JP2005108921A - Resin-encapsulated semiconductor element - Google Patents

Resin-encapsulated semiconductor element Download PDF

Info

Publication number
JP2005108921A
JP2005108921A JP2003336818A JP2003336818A JP2005108921A JP 2005108921 A JP2005108921 A JP 2005108921A JP 2003336818 A JP2003336818 A JP 2003336818A JP 2003336818 A JP2003336818 A JP 2003336818A JP 2005108921 A JP2005108921 A JP 2005108921A
Authority
JP
Japan
Prior art keywords
resin
semiconductor element
wiring layer
film
encapsulated semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003336818A
Other languages
Japanese (ja)
Inventor
Kenji Oka
健次 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2003336818A priority Critical patent/JP2005108921A/en
Publication of JP2005108921A publication Critical patent/JP2005108921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor element of high reliability which can reduce the stress on resin for sealing at the curing contracting of the resin, without using polyimide resin or silicon resin for a surface protection film, and can surely prevent strike slip of the wiring layer. <P>SOLUTION: In the resin encapsulated semiconductor element 1, a ground insulating film 3 which consists of silicon oxide is formed on a semiconductor substrate 2 in which an integrated circuit is formed, thereon a wiring layer 4 is formed which is constituted of aluminum and connected with the integrated circuit, and a cover insulating film 5, constituted of silicon nitride, is formed on the wiring layer 4. On the cover insulating film 5, a metal film 6 of stripe shape is formed so as to be positioned between each of the wiring layers 4, and resin 7 for encapsulation constituted of epoxy resin is formed on the metal film 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、樹脂封止型半導体素子に関し、特に、半導体基板上に形成される配線層にかかる応力を低減し、信頼性を高めた樹脂封止型半導体素子に関する。   The present invention relates to a resin-encapsulated semiconductor element, and more particularly to a resin-encapsulated semiconductor element in which stress applied to a wiring layer formed on a semiconductor substrate is reduced and reliability is improved.

樹脂封止型半導体素子は、半導体基板上に配線層、表面保護膜等が形成された半導体素子を外部から保護するために、素子のボンディングパッドとリードフレームのリードを金線などで結線した後、全体をエポキシ樹脂等により封止した構造を有し、例えば、特開平5−206335号公報に記載されている。図4(a)、(b)は、従来の樹脂封止型半導体素子41の断面図及び要部拡大断面図である。   Resin-encapsulated semiconductor elements are manufactured by connecting the bonding pads of the elements and the leads of the lead frame with gold wires to protect the semiconductor elements having a wiring layer, surface protective film, etc. formed on the semiconductor substrate from the outside. The entire structure is sealed with an epoxy resin or the like, and is described, for example, in JP-A-5-206335. 4A and 4B are a cross-sectional view and a main part enlarged cross-sectional view of a conventional resin-encapsulated semiconductor element 41, respectively.

図4(a)、(b)に示すように、従来の樹脂封止型半導体素子41は、内部に集積回路の形成された半導体基板42と、半導体基板42の上に形成された酸化シリコンからなる下地絶縁膜43と、集積回路に接続されたアルミニウム等からなる配線層44と、アルミニウム等からなる外部端子取出し電極であるボンディングパッド45と、配線層44を覆いボンディングパッド45を開口するポリイミド樹脂やシリコン樹脂からなる表面保護膜46により構成されている。   As shown in FIGS. 4A and 4B, a conventional resin-encapsulated semiconductor element 41 includes a semiconductor substrate 42 having an integrated circuit formed therein, and silicon oxide formed on the semiconductor substrate 42. A base insulating film 43, a wiring layer 44 made of aluminum or the like connected to the integrated circuit, a bonding pad 45 which is an external terminal lead electrode made of aluminum or the like, and a polyimide resin which covers the wiring layer 44 and opens the bonding pad 45 And a surface protective film 46 made of silicon resin.

さらに、樹脂封止型半導体素子41のボンディングパッド45は、金線等のボンディングワイヤ47によりリードフレーム48と接続され、フィラー49を含有したエポキシ等の樹脂からなる封止用樹脂50で全体を封止され、外部から保護されている。   Further, the bonding pad 45 of the resin-encapsulated semiconductor element 41 is connected to the lead frame 48 by a bonding wire 47 such as a gold wire, and is entirely sealed with a sealing resin 50 made of a resin such as an epoxy containing a filler 49. Stopped and protected from the outside.

しかし、従来の樹脂封止型半導体素子41は、封止用樹脂50と表面保護膜46の密着力が弱いために、封止用樹脂50が硬化収縮する際に生じる内部応力により、封止用樹脂50と表面保護膜46の界面が剥離して、封止用樹脂50や表面保護膜46が割れたり、配線層44が横ずれするという問題が発生していた。封止用樹脂50や表面保護膜46に割れが発生すると、その部分から容易に水分が侵入するため、配線層44が腐蝕して抵抗値が上昇する。その結果、電気的特性が低下して樹脂封止型半導体素子41の信頼性が大きく損なわれていた。   However, the conventional resin-encapsulated semiconductor element 41 has a weak adhesive force between the encapsulating resin 50 and the surface protective film 46, and therefore, due to internal stress generated when the encapsulating resin 50 is cured and shrunk, The interface between the resin 50 and the surface protective film 46 is peeled off, causing a problem that the sealing resin 50 and the surface protective film 46 are broken or the wiring layer 44 is laterally displaced. When cracking occurs in the sealing resin 50 and the surface protective film 46, moisture easily enters from the portion, and the wiring layer 44 is corroded to increase the resistance value. As a result, the electrical characteristics are lowered, and the reliability of the resin-encapsulated semiconductor element 41 is greatly impaired.

この問題を解決するために、上述した従来技術には、他の樹脂封止型半導体素子51が提案されている。図5は、この樹脂封止型半導体素子51の要部拡大断面図である。樹脂封止型半導体素子51は、表面保護膜46上に新たにSOG膜52を塗布形成し、このSOG膜52中にフィラー49を分散固着した構造を有している。SOG膜52に固着されたフィラー49は、封止の際に封止用樹脂50に包み込まれるため、封止用樹脂50と表面保護膜46がフィラー49を介して強固に接着され、密着力を向上させることができる。これにより、封止用樹脂50の硬化収縮時の応力によって引き起こされる封止用樹脂50や表面保護膜46の割れ、配線層44の腐蝕等の問題を解決し、樹脂封止型半導体素子51の信頼性を高めようとするものである。
特開平5−206335号公報(第2頁、0002段落〜0043段落、図4〜図6)
In order to solve this problem, another resin-encapsulated semiconductor element 51 has been proposed in the above-described prior art. FIG. 5 is an enlarged cross-sectional view of the main part of the resin-encapsulated semiconductor element 51. The resin-encapsulated semiconductor element 51 has a structure in which a SOG film 52 is newly applied and formed on the surface protective film 46, and fillers 49 are dispersed and fixed in the SOG film 52. Since the filler 49 fixed to the SOG film 52 is encapsulated in the sealing resin 50 at the time of sealing, the sealing resin 50 and the surface protective film 46 are firmly bonded via the filler 49 and have an adhesive force. Can be improved. As a result, problems such as cracking of the sealing resin 50 and the surface protective film 46 and corrosion of the wiring layer 44 caused by stress at the time of curing shrinkage of the sealing resin 50 are solved. It is intended to increase reliability.
JP-A-5-206335 (second page, paragraphs 0002 to 0043, FIGS. 4 to 6)

しかし、従来の樹脂封止型半導体素子51には、以下のような問題があった。上述したように、封止用樹脂50と表面保護膜46との密着性を向上させることにより、封止用樹脂50や表面保護膜46の割れは防止できるが、封止用樹脂50の応力が表面保護膜46を通じて配線層44に直接伝わるので、配線層44の横ずれを防止することができない。配線層44が横ずれするとオープンやショートになり、樹脂封止型半導体素子51が動作しなくなるという致命的な問題を引き起こすことになる。   However, the conventional resin-encapsulated semiconductor element 51 has the following problems. As described above, by improving the adhesion between the sealing resin 50 and the surface protective film 46, cracking of the sealing resin 50 and the surface protective film 46 can be prevented, but the stress of the sealing resin 50 is reduced. Since it is transmitted directly to the wiring layer 44 through the surface protective film 46, the lateral displacement of the wiring layer 44 cannot be prevented. If the wiring layer 44 is laterally displaced, it becomes open or short-circuited, causing a fatal problem that the resin-encapsulated semiconductor element 51 does not operate.

また、ポリイミド樹脂、シリコン樹脂からなる表面保護膜46やSOG膜52は、塗布後の熱処理により溶媒や有機成分が蒸発する。この蒸発したガスが半導体基板42表面のボンディングパッド45に付着するとボンディングワイヤ47とのボンディング強度が低下し、樹脂封止する際の応力により容易にボンディングワイヤ47が剥離する。また、半導体基板42裏面に付着すると裏面電極の半田濡れ性が低下し、封止樹脂型半導体素子51の信頼性が大きく損なわれ、製品歩留りに多大な影響を与える。また、表面保護膜46にポリイミド樹脂を使用する場合は、ポリイミド樹脂が高価であるので、材料のコストアップになるという問題もある。   In addition, the solvent and organic components of the surface protective film 46 and the SOG film 52 made of polyimide resin or silicon resin are evaporated by heat treatment after coating. When the evaporated gas adheres to the bonding pad 45 on the surface of the semiconductor substrate 42, the bonding strength with the bonding wire 47 is lowered, and the bonding wire 47 is easily peeled off by the stress at the time of resin sealing. Moreover, if it adheres to the back surface of the semiconductor substrate 42, the solder wettability of the back surface electrode is lowered, the reliability of the sealing resin type semiconductor element 51 is greatly impaired, and the product yield is greatly affected. Further, when a polyimide resin is used for the surface protective film 46, the polyimide resin is expensive, so there is a problem that the cost of the material is increased.

本発明は、上記問題点を解決するために考えられたもので、表面保護膜にポリイミド樹脂やシリコン樹脂を使用することなく、封止用樹脂の硬化収縮時の応力を低減することができ、配線層の横ずれを確実に防止できる高信頼性の樹脂封止型半導体素子を提供することを目的とする。   The present invention was conceived to solve the above problems, and without using a polyimide resin or silicon resin for the surface protective film, the stress at the time of curing shrinkage of the sealing resin can be reduced, It is an object of the present invention to provide a highly reliable resin-encapsulated semiconductor element that can reliably prevent lateral displacement of a wiring layer.

上記目的を達成するために、本発明の請求項1記載の樹脂封止型半導体素子は、集積回路が形成された半導体基板と、前記集積回路に接続するように形成された配線層と、前記配線層上に形成された表面保護膜を有し、全体が封止用樹脂で封止された樹脂封止型半導体素子であって、前記表面保護膜が前記配線層の間に形成された金属膜で構成されていることを特徴とする。この構成によれば、封止用樹脂が硬化収縮する際に内部応力が発生しても、封止用樹脂と配線層の間に形成された金属膜が横移動して応力を吸収するので、配線層にかかる応力が大幅に低減される。また、金属膜は間隔を設けて形成されており、その間に封止用樹脂が入り込むので、両者の密着力も向上する。   In order to achieve the above object, a resin-encapsulated semiconductor element according to claim 1 of the present invention includes a semiconductor substrate on which an integrated circuit is formed, a wiring layer formed so as to be connected to the integrated circuit, A resin-encapsulated semiconductor element having a surface protective film formed on a wiring layer and entirely sealed with a sealing resin, wherein the surface protective film is a metal formed between the wiring layers It is characterized by comprising a film. According to this configuration, even if an internal stress occurs when the sealing resin is cured and contracted, the metal film formed between the sealing resin and the wiring layer moves laterally and absorbs the stress. The stress applied to the wiring layer is greatly reduced. Moreover, since the metal film is formed with a gap and the sealing resin enters between them, the adhesion between them is also improved.

また、請求項2記載の樹脂封止型半導体素子は、請求項1記載の樹脂封止型半導体素子であって、前記表面保護膜がアルミニウムからなる金属膜で構成されるとともに、前記配線層の間にストライプ状、ドット状、メッシュ状に形成されていることを特徴とする。この構成によれば、いずれの形状もパターニングが容易で、応力低減に大きな効果がある。   The resin-encapsulated semiconductor element according to claim 2 is the resin-encapsulated semiconductor element according to claim 1, wherein the surface protective film is made of a metal film made of aluminum, and It is characterized by being formed in the form of stripes, dots or meshes. According to this configuration, any shape is easy to pattern and has a great effect on stress reduction.

以上説明したように、本発明の封止樹脂型半導体素子によれば、封止用樹脂と配線層の間に金属膜を形成するようにしたので、封止用樹脂の硬化収縮によって発生する内部応力を、金属膜が横移動することにより吸収できる。また、封止用樹脂と金属層の密着力も向上する。これにより、配線層が横ずれしてオープンやショートに至る問題を解決でき、信頼性の高い樹脂封止型半導体素子を得ることができる。   As described above, according to the encapsulating resin type semiconductor element of the present invention, the metal film is formed between the encapsulating resin and the wiring layer. Stress can be absorbed by the lateral movement of the metal film. In addition, the adhesion between the sealing resin and the metal layer is improved. As a result, it is possible to solve the problem that the wiring layer is laterally shifted to open or short, and a highly reliable resin-encapsulated semiconductor element can be obtained.

また、ポリイミド樹脂やシリコン樹脂を使用する必要がないので、熱処理時に発生する溶剤や有機ガスによるボンディング強度低下や半田濡れ性低下等の問題も解決できるとともに、材料コストも低減できる。   Further, since it is not necessary to use polyimide resin or silicon resin, it is possible to solve problems such as a decrease in bonding strength and a decrease in solder wettability due to a solvent or an organic gas generated during heat treatment, and a reduction in material cost.

以下、本発明の好ましい実施の形態を、図面を参照して説明する。図1(a)、(b)は、本発明の樹脂封止型半導体素子1の平面図及びA―A断面図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIGS. 1A and 1B are a plan view and a cross-sectional view taken along line AA of the resin-encapsulated semiconductor element 1 of the present invention.

図1(a)、(b)に示すように、本発明の樹脂封止型半導体素子1は、集積回路の形成された半導体基板2上に酸化シリコンからなる下地絶縁膜3が形成され、その上に集積回路に接続するアルミニウムからなる配線層4が形成され、配線層4を保護するために、配線層4の上に窒化シリコンからなるカバー絶縁膜5が形成されている。さらに、カバー絶縁膜5の上には、各配線層4の間に位置するように、ストライプ状のアルミニウムからなる金属膜6が形成され、全体がエポキシ樹脂からなる封止用樹脂7で封止されている。   As shown in FIGS. 1A and 1B, the resin-encapsulated semiconductor element 1 of the present invention has a base insulating film 3 made of silicon oxide formed on a semiconductor substrate 2 on which an integrated circuit is formed. A wiring layer 4 made of aluminum connected to the integrated circuit is formed thereon, and a cover insulating film 5 made of silicon nitride is formed on the wiring layer 4 in order to protect the wiring layer 4. Further, a metal film 6 made of striped aluminum is formed on the insulating cover film 5 so as to be positioned between the wiring layers 4 and is entirely sealed with a sealing resin 7 made of an epoxy resin. Has been.

次に、本発明の樹脂封止型半導体素子1の製造方法を図面を参照して説明する。図2(a)〜図2(e)は、図1(a)におけるA−A断面図を示している。   Next, a method for manufacturing the resin-encapsulated semiconductor element 1 of the present invention will be described with reference to the drawings. 2 (a) to 2 (e) show cross-sectional views taken along line AA in FIG. 1 (a).

先ず、図2(a)に示すように、集積回路を形成した半導体基板2の上に、プラズマCVD法により酸化シリコンからなる下地絶縁膜3を形成する。次に、図2(b)に示すように、下地絶縁膜3の上にスパッタ法によりアルミニウムを堆積してパターニングし、配線層4を形成する。次に、図2(c)に示すように、下地絶縁層3と配線層4の全面に、プラズマCVD法により酸化シリコンからなるカバー絶縁膜5を形成する。次に、図2(d)に示すように、カバー絶縁膜5の上に、スパッタ法によりアルミニウムを堆積した後、各配線層4の間に位置するようにパターニングし、金属膜6を形成する。最後に、図2(e)に示すように、エポキシ樹脂からなる封止用樹脂7で全体を封止し、樹脂封止型半導体素子1を得る。   First, as shown in FIG. 2A, a base insulating film 3 made of silicon oxide is formed on a semiconductor substrate 2 on which an integrated circuit is formed by a plasma CVD method. Next, as shown in FIG. 2B, aluminum is deposited on the base insulating film 3 by sputtering and patterned to form a wiring layer 4. Next, as shown in FIG. 2C, a cover insulating film 5 made of silicon oxide is formed on the entire surface of the base insulating layer 3 and the wiring layer 4 by plasma CVD. Next, as shown in FIG. 2D, after depositing aluminum on the cover insulating film 5 by sputtering, it is patterned so as to be positioned between the wiring layers 4 to form a metal film 6. . Finally, as shown in FIG. 2 (e), the whole is sealed with a sealing resin 7 made of an epoxy resin to obtain a resin-encapsulated semiconductor element 1.

本発明の樹脂封止型半導体素子1では、封止用樹脂7と配線層4の間に金属膜6が形成されているので、封止用樹脂7が硬化収縮する際に発生した内部応力は、先ず下部の金属膜6に伝わることになる。金属膜6は軟らかい材料で構成されているので、容易に横移動して封止用樹脂7の応力を吸収する。その結果、配線層4に伝わる応力が大幅に低減され、配線層4の横ずれを防止できる。また、金属膜6を蒸着法で形成すれば、金属膜中に酸素が入り多孔質になり膜の柔軟性が増すので、より大きな応力低減効果が得られる。   In the resin-encapsulated semiconductor element 1 of the present invention, since the metal film 6 is formed between the encapsulating resin 7 and the wiring layer 4, the internal stress generated when the encapsulating resin 7 is cured and contracted is First, it is transmitted to the lower metal film 6. Since the metal film 6 is made of a soft material, it easily moves laterally and absorbs the stress of the sealing resin 7. As a result, the stress transmitted to the wiring layer 4 is greatly reduced, and the lateral displacement of the wiring layer 4 can be prevented. In addition, if the metal film 6 is formed by vapor deposition, oxygen enters the metal film and becomes porous, increasing the flexibility of the film, so that a greater stress reduction effect can be obtained.

さらに、金属膜6は間隔を設けて形成されており、その間に封止用樹脂7が入り込む構造であるので、封止用樹脂7と金属膜6の密着力も大幅に向上する。これにより、封止用樹脂7や金属膜6の割れや剥離も防止できる。なお、この金属膜6は半導体基板2内に形成された集積回路と接続されておらず、素子の電気的特性に何ら影響を及ぼすことがない。   Furthermore, since the metal film 6 is formed with a space between which the sealing resin 7 enters, the adhesion between the sealing resin 7 and the metal film 6 is also greatly improved. Thereby, cracking and peeling of the sealing resin 7 and the metal film 6 can be prevented. The metal film 6 is not connected to the integrated circuit formed in the semiconductor substrate 2 and does not affect the electrical characteristics of the element.

また、金属膜6の形状は、上述したストライプ状に限定されるものではなく、例えば、図3(a)、(b)に示すように、ドット状の金属膜31又はメッシュ状の金属膜32を形成するようにしてもよい。いずれの形状もパターニングが容易で、横移動し易いので応力低減に効果がある。   Further, the shape of the metal film 6 is not limited to the above-described stripe shape. For example, as shown in FIGS. 3A and 3B, a dot-like metal film 31 or a mesh-like metal film 32 is used. May be formed. Both shapes are easy to pattern and are easy to move laterally, and are effective in reducing stress.

なお、上述した実施例では、金属膜6、31、32にアルミニウムを使用したが、アルミニウム以外にタングステン、モリブデン、チタン、銅、アルミニウム合金(Al−Si、Al−Si−Cu)等を使用してもよい。   In the above-described embodiments, aluminum is used for the metal films 6, 31, 32. However, tungsten, molybdenum, titanium, copper, aluminum alloy (Al-Si, Al-Si-Cu), etc. are used in addition to aluminum. May be.

封止用樹脂と配線層の間に金属膜を形成することによって、封止用樹脂の硬化収縮によって発生する内部応力を、金属膜が横移動して吸収できる。また、封止用樹脂と金属層の密着力も向上する。これにより、配線層が横ずれしてオープンやショートに至る問題を解決でき、信頼性の高い樹脂封止型半導体素子を得ることができる。   By forming the metal film between the encapsulating resin and the wiring layer, the internal stress generated by the curing shrinkage of the encapsulating resin can be moved laterally and absorbed. In addition, the adhesion between the sealing resin and the metal layer is improved. As a result, it is possible to solve the problem that the wiring layer is laterally shifted to open or short, and a highly reliable resin-encapsulated semiconductor element can be obtained.

本発明の樹脂封止型半導体素子の平面図及びA−A断面図The top view and AA sectional drawing of the resin sealing type | mold semiconductor element of this invention 本発明の樹脂封止型半導体素子の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the resin sealing type | mold semiconductor element of this invention 本発明の樹脂封止型半導体素子の金属膜のパターン例を示す平面図The top view which shows the example of a pattern of the metal film of the resin sealing type | mold semiconductor element of this invention 従来の樹脂封止型半導体素子の断面図及び要部拡大断面図Sectional view and main part enlarged sectional view of a conventional resin-encapsulated semiconductor element 従来の他の樹脂封止型半導体素子の要部拡大断面図Main section enlarged sectional view of another conventional resin-encapsulated semiconductor element

符号の説明Explanation of symbols

1 本発明の樹脂封止型半導体素子
2 半導体基板
3 下地絶縁膜
4 配線層
5 カバー絶縁膜
6 金属膜
7 封止用樹脂
31 ドット状の金属膜
32 メッシュ状の金属膜
41 従来の樹脂封止型半導体素子
42 半導体基板
43 下地絶縁層
44 配線層
45 ボンディングパッド
46 表面保護膜
47 ボンディングワイヤ
48 リードフレーム
49 フィラー
50 封止用樹脂
51 従来の他の樹脂封止型半導体素子
52 SOG膜
DESCRIPTION OF SYMBOLS 1 Resin-sealed semiconductor element 2 Semiconductor substrate 3 Underlying insulating film 4 Wiring layer 5 Cover insulating film 6 Metal film 7 Sealing resin 31 Dot-shaped metal film 32 Mesh-shaped metal film 41 Conventional resin sealing Type semiconductor element 42 semiconductor substrate 43 base insulating layer 44 wiring layer 45 bonding pad 46 surface protective film 47 bonding wire 48 lead frame 49 filler 50 sealing resin 51 other conventional resin-encapsulated semiconductor element 52 SOG film

Claims (2)

集積回路が形成された半導体基板と、前記集積回路に接続するように形成された配線層と、前記配線層上に形成された表面保護膜を有し、全体が封止用樹脂で封止された樹脂封止型半導体素子において、前記表面保護膜が前記配線層の間に形成された金属膜で構成されていることを特徴とする樹脂封止型半導体素子。   A semiconductor substrate on which an integrated circuit is formed; a wiring layer formed so as to be connected to the integrated circuit; and a surface protective film formed on the wiring layer, the whole being sealed with a sealing resin. In the resin-sealed semiconductor element, the surface protective film is composed of a metal film formed between the wiring layers. 前記表面保護膜がアルミニウムからなる金属膜で構成されるとともに、前記配線層の間にストライプ状、ドット状、メッシュ状に形成されていることを特徴とする請求項1記載の樹脂封止型半導体素子。   2. The resin-encapsulated semiconductor according to claim 1, wherein the surface protective film is formed of a metal film made of aluminum, and is formed in a stripe shape, a dot shape, or a mesh shape between the wiring layers. element.
JP2003336818A 2003-09-29 2003-09-29 Resin-encapsulated semiconductor element Pending JP2005108921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336818A JP2005108921A (en) 2003-09-29 2003-09-29 Resin-encapsulated semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336818A JP2005108921A (en) 2003-09-29 2003-09-29 Resin-encapsulated semiconductor element

Publications (1)

Publication Number Publication Date
JP2005108921A true JP2005108921A (en) 2005-04-21

Family

ID=34532809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336818A Pending JP2005108921A (en) 2003-09-29 2003-09-29 Resin-encapsulated semiconductor element

Country Status (1)

Country Link
JP (1) JP2005108921A (en)

Similar Documents

Publication Publication Date Title
JPH06105721B2 (en) Semiconductor device
US10354936B2 (en) Electronic component having a heat dissipation member formed on a sealing member
JP2001144213A (en) Method for manufacturing semiconductor device and semiconductor device
JPH1197573A (en) Semiconductor package
JP3402086B2 (en) Semiconductor device and manufacturing method thereof
JPH05226339A (en) Resin sealed semiconductor device
US20080290514A1 (en) Semiconductor device package and method of fabricating the same
JP7131436B2 (en) Semiconductor device and its manufacturing method
JP7372423B2 (en) Semiconductor elements and semiconductor devices
JP2003068738A (en) Semiconductor device and its manufacturing method, and semiconductor chip and its packaging method
KR100412133B1 (en) wafer level chip scale package and method of fabricating the same
JP2005108921A (en) Resin-encapsulated semiconductor element
JP2674567B2 (en) Semiconductor device
CN1983573B (en) Semiconductor device and method for fabricating the same
JP6064845B2 (en) Semiconductor device
EP0902468B1 (en) Resin-sealed semiconductor device and method of manufacturing the device
JP3454192B2 (en) Lead frame, resin-sealed semiconductor device using the same, and method of manufacturing the same
JP2904154B2 (en) Electronic circuit device including semiconductor element
JP2007042702A (en) Semiconductor device
KR20100127923A (en) Leadframe and method of manufacturig semiconductor chip package using the same
JP3057194B2 (en) Semiconductor package manufacturing method
JP3354716B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2633513B2 (en) Method for manufacturing semiconductor device
JP2577879B2 (en) Semiconductor device
JP2720863B2 (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224