流通下で実施され、減圧法の場合、圧力が通常13〜39000Pa、好ましくは、13〜13300Paの条件下で実施される。固相重縮合時間は、温度が高いほど短時間で所望の物性に到達するが、通常1〜50時間、好ましくは5〜30時間、さらに好ましくは10〜25時間である。固相重縮合工程は多段で実施しても構わない。
本発明においては、固相重縮合工程に供給される粉粒状ポリエステルは、予め固相重縮合を行なう場合の温度より低い温度に加熱して予備結晶化を行なった後、固相重縮合工程に供給してもよい。
このような予備結晶化工程は、粉粒状ポリエステルを乾燥状態で通常、120〜200℃、好ましくは130〜180℃の温度に1分〜4時間加熱することによって行なってもよく、或いは粉粒状ポリエステルを水蒸気雰囲気下又は水蒸気含有不活性ガス雰囲気下或いは水蒸気含有空気雰囲気下で通常、120〜200℃の温度に1分間以上加熱することによって行なってもよい。
前記のようにして溶融重縮合されたポリエステルは、例えば、チップ化されたあと輸送配管中を貯蔵用サイロや固相重縮合工程に輸送される。このようなチップの輸送を、例えば空気を使用した強制的な低密度輸送方法で行うと、溶融重縮合ポリエステルのチップの表面には配管との衝突によって大きな衝撃力がかかり、この結果ファインやフイルム状物が多量に発生する。このようなファインやフイルム状物は ポリエステルの結晶化を促進させる効果を持っており、多量に存在する場合には得られた成形体の透明性が非常に悪くなる。また、このようなファインやフイルム状物等には、正常な融点より約10〜20℃以上高い融点を持つものが含まれる。また、溶融重縮合ポリエステルチップに衝撃力やせん断力がかかる送り装置を用いたりする場合にも、正常な融点より約10〜20℃以上高い融点のファインやフイルム状物が非常に多量に発生する。これは、チップ表面に加わる衝撃力等の大きな力のためにチップが発熱すると同時にチップ表面においてポリエステルの配向結晶化が起こり、緻密な結晶構造が生じるためではないかと推定される。このようなファインやフイルム状物が混入すると得られた固相重縮合ポリエステルからの成形体の結晶化速度が早くなりすぎたり、またその変動が非常に大きくなり、得られた中空成形用予備成形体が白化し、このため正常な延伸が不可能となり、厚み斑が生じ、また得られた中空成形体の透明性が悪くなり、また透明性の変動も大となり大きな問題となる場合がある。従って、このようなファインやフイルム状物を除去する工程を付加することは好ましい実施態様の一つである。
上記のファインやフイルム状物を除去する方法は限定されないが、例えば、前記の固相重縮合工程と固相重縮合工程のあとに設置される後工程との中間工程に別々に設置した振動篩工程及び空気流による気流分級工程、重力式分級工程等で処理する方法等が挙げられる。
本発明の製造方法で得られたポリエステルは、環状三量体などのオリゴマー類が成形時に金型内面や金型のガスの排気口、排気管等に付着することによる金型汚れ等をより一層防止するために、固相重合の後に水との接触処理を行なうことができる。該方法も限定されないが、水中に浸ける方法やシャワ−でチップ上に水をかける方法等が挙げられる。処理時間としては5分〜2日間、好ましくは10分〜1日間、さらに好ましくは30分〜10時間で、水の温度としては20〜180℃、好ましくは40〜150℃、さらに好ましくは50〜120℃である。
本発明における固相重縮合や上記の付随処理は回分式、連続式のいずれであってもかまわないが、得られるポリエステルの品質均一性や経済性の点より連続法が好ましい。
本発明においては、ポリエステルの重合度の設定は、得られるポリエステルの使用用途の要求特性に合わせて適宜設定すればよいが、一般には溶融重縮合でIV0.3〜0.65のポリエステルを得て、該溶融重縮合で得たポリエステルを固相重縮合でIV0.60〜1.20に上昇させるのが好ましい。
本発明のポリエステル中には、有機系、無機系、及び有機金属系のトナー、ならびに蛍光増白剤などを含むことができ、これらを一種もしくは二種以上含有することによって、ポリエステルの黄み等の着色をさらに優れたレベルにまで抑えることができる。また他の任意の重合体や制電剤、消泡剤、染色性改良剤、染料、顔料、艶消剤、蛍光増白剤、安定剤、酸化防止剤、その他の添加剤が含有されていてもよい。酸化防止剤としては、芳香族アミン系、フェノール系等の酸化防止剤が使用可能であり、安定剤としては、リン酸やリン酸エステル系等のリン系、硫黄系、アミン系等の安定剤が使用可能である。
これらの添加剤は、ポリエステルの重合時もしくは重合後、あるいはポリエステルの成形時の任意の段階で添加することが可能であり、どの段階が好適かは対象とするポリエステルの構造や得られるポリエステルの要求性能に応じてそれぞれ適宜選択すれば良い。
本発明のポリエステル重縮合触媒を用いて重縮合したポリエステルは常法の溶融紡糸法により繊維を製造することが可能であり、紡糸・延伸を2ステップで行う方法及び1ステップで行う方法が採用できる。さらに、捲縮付与、熱セットやカット工程を備えたステープルの製造方法やモノフィラメントなど公知の繊維製造方法がすべて適用できるものである。
また得られた繊維は異型断面糸、中空断面糸、複合繊維、原着糸等の種々繊維構造となすことができ、糸加工においても例えば混繊、混紡、等の公知の手段を採用することができる。
更に上記ポリエステル繊維は織編物或いは不織布、等の繊維構造体となすことができる。
そして上記ポリエステル繊維は、衣料用繊維、カーテン、カーペット、ふとん綿、ファイバーフィル等に代表されるインテリア・寝装用繊維、タイヤコード、ロープ等の抗張力線、土木・建築資材、エアバッグ等の車輛用資材、等に代表される産業資材用繊維、各種織物、各種編物、ネット、短繊維不織布、長繊維不織布用、等の各種繊維用途に使用することができる。
本発明のポリエステルは、中空成形体として好適に用いられる。
中空成形体としては、ミネラルウオーター、ジュース、ワインやウイスキー等の飲料容器、ほ乳瓶、瓶詰め食品容器、整髪料や化粧品等の容器、住居および食器用洗剤容器等が挙げられる。
これらの中でも、ポリエステルの持つ衛生性及び強度、耐溶剤性を活かした耐圧容器、耐熱耐圧容器、耐アルコール容器として各種飲料用に特に好適である。中空成形体の製造は、溶融重合や固相重合によって得られたポリエステルチップを真空乾燥法等によって乾燥後、押し出し成型機や射出成形機等の成形機によって成形する方法や、溶融重合後の溶融体を溶融状態のまま成形機に導入して成形する直接成形方法により、有底の予備成形体を得る。さらに、この予備成形体を延伸ブロー成形、ダイレクトブロー成形、押出ブロー成形などのブロー成型法により最終的な中空成形体が得られる。もちろん、上記の押し出し成型機や射出成形機等の成形機によって得られた成形体を最終的な中空容器とすることもできる。
このような中空成形体の製造の際には、製造工程で発生した廃棄樹脂や市場から回収されたポリエステル樹脂を混合することもできる。このようなリサイクル樹脂であっても、本発明のポリエステル樹脂は劣化が少なく、高品質の中空成型品を得ることができる。
さらには、このような容器は、中間層にポリビニルアルコールやポリメタキシリレンジアミンアジペートなどのガスバリア性樹脂層、遮光性樹脂層やリサイクルポリエステル層を設けた多層構造をとることも可能である。また、蒸着やCVD(ケミカルベーパーデポジット)等の方法を用いて、容器の内外をアルミニウムなどの金属やダイヤモンド状カーボンの層で被覆することも可能である。
なお、中空成形体の口栓部等の結晶性を上げるため、ポリエチレンを初めとする他の樹脂やタルク等の無機核剤を添加することもできる。
また、本発明のポリエステルは押し出し機からシ−ト状物に押し出し、シートとすることもできる。このようなシートは、真空成形や圧空成形、型押し等により加工し、食品や雑貨用のトレイや容器、カップ、ブリスタ−パック、電子部品のキャリアテープ、電子部品配送用トレイとして用いる。また、シートは各種カードとして利用することもできる。
これら、シートの場合でも、上述のような中間層にガスバリア性樹脂層、遮光性樹脂層やリサイクルポリエステル層を設けた多層構造をとることも可能である。
また、同様にリサイクル樹脂を混合することもできる。さらには、結晶性の耐熱性容器とすることを目的に、ポリエチレンを初めとする他の樹脂やタルク等の無機核剤を添加し、結晶性を高めることできる。
本発明のポリエステル重縮合触媒を用いて重合したポリエステルは、フイルムに用いることができる。その方法は、ポリエステルを溶融押出しし、T−ダイスより冷却回転ロール上にシート状に成型し、未延伸シートを作成する。この際、例えば特公平6−39521号公報、特公平6−45175号公報に記載の技術を適用することにより、高速製膜性が可能となる。また、複数の押出し機を用い、コア層、スキン層に各種機能を分担させ、共押出し法により積層フイルムとしても良い。
本発明のポリエステル重縮合触媒を用いて重合したポリエステルは、配向ポリエスTテルフィルムに用いることができる。配向ポリエステルフイルムは、公知の方法を用いて、ポリエステルのガラス転移温度以上結晶化温度未満で、少なくとも一軸方向に1.1〜6倍に延伸することにより得ることができる。
例えば、二軸配向ポリエステルフイルムを製造する場合、縦方向または横方向に一軸延伸を行い、次いで直交方向に延伸する逐次二軸延伸方法、縦方向及び横方向に同時に延伸する同時二軸延伸する方法、さらに同時二軸延伸する際の駆動方法としてリニアモーターを用いる方法のほか、横・縦・縦延伸法、縦・横・縦延伸法、縦・縦・横延伸法な、同一方向に数回に分けて延伸する多段延伸方法を採用することができる。
さらに、延伸終了後、フイルムの熱収縮率を低減させるために、(融点−50℃)〜融点未満の温度で30秒以内、好ましくは10秒以内で熱固定処理を行い、0.5〜10%の縦弛緩処理、横弛緩処理などを施すことが好ましい。
得られた配向ポリエステルフイルムは、厚みが1μm以上1000μm以下が好ましく、より好ましくは5μm以上500μm以下、より好ましくは10μm以上200μm以下である。1μm未満では腰が無く取り扱いが困難である。また1000μmを超えると硬すぎて取り扱いが困難である。
また、接着性、離型性、制電性、赤外線吸収性、抗菌性、耐擦り傷性、などの各種機能を付与するために、配向ポリエステルフイルム表面にコーティング法により高分子樹脂を被覆してもよい。また、被覆層にのみ無機及び/又は有機粒子を含有させて、易滑高透明ポリエステルフイルムとしてもよい。さらに、無機蒸着層を設け酸素、水、オリゴマーなどの各種バリア機能を付与したり、スパッタリング法などで導電層を設け導電性を付与することもできる。また、配向ポリエステルフイルムの滑り性、走行性、耐摩耗性、巻き取り性などのハンドリング特性を向上させるために、ポリエステルの重合工程で、無機及び有機塩粒子又は耐熱性高分子樹脂粒子を添加して、フイルム表面に凹凸を形成させてもよい。また、これらの粒子は無機・有機又は親水・疎水等の表面処理がされたもの、されていないもの、どちらを使っても良いが、例えば分散性を向上させる等の目的で、表面処理した粒子を用いる方が好ましいケースがある。
無機粒子としては、炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、フッ化リチウム、ソジュウムカルシウムアルミシリケート等が挙げられる。
有機塩粒子としては、蓚酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩等が挙げられる。
架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸、アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重合体が挙げられる。その他に、ポリテトラフルオロエチレン、ベンゾグアナミン樹脂、熱硬化エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂などの有機粒子を用いても良い。
上記不活性粒子を基材フイルムとなるポリエステル中に含有させる方法は、限定されないが、(a)ポリエステル構成成分であるジオール中で不活性粒子をスラリー状に分散処理し、該不活性粒子スラリーをポリエステルの重合反応系へ添加する方法、(b)ポリエステルフイルムの溶融押出し工程においてベント式二軸押出し機で、溶融ポリエステル樹脂に分散処理した不活性粒子の水スラリーを添加する方法、(c)ポリエステル樹脂と不活性粒子を溶融状態で混練する方法(d)ポリエステル樹脂と不活性粒子のマスターレジンを溶融状態で混練する方法などが例示される。
重合反応系に添加する方法の場合、不活性粒子のジオールスラリーを、エステル化反応またはエステル交換反応前から重縮合反応開始前の溶融粘度の低い反応系に添加することが好ましい。また、不活性粒子のジオールスラリーを調整する際には、高圧分散機、ビーズミル、超音波分散などの物理的な分散処理を行うとことが好ましい。さらに、分散処理したスラリーを安定化させるために、使用する粒子の種類に応じて適切な化学的な分散安定化処理を併用することが好ましい。
分散安定化処理としては、例えば無機酸化物粒子や粒子表面にカルボキシル基を有する架橋高分子粒子などの場合には、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ化合物をスラリーに添加し、電気的な反発により粒子間の再凝集を抑制することができる。また、炭酸カルシウム粒子、ヒドロキシアパタイト粒子などの場合にはトリポリ燐酸ナトリウムやトリポリ燐酸カリウムをスラリー中に添加することが好ましい。
また、不活性粒子のジオールスラリーをポリエステルの重合反応系へ添加する際、スラリーをジオールの沸点近くまで加熱処理することも、重合反応系へ添加した際のヒートショック(スラリーと重合反応系との温度差)を小さくすることができるため、粒子の分散性の点で好ましい。
これらの添加剤は、ポリエステルの重合時もしくは重合後、あるいはポリエステルフイルムの製膜後の任意の段階で添加することが可能であり、どの段階が好適かは化合物の特性やポリエステルフイルムの要求性能に応じてそれぞれ異なる。
また、本発明のポリエステルは熱安定性に優れるため、例えば、本ポリエステルを用いてフイルムなどを作成する際、延伸工程で生ずるフイルムの耳の部分や規格外のフイルムを溶融して再利用するのに適している。
本発明の配向ポリエステルフイルムは、好ましくは帯電防止性フイルム、易接着性フイルム、カード用、ダミー缶用、農業用、建材用、化粧材用、壁紙用、OHPフイルム用、印刷用、インクジェット記録用、昇華転写記録用、レーザービームプリンタ記録用、電子写真記録用、熱転写記録用、感熱転写記録用、プリント基板配線用、メンブレンスイッチ用、プラズマディスプレイ用、タッチパネル用、マスキングフィルム用、写真製版用、レントゲンフィルム用、写真ネガフィルム用、位相差フイルム用、偏光フイルム用、偏光膜保護(TAC)用、プロテクトフィルム用、感光性樹脂フイルム用、視野拡大フイルム用、拡散シート用、反射フイルム用、反射防止フイルム用、導電性フイルム用、セパレータ用、紫外線防止用、バックグラインドテープ用などに用いられる。
帯電防止用フイルムとしては、例えば特許第2952677号公報、特開平6−184337号公報に記載の技術を用いることができる。易接着性フイルムとしては、例えば特公平07−108563、特開平10−235820、特開平11−323271号公報に、カード用としては例えば特開平10−171956、特開平11−010815号公報に記載の技術を本発明のフイルムに適用できる。ダミー缶用としては例えば特開平10−101103号公報に記載のシート状筒体の替わりに、本発明のフイルム上に意匠を印刷し筒状、半筒状にしたものを用いることができる。建材用、建材用化粧版、化粧材用としては、例えば特開平05−200927号公報に記載の基材シート、特開平07−314630号公報に記載の透明シートとして本発明のフイルムを用いることができる。OHP用(オーバーヘッドプロジェクタ用)としては特開平06−297831号公報に記載の透明樹脂シート、特開平08−305065号公報に記載の透明高分子合成樹脂フイルムとして本発明のフイルムを用いることができる。インクジェット記録用としては、例えば特開平05−032037号公報に記載の透明基材として本発明のフイルムを用いることができる。昇華転写記録用としては例えば特開2000−025349号公報に記載の透明なフイルムとして本発明のフイルムを用いることができる。レーザービームプリンタ用、電子写真記録用としては例えば特開平05−088400号公報に記載のプラスチックフイルムとして本発明のフイルムを用いることができる。熱転写記録用としては例えば特開平07−032754号公報に感熱記録用としては特開平11−034503号公報にそれぞれ記載の方法で本発明のフイルムを用いることができる。プリント基板用としては例えば特開平06−326453号公報に記載のポリエステルフイルムとして本発明のフイルムを用いることができる。メンブレンスイッチ用としては例えば特開平05−234459号公報に記載の方法で本発明のフイルムを用いることができる。光学フィルタ(熱線フィルタ、プラズマディスプレイ用)としては、例えば特開平11−231126号公報に記載の方法で本発明のフイルムを用いることができる。透明導電性フイルム、タッチパネル用としては例えば特開平11−224539号公報に記載の方法で本発明のフイルムを用いることができる。マスキングフィルム用としては、例えば特開平05−273737号公報に記載の方法で本発明のフイルムを用いることができる。写真製版用としては例えば特開平05−057844号公報に記載の方法で本発明のフイルムを用いることができる。写真用ネガフィルムとしては例えば特開平06−167768号公報の段落番号(0123)に記載のポリエチレンテレフタレートフィルムとして本発明のフイルムを用いることができる。位相差フイルム用としては例えば特開2000−162419号公報に記載のフイルムとして本発明のフイルムを用いることができる。セパレータ用としては、例えば特開平11−209711号公報の段落番号(0012)に記載のフイルムとして本発明のフイルムを用いることができる。紫外線防止用としては例えば特開平10−329291号公報に記載のポリエステルフイルムとして本発明のフイルムを用いることができる。農業用フイルムとしては、特開平10−166534号公報に記載のポリエチレンテレフタレートフィルムに本発明のフイルムを適用することにより得ることができる。粘着シートとしては例えば特開平06−122856号公報に記載のポリエチレンテレフタレートフィルムに本発明の配向ポリエステルフイルムを適用することにより得られる。
さらに、本発明により得られたポリエステルは、環状三量体含有量が極めて少ないという利点がある。従って、本発明の製造方法で得られたポリエステルは、環状三量体等の溶融重縮合の折に副生した副生成物の含有量に対して厳しい要求がある、例えばミネラルウオーター、ジュース、ワインやウイスキー等の飲料容器、金属製の飲料缶の内張り用のフイルムや電気絶縁用フイルム等の原料用ポリエステルとして特に有用に使用することができる
以下、本発明を実施例により説明するが、本発明はこれらの実施例に制限されるものではない。なお、評価法は以下の方法で実施した。
1、固有粘度(IV)の測定
フェノール/テトラクロロエタン(60:40、重量比)混合溶媒を用いて、30℃で測定した。なお、固相重合後のポリエステルはp-クロロフェノール/テトラクロロエタン(3:1、重量比)混合溶媒を用いて、30℃で測定した。
2、低次縮合物のAVo(酸価)の測定
低次縮合物を乾燥に呈すことなくハンディーミル(粉砕器)にて粉砕した。試料1.00gを精秤し、ピリジン20mlを加えた。沸石を数粒加え、15分間煮沸還流し溶解させた。煮沸還流後直ちに、10mlの純水を添加し、室温まで放冷した。フェノールフタレインを指示薬としてN/10−NaOHで滴定した。試料を入れずにブランクも同じ作業を行う。なお、オリゴマーがピリジンに溶解しない場合は、ベンジルアルコール中で行った。
下記式に従って、AVo(eq/ton)を算出する。
AVo=(A−B)×0.1×f×1000/W
(A=滴定数(ml),B=ブランクの滴定数(ml),f=N/10−NaOHのファク
ター,W=試料の重さ(g))
3、低次縮合物のOHVo(OH価)の測定
低次縮合物を乾燥に呈すことなくハンディーミル(粉砕器)にて粉砕した。試料0.50gを精秤し、アセチル化剤(無水酢酸ピリジン溶液0.5モル/L)10mlを加え、95℃以上の水槽に90分間浸漬した。水槽から取り出した直後、純水10mlを添加し室温まで放冷した。フェノールフタレインを指示薬としてN/5−NaOH−CH3OH溶液で滴定した。試料を入れずにブランクも同じ作業を行う。なお事前に、N/10−塩酸20mlをフェノールフタレインを指示薬としてN/5−NaOH−CH3OH溶液で滴定し、該溶液のファクター(F)を下記式に従い求めておく。
F=0.1×f×20/a
(f=N/10−塩酸のファクター、a=滴定数(ml))
下記式に従って、OHVo(eq/ton)を算出する。
OHVo={(B−A)×F×1000/W}+AVo
(A=滴定数(ml),B=ブランクの滴定数(ml),F=N/5−NaOH−CH3OH溶液のファクター,W=試料の重さ(g))
4、OHV%の算出
上記方法で求めたOHVoとAVoとより下記式に従って算出した。
OHV%=(OHVo/OHVo+AVo)×100
5、異物評価[溶融重縮合体]
ポリエステルチップ(一粒)を2枚のカバーグラス間に挟んで280℃で溶融プレスし、急冷した後、100倍の位相差顕微鏡で20視野観察し、イメージアナライザーで5μm以上の粒子の数をカウントした。この方法で測定した5μm以上の粒子の合計個数が30個以下のものを◎、30個〜50個以下のものを○、50個〜100個以下のものを△として判定した。
6、色調[固相重縮合体]
ポリエステル樹脂チップ(長さ約3mm、直径約2mm)を用い、色差計(東京電色社製:モデルND−1001DP)を使用してハンターのL値およびb値を測定した。
7、ポリエステルのカルボキシル末端基(AVp)[固相重縮合体]
ポリエステルをハンディーミル(粉砕器)にて粉砕し、70℃で一晩減圧乾燥させた。そのポリエステル0.20gを試験管に精秤し、ベンジルアルコール10mlを加えて3分間、5分間、7分間それぞれ攪拌しながら別々に溶解させた。溶解後、15秒間水浴で冷却し、試料をビーカーに移しクロロホルム10mlで試験管を一回洗浄し洗浄液もビーカーに入れた。フェノールレッドを指示薬として、N/25−KOHのエタノール溶液を使用して滴定を行った。ポリエステル試料を入れずにブランクも同じ測定を行う(3分間のみ)。なお事前に、N/10−塩酸5mlとN/25−KOHのエタノール溶液10mlを混合した溶液をフェノールフタレインを指示薬として、N/25−KOHのエタノール溶液で滴定し、該溶液のファクター(F)を下記式に従い求めておく。
F=0.1×f×5/(a+10)
(f=N/10−塩酸のファクター、a=滴定数(ml))
下記式に従って、酸価(等量/ton)を算出する。
酸価=(A−B)×F×1000/W
(A=滴定数(ml)、B=ブランクの滴定数(ml)、F=N/25−KOHのエタノール溶液のファクター、W=試料の重量(g))
溶解時間(3分、5分、7分)に対して、酸価をプロットして得られる直線を溶解時間0分に外挿した際の切片の値をAVpとして、eq/tonで表した。
8、ポリエステル中の環状三量体[固相重縮合体]
固相重縮合ポリエステルをハンディーミル(粉砕器)にて粉砕し、その0.10gをナスフラスコに入れ、1,1,1,3,3,3−ヘキサフルオロ‐2‐プロパノール/クロロホルム(2/3(容量比))の混合溶媒3mlを加えて、ポリエステルが溶解するまで放置した。得られた溶液にクロロホルム20mlを加えて均一に混合した。さらにメタノール10mlを加え、30分以上静置して、線状ポリエステルを再沈殿させた。次いで、ナスフラスコを超音波にかけた後,溶液をろ過した。その際、予め良く混合しておいたクロロホルム/メタノール(2/1(容量比))の混合溶媒を用いて沈殿物を3回洗浄し、それらの洗浄液もろ過した。得られた濾液をロータリーエバポレーターで濃縮乾固した。濃縮乾固物にジメチルホルムアミド10mlを加え、超音波にかけ、白く乾固した部分を溶かし、30分以上静置した後、この液をろ過してろ液を環状三量体測定溶液とした。この測定溶液をHewlett Packard社製シリーズ1050型の高速液体クロマトグラフィーを使用して、下記条件で測定する事により環状三量体を定量し、ppmで表した。なお、定量には予め環状三量体の含有量が分かっている標準溶液を用いた。
(測定条件)
カラム:ウォ−ターズ社製、マイクロボンダスフェア−5μC18−100A、3.9φmm×150mmL
グラジエント溶媒:
A液;2%酢酸水溶液
B液;アセトニトリル 10%→100%(55min)、リニアー
流速:0.80mL/min
検出:UV検出器,波長=252nm
サンプル注入量:20μl
9、ポリエステルの耐加水分解安定性[溶融重縮合体]
溶融重合して得られたポリエステルをハンディーミル(粉砕器)にて粉砕し、20メッシュ以下の粉末にしそれを70℃で一晩減圧乾燥させた。該ポリエステルのIVを測定した([IV]i)。加水分解試験はミニカラー装置((株)テクサム技研製TypeMC12.ELB)を用いて行った。上記粉末1.0gを純水100mlと共に専用ステンレスビーカーに入れてさらに専用の攪拌翼を入れ、密閉系にして、ミニカラー装置にセットし130℃に加熱、加圧した条件下に6時間攪拌した。試験後のポリエステルをガラスフィルターで濾取し、70℃で一晩減圧乾燥した後IVを測定し([IV]f)、以下の式により耐加水分解安定性パラメーター(HS)を算出し、%BBで表した。
HS=0.245{[IV]f -1.47 −[IV]i -1.47
(実施例1、2および比較例1)
(1)重縮合触媒溶液の調製
(リン化合物のエチレングリコール溶液)
窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物として(化39)で表されるIrganox1222(チバ・スペシャルティーケミカルズ社製)の200gを加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。得られた溶液中のIrganox1222のモル分率は40%、Irganox1222から構造変化した化合物のモル分率は60%であった。
(アルミニウム化合物のエチレングリコール溶液)
冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)の200gを純水とのスラリーとして加えた。さらに全体として10.0リットルとなるよう純水を追加して常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷した。その際、未溶解粒子が見られた場合は、溶液をガラスフィルター(3G)にてろ過してアルミニウム化合物の水溶液を得た。
蒸留装置を備えたフラスコに、常温常圧下、前記アルミニウム化合物の水溶液2.0リットルとエチレングリコール2.0リットルを仕込み、200rpmで30分間攪拌後、均一な水/エチレングリコール混合溶液を得た。次いで、ジャケット温度の設定を110℃に変更して昇温し、該溶液から水を留去した。留出した水の量が2.0リットルになった時点で加熱を止め、室温まで放冷することでアルミニウム化合物のエチレングリコール溶液を得た。
(2)エステル化反応
2缶式の連続エステル化反応器に高純度テレフタル酸1質量部に対してエチレングリコール0.4質量部とを混合して調製されスラリーを連続的に供給し第1エステル化槽が反応温度250℃、100kPa、第2エステル化反応器が255℃、100kPaで第1と第2エステル化反応器における反応時間を調整し、かつ、第2エステル化反応槽にエチレングルコールを必要に応じて投入し低次縮合物を得た。
(3)重縮合
上記第2エステル化反応器に前記の重縮合触媒溶液をそれぞれ別個の供給口より、リン化合物のエチレングリコール溶液およびアルミニウム化合物のエチレングリコール溶液をポリエステル中の酸成分に対してリン原子として0.028モル%を、アルミニウム原子として0.021モル%となるように添加し、所望のOHV%の低次縮合物を得た。この低次縮合物を回分式の重縮合反応器に移し280℃、13.3Pa(0.1Torr)で重縮合を実施しIV0.55のポリエチレンテレフタレートを得た。
(4)固相重縮合
上記方法で得たポリエチレンテレフタレートペレットを乾燥機内で減圧乾燥(0.1Torr以下、80℃、12時間)した後、引き続き結晶化処理(0.1Torr以下、130℃で3時間処理した後、さらに160℃で3時間処理)を行った。放冷後のペレットを固相重合反応器に入れ、オイルバス温度215℃、系内を0.1Torr以下に保ちながら、所定時間固相重縮合しIV0.74のポリエチレンテレフタレートを得た。
低次縮合物およびポリエチレンテレフタレートの特性を表1に示す。
Figure 2005112876
(比較例2)
実施例2の低次縮合物に添加する重縮合触媒溶液として三酸化アンチモンのエチレングリコール溶液をポリエステル中の酸成分に対してアンチモン原子として0.04モル%となるように加えるように変更する以外は、実施例2と同様にしてIV0.74のポリエチレンテレフタレートを得た。低次縮合物およびポリエチレンテレフタレートの特性を表1に示す。
(実施例3および比較例3、4)
重合度は実施例1の、比較例3は比較例1の、比較例4は比較例2の重縮合触媒溶液を添加した低次縮合物生成物を3基の反応器よりなる連続重縮合装置に連続し移送し、初期重合反応器が、265℃、9kPa、中期重合反応器が、265〜275℃、0・7kPa、最終重合反応器が、270〜280℃、13.3Paで実施した。275℃、13.3Pa(0.1Torr)で重縮合しIV0.55のポリエチレンテレフタレートを得た。得られたポリエチレンテレフタレートを連続的にストランド状に押出し20℃の冷却水で冷却しながらカティングして長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られたペレットをを振動式篩分工程および気流分級工程に輸送し、ファインおよびフイルム状物を除去することにより、ファイン含有量を約30ppm以下とした。引き続き連続固相重縮合装置へ投入した。窒素雰囲気下、約155℃で結晶化し、さらに窒素雰囲気下で約200℃に予熱後、連続固相重合反応器に送り窒素雰囲気下で約205℃で固相重縮合しIV0.74のポリエチレンテレフタレートを得た。固相重縮合後篩分工程およびファイン除去工程で連続的に処理し、ファインを除去し、保管用の容器に充填した。なお、製造工程における溶融重縮合ポリエチレンテレフタレートペレットの輸送は全てプラグ式輸送方式を用いた。
低次縮合物およびポリエチレンテレフタレートの特性を表2に示す。
Figure 2005112876
(実施例4、5および比較例5)
(1)重縮合触媒溶液の調製
実施例1〜3および比較例1、2において調製したリン化合物溶液とアルミニウム化合物溶液とをリン原子とアルミニウム原子がモル比で4:3になるように混合し、室温で1日間攪拌し重縮合触媒溶液を調製した。
(2)溶融重縮合
攪拌機付き2リッターステンレス製オートクレーブにPETボトルの化学回収で得られた高純度BHETと高純度テレフタル酸を仕込んでエステル化反応を実施した。エステル化反応は255℃で行った。高純度BHETと高純度テレフタル酸の仕込み比を調整し低次縮合物を得た。該低次縮合物に上記方法で調製した重縮合触媒溶液をポリエステル中の酸成分に対してリン原子として0.028モル%を、アルミニウム原子として0.021モル%となるように添加した後、表2に示した各種OHV%の低次縮合物を得た。次いで、280℃、13.3Pa(0.1Torr)で重縮合を実施しIV0.55のポリエチレンテレフタレートを得た。
(3)固相重縮合
上記方法で得たポリエチレンテレフタレートペレットを乾燥機内で減圧乾燥(0.1Torr以下、80℃、12時間)した後、引き続き結晶化処理(0.1Torr以下、130℃で3時間処理した後、さらに160℃で3時間処理)を行った。放冷後のペレットを固相重合反応器に入れ、オイルバス温度215℃、系内を0.1Torr以下に保ちながら、所定時間固相重縮合しIV0.74のポリエチレンテレフタレートを得た。
低次縮合物およびポリエチレンテレフタレートの特性を表3に示す。
Figure 2005112876
(比較例6)
実施例5の低次縮合物に添加する重縮合触媒溶液として三酸化アンチモンのエチレングリコール溶液をポリエステル中の酸成分に対してアンチモン原子として0.04モル%となるように加えるように変更する以外は、実施例5と同様にしてIV0.74のポリエチレンテレフタレートを得た。低次縮合物およびポリエチレンテレフタレートの特性を表3に示す。
実施例1〜5で得られたポリエチレンテレフタレートは、色調が良好であり、重縮合触媒起因の異物の生成が少なく、かつ環状三量体が少なかった。また、カルボキシル末端基が少なく、耐加水分解安定性に優れていた。一方、比較例1、3および5で得られたポリエチレンテレフタレートはカルボキシル末端基が多く、耐加水分解安定性が劣っていた。また、環状三量体も実施例で得られたポリエチレンテレフタレートに比べ劣っていた。また、アンチモン触媒を用いた比較例2、4および6で得られたポリエチレンテレフタレートは実施例に比べ色調が劣っていた。加えて重縮合触媒起因の異物生成が多いため、エステル化工程から重縮合工程への移送ラインおよび最終重縮合反応器出口に設置した濾過装置のフイルターの目詰まりが多く重縮合生産性に劣っていた。また、カルボキシル末端基が多く、耐加水分解安定性が劣っていた。さらに、環状三量体やや高かった。
本発明によるポリエステルの製造方法は、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とした重縮合触媒で色調、透明性および熱安定性等が良好であり、かつ重縮合触媒起因の異物生成が少ないので、例えば衣料用や産業資材用の繊維、包装用、磁気テープ用および光学用などのフィルムやシート、中空成形品であるボトル、電気・電子部品のケーシング、その他エンジニアリングプラスチック成形品等の広範な分野において好適に使用することができる。さらに、本発明により得られたポリエステルは、環状三量体含有量の少ないポリエステルが得られる。従って、本発明の製造方法で得られたポリエステルは、環状三量体等の副生成物の含有量に対して厳しい要求のある、例えばミネラルウオーター、ジュース、ワインやウイスキー等の飲料容器、金属製の飲料缶の内張り用のフイルム、電気絶縁用フイルム等の原料用ポリエステルとして特に有用に使用することができる。また、本発明方法で製造されたポリエステルはカルボキシル末端基が著しく低く、耐加水分解安定性等の耐久性に優れた製品が得られるので、産業資材等の耐久性が高度に要求される繊維、フイルムおよび成形品分野において特に好適に用いることができ、産業界に寄与することが大である。

Claims (8)

  1. アルミニウムおよびその化合物からなる群より選ばれる少なくとも1種と、リン化合物から選ばれる少なくとも1種からなるポリエステル重縮合触媒の存在下に溶融重縮合し、引き続いて固相重縮合させてポリエステルを製造する方法において、ジカルボン酸および/またはそのエステル形成性誘導体と、ジオールおよび/またはそのエステル形成性誘導体とを反応させ、全末端基に対するヒドロキシル末端基の割合が76モル%以上である生成物を得、当該生成物を溶融重縮合させることを特徴とするポリエステルの製造方法。
  2. リン化合物が、予め水およびアルキレングリコールからなる群から選ばれた少なくとも1種の溶媒中で加熱処理されたものを用いることを特徴とする請求項1に記載のポリエステルの製造方法。
  3. 請求項1または2に記載の製造方法にて製造されたポリエステル。
  4. ポリエステルがエチレンテレフタレート構造を50モル%以上含んでなることを特徴とする請求項3に記載のポリエステル。
  5. 固相重縮合ポリエステル中の環状三量体含有量が2500ppm以下であることを特徴とする請求項4に記載のポリエステル。
  6. 請求項3〜5のいずれかに記載のポリエステルからなる中空成型体。
  7. 請求項3〜5のいずれかに記載のポリエステルからなる繊維。
  8. 請求項3〜5のいずれかに記載のポリエステルからなるフイルム。
JP2003344699A 2003-10-02 2003-10-02 ポリエステルならびにポリエステルの製造方法 Withdrawn JP2005112876A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344699A JP2005112876A (ja) 2003-10-02 2003-10-02 ポリエステルならびにポリエステルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344699A JP2005112876A (ja) 2003-10-02 2003-10-02 ポリエステルならびにポリエステルの製造方法

Publications (1)

Publication Number Publication Date
JP2005112876A true JP2005112876A (ja) 2005-04-28

Family

ID=34538247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344699A Withdrawn JP2005112876A (ja) 2003-10-02 2003-10-02 ポリエステルならびにポリエステルの製造方法

Country Status (1)

Country Link
JP (1) JP2005112876A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260903A (ja) * 2009-04-30 2010-11-18 Toyobo Co Ltd ポリエステルフィルム
CN108587057A (zh) * 2018-04-10 2018-09-28 安徽宏志建材科技有限公司 一种采光用耐候性复合材料、采光板及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260903A (ja) * 2009-04-30 2010-11-18 Toyobo Co Ltd ポリエステルフィルム
CN108587057A (zh) * 2018-04-10 2018-09-28 安徽宏志建材科技有限公司 一种采光用耐候性复合材料、采光板及其制备方法

Similar Documents

Publication Publication Date Title
JPWO2005075539A1 (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
US20090082529A1 (en) Polyester, Process for Producing Polyester, and Polyester Molded Article
JP4243961B2 (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008266359A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP2005187558A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187556A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187557A (ja) ポリエステルならびにポリエステルの製造方法
JP4552107B2 (ja) ポリエステルならびにポリエステルの製造方法
JP2008266360A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP4670338B2 (ja) ポリエステルならびにポリエステルの製造方法
JP5181409B2 (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2003268095A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP4524572B2 (ja) ポリエステルならびにポリエステルの製造方法
JP4670337B2 (ja) ポリエステルならびにポリエステルの製造方法
JP2007023271A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2005112874A (ja) ポリエステルならびにポリエステルの製造方法
JP2003261666A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP5082350B2 (ja) ポリエステルの製造方法及びそれから得られるポリエステル
JP2005112876A (ja) ポリエステルならびにポリエステルの製造方法
JP2005112875A (ja) ポリエステルならびにポリエステルの製造方法
JP2005325163A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP4617802B2 (ja) ポリエステル重縮合触媒およびこれを用いて製造されたポリエステル並びにそれらの製造方法
JP2006176572A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2006096789A (ja) ポリエステルの製造方法
JP2006052266A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080624