JP2005110127A - Wind noise detecting device and video camera with wind noise detecting device - Google Patents

Wind noise detecting device and video camera with wind noise detecting device Download PDF

Info

Publication number
JP2005110127A
JP2005110127A JP2003343573A JP2003343573A JP2005110127A JP 2005110127 A JP2005110127 A JP 2005110127A JP 2003343573 A JP2003343573 A JP 2003343573A JP 2003343573 A JP2003343573 A JP 2003343573A JP 2005110127 A JP2005110127 A JP 2005110127A
Authority
JP
Japan
Prior art keywords
signal
wind noise
absolute value
output
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003343573A
Other languages
Japanese (ja)
Inventor
Katsutoshi Takahashi
克寿 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003343573A priority Critical patent/JP2005110127A/en
Publication of JP2005110127A publication Critical patent/JP2005110127A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind noise detecting signal having high accuracy in detection by using not only a difference signal of two or more sound collecting means but a summation signal thereof as an information source for detecting the wind noise, and reducing incorrect determination even when the sound pressure level of the acoustic wave is high. <P>SOLUTION: A difference signal (L-R) is generated by a difference signal generator 8 from signals (L), (R) detected by two microphones, and a summation signal (L+R) is generated by a summation signal generator 9. Each signal is passed through low-pass filters 10, 12 and changed into each modulus by modulus detectors 11, 13. In a wind noise detecting signal generator 14, the modulus of the summation signal (L+R) is subtracted from the modulus of the difference signal (L-R) and the result is generated to a system control unit 7. In this case, 0 is generated if the resulted value is smaller than 0. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は風雑音を除去するための風雑音検出の技術に関するものである。   The present invention relates to a wind noise detection technique for removing wind noise.

ビデオカメラ装置において、マイクが有する振動膜(振動板)が風圧によって振動してしまい、風雑音信号として検出することが知られている。この課題に対し、風雑音を改善する技術が、いくつか既に提案されている(例えば特許文献1)。   In a video camera device, it is known that a diaphragm (diaphragm) of a microphone vibrates due to wind pressure and is detected as a wind noise signal. Several techniques for improving wind noise have already been proposed for this problem (for example, Patent Document 1).

以下、図1にしたがって、この風雑音低減技術を説明する。   Hereinafter, this wind noise reduction technique will be described with reference to FIG.

図1において、10はLch音声信号を集音するLchマイク、20はRch音声信号を集音するRchマイク、30はLchマイク出力信号を増幅するLch初段マイクアンプ、40はRchマイク出力信号を増幅するRch初段マイクアンプ、50はLch信号を遅延させるLchマトリックス遅延器、60はRch信号を遅延させるRchマトリックス遅延器、70はLch信号を減衰させるLchマトリックス減衰器、80はRch信号を減衰させるRchマトリックス減衰器である。   In FIG. 1, 10 is an Lch microphone that collects an Lch audio signal, 20 is an Rch microphone that collects an Rch audio signal, 30 is an Lch first stage microphone amplifier that amplifies the Lch microphone output signal, and 40 is an amplifier of the Rch microphone output signal. Rch first stage microphone amplifier 50, Lch matrix delay device 50 for delaying Lch signal, 60 Rch matrix delay device for delaying Rch signal, 70 Lch matrix attenuator for attenuating Lch signal, 80 Rch for attenuating Rch signal Matrix attenuator.

また、90はRchマトリックス遅延器60とRchマトリックス減衰器80を経由したRch信号を、Lch初段マイクアンプの出力信号から減算するLchマトリックス減算器、100はLch遅延器50とLch減衰器70を経由したLch信号を、Rch初段マイクアンプの出力信号から減算するRch減算器、110はLch減算器出力の周波数特性を補正するLch等化器、120はRch減算器出力の周波数特性を補正するRch等化器である。   Reference numeral 90 denotes an Lch matrix subtractor that subtracts the Rch signal that has passed through the Rch matrix delay unit 60 and the Rch matrix attenuator 80 from the output signal of the Lch first stage microphone amplifier. Reference numeral 100 denotes an Lch delay unit 50 that passes through the Lch attenuator 70. Rch subtractor that subtracts the Lch signal from the output signal of the Rch first stage microphone amplifier, 110 an Lch equalizer that corrects the frequency characteristic of the Lch subtractor output, 120 an Rch that corrects the frequency characteristic of the Rch subtractor output, etc. Is a generator.

130は信号処理後のLch信号を出力するLch出力部、140は信号処理後のRch信号を出力するRch出力部、150はLch等化器出力の高域信号を抜き出すLchHPF、160はRch等化器出力の高域信号を抜き出すRchHPF、170はLch等化器110の出力を減衰させるLch等化器出力減衰器、180はLchHPF出力を減衰させるLchHPF出力減衰器、190はRch等化器120の出力を減衰させるRch等化器出力減衰器、200はRchHPF出力を減衰させるRchHPF出力減衰器、210はLch等化器出力減衰器の出力とLchHPF出力減衰器の出力を加算するLch加算器、220はRch等化器出力減衰器の出力とRchHPF出力減衰器の出力を加算するRch加算器、230はLchマイク出力とRchマイク出力から差信号(L−R)を生成する差信号生成器、240は差信号生成器230の出力の低域信号を抜き出すLPF、250はLPF出力のピーク値を検出するところのピーク検出部である。   130 is an Lch output unit that outputs an Lch signal after signal processing, 140 is an Rch output unit that outputs an Rch signal after signal processing, 150 is an Lch HPF that extracts a high-frequency signal output from the Lch equalizer, and 160 is an Rch equalization RchHPF for extracting a high-frequency signal from the output of the generator, 170 is an Lch equalizer output attenuator for attenuating the output of the Lch equalizer 110, 180 is an LchHPF output attenuator for attenuating the LchHPF output, 190 is the Rch equalizer 120 Rch equalizer output attenuator for attenuating the output, 200 RchHPF output attenuator for attenuating the RchHPF output, 210 Lch adder for adding the output of the Lch equalizer output attenuator and the output of the LchHPF output attenuator, 220 Rch adder 230 adds the output of the Rch equalizer output attenuator and the output of the RchHPF output attenuator, 230 A difference signal generator that generates a difference signal (LR) from the Lch microphone output and the Rch microphone output, 240 is an LPF that extracts a low-frequency signal output from the difference signal generator 230, and 250 detects a peak value of the LPF output. However, this is a peak detection unit.

尚、これまで説明してきた各部の中で、便箋上風雑音低減に関係しない部分は割愛して以下動作説明する。   In addition, in each part demonstrated so far, the part which is not related to wind noise reduction on a stationery is omitted, and operation | movement description is given below.

近傍に配置される二つのマイク10及び20から出力される音声信号は、音波が空気中の波動であるため特に波長が長くなる低周波領域で相関性が強くなる。云い換えれば二つのマイクが出力する信号はほぼ相似なもの言える。   The sound signals output from the two microphones 10 and 20 arranged in the vicinity have a strong correlation particularly in a low frequency region where the wavelength becomes long because the sound wave is a wave in the air. In other words, the signals output by the two microphones are almost similar.

これに対し風雑音は、風がマイク振動膜にランダムに当たることにより発生するもので、2つのマイク出力の相関性が極めて薄く且つ低周波領域でレベルが高いという特性を持つ。   On the other hand, wind noise is generated when the wind randomly hits the microphone diaphragm, and has a characteristic that the correlation between the two microphone outputs is extremely thin and the level is high in the low frequency region.

この特性を利用し、2つのマイク出力を差信号生成器230に入力し差信号(L−R)を生成する。このレベルは同相信号が主成分である音波の場合差信号(L−R)は低く、相関性の薄い風雑音の場合は逆にレベルは高くなる。その後、風雑音の主帯域である低周波領域をLPF240で抜き出し、その値をピーク検出部250で検出することで、風雑音検出信号を作り出している。風雑音検出信号のレベルにより、Lch等化器出力減衰器170(Rch等化器出力減衰器190)とLchHPF出力減衰器180(RchHPF出力減衰器200)の減衰量を制御しそれぞれの出力信号をLch加算器210(Rch加算器220)で加算することで風雑音の主帯域である低周波領域のレベルを下げ、風雑音を低減している。
特開平5−7392号公報(第6頁、図1)
Utilizing this characteristic, two microphone outputs are input to the difference signal generator 230 to generate a difference signal (LR). The difference signal (LR) is low in the case of a sound wave whose in-phase signal is a main component, and the level is high in the case of wind noise with low correlation. Thereafter, a low-frequency region, which is a main band of wind noise, is extracted by the LPF 240, and the value is detected by the peak detection unit 250, thereby generating a wind noise detection signal. Depending on the level of the wind noise detection signal, the attenuation amounts of the Lch equalizer output attenuator 170 (Rch equalizer output attenuator 190) and LchHPF output attenuator 180 (RchHPF output attenuator 200) are controlled, and the respective output signals are controlled. Addition by the Lch adder 210 (Rch adder 220) lowers the level of the low frequency region, which is the main band of wind noise, and reduces wind noise.
JP-A-5-7392 (page 6, FIG. 1)

しかしながら、上記例には以下の不具合がある。   However, the above example has the following problems.

二つのマイクの出力信号は音波の場合、相関性が強く非常に近似したレベル及び位相関係を持つが、完全に同じではないため、差信号生成器からはあるレベルの差信号(L−R)が出力されてしまうことがある。特に音源がマイク正面ではなく横方向に大きくずれた場合で、尚且つ、マイクに印可される音波の音圧レベルが高くなってくると差信号(L−R)のレベルも高くなり、風雑音と誤検出することで音波を集音しているのにも関わらず、音声信号の低周波領域のレベルを減衰させてしまう場合があった。   In the case of sound waves, the output signals of the two microphones are highly correlated and have a very close level and phase relationship, but are not exactly the same, so the difference signal generator provides a certain level of difference signal (LR). May be output. In particular, when the sound source deviates greatly in the horizontal direction instead of in front of the microphone, and the sound pressure level of the sound wave applied to the microphone increases, the level of the difference signal (LR) also increases, and wind noise In some cases, the level of the low frequency region of the audio signal is attenuated even though sound waves are collected by erroneous detection.

そこで、本発明は、マイクに印可される音波の音圧レベルが非常に高い場合でも風雑音と誤検出するのを防ぎ、高精度な風雑音の検出信号を生成する技術を提供しようとするものである。   Accordingly, the present invention aims to provide a technique for preventing erroneous detection of wind noise even when the sound pressure level of sound waves applied to a microphone is very high, and generating a highly accurate wind noise detection signal. It is.

かかる課題を解決するため、例えば、本発明の風雑音検出装置は以下の構成を備える。すなわち、
複数の集音手段を備え、当該複数の集音手段による信号で風雑音を検出する風雑音検出装置であって、
前記複数の集音手段で得られた信号から差信号を生成する差信号生成手段と、
前記複数の集音手段で得られた信号から和信号を生成する和信号生成手段と、
前記差信号生成手段で生成された差信号を絶対値信号に変換する第1の絶対値変換手段と、
前記和信号生成手段で生成された和信号を絶対値信号に変換する第2の絶対値変換手段と、
前記第1、第2の絶対値変換手段で変換して得た差信号と和信号との差を求め、風雑音検出信号として出力する風雑音検出手段とを備える。
In order to solve this problem, for example, the wind noise detection apparatus of the present invention has the following configuration. That is,
A wind noise detecting device comprising a plurality of sound collecting means and detecting wind noise by signals from the plurality of sound collecting means,
Difference signal generating means for generating a difference signal from signals obtained by the plurality of sound collecting means;
Sum signal generating means for generating a sum signal from signals obtained by the plurality of sound collecting means;
First absolute value conversion means for converting the difference signal generated by the difference signal generation means into an absolute value signal;
Second absolute value conversion means for converting the sum signal generated by the sum signal generation means into an absolute value signal;
Wind noise detection means for obtaining a difference between the difference signal obtained by the conversion by the first and second absolute value conversion means and the sum signal and outputting it as a wind noise detection signal.

本発明によれば、風雑音を検出する情報源として、複数の集音手段の差信号だけではなく、それらの和信号も用いることにより、音波の音圧レベルが高い場合でも、誤判断を少なくし、検出精度の高い風雑音検出信号を得ることを可能にする。   According to the present invention, not only a difference signal of a plurality of sound collecting means but also a sum signal thereof is used as an information source for detecting wind noise, thereby reducing erroneous determination even when the sound pressure level of a sound wave is high. Thus, it is possible to obtain a wind noise detection signal with high detection accuracy.

以下、添付図面にしたがって本発明に係る実施形態を詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the accompanying drawings.

図2は実施形態におけるビデオカメラ全体のブロック構成図を示している。   FIG. 2 is a block diagram of the entire video camera in the embodiment.

同図において、101は光学画像を取り込むところのレンズ部、102はレンズ部1を介して入射した光を結像し画像の電気信号に変換するCCD部、103はCCD部2からの電気信号を処理するカメラ信号処理部、104は音を集音するマイク部、105は音声信号を処理するオーディオ信号処理部、106はビデオ信号を処理するビデオ信号処理部、107はビデオカメラ装置全体の制御を行うシステムコントロール部、108はビデオカメラ装置で信号の入出力を行う入出力部、109は記録媒体への記録及び再生処理を行う記録再生処理部、110は記録媒体にデータを記録或いは記録媒体からデータを再生するメカ部、111は表示データを処理する表示信号処理部、112は表示信号処理部からのデータを表示する表示部(例えば液晶表示部)である。   In the figure, 101 is a lens unit that captures an optical image, 102 is a CCD unit that forms an image of light incident through the lens unit 1 and converts it into an electrical signal of an image, and 103 is an electrical signal from the CCD unit 2. A camera signal processing unit for processing, 104 a microphone unit for collecting sounds, 105 an audio signal processing unit for processing audio signals, 106 a video signal processing unit for processing video signals, and 107 for controlling the entire video camera device. A system control unit 108, an input / output unit 108 for inputting / outputting signals with the video camera device, 109 a recording / reproduction processing unit for recording and reproducing data on a recording medium, and 110 for recording / reproducing data on / from the recording medium A mechanical unit for reproducing data, 111 a display signal processing unit for processing display data, and 112 a display unit for displaying data from the display signal processing unit (example) If a liquid crystal display unit).

図3は、図2におけるマイク部104、オーディオ信号処理部105及びシステムコントロール部107周辺の詳細ブロック図である。   FIG. 3 is a detailed block diagram of the periphery of the microphone unit 104, the audio signal processing unit 105, and the system control unit 107 in FIG.

同図において、1はLch音声信号を集音するLchマイク、2はLchマイク1からの出力信号を増幅するLch初段アンプ、3は風雑音検出結果からLch音声信号の低周波領域のレベルを制御するLchHPF、4はRch音声信号を集音するRchマイク、5はRchマイク4からの出力信号を増幅するRch初段アンプ、6は風雑音検出結果からRch音声信号の低周波領域のレベルを制御するRchHPF、7は風雑音検出信号生成器14の出力レベルから、LchHPF3とRchHPF6のカットオフ周波数を制御するシステムコントロール部、8はLch初段アンプ2とRch初段アンプ5の各出力から差信号(L-R)を生成する差信号生成器、9はLch初段アンプ2とRch初段アンプ5の各出力から和信号(L+R)を生成する和信号生成器、10は差信号中の風の主成分である低域を抜き出す差信号LPF、11は差信号LPF出力の絶対値をとる差信号絶対値検出器、12は和信号中の風の主成分である低域を抜き出すところの和信号LPF、13は和信号LPF出力の絶対値をとる和信号絶対値検出器、14は風雑音検出信号を生成する風雑音検出信号生成器である。   In the figure, 1 is an Lch microphone that collects an Lch audio signal, 2 is an Lch first-stage amplifier that amplifies the output signal from the Lch microphone 1, and 3 is a control of the low frequency region level of the Lch audio signal from the wind noise detection result. LchHPF, 4 is an Rch microphone that collects the Rch audio signal, 5 is an Rch first-stage amplifier that amplifies the output signal from the Rch microphone 4, and 6 is a control of the low frequency region level of the Rch audio signal from the wind noise detection result. RchHPF, 7 is a system control unit for controlling the cutoff frequency of LchHPF3 and RchHPF6 from the output level of the wind noise detection signal generator 14, and 8 is a difference signal (L--) from each output of the Lch first stage amplifier 2 and Rch first stage amplifier 5. R), a difference signal generator 9 generates a sum signal (L + R) from the outputs of the Lch first stage amplifier 2 and the Rch first stage amplifier 5 10 is a difference signal LPF that extracts a low frequency component that is the main component of the wind in the difference signal, 11 is a difference signal absolute value detector that takes the absolute value of the difference signal LPF output, and 12 is a sum signal. A sum signal LPF for extracting a low frequency component which is a main component of the wind in the inside, 13 is a sum signal absolute value detector for taking the absolute value of the sum signal LPF output, and 14 is a wind noise detection signal generator for generating a wind noise detection signal. It is a vessel.

以下図3について各ブロックの動作について説明する。   The operation of each block will be described below with reference to FIG.

Lchマイク1とRchマイク4は互いに近接して配置されている。音波の場合、特に低周波領域においてLchマイク1の出力とRchマイク4の出力は、ほぼ同相の相似な信号となる。これに対し、風の場合、マイク振動板への当たる風圧変化はランダムな特性を有するため、Lchマイク1の出力とRchマイク4の出力との間の相関性は小さい、すなわち、位相となって現れる。   The Lch microphone 1 and the Rch microphone 4 are arranged close to each other. In the case of sound waves, particularly in the low frequency region, the output of the Lch microphone 1 and the output of the Rch microphone 4 are similar signals having substantially the same phase. On the other hand, in the case of wind, since the change in wind pressure applied to the microphone diaphragm has random characteristics, the correlation between the output of the Lch microphone 1 and the output of the Rch microphone 4 is small, that is, a phase. appear.

Lch初段アンプ2とRch初段アンプ5の出力には前記Lchマイク1の出力とRchマイク4の出力が増幅されて出力される。   The output of the Lch microphone 1 and the output of the Rch microphone 4 are amplified and output as outputs of the Lch first stage amplifier 2 and the Rch first stage amplifier 5.

ここで、出力された信号をそれぞれ(L)と(R)と表現することとする。   Here, the output signals are expressed as (L) and (R), respectively.

信号(L)と(R)はそれぞれ次段のLchHPF3、RchHPF6に入力される。LchHPF3、RchHPF6はシステムコントロール部7からの制御信号により、連続的にカットオフ周波数を振れるような構成となっている。   Signals (L) and (R) are input to LchHPF3 and RchHPF6 in the next stage, respectively. LchHPF3 and RchHPF6 are configured such that the cut-off frequency can be continuously varied by a control signal from the system control unit 7.

信号(L)と(R)は、差信号生成器8と和信号生成器9に入力される。ここで、信号(L)と(R)は差信号生成器8で信号(L−R)に、和信号生成器9で信号(L+R)に変換される。   The signals (L) and (R) are input to the difference signal generator 8 and the sum signal generator 9. Here, the signals (L) and (R) are converted into the signal (LR) by the difference signal generator 8 and converted into the signal (L + R) by the sum signal generator 9.

生成された信号(L−R)は、差信号LPF10で風雑音の主帯域である低域側を抜き出し、その後差信号絶対遅検出器11で絶対値を算出する。同様に作られた信号(L+R)は和信号LPF12で風雑音の主帯域である低域側を抜き出し、その後、和信号絶対遅検出器13で絶対値を算出する。算出された検出値はそれぞれ風雑音検出信号生成器14に入力され、信号(L−R)の絶対値から、信号(L+R)の絶対値が減算された結果が出力される。この風雑音検出信号生成器14は、0でリミッタが掛かる減算器であり最低値は0となる。すなわち、『絶対値(L−R)−絶対値(L+R)<0』の場合には0を出力する。   From the generated signal (LR), the difference signal LPF 10 extracts the low frequency side, which is the main band of wind noise, and then the difference signal absolute delay detector 11 calculates the absolute value. The signal (L + R) produced in the same manner extracts the low frequency side, which is the main band of wind noise, from the sum signal LPF 12, and then calculates the absolute value by the sum signal absolute delay detector 13. The calculated detection values are respectively input to the wind noise detection signal generator 14, and a result obtained by subtracting the absolute value of the signal (L + R) from the absolute value of the signal (LR) is output. The wind noise detection signal generator 14 is a subtracter that is 0 and is limited, and has a minimum value of 0. That is, 0 is output when “absolute value (LR) −absolute value (L + R) <0”.

かかる構成にした理由を簡単に説明する。   The reason for this configuration will be briefly described.

今、マイクに印可されるのが音波の場合で、尚且つそれほど印可レベルも高くない場合を想定する。この場合の各マイクロホンでの検出信号(L)と(R)はほぼ相似の信号のため信号(L−R)のレベルはあまり大きな値とはならない。したがって、正の値を持つ絶対値(L+R)を、もともと小さな値の絶対値(L−R)から減じるわけであるから、風雑音検出信号生成器14の出力信号は、0もしくは小さな値を出力することが約束される。   Assume that a sound wave is applied to the microphone and the applied level is not so high. In this case, since the detection signals (L) and (R) at the respective microphones are substantially similar signals, the level of the signal (LR) does not become a very large value. Accordingly, since the absolute value (L + R) having a positive value is originally subtracted from the absolute value (LR) having a small value, the output signal of the wind noise detection signal generator 14 outputs 0 or a small value. Promised to do.

ところが音波であっても、例えば音圧レベルが比較的高い場合、より具体的には、音源がビデオカメラの近くに存在し、尚且つ、その音源がビデオカメラの撮影方向に対してずれた場所にあるとき(以下、状況Xという)、信号(L)と(R)はほぼ同位相であっても、それらの差分信号(L−R)(の絶対値)はある程度以上の差が生じ易くなる。したがって、絶対値信号(L−R)(の絶対値)のみで、「風雑音」か否かを判断してしまうと、上記のような状況Xであっても、「風雑音」と誤判定する、もしくは誤判定しやすくなる。   However, even if the sound pressure level is relatively high, for example, when the sound pressure level is relatively high, more specifically, a place where the sound source exists near the video camera and the sound source is shifted from the shooting direction of the video camera. (Hereinafter referred to as situation X), even if the signals (L) and (R) are substantially in phase, the difference signal (LR) (the absolute value thereof) is likely to have a difference of a certain degree or more. Become. Therefore, if it is determined whether or not “wind noise” is determined only by the absolute value signal (LR) (the absolute value thereof), it is erroneously determined as “wind noise” even in the situation X as described above. Or misjudgment.

しかし、本実施形態の場合、和信号(L+R)も、風雑音か否かの判断基準にしていることに注目されたい。上記状況Xの場合、信号(L)と(R)とは、ほぼ同位相であるため、和信号(L+R)は差信号(L−R)より大きな値となる。つまり、音声の場合、それが如何なる状況にあっても、(L−R)<(L+R)の関係が実施的に約束されることになり、結果的に、風雑音検出信号生成器14の出力信号は0、もしくは小さな値となる。   However, it should be noted that in the present embodiment, the sum signal (L + R) is also used as a criterion for determining whether there is wind noise. In the case of the situation X, since the signals (L) and (R) are substantially in phase, the sum signal (L + R) has a larger value than the difference signal (LR). That is, in the case of speech, the relationship of (LR) <(L + R) is practically promised regardless of the situation, and as a result, the output of the wind noise detection signal generator 14 is obtained. The signal is 0 or a small value.

一方、風雑音の場合であるが、先に説明したように、2つのマイクロホンから得られる信号(L)と(R)(の低周波成分)との間には、相関関係が小さい。したがって、ある任意の期間の平均レベルを比較した場合、信号(L−R)の絶対値が、信号(L+R)の絶対値よりもむしろ大きなものとなりやすい。すなわち、風雑音検出信号生成器14の出力信号は0よりも大きなものなり、問題のない範囲で、風雑音検出を行うことができるようになる。   On the other hand, in the case of wind noise, as described above, the correlation between the signals (L) and (R) (low frequency components) obtained from the two microphones is small. Therefore, when the average levels of a certain arbitrary period are compared, the absolute value of the signal (LR) tends to be larger than the absolute value of the signal (L + R). That is, the output signal of the wind noise detection signal generator 14 is larger than 0, and wind noise detection can be performed within a range where there is no problem.

なお、2つのマイクロホンが、たまたま同時に同位相の風圧変化を受け、尚且つ、その振幅のみが異なる信号を出力した場合、上記の処理によれば、風雑音ではないと判断される可能性がある。しかしながら、そのような状況は、ビデオカメラで撮影している場合における時間軸の局所的なものであり、全体として見た場合には、上記和信号(L+R)までをも参照する構成にする作用効果の方が顕著である。   If two microphones happen to receive wind pressure changes of the same phase at the same time and output only signals having different amplitudes, it may be determined that the noise is not wind noise according to the above processing. . However, such a situation is local on the time axis in the case of shooting with a video camera, and when viewed as a whole, the above-mentioned sum signal (L + R) is also referred to. The effect is more remarkable.

以上のように、差信号(L−R)だけではなく和信号(L+R)も検出部のパラメータとして使用することで、風雑音検出信号の精度を大きく向上させることが出来る。   As described above, the accuracy of the wind noise detection signal can be greatly improved by using not only the difference signal (LR) but also the sum signal (L + R) as a parameter of the detection unit.

このような過程で生成された風雑音検出信号は、システムコントロール部7でその値を読み込まれ、音声信号のメインルートに配置されたLchHPF3とRchHPF6のカットオフ周波数を連続的に制御することで、特に低域を主成分とする風雑音を、最適のフィルタ設定で低減することが可能となる。   The wind noise detection signal generated in such a process is read by the system control unit 7, and the cutoff frequency of the LchHPF3 and the RchHPF6 arranged in the main route of the audio signal is continuously controlled. In particular, wind noise whose main component is a low frequency can be reduced with an optimum filter setting.

なお、上記実施形態では、風雑音検出信号生成器14は、『絶対値(L−R)−絶対値(L+R)』を算出するものとして説明したが、絶対値(L−R)或いは絶対値(L+R)の一方に係数αを乗算してから減算し、この係数αを適宜不図示のスイッチで変更できるようにし、風雑音か否かの判定基準を調整できるようにしても良い。   In the above embodiment, the wind noise detection signal generator 14 is described as calculating “absolute value (LR) −absolute value (L + R)”, but the absolute value (LR) or the absolute value is calculated. One of (L + R) may be multiplied by a coefficient α and then subtracted, and this coefficient α may be appropriately changed by a switch (not shown) so that a determination criterion for whether or not wind noise is present may be adjusted.

また、実施形態では、集音手段としてビデオカメラが通常有するステレオマイクロホンを利用するものとして説明したが、これに限定されるものではない。例えば複数のマイクロホンを有する録音装置に適用しても良いからである。   In the embodiment, the stereo microphone normally used by the video camera is used as the sound collecting means. However, the present invention is not limited to this. For example, it may be applied to a recording apparatus having a plurality of microphones.

<第2の実施形態>
次に、図4を用いて第2の実施形態を説明する。図4は上記実施形態における図3に相当するものであるが、異なる点は、風雑音低域フィルタ切り換えスイッチSW18を設けた点と、システムコントロール部7が、表示信号処理部11を制御して表示部12の風雑音レベルの表示する点にある。
<Second Embodiment>
Next, a second embodiment will be described with reference to FIG. FIG. 4 corresponds to FIG. 3 in the above embodiment, except that the wind noise low-pass filter changeover switch SW18 is provided, and that the system control unit 7 controls the display signal processing unit 11. The point is that the wind noise level of the display unit 12 is displayed.

なお、本第2の実施形態では、LchHPF3とRchHPF6は連続的にカットオフ周波数は変化せず、風雑音低減フィルタ切換スイッチ18によるON/OFFの切換タイプとなっている。   In the second embodiment, LchHPF3 and RchHPF6 do not change the cut-off frequency continuously, and are of the ON / OFF switching type by the wind noise reduction filter switching switch 18.

図4において、風雑音検出信号生成器14の出力レベルに応じて、システムコントロール部7は表示信号制御部15へ風雑音レベルに応じた表示データを送る。そのデータを受けた表示信号制御部15は表示部16上に風雑音レベルを示すバーを図示の符号17に示すように表示する(バーの本数が多いほど、風雑音が大きいことを示す)。撮影者はこのレベル表示を見て必要と判断すると風雑音低減フィルタ切換スイッチ18を切換て風雑音を低減させる。   In FIG. 4, the system control unit 7 sends display data corresponding to the wind noise level to the display signal control unit 15 in accordance with the output level of the wind noise detection signal generator 14. Receiving the data, the display signal control unit 15 displays a bar indicating the wind noise level on the display unit 16 as indicated by reference numeral 17 in the figure (the more bars, the greater the wind noise). When the photographer judges that it is necessary by looking at this level display, the wind noise is reduced by switching the wind noise reduction filter switch 18.

撮影者によっては、風雑音のレベルにより自動的に低域のレベルが低減するのを好まない場合があるため、本対応によって風雑音レベル表示値を指標として、撮影者が自分の意志で低域の成分を撮影状態に応じて低減させることが出来るという作用効果を奏する。   Some photographers may not like the low frequency level to be reduced automatically depending on the wind noise level. It is possible to reduce the amount of the component according to the shooting state.

従来の風雑音検出の構成を示す図である。It is a figure which shows the structure of the conventional wind noise detection. 実施形態が適用するビデオカメラ装置全体の構成を示す図である。It is a figure which shows the structure of the whole video camera apparatus which embodiment applies. 第1の実施形態が適用する風雑音検出の構成を示す図である。It is a figure which shows the structure of the wind noise detection which 1st Embodiment applies. 第2の実施形態が適用する風雑音検出の構成を示す図である。It is a figure which shows the structure of the wind noise detection which 2nd Embodiment applies.

Claims (5)

複数の集音手段を備え、当該複数の集音手段による信号で風雑音を検出する風雑音検出装置であって、
前記複数の集音手段で得られた信号から差信号を生成する差信号生成手段と、
前記複数の集音手段で得られた信号から和信号を生成する和信号生成手段と、
前記差信号生成手段で生成された差信号を絶対値信号に変換する第1の絶対値変換手段と、
前記和信号生成手段で生成された和信号を絶対値信号に変換する第2の絶対値変換手段と、
前記第1、第2の絶対値変換手段で変換して得た差信号と和信号との差を求め、風雑音検出信号として出力する風雑音検出手段と
を備えることを特徴とする風雑音検出装置。
A wind noise detecting device comprising a plurality of sound collecting means and detecting wind noise by signals from the plurality of sound collecting means,
Difference signal generating means for generating a difference signal from signals obtained by the plurality of sound collecting means;
Sum signal generating means for generating a sum signal from signals obtained by the plurality of sound collecting means;
First absolute value conversion means for converting the difference signal generated by the difference signal generation means into an absolute value signal;
Second absolute value conversion means for converting the sum signal generated by the sum signal generation means into an absolute value signal;
Wind noise detection means comprising: wind noise detection means for obtaining a difference between a difference signal obtained by conversion by the first and second absolute value conversion means and a sum signal and outputting the difference as a wind noise detection signal. apparatus.
前記差信号生成手段及び和信号生成手段それぞれで生成された差信号及び和信号の低周波成分を抽出するフィルタ手段を更に備え、
前記第1の絶対値変換手段、及び、第2の絶対値変換手段それぞれは、低周波成分抽出された差信号、和信号それぞれを絶対値信号に変換することを特徴とする請求項1に記載の風雑音検出装置。
A filter means for extracting a low frequency component of the difference signal and the sum signal generated by the difference signal generation means and the sum signal generation means respectively;
2. The first absolute value conversion unit and the second absolute value conversion unit respectively convert a difference signal and a sum signal from which low frequency components are extracted into absolute value signals. Wind noise detection device.
前記風雑音検出手段からの信号を用いて、音声信号の低周波領域のレベルを連続的に制御する低周波領域連続制御手段を更に備えることを特徴とする請求項1又は2に記載の風雑音検出装置。   3. The wind noise according to claim 1, further comprising a low-frequency region continuous control unit that continuously controls a level of a low-frequency region of an audio signal using a signal from the wind noise detection unit. Detection device. 前記風雑音検出手段からの信号のレベルに従い、風雑音のレベルを報知する報知手段を更に備えることを特徴とする請求項1乃至3のいずれか1項に記載の風雑音検出装置。   The wind noise detection apparatus according to any one of claims 1 to 3, further comprising notification means for notifying a wind noise level according to a level of a signal from the wind noise detection means. 請求項1乃至4のいずれか1項に記載の風雑音検出装置を備えることを特徴とするビデオカメラ装置。   A video camera device comprising the wind noise detection device according to any one of claims 1 to 4.
JP2003343573A 2003-10-01 2003-10-01 Wind noise detecting device and video camera with wind noise detecting device Withdrawn JP2005110127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343573A JP2005110127A (en) 2003-10-01 2003-10-01 Wind noise detecting device and video camera with wind noise detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343573A JP2005110127A (en) 2003-10-01 2003-10-01 Wind noise detecting device and video camera with wind noise detecting device

Publications (1)

Publication Number Publication Date
JP2005110127A true JP2005110127A (en) 2005-04-21

Family

ID=34537500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343573A Withdrawn JP2005110127A (en) 2003-10-01 2003-10-01 Wind noise detecting device and video camera with wind noise detecting device

Country Status (1)

Country Link
JP (1) JP2005110127A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036831A (en) * 2007-07-31 2009-02-19 Canon Inc Information processor, and information processing method
JP2009522942A (en) * 2006-01-05 2009-06-11 オーディエンス,インコーポレイテッド System and method using level differences between microphones for speech improvement
JP2009260708A (en) * 2008-04-17 2009-11-05 Yamaha Corp Sound processing apparatus and program
US8143620B1 (en) 2007-12-21 2012-03-27 Audience, Inc. System and method for adaptive classification of audio sources
US8150065B2 (en) 2006-05-25 2012-04-03 Audience, Inc. System and method for processing an audio signal
US8180064B1 (en) 2007-12-21 2012-05-15 Audience, Inc. System and method for providing voice equalization
US8189766B1 (en) 2007-07-26 2012-05-29 Audience, Inc. System and method for blind subband acoustic echo cancellation postfiltering
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8194880B2 (en) 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US8204253B1 (en) 2008-06-30 2012-06-19 Audience, Inc. Self calibration of audio device
US8204252B1 (en) 2006-10-10 2012-06-19 Audience, Inc. System and method for providing close microphone adaptive array processing
US8259926B1 (en) 2007-02-23 2012-09-04 Audience, Inc. System and method for 2-channel and 3-channel acoustic echo cancellation
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
JP2013125197A (en) * 2011-12-15 2013-06-24 Fujitsu Ltd Signal processor, signal processing method and signal processing program
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
JP2014060524A (en) * 2012-09-14 2014-04-03 Rohm Co Ltd Wind noise reduction circuit, wind noise reduction method and audio-signal processing circuit using the same, and electronic apparatus
JP2014060525A (en) * 2012-09-14 2014-04-03 Rohm Co Ltd Wind noise reduction circuit, wind noise reduction method and audio-signal processing circuit using the same, and electronic apparatus
JP2014060523A (en) * 2012-09-14 2014-04-03 Rohm Co Ltd Wind noise reduction circuit, wind noise reduction method and audio-signal processing circuit using the same, and electronic apparatus
US8744844B2 (en) 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US8774423B1 (en) 2008-06-30 2014-07-08 Audience, Inc. System and method for controlling adaptivity of signal modification using a phantom coefficient
US8849231B1 (en) 2007-08-08 2014-09-30 Audience, Inc. System and method for adaptive power control
JP2014216982A (en) * 2013-04-30 2014-11-17 株式会社Jvcケンウッド Noise elimination device, noise elimination method, and noise elimination program
US8934641B2 (en) 2006-05-25 2015-01-13 Audience, Inc. Systems and methods for reconstructing decomposed audio signals
US8949120B1 (en) 2006-05-25 2015-02-03 Audience, Inc. Adaptive noise cancelation
US9008329B1 (en) 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
US9185487B2 (en) 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
US9699554B1 (en) 2010-04-21 2017-07-04 Knowles Electronics, Llc Adaptive signal equalization
US9799330B2 (en) 2014-08-28 2017-10-24 Knowles Electronics, Llc Multi-sourced noise suppression

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522942A (en) * 2006-01-05 2009-06-11 オーディエンス,インコーポレイテッド System and method using level differences between microphones for speech improvement
US8867759B2 (en) 2006-01-05 2014-10-21 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8345890B2 (en) 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8194880B2 (en) 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US9185487B2 (en) 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
US8949120B1 (en) 2006-05-25 2015-02-03 Audience, Inc. Adaptive noise cancelation
US9830899B1 (en) 2006-05-25 2017-11-28 Knowles Electronics, Llc Adaptive noise cancellation
US8150065B2 (en) 2006-05-25 2012-04-03 Audience, Inc. System and method for processing an audio signal
US8934641B2 (en) 2006-05-25 2015-01-13 Audience, Inc. Systems and methods for reconstructing decomposed audio signals
US8204252B1 (en) 2006-10-10 2012-06-19 Audience, Inc. System and method for providing close microphone adaptive array processing
US8259926B1 (en) 2007-02-23 2012-09-04 Audience, Inc. System and method for 2-channel and 3-channel acoustic echo cancellation
US8744844B2 (en) 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US8886525B2 (en) 2007-07-06 2014-11-11 Audience, Inc. System and method for adaptive intelligent noise suppression
US8189766B1 (en) 2007-07-26 2012-05-29 Audience, Inc. System and method for blind subband acoustic echo cancellation postfiltering
JP2009036831A (en) * 2007-07-31 2009-02-19 Canon Inc Information processor, and information processing method
JP4590437B2 (en) * 2007-07-31 2010-12-01 キヤノン株式会社 Information processing device
US8849231B1 (en) 2007-08-08 2014-09-30 Audience, Inc. System and method for adaptive power control
US9076456B1 (en) 2007-12-21 2015-07-07 Audience, Inc. System and method for providing voice equalization
US8180064B1 (en) 2007-12-21 2012-05-15 Audience, Inc. System and method for providing voice equalization
US8143620B1 (en) 2007-12-21 2012-03-27 Audience, Inc. System and method for adaptive classification of audio sources
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
JP2009260708A (en) * 2008-04-17 2009-11-05 Yamaha Corp Sound processing apparatus and program
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
US8204253B1 (en) 2008-06-30 2012-06-19 Audience, Inc. Self calibration of audio device
US8774423B1 (en) 2008-06-30 2014-07-08 Audience, Inc. System and method for controlling adaptivity of signal modification using a phantom coefficient
US9008329B1 (en) 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
US9699554B1 (en) 2010-04-21 2017-07-04 Knowles Electronics, Llc Adaptive signal equalization
JP2013125197A (en) * 2011-12-15 2013-06-24 Fujitsu Ltd Signal processor, signal processing method and signal processing program
US9271075B2 (en) 2011-12-15 2016-02-23 Fujitsu Limited Signal processing apparatus and signal processing method
JP2014060524A (en) * 2012-09-14 2014-04-03 Rohm Co Ltd Wind noise reduction circuit, wind noise reduction method and audio-signal processing circuit using the same, and electronic apparatus
JP2014060525A (en) * 2012-09-14 2014-04-03 Rohm Co Ltd Wind noise reduction circuit, wind noise reduction method and audio-signal processing circuit using the same, and electronic apparatus
JP2014060523A (en) * 2012-09-14 2014-04-03 Rohm Co Ltd Wind noise reduction circuit, wind noise reduction method and audio-signal processing circuit using the same, and electronic apparatus
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
JP2014216982A (en) * 2013-04-30 2014-11-17 株式会社Jvcケンウッド Noise elimination device, noise elimination method, and noise elimination program
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
US9799330B2 (en) 2014-08-28 2017-10-24 Knowles Electronics, Llc Multi-sourced noise suppression

Similar Documents

Publication Publication Date Title
JP2005110127A (en) Wind noise detecting device and video camera with wind noise detecting device
US8068620B2 (en) Audio processing apparatus
JP4286637B2 (en) Microphone device and playback device
JP2010081417A (en) Imaging apparatus, and mode suitability determining method
JP5020845B2 (en) Audio processing device
JP2011030022A (en) Noise determination device, voice recording device, and method for controlling noise determination device
US10535363B2 (en) Audio processing apparatus and control method thereof
WO2013054459A1 (en) Howling suppression device, hearing aid, howling suppression method, and integrated circuit
JP2002218583A (en) Sound field synthesis arithmetic method and device
JP5349062B2 (en) SOUND PROCESSING DEVICE, ELECTRONIC DEVICE HAVING SAME, AND SOUND PROCESSING METHOD
JP2011114465A (en) Voice processing apparatus and electronic camera
JP2010157964A (en) Imaging apparatus
JP4590437B2 (en) Information processing device
JP2015104091A (en) Voice processing device with wind noise reduction device, and imaging apparatus with the same
JP2002171591A (en) Stereophonic microphone system, noise reduction processing method and system
JP4293884B2 (en) Stereo microphone device
JP6902961B2 (en) Speech processing device and its control method
JP2009124414A (en) Video camera device
JP5645373B2 (en) Audio processing apparatus and audio processing method
JP4476158B2 (en) Audio signal level control device and level control method
JP2019161334A (en) Speech processing unit
JP5340127B2 (en) Audio signal processing apparatus and control method of audio signal processing apparatus
US10313824B2 (en) Audio processing device for processing audio, audio processing method, and program
JP2012216924A (en) Signal processing device and signal processing method
JP2018042025A (en) Audio signal processing device, audio signal processing method and program

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205