JP2005111300A - Aquatic ecosystem regeneration method, river aquatic ecosystem regeneration method, and apparatus used therefor - Google Patents

Aquatic ecosystem regeneration method, river aquatic ecosystem regeneration method, and apparatus used therefor Download PDF

Info

Publication number
JP2005111300A
JP2005111300A JP2003344853A JP2003344853A JP2005111300A JP 2005111300 A JP2005111300 A JP 2005111300A JP 2003344853 A JP2003344853 A JP 2003344853A JP 2003344853 A JP2003344853 A JP 2003344853A JP 2005111300 A JP2005111300 A JP 2005111300A
Authority
JP
Japan
Prior art keywords
river
water
tank
aquatic ecosystem
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003344853A
Other languages
Japanese (ja)
Other versions
JP4430914B2 (en
Inventor
昭彦 ▲吉▼田
Akihiko Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANO CHIKAYOSHI
Original Assignee
SANO CHIKAYOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANO CHIKAYOSHI filed Critical SANO CHIKAYOSHI
Priority to JP2003344853A priority Critical patent/JP4430914B2/en
Publication of JP2005111300A publication Critical patent/JP2005111300A/en
Application granted granted Critical
Publication of JP4430914B2 publication Critical patent/JP4430914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Cultivation Of Seaweed (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aquatic ecosystem regeneration method and a river aquatic ecosystem regeneration method for realizing a stable flowing environment, which efficiently propagates autotrophism living things of attached algae, or the like, such as Melosira varians under the flowing environment, supplies the same to rivers, thereby, creates the environment of rivers, and the like, having the rich diversity in which the heterotrophism living things easily live, eliminates organic nutrient salts, or the like, of phosphorus and nitrogen, or the like, and cleans the water quality of rivers, or the like, and to provide an apparatus used for the methods. <P>SOLUTION: The river aquatic ecosystem regeneration apparatus is provided with a prefilter tank 2 which enhances light transmittancy or the like of the river water 5, a culture tank 3 which cultures autotrophism living things of attached algae (A), or the like, and a flow rate adjustment tank 4 which is communicated with the culture tank 3. Therein, river water 5 treated by the prefilter tank 2 is supplied into the culture tank 3, the water level of the flow rate adjustment tank 4 is adjusted and the stable flowing environment in the vertical direction is formed in the culture tank 3. Further, in the river aquatic ecosystem regeneration apparatus, the autotrophism living things of the attached algae (A) efficiently propagated under the flowing environment are supplied into a river 10, the organic nutrient salts, or the like, are eliminated and the cleaning of the water quality of the river 10 is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、付着藻類等の独立栄養生物を効率的に増殖させ、河川等の水生生態系の基盤となる付着藻類等の独立栄養生物を河川等に供給し、従属栄養生物が住みやすい多様性に富む河川等の環境を作り出すと共に、河川水等に含まれるリン、窒素等の有機栄養塩等を除去して河川等の水質浄化を行うようにした水生生態系再生工法と河川水生生態系再生工法並びにその装置に関する。   The present invention efficiently propagates autotrophic organisms such as attached algae, supplies autotrophic organisms such as attached algae that form the basis of aquatic ecosystems such as rivers to rivers, etc. Aquatic ecosystem regeneration method and river aquatic ecosystem regeneration that create rich river environments, remove organic nutrients such as phosphorus and nitrogen contained in river water, etc., and purify the water quality of rivers, etc. The present invention relates to a construction method and its apparatus.

従来より、治山治水に対する基本的な考え方は「山に降った雨をいかに速やかに海へと流すか」であった。そのため、曲がった河川の直線化、遊水地の田畑への転用、及び高堤防の建設により、洪水時には流速をさらに速める工法を一貫して採用してきた。また、三面張り工法の積極的な採用により、河川流速をさらに速めた。一方、流速と河川水生生態系の基盤をなす藻類等の独立栄養生物の生息環境との関係に対する詳しい研究は、安定した流速環境の設定が難しく、最近まで皆無の状態であった。
ところが、緩速ろ過処理の研究から、最近になってようやくその実態が明らかにされるようになり、時速20〜30cm程度の河川流に比べて大変遅い流れがメロシラ等の付着珪藻の生育には適していることが定量的に明らかにされつつある。長期にわたる政策により、伏流水が多く見られる蛇行する川原や遊水地のような遅い流速環境を大きく削減したため、河川水生生態系の基盤をなす珪藻等の独立栄養生物の生産が大きく減少し、結果として、動物プランクトンから始まる従属栄養生物の生存環境が著しく狭められたことが判明してきた。
Traditionally, the basic concept for flood control is “how quickly the rain that falls on the mountain can flow into the sea”. For this reason, we have consistently adopted a method that further increases the flow velocity during floods by straightening curved rivers, diverting reclaimed water to fields, and constructing high dikes. In addition, the river flow velocity was further increased by the active adoption of the three-sided construction method. On the other hand, detailed research on the relationship between the flow velocity and the habitat of autotrophic organisms such as algae that form the foundation of river aquatic ecosystems has been difficult until recently, and it was difficult to establish a stable flow velocity environment.
However, research on slow filtration treatment has finally revealed the actual situation, and a very slow flow compared to a river flow of about 20 to 30 cm per hour is important for the growth of attached diatoms such as merosilla. It is becoming clear that it is suitable. Long-term policies have greatly reduced the slow flow environment such as meandering rivers and recreation areas where a lot of underground water is seen, resulting in a significant decrease in the production of autotrophic organisms such as diatoms that form the foundation of river aquatic ecosystems. As a result, it has been found that the living environment of heterotrophic organisms starting from zooplankton has been significantly narrowed.

さらに、リン、窒素等の有機栄養塩を吸収分解する付着藻類等が減少したことで、河川水は、リン、窒素等の有機栄養塩により富栄養化し、この河川水が流れ込む海洋の沿岸や湖沼等の水域では、浮遊藻類等が異常繁殖して養殖や魚介類等に影響を与えていることも明らかとなっている。そこで、付着藻類等を増殖させる方法や、付着藻類等を用いて河川の水質浄化を行う装置等の各種提案がなされている。   Furthermore, river water is eutrophied with organic nutrients such as phosphorus and nitrogen due to a decrease in adhering algae that absorb and decompose organic nutrients such as phosphorus and nitrogen. It is also clear that floating algae etc. are abnormally breeding in the water areas, etc., and affect aquaculture and seafood. Accordingly, various proposals have been made on a method for growing attached algae and the like, and an apparatus for purifying water quality of rivers using attached algae and the like.

例えば、糸状珪藻類の生産方法として、面積に比較して充分に浅い槽を設け、河川・伏流水等の自然水を遅い速度で流すように設定し、設定された水流は概略水平面をなし、また、設定された水流は非直線を含む一方向(非循環)をなし、太陽またはその他の光エネルギーと自然水中の栄養素により糸状珪藻類を生産する方法が提案されている(例えば、特許文献1参照。)。   For example, as a method for producing filamentous diatoms, a tank that is sufficiently shallow compared to the area is set up so that natural water such as rivers and underground water flows at a slow speed, and the set water flow is roughly horizontal. Further, a method has been proposed in which the set water flow is in one direction (non-circulating) including a non-linear line, and filamentous diatoms are produced by the sun or other light energy and nutrients in natural water (for example, Patent Document 1). reference.).

また、糸状珪藻類を用いて河川の水質浄化を行う装置として、貯水域とこれに流入する河川との間に配設される流入水浄化設備であって、上部から日光が導入可能な箱体と、この箱体内の下部に設けられて糸状藻類が支持される粗砂層と、この粗砂層の上方に設けられて糸状藻類が生息できる水層とからなる浄化ユニットを、上流側の粗砂層を通過した水が下流側の水層に流入するように複数個設け、最上流側の前記浄化ユニットの水層に前記河川の水を取り込み、最下流側の前記浄化ユニットの粗砂層を通過した水を前記貯水域に流入させる流入水浄化設備が提案されている(例えば、特許文献2参照。)。   Further, as an apparatus for purifying river water using filamentous diatoms, an inflow water purification facility disposed between a water storage area and a river flowing into the reservoir, and a box body into which sunlight can be introduced from above And a purification unit comprising a coarse sand layer provided in the lower part of the box and supporting the filamentous algae, and a water layer provided above the coarse sand layer and capable of inhabiting the filamentous algae, and the upstream coarse sand layer. A plurality of water is provided so that the passed water flows into the downstream water layer, the water of the river is taken into the water layer of the purification unit on the most upstream side, and the water that has passed through the coarse sand layer of the purification unit on the most downstream side. Inflow water purification equipment has been proposed (see, for example, Patent Literature 2).

しかしながら、特開2001−321158号公報(特許文献1)のように、水平方向への流速では安定した流速環境を形成することは難しく、メロシラをはじめとする付着藻類等の独立栄養生物を増殖培養する条件として、この水平方向への流速環境は好適なものとはいえない。
また、特開平6−182384号公報(特許文献2)の流入水浄化設備では、藻類等の微生物環境の季節的変化により、流水に対する負荷抵抗(濾過機能)が大きく変化するため、浄化ユニット入り口での流量調節では、水層の流速を一定に維持するために煩雑な調整作業を必要とすると共に、糸状藻類の培養条件が著しく乱され、培養効率を大きく低下させる要因となり、安定した流速環境を形成し、その流速環境を維持することはできない。したがって、糸状藻類にとって好適な環境とはいえず、効率的にリン、窒素等の有機栄養塩を除去することもできない。
特開2001−321158号公報 特開平6−182384号公報
However, as disclosed in Japanese Patent Application Laid-Open No. 2001-321158 (Patent Document 1), it is difficult to form a stable flow velocity environment at a horizontal flow velocity, and autotrophic organisms such as merosilas and other attached algae are proliferated and cultured. As a condition for this, this horizontal flow velocity environment is not suitable.
Moreover, in the inflow water purification equipment of Unexamined-Japanese-Patent No. 6-182384 (patent document 2), since the load resistance (filtration function) with respect to flowing water changes a lot by seasonal change of microbial environments, such as algae, it is in the purification unit entrance. In this flow rate adjustment, complicated adjustment work is required to maintain a constant flow rate of the water layer, and the culture conditions of the filamentous algae are significantly disturbed, causing the culture efficiency to be greatly reduced, resulting in a stable flow rate environment. It cannot form and maintain its flow velocity environment. Therefore, it cannot be said that the environment is suitable for filamentous algae, and organic nutrients such as phosphorus and nitrogen cannot be efficiently removed.
JP 2001-321158 A JP-A-6-182384

本発明は、上記問題点を解決するため、鋭意研究の結果開発されたものであり、その目的とするところは、安定した流速環境を実現し、この流速環境のもとで、メロシラをはじめとする付着藻類等の独立栄養生物を効率的に増殖させ、河川等に供給することにより、従属栄養生物が住みやすい多様性に富む河川等の環境をつくり出すと共に、河川水等に含まれるリン、窒素等の有機栄養塩等を除去して、河川等の水質浄化を行うことが可能な水生生態系再生工法と河川水生生態系再生工法並びにその装置を提供することを目的としている。   The present invention has been developed as a result of earnest research in order to solve the above-mentioned problems, and the object of the present invention is to realize a stable flow velocity environment. By efficiently growing autotrophic organisms such as attached algae and supplying them to rivers, etc., it creates a diverse river environment where heterotrophic organisms are liable to live, as well as phosphorus and nitrogen contained in river water, etc. It aims at providing the aquatic ecosystem regeneration construction method and the river aquatic ecosystem regeneration construction method and apparatus which can remove organic nutrient salts etc., etc., and can purify the water quality of a river etc.

上記目的を達成するため、請求項1に係る発明は、少なくとも、付着藻類等の独立栄養生物の培養を行う培養域と、この培養域と連通した流速調整域を設け、この流速調整域内の水位を調整して、前記培養域内に垂直方向への流速環境を形成し、この流速環境のもとで、水生生態系を再生するようにした水生生態系再生工法である。   In order to achieve the above object, the invention according to claim 1 is provided with at least a culture area for culturing autotrophic organisms such as adherent algae and a flow rate adjustment area communicating with the culture area, and a water level in the flow rate adjustment area. Is an aquatic ecosystem regeneration method in which a vertical flow velocity environment is formed in the culture zone and the aquatic ecosystem is regenerated under this flow velocity environment.

請求項2に係る発明は、前記培養域の上流側に前濾過域を設け、この前濾過域で処理した処理水を培養域に供給するようにした水生生態系再生工法である。   The invention according to claim 2 is an aquatic ecosystem regeneration method in which a prefiltration zone is provided upstream of the culture zone, and treated water treated in the prefiltration zone is supplied to the culture zone.

請求項3に係る発明は、河川水の光透過性等を高める前濾過槽と、付着藻類等の独立栄養生物の培養を行う培養槽と、この培養槽と連通した流速調整槽を設け、前記培養槽には、前濾過槽で処理された河川水が供給され、流速調整槽の水位を調整して、培養槽内に安定した垂直方向への流速環境を形成し、この流速環境のもとで、効率的に増殖させた付着藻類等の独立栄養生物を河川に供給すると共に、有機栄養塩等を除去して河川の水質浄化を行うようにした河川水生生態系再生工法である。   The invention according to claim 3 is provided with a pre-filtration tank for enhancing light permeability and the like of river water, a culture tank for culturing autotrophic organisms such as attached algae, and a flow rate adjusting tank communicating with the culture tank, The culture tank is supplied with river water that has been treated in the pre-filtration tank, and the water level in the flow rate adjustment tank is adjusted to form a stable vertical flow velocity environment in the culture tank. In this river aquatic ecosystem regeneration method, autotrophic organisms such as attached algae that are efficiently propagated are supplied to the river, and organic nutrient salts are removed to purify the water quality of the river.

請求項4に係る発明は、前記培養槽は、付着藻類等の独立栄養生物を繁殖させる上層域と、流速負荷抵抗を高める中層域と、流速負荷抵抗の少ない下層域からなり、前記上層域と中層域では垂直方向への流速環境を形成し、下層域では水平方向への流速環境を形成した河川水生生態系再生工法である。   The invention according to claim 4 is characterized in that the culture tank comprises an upper layer region for breeding autotrophic organisms such as attached algae, a middle layer region for increasing flow velocity load resistance, and a lower layer region having a low flow velocity load resistance. This is a river aquatic ecosystem regeneration method that creates a vertical flow velocity environment in the middle zone and a horizontal flow velocity environment in the lower zone.

請求項5に係る発明は、前記下層域の水平方向への流速環境は、前記上層域と中層域の垂直方向への流速環境より速い流れとした河川水生生態系再生工法である。   The invention according to claim 5 is the river aquatic ecosystem regeneration method in which the flow velocity environment in the horizontal direction of the lower layer region is faster than the flow velocity environment in the vertical direction of the upper layer region and the middle layer region.

請求項6に係る発明は、前記上層域の深さを30cm以内とした河川水生生態系再生工法である。   The invention which concerns on Claim 6 is the river aquatic ecosystem reproduction construction method which made the depth of the said upper layer area 30 cm or less.

請求項7に係る発明は、前記中層域は、間伐材等のチップ素材を用いて形成した河川水生生態系再生工法である。   The invention according to claim 7 is the river aquatic ecosystem regeneration method in which the middle layer region is formed using a chip material such as thinned wood.

請求項8に係る発明は、河川水の光透過性等を高める前濾過槽と、付着藻類等の独立栄養生物の培養を行う培養槽と、この培養槽と連通した流速調整槽を設け、前記培養槽には、前濾過槽で処理された河川水が供給され、流速調整槽の水位を調整して、培養槽内に安定した垂直方向への流速環境を形成し、この流速環境のもとで、効率的に増殖させた付着藻類等の独立栄養生物を河川に供給すると共に、有機栄養塩等を除去して河川の水質浄化を行うようにした河川水生生態系再生装置である。   The invention according to claim 8 is provided with a pre-filtration tank for enhancing light permeability and the like of river water, a culture tank for culturing autotrophic organisms such as attached algae, and a flow rate adjusting tank communicating with the culture tank, The culture tank is supplied with river water that has been treated in the pre-filtration tank, and the water level in the flow rate adjustment tank is adjusted to form a stable vertical flow velocity environment in the culture tank. Thus, the river aquatic ecosystem regeneration device is configured to supply autotrophic organisms such as attached algae that have been efficiently propagated to the river and remove organic nutrients to purify the water quality of the river.

請求項9に係る発明は、開閉板、バルブ等の流量調整手段を介して、流速調整槽の水位を調整するようにした河川水生生態系再生装置である。   The invention according to claim 9 is a river aquatic ecosystem regenerating apparatus in which the water level of the flow rate adjusting tank is adjusted via flow rate adjusting means such as an opening / closing plate and a valve.

請求項10に係る発明は、前記流速調整槽の水位調整は、単位時間当たりの排水量により水位調整を行い、培養槽内の水位との高低差により、培養槽の上層域と中層域における垂直方向への流速を毎時2cmから2mの範囲で調整するようにした河川水生生態系再生装置である。   In the invention according to claim 10, the water level adjustment of the flow rate adjustment tank is carried out by adjusting the water level according to the amount of drainage per unit time, and the vertical direction in the upper layer region and middle layer region of the culture tank due to the height difference from the water level in the culture tank It is a river aquatic ecosystem regeneration device that adjusts the flow velocity to the water in the range of 2 cm to 2 m per hour.

請求項11に係る発明は、前記培養槽内の剥離浮上した付着藻類等の独立栄養生物を藻類排出口から河川に供給するようにした河川水生生態系再生装置である。   The invention according to claim 11 is a river aquatic ecosystem regeneration apparatus configured to supply autotrophic organisms such as attached algae separated and floated in the culture tank to the river from the algal outlet.

請求項1に係る発明によると、培養域と連通した流速調整域内の水位を調整することで、培養域内に極めて安定した垂直方向への流速環境を形成することができ、この流速環境のもとで、河川等の水生生態系の基盤となる付着藻類等の独立栄養生物を効率的に培養させることが可能となり、これにより、付着藻類等の独立栄養生物を河川等に供給して、従属栄養生物が住みやすい多様性に富む環境を形成することが可能となる。
さらに、河川等からの水に含まれるリン、窒素等の有機栄養塩等は、付着藻類等の独立栄養生物により吸収分解されるので、河川等の水質浄化を同時に行うことが可能となる。
According to the first aspect of the invention, by adjusting the water level in the flow rate adjustment zone communicating with the culture zone, a very stable vertical flow velocity environment can be formed in the culture zone. Therefore, it is possible to efficiently culture autotrophic organisms such as attached algae that form the basis of aquatic ecosystems such as rivers, thereby supplying autotrophic organisms such as attached algae to rivers, etc. It is possible to create an environment rich in diversity in which organisms can live.
Furthermore, since organic nutrient salts such as phosphorus and nitrogen contained in water from rivers and the like are absorbed and decomposed by autotrophic organisms such as attached algae, water quality purification of rivers and the like can be performed simultaneously.

請求項2に係る発明によると、前濾過域で沈殿・濾過処理等することにより、水の光透過性等が高くなり、この前濾過域を経た処理水を培養域へ供給することで、太陽光等の光量を底層まで十分に供給することが可能となり、付着藻類等の独立栄養生物の光合成を盛んに行わせることが可能となる。   According to the invention according to claim 2, by performing precipitation / filtration treatment in the pre-filtration zone, the light transmittance of the water is increased, and by supplying the treated water that has passed through this pre-filtration zone to the culture zone, A sufficient amount of light such as light can be supplied to the bottom layer, and photosynthesis of autotrophic organisms such as attached algae can be actively performed.

請求項3に係る発明によると、培養槽と連通した流速調整槽内の水位を調整することで、培養槽内に極めて安定した垂直方向への流速環境を形成することができ、この流速環境のもとで、河川の水生生態系の基盤となる付着藻類等の独立栄養生物を効率的に培養させることが可能となり、これにより、付着藻類等の独立栄養生物を河川に供給して、従属栄養生物が住みやすい多様性に富む環境を形成することが可能となる。
さらに、河川水に含まれるリン、窒素等の有機栄養塩等は、付着藻類等の独立栄養生物により吸収分解されるので、河川の水質浄化を同時に行うことが可能となる。
さらに、河川の場合、水量が大きく減少した時に汚染が悪化する事例が多く、そのような場合でも河川浄化に向けて効率良く培養環境を維持することが可能となる。
According to the invention according to claim 3, by adjusting the water level in the flow rate adjusting tank communicating with the culture tank, a very stable vertical flow rate environment can be formed in the culture tank. Originally, it becomes possible to efficiently culture autotrophic organisms such as attached algae, which are the foundation of the aquatic ecosystem of rivers. It is possible to create an environment rich in diversity in which organisms can live.
Furthermore, since organic nutrient salts such as phosphorus and nitrogen contained in river water are absorbed and decomposed by autotrophic organisms such as attached algae, the water quality of the river can be simultaneously purified.
Furthermore, in the case of rivers, there are many cases where pollution deteriorates when the amount of water is greatly reduced, and even in such a case, it is possible to maintain a culture environment efficiently for river purification.

請求項4に係る発明によると、前記培養槽は、付着藻類等の独立栄養生物を増殖させる上層域と、流速負荷抵抗を高める中層域と、流速負荷抵抗の少ない下層域とから構成することで、極めて安定した垂直方向への流速環境を形成することができ、しかも、太陽光等の光量を効率的に確保することが可能となる。   According to the invention which concerns on Claim 4, the said culture tank is comprised from the upper layer area which propagates autotrophic organisms, such as adhesion algae, the middle layer area which raises flow velocity load resistance, and the lower layer area with little flow velocity load resistance. In addition, it is possible to form a very stable vertical flow velocity environment, and to efficiently secure the amount of light such as sunlight.

請求項5に係る発明によると、前記下層域の水平方向への流速環境は、前記上層域と中層域の垂直方向への流速環境より速い流れとすることで、上層域及び中層域を通過した水を速やかに流速調整槽へ流すことが可能となる。   According to the invention according to claim 5, the flow velocity environment in the horizontal direction of the lower layer region passes through the upper layer region and the middle layer region by making the flow faster than the flow velocity environment in the vertical direction of the upper layer region and the middle layer region. It becomes possible to quickly flow water into the flow rate adjustment tank.

請求項6に係る発明によると、上層域の深さを30cm以内とすることで、底層まで太陽光等の光量を十分に供給することが可能となり、付着藻類等の独立栄養生物の光合成を盛んにさせることができ、さらに、増殖した付着藻類等の独立栄養生物を効率的に収集することが可能となる。   According to the invention which concerns on Claim 6, it becomes possible to supply light quantity, such as sunlight enough, to a bottom layer by making the depth of an upper layer area into less than 30 cm, and photosynthesis of autotrophic organisms, such as an attached algae, is thriving In addition, it is possible to efficiently collect autotrophic organisms such as grown attached algae.

請求項7に係る発明によると、中層域を間伐材等のチップ素材を用いて形成することで、水中の微生物との接触機会を多くつくり出すことができるという微生物にとって格好の生活環境を提供することができ、これにより、このチップ層では、多様な微生物生態系を形成させることが可能となり、この微生物によって、水中に残存するリン、窒素等の有機栄養塩等をさらに除去し、河川の水質浄化を行うことが可能となる。
さらに、間伐材等のチップ素材を利用することで、間伐材等の利用促進を図ることが可能となる。
According to the invention which concerns on Claim 7, providing a comfortable living environment for the microorganisms which can create many contact opportunities with microorganisms in water by forming the middle layer area using chip materials such as thinned wood As a result, it is possible to form various microbial ecosystems in this chip layer, and this microorganism further removes organic nutrients such as phosphorus and nitrogen remaining in the water, thereby purifying the water quality of the river. Can be performed.
Furthermore, by using chip materials such as thinned wood, it becomes possible to promote the use of thinned wood and the like.

請求項8に係る発明によると、培養槽と連通した流速調整槽内の水位を調整することで、培養槽内に極めて安定した垂直方向への流速環境を形成することができ、この流速環境のもとで、河川の水生生態系の基盤となる付着藻類等の独立栄養生物を効率的に培養させることが可能となり、これにより、付着藻類等の独立栄養生物を河川に供給して、従属栄養生物が住みやすい多様性に富む環境を形成する装置を提供することが可能となる。
さらに、河川水に含まれるリン、窒素等の有機栄養塩等は、付着藻類等の独立栄養生物により吸収分解されるので、河川の水質浄化を同時に行うことが可能となる。
さらに、安価に製造することができるため、経済性にも優れた装置を提供することが可能となる。
According to the invention according to claim 8, by adjusting the water level in the flow rate adjusting tank communicating with the culture tank, a very stable vertical flow rate environment can be formed in the culture tank. Originally, it becomes possible to efficiently culture autotrophic organisms such as attached algae, which are the foundation of the aquatic ecosystem of rivers. It is possible to provide a device that forms a diverse environment in which organisms can live.
Furthermore, since organic nutrient salts such as phosphorus and nitrogen contained in river water are absorbed and decomposed by autotrophic organisms such as attached algae, the water quality of the river can be simultaneously purified.
Furthermore, since it can be manufactured at a low cost, it is possible to provide an apparatus that is excellent in economic efficiency.

請求項9に係る発明によると、開閉板、バルブ等の流量調整手段を用いることで、流速調整槽の水位調整を容易に行うことが可能となる。   According to the ninth aspect of the present invention, it is possible to easily adjust the water level of the flow rate adjusting tank by using flow rate adjusting means such as an opening / closing plate and a valve.

請求項10に係る発明によると、毎時2cmから2mという極めてゆっくりとした流速環境を容易につくり出すことが可能となり、季節により水温・太陽光量等の違いによって、培養条件が大きく異なることに対しても、確実に対応することが可能となる。   According to the invention of claim 10, it is possible to easily create a very slow flow velocity environment of 2 cm to 2 m per hour, and the culture conditions vary greatly depending on the season due to differences in water temperature, sunlight amount, etc. It becomes possible to respond reliably.

請求項11に係る発明によると、剥離浮上した付着藻類等の独立栄養生物を自動的に河川に供給することが可能となる。   According to the invention which concerns on Claim 11, it becomes possible to supply the autotrophic organisms, such as the attached algae which peeled and floated, to a river automatically.

本発明における水生生態系再生工法の一実施形態を図面に基づいて説明する。
図1は、本発明の水生生態系再生工法1の概略説明図であり、同図に示すように、付着藻類等の独立栄養生物(以下、付着藻類Aという)の培養を行う培養域3と、この培養域3と連通した流速調整域4とを設け、この流速調整域4内の水位を調整して、河川水5等が供給された培養域3内に、安定した垂直方向への流速環境を形成し、この流速環境のもとで、効率的に確保された太陽光等の光量と、河川水5等に含まれるリンや窒素等の有機栄養塩等により、培養域3内に生息する付着藻類Aを効率的に培養すると共に、群体A(付着藻類等)から剥離浮上した付着藻類等(以下、付着藻類Bという)を河川等に供給し、従属栄養生物が住みやすい多様性に富む環境を形成すると共に、河川水5等からリンや窒素等の有機栄養塩等を除去して水質浄化を行う工法となっている。
An embodiment of the aquatic ecosystem regeneration method in the present invention will be described with reference to the drawings.
FIG. 1 is a schematic explanatory diagram of the aquatic ecosystem regeneration method 1 of the present invention, and as shown in FIG. 1, a culture zone 3 for culturing autotrophic organisms such as attached algae (hereinafter referred to as attached algae A) and A flow rate adjustment region 4 communicated with the culture region 3 is provided, and the water level in the flow rate adjustment region 4 is adjusted so that the flow rate in the vertical direction is stable in the culture region 3 supplied with the river water 5 and the like. The environment is formed and inhabited in the culture area 3 by the light quantity such as sunlight efficiently secured under this flow velocity environment and organic nutrient salts such as phosphorus and nitrogen contained in the river water 5 etc. The attached algae A is cultivated efficiently, and the attached algae (hereinafter referred to as the attached algae B) exfoliated and floated from the colony A (attached algae, etc.) are supplied to rivers, etc. A rich environment is formed and organic nutrients such as phosphorus and nitrogen are removed from river water 5 etc. It has become a method to perform a water purification.

図1に示すように、本実施形態において、前記培養槽3は、付着藻類Aを繁殖させる上層域3aと、流水の流速負荷抵抗を高める中層域3b、及び流水に対する流速負荷抵抗の少ない下層域3cから構成されており、上層域3aと中層域3bでは垂直方向への流速環境が形成され、下層域3cでは水平方向への流速環境が形成されている。
また、同図に示すように、前記培養域3内に生息する付着藻類Aの光合成を盛んにさせるため、培養域3の上流側に前濾過域2を設け、河川等から流入した泥、浮遊物等を除去し、培養域3へ供給される処理水5(河川水等)の光透過性等を高めるようにするとよい。
As shown in FIG. 1, in this embodiment, the culture tank 3 includes an upper layer region 3a for breeding the attached algae A, a middle layer region 3b for increasing the flow rate load resistance of running water, and a lower layer region having a low flow rate load resistance against running water. The upper layer region 3a and the middle layer region 3b form a flow velocity environment in the vertical direction, and the lower layer region 3c forms a flow velocity environment in the horizontal direction.
Moreover, as shown in the figure, in order to increase the photosynthesis of the attached algae A that inhabit the culture area 3, a pre-filtration area 2 is provided upstream of the culture area 3, and mud flowing from a river, etc. It is preferable to remove substances and the like so as to improve the light transmittance and the like of the treated water 5 (river water etc.) supplied to the culture area 3.

次に、上記した本発明の水生生態系再生工法を河川に適用した河川水生生態系再生工法並びにその装置の好ましい一実施形態を図面に基づいて説明する。なお、図1と同一部分は同一符号を付して説明する。
図2は、本発明の河川水生生態系再生工法を適用した装置1(以下、本装置1という)の斜視図であり、図3は、その断面図である。図2及び図3に示すように、本装置1は、主として河川水5の光透過性を高める等の処理を行う前濾過槽2と、付着藻類A(本例では、主としてメロシラ)の培養を行う培養槽3と、この培養槽3と連通した流速調整槽4等から構成されている。
前記した前濾過槽2は、培養槽3の上流側に位置し、河川水5とともに流入した泥や浮遊物等を除去し、河川水5の光透過性を高める等の処理機能を有している。この前濾過槽2で処理された河川水(処理水)5を下流側に位置する培養槽3へ供給することで、太陽光等の光量を底層まで十分に供給することが可能となり、培養槽3内に生息する付着藻類Aの光合成を盛んに行わせることが可能となる。なお、図3に示すように、本例では底部との間に所定の隙間2a(以下、流路口2aという)を設けて仕切板2bを設置し、この仕切板2bと壁部2cとの間には、フィルター等の浄化手段6を設けている。この浄化手段6は、あらゆる構造のものを採用することが可能であり、実施に応じて任意である。
Next, a preferred embodiment of a river aquatic ecosystem regeneration method and its apparatus in which the aquatic ecosystem regeneration method of the present invention described above is applied to a river will be described with reference to the drawings. In addition, the same part as FIG. 1 attaches | subjects and demonstrates the same code | symbol.
FIG. 2 is a perspective view of a device 1 (hereinafter referred to as the present device 1) to which the river aquatic ecosystem regeneration method of the present invention is applied, and FIG. 3 is a cross-sectional view thereof. As shown in FIG. 2 and FIG. 3, the present apparatus 1 mainly cultivates the pre-filtration tank 2 that performs treatment such as increasing the light permeability of the river water 5 and the attached algae A (mainly merosilla in this example). It comprises a culture tank 3 to be performed, a flow rate adjustment tank 4 communicated with the culture tank 3, and the like.
The pre-filtration tank 2 described above is located upstream of the culture tank 3 and has a processing function such as removing mud and suspended matter flowing in along with the river water 5 and increasing the light permeability of the river water 5. Yes. By supplying the river water (treated water) 5 treated in the prefiltration tank 2 to the culture tank 3 located on the downstream side, it becomes possible to sufficiently supply the amount of light such as sunlight to the bottom layer. It is possible to vigorously carry out photosynthesis of the attached algae A that inhabit 3. In addition, as shown in FIG. 3, in this example, a predetermined gap 2a (hereinafter referred to as a flow path port 2a) is provided between the bottom and a partition plate 2b is installed, and between this partition plate 2b and the wall 2c. Is provided with purification means 6 such as a filter. This purification means 6 can employ any structure and is optional depending on the implementation.

前濾過槽2内に流入した河川水5は、先ず、この浄化手段6を通過することで、泥や浮遊物等が除去され、光透過性等が高められた後、流路口2aを通って上昇し、前記仕切板2bの高さより低く設定された仕切壁2dを越えて培養槽3へと供給される。図中7は、前濾過槽2内に過剰に流入した河川水5を流出させるオーバーフローである。なお、本例に示す前濾過槽2の構造は一例であって、これに限定されるものではなく、例えば、後述するように、主として自然沈殿を行う簡易な構造からなるものでもよく、その構造は実施に応じて任意である。   The river water 5 that has flowed into the pre-filtration tank 2 first passes through the purification means 6 to remove mud, suspended matters, etc., and the light permeability and the like are improved. It rises and passes through the partition wall 2d set lower than the height of the partition plate 2b and is supplied to the culture tank 3. In the figure, 7 is an overflow that causes the river water 5 that has flowed excessively into the prefiltration tank 2 to flow out. In addition, the structure of the prefiltration tank 2 shown in this example is an example, and is not limited to this. For example, as will be described later, the structure may mainly be a simple structure that spontaneously precipitates, and the structure Is optional depending on implementation.

図3に示すように、前記培養槽3は、付着藻類A(本例では、主としてメロシラ)を繁殖させる上層域3aと、流水の流速負荷抵抗を高める中層域3b、及び流水に対する流速負荷抵抗の少ない下層域3cから構成されており、上層域3aと中層域3bでは垂直方向への流速環境が形成され、下層域3cでは水平方向への流速環境が形成されている。また、この下層域3cの水平方向への流速環境は、前記上層域3aと中層域3bの垂直方向への流速環境より速い流れとなるよう設定されており、上層域3a及び中層域3bを通過した河川水5を速やかに流速調整槽4へと流す構造となっている。   As shown in FIG. 3, the culture tank 3 has an upper layer region 3a for breeding attached algae A (mainly merosilla in this example), a middle layer region 3b for increasing the flow velocity load resistance of running water, and a flow velocity load resistance against flowing water. The lower layer region 3c is composed of a small number of lower layer regions 3c. The upper layer region 3a and the middle layer region 3b form a flow velocity environment in the vertical direction, and the lower layer region 3c forms a flow velocity environment in the horizontal direction. Further, the flow velocity environment in the horizontal direction of the lower layer region 3c is set to be faster than the flow velocity environment in the vertical direction of the upper layer region 3a and the middle layer region 3b, and passes through the upper layer region 3a and the middle layer region 3b. In this structure, the river water 5 is quickly supplied to the flow rate adjusting tank 4.

また、本例では、水域である上層域3aの深さは30cm以内としており、これにより、太陽光等の光量を底層まで十分に供給することができ、付着藻類Aの光合成を盛んにさせることができると共に、繁殖した付着藻類等の効率的な収集が可能となる。すなわち、底層では強い光のもとで付着藻類Aが盛んに繁殖して酸素を生産するが、その酸素は気泡となり、気泡の成長とともに気泡の持つ浮力が増大することで、群体A(付着藻類等)の一部分が剥離浮上する。このように、上層域3aの深さを浅く設定することで、底層の水圧を小さくし、気泡の成長を促進させて生ずる浮力の増大により、付着藻類Aの剥離浮上を促進させる一方で、底層の付着藻類Aの生息環境が改善されて繁殖効果を高める。なお、図2に示すように、剥離浮上した付着藻類Bは、培養槽3に形成された浮遊藻類収拾口8を介して、藻類排出口9から直接或いは間接的に河川10へ供給される構造となっており、付着藻類Aの生息環境は常に良好な状態に維持されている。   Moreover, in this example, the depth of the upper layer region 3a which is a water region is set to be within 30 cm, whereby a sufficient amount of light such as sunlight can be supplied to the bottom layer, and photosynthesis of the attached algae A is actively promoted. In addition, it is possible to efficiently collect propagated attached algae and the like. That is, in the bottom layer, the attached algae A proliferates under strong light to produce oxygen, but the oxygen becomes bubbles, and the buoyancy of the bubbles increases with the growth of the bubbles, so that the group A (attached algae) Etc.) part of the surface is peeled and floated. In this way, by setting the depth of the upper layer region 3a to be shallow, the water pressure in the bottom layer is reduced, and the buoyancy generated by promoting the growth of bubbles is promoted to promote the separation and floating of the attached algae A. The habitat of the attached algae A is improved and the reproduction effect is enhanced. In addition, as shown in FIG. 2, the attached algae B, which has been separated and floated, is supplied directly or indirectly from the algae discharge port 9 to the river 10 via the floating algae collection port 8 formed in the culture tank 3. Thus, the habitat of the attached algae A is always maintained in a good state.

各種藻類やプランクトンには、それぞれのボディーサイズに関係した独自の繁殖しやすい固有の最適流速環境が存在するが、その最適流速環境を作り出すための流速負荷抵抗を高めるために、本例においては、間伐材等のチップ素材を用いて、流速負荷抵抗を高める中層域3bを形成している。なお、本例では、前記チップ素材を目の細かな袋体に詰めた状態で用いている。このチップ素材のように、木材を細かく粉砕した素材は、形や大きさが不定形であるとともに繊維質に富むため表面積が大きく、水中の微生物との接触機会が多く作り出されて、微生物にとって格好の生活環境を提供することになり、これにより、このチップ層では多様な微生物の生態系が形成される。さらに、上層域3aからの酸素を豊富に含んだ水の安定供給により、光を嫌う微生物の生息を可能にしており、この微生物によって、水中に残存する有機物が摂取され、微生物の体内にて嫌気性分解が行われる。
すなわち、上層域3aに酸素の豊富な状況を形成させることにより、付着藻類Aによる有機物の吸収分解を促進させる一方で、中層域3bでは、微生物の体内における嫌気性分解を促進する環境をつくり出す。このように、好気性と嫌気性の両方の環境を上層域3aと中層域3bでつくり出し、有機物を効率よく吸収分解することで、河川水5を効果的に浄化させている。
Various algae and plankton have unique optimum flow velocity environments that are easy to breed and relate to their body sizes.To increase the flow velocity load resistance for creating the optimum flow velocity environment, in this example, The middle layer region 3b that increases the flow velocity load resistance is formed using a chip material such as thinned wood. In this example, the chip material is used in a state of being packed in a fine bag. Like this chip material, a material obtained by finely pulverizing wood is irregular in shape and size and has a large surface area because it is rich in fibers, creating many opportunities for contact with microorganisms in the water, making it cool for microorganisms. As a result, a variety of microbial ecosystems are formed in the chip layer. Furthermore, the stable supply of oxygen-rich water from the upper layer 3a enables the inhabiting of microorganisms that dislike light, and organic substances remaining in the water are ingested by these microorganisms and anaerobic in the body of the microorganisms. Sexual degradation takes place.
That is, by forming an oxygen-rich situation in the upper layer region 3a, the organic layer is absorbed and decomposed by the attached algae A, while the middle layer region 3b creates an environment that promotes anaerobic decomposition of microorganisms in the body. Thus, the river water 5 is effectively purified by creating both aerobic and anaerobic environments in the upper layer region 3a and the middle layer region 3b and efficiently absorbing and decomposing organic matter.

本例では、中層域3bをチップ素材を用いて形成しているが、これに限定するものではなく、原理的には流水に対する負荷抵抗を高める素材であればよい。また、図3に示すように、本例では、チップ素材からなる中層域3bの上部に砂等からなる砂層3dを設け、この砂層3dの上部に付着藻類Aが生息する上層域3aを設けている。これにより、付着藻類Aは砂層3dに支持され、膜状に群体を形成しながら、安定した状態で繁殖させることが可能であり、その繁殖状態は実施に応じて任意である。また、中層域3bの厚さを概略50cm以内とし、砂層3dの厚さを概略20cm以内に設定するのが好ましいが、これに限定されるものではなく、実施に応じて任意である。   In this example, the middle layer region 3b is formed using a chip material, but the present invention is not limited to this, and any material that increases the load resistance against running water may be used in principle. Further, as shown in FIG. 3, in this example, a sand layer 3d made of sand or the like is provided on the upper part of the middle layer region 3b made of chip material, and an upper layer region 3a in which the attached algae A inhabit is provided on the upper part of the sand layer 3d. Yes. As a result, the attached algae A are supported by the sand layer 3d and can be propagated in a stable state while forming a colony in a film shape, and the propagation state is arbitrary depending on the implementation. Moreover, although it is preferable to set the thickness of the middle layer area 3b to approximately 50 cm or less and the thickness of the sand layer 3d to approximately 20 cm or less, the present invention is not limited to this, and is optional depending on the implementation.

上述したように、前濾過槽2を経て供給された河川水5は、有機栄養塩等の吸収能力に優れた付着藻類Aが生息する上層域3aにおいて、リンや窒素等の有機栄養塩等が効果的に除去され、この上層域3aを通過した河川水5は、中層域3bにおいて、物理的及び生物的な浄化処理が行われた後、流水に対する負荷抵抗の少ない下層域3cへと流れ、この下層域3cに形成された水平方向への流速により、連通口4aを通って流速調整槽4へと流出する。本例において下層域3cは、サイズの大きな砂利(例えば、10〜20cm)を敷設して形成され、その敷設した状態を確実に維持できるよう設けている。なお、下層域3cの構造は、本例に限定されるものではなく、流水に対する負荷抵抗の少ない下層域3cを形成可能な構造であればよい。   As described above, the river water 5 supplied through the prefiltration tank 2 has organic nutrients such as phosphorus and nitrogen in the upper layer 3a where the attached algae A having excellent absorption ability of organic nutrients and the like live. The river water 5 that has been effectively removed and passed through the upper layer region 3a flows into the lower layer region 3c having a low load resistance against running water after being subjected to physical and biological purification treatment in the middle layer region 3b. Due to the flow velocity in the horizontal direction formed in this lower layer region 3 c, it flows out to the flow velocity adjustment tank 4 through the communication port 4 a. In this example, the lower layer area 3c is formed by laying large gravel (for example, 10 to 20 cm), and is provided so that the laid state can be reliably maintained. In addition, the structure of the lower layer area 3c is not limited to this example, What is necessary is just a structure which can form the lower layer area 3c with little load resistance with respect to flowing water.

前記培養槽3と連通した流速調整槽4において、この流速調整槽4に設けた開閉板11を開閉操作して、流速調整槽4内の河川水5を直接或いは間接的に河川10へ流出している。すなわち、流速調整槽4内の水位を調整することで、培養槽3内に極めて安定した垂直方向への流速環境が形成され、これにより、この流速環境のもとで、メロシラ等の付着藻類Aが効率的に繁殖することが可能となり、本装置1内に流入した河川水5は極めて効果的に浄化され、河川10に戻される。本例では、開閉板11を用いているが、これに限定するものではなく、後述する他例に示すように、流量測定器を備えたバルブ等の流量調整手段を用いてもよい。   In the flow rate adjusting tank 4 communicated with the culture tank 3, the opening / closing plate 11 provided in the flow rate adjusting tank 4 is opened and closed, and the river water 5 in the flow rate adjusting tank 4 flows out directly or indirectly to the river 10. ing. That is, by adjusting the water level in the flow rate adjusting tank 4, a very stable vertical flow rate environment is formed in the culture tank 3, and under this flow rate environment, the attached algae A such as melosila Can be efficiently propagated, and the river water 5 flowing into the apparatus 1 is purified very effectively and returned to the river 10. In this example, the opening / closing plate 11 is used, but the present invention is not limited to this. As shown in other examples described later, a flow rate adjusting means such as a valve provided with a flow rate measuring device may be used.

前記流速調整槽4の水位調整は、単位時間当たりの排水量により水位調整を行い、培養槽3内の水位との高低差により、培養槽3の上層域3aと中層域3bにおける垂直方向への流速を、例えば、毎時20cmを中心として、毎時2cmから2mの範囲で調整するようにする。このように、毎時2cmから2mと言う非常にゆっくりとした幅を持たせた垂直方向への極めて安定した流速環境を、この流速調整槽4の水位を調整することで容易につくり出すことを可能にしており、このように、垂直方向への流速調整範囲に幅を持たせたことで、季節により水温・太陽光量等の違いによって、培養条件が大きく異なることに対しても、確実に対応できるようにしている。   The water level adjustment of the flow rate adjusting tank 4 is performed by adjusting the water level according to the amount of drainage per unit time, and the vertical flow rate in the upper layer region 3a and the middle layer region 3b of the culture tank 3 due to the height difference from the water level in the culture tank 3. Is adjusted within a range of 2 cm to 2 m per hour, for example, centering on 20 cm per hour. In this way, it is possible to easily create a very stable flow velocity environment in the vertical direction with a very slow width of 2 cm to 2 m per hour by adjusting the water level of the flow velocity adjusting tank 4. In this way, the range of flow rate adjustment in the vertical direction has been widened, so that it is possible to reliably cope with the fact that the culture conditions vary greatly depending on the season, such as the water temperature and the amount of sunlight. I have to.

次に、上記実施形態の他例を説明する。なお、上記実施形態と同一部分は同一符号を付し、その説明を省略する。
図4及び図5に示すように、河川10から流入した河川水5は、流路を通って、先ず、図5aに示す前濾過池2に供給され、この前濾過池2において、流入水中の泥等を自然沈殿させ、水の光透過性が高められる。この前濾過池2を経た河川水5は、図5bに示す付着藻類Aが生息する培養池3に供給される。この培養池3内には、安定した垂直方向への流速環境が形成されており、この流速環境のもとで、太陽光等の光量と、河川水5に含まれるリンや窒素等の有機栄養塩等により、効率的に付着藻類Aが培養される。また、培養池3内では、盛んに光合成が行われて酸素が生産され、その酸素は気泡となり、気泡の成長とともに気泡の持つ浮力が増大し、これにより、群体A(付着藻類等)の一部分は剥離浮上する。この剥離浮上した付着藻類Bは、藻類排出口9を介して河川10に供給され、これにより、河川10には、動物プランクトンから始まる従属栄養生物の生存に適した環境がつくり出される。
Next, another example of the above embodiment will be described. In addition, the same part as the said embodiment attaches | subjects the same code | symbol, and abbreviate | omits the description.
As shown in FIGS. 4 and 5, the river water 5 flowing in from the river 10 is first supplied to the prefiltration basin 2 shown in FIG. 5 a through the flow path, and in the prefiltration pond 2, Sedimentation of mud, etc. naturally improves the light transmission of water. The river water 5 that has passed through the previous filtration pond 2 is supplied to the culture pond 3 in which the attached algae A shown in FIG. In this culture pond 3, a stable vertical flow velocity environment is formed. Under this flow velocity environment, the amount of light such as sunlight and organic nutrients such as phosphorus and nitrogen contained in the river water 5 are formed. The attached algae A is efficiently cultured with salt or the like. Moreover, in the culture pond 3, active photosynthesis is performed and oxygen is produced, and the oxygen becomes bubbles, and the buoyancy of the bubbles increases with the growth of the bubbles, whereby a part of the colony A (attached algae, etc.). Exfoliates and rises. The peeled and floated attached algae B are supplied to the river 10 through the algal outlet 9, and thereby an environment suitable for the survival of heterotrophic organisms starting from zooplankton is created in the river 10.

また、河川水5は、培養池3を構成する上層域3a、中層域3b、下層域3cを通過することで、リンや窒素等の有機栄養塩等が除去され、物理的及び生物的に浄化された河川水5は、図5cに示す流速調整池4を経由して河川10へ流出する。本例では、流量測定器12を備えたバルブ11を用いて、流速調整池4内の水位を調整することで、培養池3内に形成された極めて安定した垂直方向への流速環境を管理するようにしている。また、図5cに示すように、本例では流速調整池4内に比較的大きな石等を配置しており、万が一、この流速調整池4内に人や動物が立ち入った場合でも、その安全を確保するようにしている。なお、池水面の上部を部分的或いは全体を覆うように、落下防止ネット等を設置してもよい。   Further, the river water 5 passes through the upper layer region 3a, the middle layer region 3b, and the lower layer region 3c constituting the culture pond 3, so that organic nutrient salts such as phosphorus and nitrogen are removed, and the water is purified physically and biologically. The river water 5 that has been discharged flows out to the river 10 via the flow rate adjustment pond 4 shown in FIG. 5c. In this example, the valve 11 equipped with the flow rate measuring device 12 is used to adjust the water level in the flow rate adjusting pond 4, thereby managing the extremely stable vertical flow rate environment formed in the culture pond 3. I am doing so. In addition, as shown in FIG. 5c, in this example, a relatively large stone or the like is arranged in the flow rate adjusting pond 4, and even if a person or an animal enters the flow rate adjusting pond 4, the safety is ensured. I try to secure it. In addition, you may install a fall prevention net etc. so that the upper part of a pond water surface may be covered partially or the whole.

また、流速調整池4の下流側には、図5dに示す広場13等を設け、この広場13に流速調整池4から浄化された河川水5を供給することが可能であり、多目的利用として、例えば、浅く流れの遅い安全な子供向けの遊び場として活用することができ、この広場13を経て浄化された河川水5を河川10へ流出するようにしてもよい。
上述のように、付着藻類等の独立栄養生物として、主としてメロシラを挙げて説明してきたが、例えば、フラジリアなど、その他多種類の付着藻類等の独立栄養生物に適用することができる。
Further, on the downstream side of the flow rate adjustment pond 4, a plaza 13 shown in FIG. 5 d can be provided, and the river water 5 purified from the flow rate adjustment pond 4 can be supplied to this square 13. For example, it can be used as a safe playground for children, which is shallow and slow in flow, and the river water 5 purified through the open space 13 may flow out to the river 10.
As described above, melosila has been mainly described as an autotrophic organism such as an attached algae. However, the present invention can be applied to other types of autotrophic organisms such as fragilia.

次に、本発明の水生生態系再生工法を適用し、内海・入江等の沿岸域や、池、ダム等の止水水域の水質浄化を主として行う浮上型装置について説明する。
図6において、図中20は、止水水域の水面に浮上させて利用する浮上型装置であり、その構造は、止水水域の水5を吸引して装置20内へ供給する給水ポンプ21と、主として水5の光透過性等を高める前濾過槽22と、付着藻類A(本例では、主としてメロシラ)の培養を行う培養槽23と、この培養槽23と連通した流速調整槽24と、給水ポンプ21等へ電力供給を行うソーラーパネル25等から構成されている。
Next, a floating type apparatus will be described which applies the aquatic ecosystem regeneration method of the present invention and mainly purifies water quality in coastal areas such as inland seas and bays, and in still water areas such as ponds and dams.
In FIG. 6, reference numeral 20 in the figure denotes a floating type device that floats on the water surface of the still water area, and the structure thereof includes a water supply pump 21 that sucks the water 5 in the still water area and supplies it into the apparatus 20. A pre-filtration tank 22 that mainly increases the light transmittance of the water 5, a culture tank 23 for culturing the attached algae A (mainly merosilla in this example), a flow rate adjusting tank 24 that communicates with the culture tank 23, The solar panel 25 is configured to supply power to the water supply pump 21 and the like.

前記給水ポンプ21により吸引された水5は、先ず、前濾過槽22に供給され、この前濾過槽22において、水5に含まれる泥等を自然沈殿させて光透過性等を高めている。なお、給水ポンプ21にフィルター等を設けて、止水水域の水5が前濾過槽22内に供給される前に、止水水域に浮遊しているゴミやプランクトン等を予め除去することが好ましい。この前濾過槽22で処理された水5を培養槽23へ供給することで、太陽光等の光量を底層まで十分に供給することが可能となり、培養槽23内に生息する付着藻類Aの光合成を盛んに行わせることが可能となる。図中26は、培養槽22内に過剰に流入した止水水域からの水5を流出させるオーバーフローである。   The water 5 sucked by the water supply pump 21 is first supplied to the prefiltration tank 22, and in this prefiltration tank 22, mud and the like contained in the water 5 are naturally precipitated to enhance the light transmittance. In addition, it is preferable that a filter or the like is provided in the water supply pump 21 so that dust, plankton, or the like floating in the water stop water area is removed in advance before the water 5 in the water stop water area is supplied into the prefiltration tank 22. . By supplying the water 5 treated in the pre-filtration tank 22 to the culture tank 23, it becomes possible to supply a sufficient amount of light such as sunlight to the bottom layer, and the photosynthesis of the attached algae A living in the culture tank 23 is achieved. Can be performed actively. In the figure, 26 is an overflow that causes the water 5 from the still water area that has flowed excessively into the culture tank 22 to flow out.

図6に示すように、前記培養槽23は、付着藻類Aを繁殖させる上層域23aと、流水の流速負荷抵抗を高める中層域23b、及び流水に対する流速負荷抵抗の少ない下層域23cから構成されており、上層域23aと中層域23bでは垂直方向への流速環境が形成され、下層域23cでは水平方向への流速環境が形成されている。また、この下層域23cの水平方向への流速環境は、前記上層域23aと中層域23bの垂直方向への流速環境より速い流れとなるよう設定されており、上層域23a及び中層域23bを通過した水5を速やかに流速調整槽24へと流すようにしている。なお、図中23dは砂層であり、上層域23a、中層域23b、下層域23c、及び砂層23dの構造及び機能は、上述した河川水生生態系再生装置1と同様であるので、その説明を省略する。   As shown in FIG. 6, the culture tank 23 is composed of an upper layer region 23a for breeding attached algae A, a middle layer region 23b for increasing the flow velocity load resistance of flowing water, and a lower layer region 23c having a low flow velocity load resistance against flowing water. In the upper layer region 23a and the middle layer region 23b, a flow velocity environment in the vertical direction is formed, and in the lower layer region 23c, a flow velocity environment in the horizontal direction is formed. Further, the flow velocity environment in the horizontal direction of the lower layer region 23c is set to flow faster than the flow velocity environment in the vertical direction of the upper layer region 23a and the middle layer region 23b, and passes through the upper layer region 23a and the middle layer region 23b. The water 5 thus made is allowed to flow quickly into the flow rate adjusting tank 24. In the figure, reference numeral 23d denotes a sand layer, and the structures and functions of the upper layer region 23a, the middle layer region 23b, the lower layer region 23c, and the sand layer 23d are the same as those of the river aquatic ecosystem regeneration apparatus 1 described above, and thus the description thereof is omitted. To do.

剥離浮上した付着藻類Bを、例えば、ネット等の藻類回収具を備えた藻類回収口やオーバーフロー等により連続的に回収すれば、藻類の培養条件を大きく乱すことなく増殖した藻類を効率良く回収することができる。回収された付着藻類等は、飼料・肥料等、多目的の利用が可能であり、用途に適合した形で利用できる。また、浮上型装置20を浮上させる池やダム等が下流域へと繋がっている場合には、増殖させた藻類をその河川へ供給すれば、上述した河川水生生態系再生装置と同様、水生生態系の再生に向けて大きな効力を発揮する。   For example, if the attached algae B that has been released and floated are continuously collected by an algae collection port or an overflow provided with an algae collection tool such as a net, the algae that have proliferated can be efficiently collected without greatly disturbing the culture conditions of the algae. be able to. The collected attached algae and the like can be used for various purposes such as feed and fertilizer, and can be used in a form suitable for the application. In addition, when a pond or dam or the like that floats the floating device 20 is connected to the downstream area, if the algae grown are supplied to the river, the aquatic ecology is similar to the above-described river aquatic ecosystem regeneration device. Great effect for system regeneration.

前記培養槽23と連通した流速調整槽24において、この流速調整槽24に設けた流量測定器27を備えたバルブ28を開閉操作して、流速調整槽24内の水5を止水水域へ流出させる構造となっている。すなわち、流速調整槽24内の水位を調整することで、培養槽23内に極めて安定した垂直方向への流速環境が形成され、この流速環境のもとで、メロシラ等の付着藻類Aが効率的に繁殖することが可能となる。これにより、水中に含まれるリンや窒素等の有機栄養塩等を除去し、装置20内に流入した止水水域の水5を効果的に浄化することができる。   In the flow rate adjusting tank 24 communicated with the culture tank 23, the valve 28 provided with the flow rate measuring device 27 provided in the flow rate adjusting tank 24 is opened and closed, so that the water 5 in the flow rate adjusting tank 24 flows out to the still water area. It has a structure to let you. That is, by adjusting the water level in the flow rate adjusting tank 24, a very stable vertical flow rate environment is formed in the culture tank 23. Under this flow rate environment, the attached algae A such as merosilla are efficient. It will be possible to breed. Thereby, organic nutrient salts such as phosphorus and nitrogen contained in the water can be removed, and the water 5 in the still water area flowing into the apparatus 20 can be effectively purified.

また、前記流速調整槽24の水位調整は、単位時間当たりの排水量により水位調整を行い、培養槽23内の水位との高低差により、培養槽23の上層域23aと中層域23bにおける垂直方向への流速を、例えば、毎時20cmを中心として、毎時2cmから2mの範囲で調整するようにする。このように、毎時2cmから2mと言う非常にゆっくりとした幅を持たせた垂直方向への極めて安定した流速環境を、この流速調整槽24の水位を調整することで容易につくり出すことを可能にすると共に、垂直方向への流速調整範囲に幅を持たせたことで、季節により水温・太陽光量等の違いによって、培養条件が大きく異なることに対しても、確実に対応できるようにしている。
さらに、この浮上型装置20は、容易に移動させることが可能であるので、設置場所の変更に対して迅速に対応することができる。さらに、装置20により浄化された水は、ポンプ等の供給手段を介して浄化水として供給することができる。また、図示しないが、適宜の温度調整器を設けて、培養槽23に生息する付着藻類等の独立栄養生物にとっての最適温度を設定し、増殖率を更に高めることもできる。
In addition, the water level of the flow rate adjusting tank 24 is adjusted according to the amount of drainage per unit time, and in the vertical direction in the upper layer area 23a and the middle layer area 23b of the culture tank 23 due to the difference in level from the water level in the culture tank 23. For example, the flow rate is adjusted in the range of 2 cm to 2 m per hour centering on 20 cm per hour. In this way, it is possible to easily create a very stable flow velocity environment in the vertical direction with a very slow width of 2 cm to 2 m per hour by adjusting the water level of the flow velocity adjusting tank 24. At the same time, the vertical flow rate adjustment range has been widened, so that it is possible to reliably cope with the fact that the culture conditions vary greatly depending on the season, such as the water temperature and the amount of sunlight.
Furthermore, since this floating type apparatus 20 can be easily moved, it can respond quickly to a change in the installation location. Furthermore, the water purified by the apparatus 20 can be supplied as purified water via a supply means such as a pump. Although not shown, an appropriate temperature controller can be provided to set an optimum temperature for autotrophic organisms such as attached algae that inhabit the culture tank 23 to further increase the growth rate.

上述した本装置1や浮上型装置20を内海や入江等の沿岸域に設ければ、海水域でも同様に大量の藻類やプランクトン等の培養が可能であると共に、富栄養化物質に富む海水域が浄化される。また、その場合には毎日発生する干満の差を利用して、安定した垂直方向の流速環境を作り出したものでは、流速の方向は干満の状態により異なるものの、藻類やプランクトン等の培養は可能であり、沿岸域の潮干帯域を利用して、大規模な施設を作れば、沿岸域における珪藻等の独立栄養生物のバイオマスを著しく増大させることになり、かつて、日本沿岸海域に多く見られた干潟等における多様性に富む生態系を再生させることが可能となる。また、こうした施設はあさり・ハマグリ・カキ・帆立貝等の養殖漁業に大きな効力を発揮する。   If the apparatus 1 and the floating apparatus 20 described above are provided in a coastal area such as an inland sea or an inlet, a large amount of algae and plankton can be cultured in the seawater area as well, and the seawater area rich in eutrophication substances. Is purified. Also, in this case, a stable vertical flow velocity environment is created by utilizing the difference in tidal volume that occurs every day, but the direction of the flow velocity varies depending on the tidal state, but it is possible to culture algae, plankton, etc. Yes, if a large-scale facility is created using the tidal zone in the coastal area, the biomass of diatoms and other autotrophic organisms in the coastal area will be significantly increased. It is possible to regenerate ecosystems rich in diversity. These facilities are also very effective for aquaculture such as clams, clams, oysters and scallops.

本発明の水生生態系再生工法は、海、貯水池、湖、沼等に流入する河川や海などに適用して、水生生態系の基盤となる付着藻類等の独立栄養生物を効率的に培養させることができ、これにより、メロシラをはじめとする付着藻類等を河川等に供給して、従属栄養生物が住みやすい多様性に富む環境を形成することが可能となり、さらに、河川水等に含まれるリンや窒素等の有機栄養塩等は、この付着藻類等の独立栄養生物により吸収分解されるので、河川等の水質浄化を同時に行うことが可能となる。   The aquatic ecosystem regeneration method of the present invention is applied to rivers and seas that flow into seas, reservoirs, lakes, swamps, etc., and efficiently cultures autotrophic organisms such as attached algae that form the basis of aquatic ecosystems. As a result, it is possible to supply adhering algae such as merosilla to rivers, etc., to form a diverse environment where heterotrophic organisms are liable to live, and to be included in river water etc. Since organic nutrient salts such as phosphorus and nitrogen are absorbed and decomposed by autotrophic organisms such as attached algae, it becomes possible to simultaneously purify water quality of rivers and the like.

本発明である水生生態系再生工法の概略説明図である。It is a schematic explanatory drawing of the aquatic ecosystem reproduction construction method which is the present invention. 本発明である河川水生生態系再生工法を適用した装置の斜視図である。It is a perspective view of the apparatus to which the river aquatic ecosystem regeneration construction method which is this invention is applied. 図2における装置の断面図である。FIG. 3 is a cross-sectional view of the device in FIG. 2. 河川に設ける本発明の他例を示した平面図である。It is the top view which showed the other example of this invention provided in a river. 前濾過池の断面図(a)、培養池の断面図(b)、流速調整池の断面図(c)、及び広場の断面図(d)である。It is sectional drawing (a) of a pre-filtration pond, sectional drawing (b) of a culture pond, sectional drawing (c) of a flow velocity adjustment pond, and sectional drawing (d) of an open space. 浮上型装置を示した断面斜視図である。It is the cross-sectional perspective view which showed the floating type | mold apparatus.

符号の説明Explanation of symbols

1 本装置(水生生態系再生工法、河川水生生態系再生工法)
2 前濾過域(前濾過槽、前濾過池)
3 培養域(培養槽、培養池)
3a 上層域
3b 中層域
3c 下層域
4 流速調整域(流速調整槽、流速調整池)
5 水(河川水)
6 浄化手段
9 藻類排出口
10 河川
11 開閉板、バルブ(流量調整手段)
A 付着藻類(メロシラ)
B 付着藻類(メロシラ)
1 Equipment (Aquatic Ecosystem Regeneration Method, River Aquatic Ecosystem Regeneration Method)
2 Pre-filtration area (Pre-filtration tank, Pre-filtration pond)
3 culture area (culture tank, culture pond)
3a Upper layer region 3b Middle layer region 3c Lower layer region 4 Flow rate adjustment region (flow rate adjustment tank, flow rate adjustment pond)
5 Water (river water)
6 Purification means 9 Algae discharge port 10 River 11 Opening and closing plate, valve (flow rate adjustment means)
A attached algae (Merosila)
B attached algae (Merosila)

Claims (11)

少なくとも、付着藻類等の独立栄養生物の培養を行う培養域と、この培養域と連通した流速調整域を設け、この流速調整域内の水位を調整して、前記培養域内に垂直方向への流速環境を形成し、この流速環境のもとで、水生生態系を再生するようにしたことを特徴とする水生生態系再生工法。   At least a culture area for culturing autotrophic organisms such as attached algae and a flow rate adjustment area communicating with this culture area, and adjusting the water level in the flow rate adjustment area, the flow velocity environment in the vertical direction in the culture area An aquatic ecosystem regeneration method characterized by regenerating the aquatic ecosystem under this flow velocity environment. 前記培養域の上流側に前濾過域を設け、この前濾過域で処理した処理水を培養域に供給するようにした請求項1に記載の水生生態系再生工法。   The aquatic ecosystem regeneration method according to claim 1, wherein a prefiltration zone is provided upstream of the culture zone, and treated water treated in the prefiltration zone is supplied to the culture zone. 河川水の光透過性等を高める前濾過槽と、付着藻類等の独立栄養生物の培養を行う培養槽と、この培養槽と連通した流速調整槽を設け、前記培養槽には、前濾過槽で処理された河川水が供給され、流速調整槽の水位を調整して、培養槽内に安定した垂直方向への流速環境を形成し、この流速環境のもとで、効率的に増殖させた付着藻類等の独立栄養生物を河川に供給すると共に、有機栄養塩等を除去して河川の水質浄化を行うようにしたことを特徴とする河川水生生態系再生工法。   A pre-filtration tank for enhancing light permeability of river water, a culture tank for culturing autotrophic organisms such as attached algae, and a flow rate adjusting tank communicating with the culture tank are provided. The river water treated with the above was supplied, the water level of the flow rate adjustment tank was adjusted, and a stable flow velocity environment in the vertical direction was formed in the culture tank, which was efficiently propagated under this flow velocity environment A river aquatic ecosystem regeneration method characterized by supplying autotrophic organisms such as attached algae to the river and removing organic nutrients to purify the water quality of the river. 前記培養槽は、付着藻類等の独立栄養生物を繁殖させる上層域と、流速負荷抵抗を高める中層域と、流速負荷抵抗の少ない下層域からなり、前記上層域と中層域では垂直方向への流速環境を形成し、下層域では水平方向への流速環境を形成した請求項3に記載の河川水生生態系再生工法。   The culture tank is composed of an upper layer region for propagating autotrophic organisms such as attached algae, a middle layer region for increasing flow velocity load resistance, and a lower layer region having a low flow velocity load resistance. The upper layer region and the middle layer region have a vertical flow velocity. The river aquatic ecosystem regeneration method according to claim 3, wherein an environment is formed and a flow velocity environment in a horizontal direction is formed in a lower area. 前記下層域の水平方向への流速環境は、前記上層域と中層域の垂直方向への流速環境より速い流れとした請求項3又は4に記載の河川水生生態系再生工法。   The river aquatic ecosystem regeneration method according to claim 3 or 4, wherein the flow velocity environment in the horizontal direction of the lower layer region is faster than the flow velocity environment in the vertical direction of the upper layer region and the middle layer region. 前記上層域の深さを30cm以内とした請求項3乃至5の何れか1項に記載の河川水生生態系再生工法。   The river aquatic ecosystem regeneration construction method according to any one of claims 3 to 5, wherein a depth of the upper layer region is within 30 cm. 前記中層域は、間伐材等のチップ素材を用いて形成した請求項3乃至6の何れか1項に記載の河川水生生態系再生工法。   The river aquatic ecosystem regeneration method according to any one of claims 3 to 6, wherein the middle layer region is formed using a chip material such as thinned wood. 河川水の光透過性等を高める前濾過槽と、付着藻類等の独立栄養生物の培養を行う培養槽と、この培養槽と連通した流速調整槽を設け、前記培養槽には、前濾過槽で処理された河川水が供給され、流速調整槽の水位を調整して、培養槽内に安定した垂直方向への流速環境を形成し、この流速環境のもとで、効率的に増殖させた付着藻類等の独立栄養生物を河川に供給すると共に、有機栄養塩等を除去して河川の水質浄化を行うようにしたことを特徴とする河川水生生態系再生装置。   A pre-filtration tank for enhancing light permeability of river water, a culture tank for culturing autotrophic organisms such as attached algae, and a flow rate adjusting tank communicating with the culture tank are provided. The river water treated with the above was supplied, the water level of the flow rate adjustment tank was adjusted, and a stable flow velocity environment in the vertical direction was formed in the culture tank, which was efficiently propagated under this flow velocity environment A river aquatic ecosystem regeneration apparatus characterized by supplying autotrophic organisms such as attached algae to a river and removing organic nutrients to purify the water quality of the river. 請求項8において、開閉板、バルブ等の流量調整手段を介して、流速調整槽の水位を調整するようにした河川水生生態系再生装置。   The river aquatic ecosystem regenerating apparatus according to claim 8, wherein the water level of the flow rate adjusting tank is adjusted through flow rate adjusting means such as an opening / closing plate and a valve. 前記流速調整槽の水位調整は、単位時間当たりの排水量により水位調整を行い、培養槽内の水位との高低差により、培養槽の上層域と中層域における垂直方向への流速を毎時2cmから2mの範囲で調整するようにした請求項8又は9に記載の河川水生生態系再生装置。   The water level of the flow rate adjustment tank is adjusted according to the amount of drainage per unit time, and the vertical flow rate in the upper and middle layers of the culture tank is changed from 2 cm to 2 m / h depending on the level difference from the water level in the culture tank. The river aquatic ecosystem regeneration apparatus according to claim 8 or 9, wherein adjustment is performed within the range described above. 前記培養槽内の剥離浮上した付着藻類等の独立栄養生物を藻類排出口から河川に供給するようにした請求項8乃至10の何れか1項に記載の河川水生生態系再生装置。
The river aquatic ecosystem regeneration apparatus according to any one of claims 8 to 10, wherein autotrophic organisms such as attached algae separated and floated in the culture tank are supplied to the river from an algae outlet.
JP2003344853A 2003-10-02 2003-10-02 Aquatic ecosystem regeneration method Expired - Fee Related JP4430914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344853A JP4430914B2 (en) 2003-10-02 2003-10-02 Aquatic ecosystem regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344853A JP4430914B2 (en) 2003-10-02 2003-10-02 Aquatic ecosystem regeneration method

Publications (2)

Publication Number Publication Date
JP2005111300A true JP2005111300A (en) 2005-04-28
JP4430914B2 JP4430914B2 (en) 2010-03-10

Family

ID=34538347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344853A Expired - Fee Related JP4430914B2 (en) 2003-10-02 2003-10-02 Aquatic ecosystem regeneration method

Country Status (1)

Country Link
JP (1) JP4430914B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144343A (en) * 2005-11-29 2007-06-14 Mitsuru Takasaki Water treatment method and apparatus for river
KR101284729B1 (en) 2011-06-30 2013-07-17 한국건설기술연구원 Water velocity and water temperature controled other organism monitoring device
CN103626354A (en) * 2012-08-24 2014-03-12 上海太和水环境科技发展有限公司 Submerged vegetation and leaf-floating vegetation mixed type subsurface wetland system
CN106120369A (en) * 2016-07-29 2016-11-16 嘉兴金州聚合材料有限公司 A kind of four-side elastic synthetic leather
CN107055817A (en) * 2017-06-01 2017-08-18 福建环卫士环保研究院有限公司 A kind of canal biology hatching bed system
CN112689669A (en) * 2018-09-14 2021-04-20 克亚诺斯生物技术公司 Method for cultivating a microorganism of interest and related apparatus
JP2022500576A (en) * 2018-09-04 2022-01-04 レイク レストレーション ソリューションズ インコーポレイテッドLake Restoration Solutions, Inc. Lake restoration system and process
US20220250640A1 (en) * 2019-07-01 2022-08-11 Sumitomo Electric Industries, Ltd. Vehicle-mounted device, control method therefor, and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834375B1 (en) * 2015-10-27 2018-04-13 김주헌 Stagnant water bodies and river restoration system
CN110589978A (en) * 2019-09-27 2019-12-20 山东欧卡环保工程有限公司 Freshwater algae domestication method and process beneficial to freshwater algae for treating sewage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144343A (en) * 2005-11-29 2007-06-14 Mitsuru Takasaki Water treatment method and apparatus for river
KR101284729B1 (en) 2011-06-30 2013-07-17 한국건설기술연구원 Water velocity and water temperature controled other organism monitoring device
CN103626354A (en) * 2012-08-24 2014-03-12 上海太和水环境科技发展有限公司 Submerged vegetation and leaf-floating vegetation mixed type subsurface wetland system
CN103626354B (en) * 2012-08-24 2015-10-21 上海太和水环境科技发展有限公司 Submerged vegetation and floatingleaved vegetation mixed type subsurface flow wetland system
CN106120369A (en) * 2016-07-29 2016-11-16 嘉兴金州聚合材料有限公司 A kind of four-side elastic synthetic leather
CN107055817A (en) * 2017-06-01 2017-08-18 福建环卫士环保研究院有限公司 A kind of canal biology hatching bed system
JP2022500576A (en) * 2018-09-04 2022-01-04 レイク レストレーション ソリューションズ インコーポレイテッドLake Restoration Solutions, Inc. Lake restoration system and process
CN112689669A (en) * 2018-09-14 2021-04-20 克亚诺斯生物技术公司 Method for cultivating a microorganism of interest and related apparatus
US20220250640A1 (en) * 2019-07-01 2022-08-11 Sumitomo Electric Industries, Ltd. Vehicle-mounted device, control method therefor, and vehicle

Also Published As

Publication number Publication date
JP4430914B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
CN105330107B (en) A kind of urban waterway water purification system and purification method
CN109095617B (en) Ecological system for purifying seawater culture water by using compound artificial wetland in subtropical regions and purification method
JP6100301B2 (en) Purification device and aquarium equipped with the same
CN103351086B (en) Ecological treatment circulatory system for discharge water of sea farming pond
CN110028203A (en) A kind of aquaculture water-break bypass is administered and restoration of the ecosystem circulation process method
CN113072188A (en) Pond tail water treatment system
CN108128967A (en) A kind of river water body dystopy comprehensive high-efficiency processing method and system
JP4430914B2 (en) Aquatic ecosystem regeneration method
CN104098181B (en) A kind of hybrid constructed wetland ecological treatment method of reuse water supply river course
CN107162199B (en) Energy-saving ecological resource recovery type ecological restoration integrated system and application thereof
CN117164167A (en) Fishery photovoltaic complementary ecological filtration dam system for aquaculture tail water
KR20140046578A (en) A floating type water purification facility
CN108423832A (en) A kind of multi-joint ecological purification pond of canine tooth split type
CN108658366B (en) Drinking water raw water regulation and storage warehouse based on enhanced ecological purification
US20080006567A1 (en) Advanced Purification System Utilizing Closed Water Area by Hollow Water Area (Utsuro)
CN109399799A (en) A kind of water process algae case, water treatment system and method for treating water
JP3644523B2 (en) Improvement method of bottom sediment and deep environment using Sunlight Hall by “Waterfall”
CN107129116A (en) The method for treating water of floatation type comprehensive water treatment device and the application equipment
CN103043797A (en) Novel bed sewage ecological restoration technology
CN108684598B (en) Intelligent seawater pond leisure landscape ecological breeding system
CN107235558B (en) Ecological construction method of FBR biological bed, low-algae and low-turbidity water body and water body restoration system
CN207435252U (en) The natural catalytic oxidation pool
CN111943434A (en) Micro-polluted drinking water source biological ecological restoration system and method
CN201160417Y (en) Fish pond with biological purification system
JP2006205000A (en) Advanced purification system using closed water area by &#34;sea hollow (utsuro)&#34;

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees