JP2005108738A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005108738A
JP2005108738A JP2003342779A JP2003342779A JP2005108738A JP 2005108738 A JP2005108738 A JP 2005108738A JP 2003342779 A JP2003342779 A JP 2003342779A JP 2003342779 A JP2003342779 A JP 2003342779A JP 2005108738 A JP2005108738 A JP 2005108738A
Authority
JP
Japan
Prior art keywords
composition
compound
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003342779A
Other languages
Japanese (ja)
Inventor
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003342779A priority Critical patent/JP2005108738A/en
Publication of JP2005108738A publication Critical patent/JP2005108738A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with superior safety and storing property by suppressing reaction due to deterioration in the vicinity of a compound surface by obtaining an improved effect proposed by conventional inventions by stipulating the composition of the composite as a whole in the composite used for positive electrode active substance in the nonaqueous electrolyte secondary battery and using the compound with the composition in the vicinity of the surface within the range of stipulation. <P>SOLUTION: In the nonaqueous electrolyte secondary battery using lithium content stratified nickel oxide particle for positive electrode active substance, the average composition of the lithium content stratified nickel oxide particle as a whole and the composition of the particle surface is expressed by a general formula of Li<SB>a</SB>Ni<SB>x</SB>Co<SB>y</SB>Al<SB>z</SB>O<SB>2</SB>(0.3≤a≤1.05), 0.7≤x≤0.87, 0.1≤y≤0.27, 0.02≤z≤0.1, 0.02≤z≤0.1, 0.98≤x+y+z≤1.01. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

電子機器の急激な小型軽量化に伴い、その電源である電池に対して小型で軽量かつ高エネルギー密度、更に繰り返し充放電が可能な二次電池開発への要求が高まっている。また、大気汚染や二酸化炭素の増加等の環境問題により、電気自動車の早期実用化が望まれており、高効率、高出力、高エネルギー密度、軽量等の特徴を有する、優れた二次電池の開発が要望されている。   With the rapid reduction in size and weight of electronic devices, there is an increasing demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged with respect to the battery that is the power source. In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, early commercialization of electric vehicles is desired, and an excellent secondary battery having features such as high efficiency, high output, high energy density, and light weight. Development is desired.

これらの要求を満たす二次電池として、非水電解質を使用した二次電池が実用化されている。この電池は、従来の水溶液電解質を使用した電池の数倍のエネルギー密度を有している。その例として、非水電解質二次電池の正極にリチウム含有層状コバルト酸化物(以下Co系化合物)、リチウム含有層状ニッケル酸化物(以下Ni系化合物)又はスピネル型リチウムマンガン複合酸化物(以下Mn系化合物)を用い、負極にリチウムが吸蔵・放出可能な炭素材料などを用いた長寿命な4V級非水電解質二次電池が実用化されている。   As a secondary battery that satisfies these requirements, a secondary battery using a non-aqueous electrolyte has been put into practical use. This battery has an energy density several times that of a battery using a conventional aqueous electrolyte. For example, a lithium-containing layered cobalt oxide (hereinafter referred to as a Co-based compound), a lithium-containing layered nickel oxide (hereinafter referred to as a Ni-based compound) or a spinel-type lithium manganese composite oxide (hereinafter referred to as a Mn-based) is used as a positive electrode of a nonaqueous electrolyte secondary battery. And a long-life 4V class non-aqueous electrolyte secondary battery using a carbon material capable of inserting and extracting lithium in the negative electrode has been put into practical use.

中でもNi系化合物は、非水電解質二次電池内で実際に使用される電位範囲内(3.0〜4.3V vs.Li/Li)において挿入脱離可能なリチウム量が、Co系化合物やMn系化合物以上である特長があり、資源も豊富であることから、高容量かつ低コストな電池の開発を目指して多くの開発検討がなされてきた。 Among these, the Ni-based compound has a lithium-based amount of lithium that can be inserted and desorbed within the potential range (3.0 to 4.3 V vs. Li / Li + ) actually used in the nonaqueous electrolyte secondary battery. In addition to its advantages over Mn-based compounds and abundant resources, many development studies have been conducted with the aim of developing batteries with high capacity and low cost.

例えば、特許文献1や特許文献2に示されているように、ニッケルの一部を異種金属で置換することにより、サイクル寿命性能や熱安定性、保存特性などが改善されてきた。   For example, as shown in Patent Document 1 and Patent Document 2, by replacing a part of nickel with a different metal, cycle life performance, thermal stability, storage characteristics, and the like have been improved.

特開平05−325966号公報JP 05-325966 A 特開平08−213015号公報Japanese Patent Laid-Open No. 08-213015

しかしながら、Ni系化合物中のニッケルを異種金属で置換して、サイクル寿命性能、熱安定性、保存特性、および放電容量のバランスに優れた組成が、従来までに数多く提案されてきたが、それらの組成は化合物全体を平均化した組成であり、充放電反応に重要な役割を果たす電解質との界面近傍(=化合物表面近傍)の組成は深く検討されてはこなかった。   However, many compositions have been proposed so far in which nickel in a Ni-based compound is replaced with a dissimilar metal and has an excellent balance between cycle life performance, thermal stability, storage characteristics, and discharge capacity. The composition is an averaged composition of the entire compound, and the composition in the vicinity of the interface (= near the compound surface) with the electrolyte that plays an important role in the charge / discharge reaction has not been studied deeply.

電解質と化合物の界面では、電解質の分解やガスの発生、金属イオンの溶出など、固層内部とは異なる劣化反応が進行する。したがって、これらの反応を抑制するには化合物表面近傍での組成コントロールが非常に重要である。   At the interface between the electrolyte and the compound, degradation reactions different from those in the solid layer proceed, such as decomposition of the electrolyte, generation of gas, and elution of metal ions. Therefore, composition control in the vicinity of the compound surface is very important for suppressing these reactions.

従来までの提案のように化合物全体の組成のみを規定した場合では、化合物の内部と表面近傍では組成が大きく異なる場合が多々ある。これは、Ni系化合物の合成自体が比較的難しいことや、Ni系化合物が水分や炭酸ガスと反応しやすいことに原因があると考えられる。   In the case where only the composition of the entire compound is specified as in the conventional proposals, the composition often differs greatly between the inside of the compound and the vicinity of the surface. This is considered to be caused by the fact that the synthesis of the Ni-based compound itself is relatively difficult and that the Ni-based compound easily reacts with moisture and carbon dioxide gas.

このように化合物表面部分の組成が内部と異なる場合、化合物界面で上述のような特有の劣化反応が進行してしまい、ニッケルを異種金属で置換する効果が十分に得られないことがある。   Thus, when the composition of the compound surface portion is different from the inside, the above-described characteristic deterioration reaction proceeds at the compound interface, and the effect of substituting nickel with a different metal may not be sufficiently obtained.

そこで、本発明の目的とするところは、化合物全体の組成を規定して従来までの発明で提案されてきた改善効果を得るとともに、表面近傍の組成にも着目をして、その組成が規定範囲にある化合物を非水電解質二次電池の正極活物質に使用することにより、化合物表面近傍の劣化に由来する反応も抑制して、安全性や保存特性がより優れた非水電解質二次電池を得ることにある。   Therefore, the object of the present invention is to specify the composition of the entire compound to obtain the improvement effect proposed in the conventional invention, and also pay attention to the composition in the vicinity of the surface. By using a compound in the above as a positive electrode active material of a non-aqueous electrolyte secondary battery, a reaction resulting from deterioration near the surface of the compound is also suppressed, and a non-aqueous electrolyte secondary battery with better safety and storage characteristics is obtained. There is to get.

上述の目的を達成するために、本発明の請求項1の発明は、リチウム含有層状ニッケル酸化物粒子を正極活物質に用いた非水電解質二次電池において、前記リチウム含有層状ニッケル酸化物粒子全体の平均組成および粒子表面の組成が、一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.98、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.01)で表されることを特徴とする。 In order to achieve the above object, the first aspect of the present invention provides a nonaqueous electrolyte secondary battery using lithium-containing layered nickel oxide particles as a positive electrode active material. The average composition and the particle surface composition of the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.98, 0.1 ≦ y ≦ 0 .27, 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.01).

請求項2の発明は、請求項1記載の非水電解質二次電池において、リチウム含有層状ニッケル酸化物粒子の、粒子内のすべての場所でz−0.01≦z≦z+0.01(但し、zは任意の値)が成り立つことを特徴とする。 The invention according to claim 2 is the nonaqueous electrolyte secondary battery according to claim 1, wherein z 0 −0.01 ≦ z ≦ z 0 +0.01 at all locations in the particle of the lithium-containing layered nickel oxide particles. (Where z 0 is an arbitrary value).

請求項3の発明は、請求項1または2記載の非水電解質二次電池において、リチウム含有層状ニッケル酸化物粒子の平均粒子径が1〜50μmであることを特徴とする。   The invention according to claim 3 is the nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the lithium-containing layered nickel oxide particles have an average particle diameter of 1 to 50 μm.

本発明の非水電解質二次電池では、充放電の繰り返しによる正極結晶構造の崩壊が抑制され、昇温時の熱安定性も向上することに加えて、化合物表面部分での劣化反応、すなわち界面抵抗の上昇やガス発生、金属イオンの溶出なども抑制されるため、異種金属置換によって期待される諸性能の向上が確実に得られるようになる。   In the nonaqueous electrolyte secondary battery of the present invention, the cathode crystal structure is prevented from collapsing due to repeated charge and discharge, and the thermal stability at the time of temperature increase is improved. Since the increase in resistance, gas generation, elution of metal ions, and the like are also suppressed, the various performances expected by the substitution of different metals can be surely obtained.

また、本発明の非水電解質二次電池では、正極活物質の表面部分から内部に至るまで均質な組成であるため、期待される性能と実際の性能との間に、表面近傍と内部との組成の差に由来する充放電容量や熱安定性のばらつきが生じる可能性を抑えられる効果が得られる。   Further, since the nonaqueous electrolyte secondary battery of the present invention has a homogeneous composition from the surface portion to the inside of the positive electrode active material, between the expected performance and the actual performance, between the vicinity of the surface and the inside. An effect of suppressing the possibility of variation in charge / discharge capacity and thermal stability resulting from the difference in composition can be obtained.

さらに、本発明の非水電解質二次電池は、結晶性が低く充放電性能に劣る微粉や粗粉が正極に混入しなくなるため、寿命性能や保存特性が一層向上する。   Furthermore, since the nonaqueous electrolyte secondary battery of the present invention is not mixed with fine powder or coarse powder with low crystallinity and inferior charge / discharge performance, the life performance and storage characteristics are further improved.

本発明によれば、ニッケル系化合物全体の組成を規定して、従来までの発明で提案されてきた改善効果を得るとともに、表面近傍の組成にも着目をして、その組成が規定範囲にある化合物を非水電解質二次電池の正極活物質に使用することにより、化合物表面近傍の劣化に由来する反応も抑制して、安全性や保存特性がより優れた非水電解質二次電池を確実に製造できるため、ニッケル系化合物を正極活物質に用いた非水電解質二次電池の品質と信頼性の向上が得られ、その工業的価値は高い。   According to the present invention, the composition of the entire nickel-based compound is specified to obtain the improvement effect that has been proposed in the conventional invention, and the composition in the specified range is also focused on the composition near the surface. By using the compound as a positive electrode active material for a non-aqueous electrolyte secondary battery, the reaction resulting from deterioration near the surface of the compound is also suppressed to ensure a non-aqueous electrolyte secondary battery with better safety and storage characteristics. Since it can be manufactured, the quality and reliability of a non-aqueous electrolyte secondary battery using a nickel-based compound as a positive electrode active material can be improved, and its industrial value is high.

化合物全体の平均組成が一般式一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.01)で示されるリチウム含有層状ニッケル酸化物を正極活物質に用いた非水電解質二次電池では、製造ロットごとに放電容量や出力性能、保存性能などにばらつきが生じることが多かった。 The average composition of the entire compound is represented by the general formula: Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27 , 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.01), in a nonaqueous electrolyte secondary battery using a lithium-containing layered nickel oxide as a positive electrode active material, discharge is performed for each production lot. There were many variations in capacity, output performance, and storage performance.

本発明者は、この原因を詳しく調査した結果、リチウム含有層状ニッケル酸化物粒子全体の平均組成が上記一般式で規定される範囲内にある場合でも、粒子の最表面から内部に向かって10nm程度の深さまでの表面近傍の組成は上記一般式からはずれている場合が多く、そのような場合には界面抵抗の上昇やガス発生による電池の膨れが起こり、電池性能が低下することを明らかにした。また、化合物表面近傍の組成が一般式からはずれる原因が、出発原料、焼成条件、焼成後化合物の取り扱い方法、電池作製方法などにあることを明らかにした。   As a result of investigating the cause in detail, the present inventor has found that the average composition of the entire lithium-containing layered nickel oxide particles is within the range defined by the above general formula, and about 10 nm from the outermost surface of the particles toward the inside. It has been clarified that the composition in the vicinity of the surface up to the depth of the surface often deviates from the above general formula, and in such a case, the interface performance increases and the battery swells due to gas generation, resulting in a decrease in battery performance. . It has also been clarified that the reason why the composition in the vicinity of the compound surface deviates from the general formula is the starting material, the firing conditions, the method of handling the compound after firing, the battery preparation method, and the like.

そこで、本発明者は、出発原料や焼成条件、焼成後化合物の取り扱い方法や電池作製方法などの条件を適正化し、化合物表面近傍の平均組成および化合物全体の平均組成が所定の範囲に収まるようにして、安全性や保存特性に優れた非水電解質二次電池を得た。   Accordingly, the present inventor has optimized the conditions such as the starting material, the firing conditions, the method of handling the compound after firing and the method of producing the battery so that the average composition in the vicinity of the compound surface and the average composition of the entire compound are within a predetermined range. Thus, a non-aqueous electrolyte secondary battery excellent in safety and storage characteristics was obtained.

以下、本発明にかかる非水電解質二次電池の具体的な実施の形態について説明する。   Hereinafter, specific embodiments of the nonaqueous electrolyte secondary battery according to the present invention will be described.

本発明は、リチウム含有層状ニッケル酸化物粒子を正極活物質に用いた非水電解質二次電池において、リチウム含有層状ニッケル酸化物粒子全体の平均組成および粒子表面の組成が、一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.01)で表されることを特徴とする。 The present invention relates to a non-aqueous electrolyte secondary battery using lithium-containing layered nickel oxide particles as a positive electrode active material, wherein the average composition of the entire lithium-containing layered nickel oxide particles and the composition of the particle surface are represented by the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.01).

なお、「粒子表面」とは、リチウム含有層状ニッケル酸化物粒子において、粒子の最表面に付着した吸着物を除き、粒子表面から深さ10nmまでの部分を意味するものとし、また、「粒子内部」とは、粒子から粒子表面を除いた残りの部分を意味するものとする。   The term “particle surface” means a portion of the lithium-containing layered nickel oxide particle that has a depth of 10 nm from the particle surface excluding adsorbate adhering to the outermost surface of the particle. "" Means the remaining part of the particle excluding the particle surface.

したがって、本発明の正極活物質に用いるリチウム含有層状ニッケル酸化物粒子は、粒子表面の組成と、粒子内部の組成が大きく異なるのではなく、特に、リチウム含有層状ニッケル酸化物の一般式のzの値が、粒子内のすべての場所でz−0.01≦z≦z+0.01(但し、zは任意の値)が成り立つこと、すなわち、粒子表面と粒子内部におけるアルミニウムの組成がほぼ均一であることが好ましい。 Therefore, the lithium-containing layered nickel oxide particles used for the positive electrode active material of the present invention are not significantly different from the composition of the particle surface and the composition inside the particles. The value z 0 −0.01 ≦ z ≦ z 0 +0.01 (where z 0 is an arbitrary value) holds at all locations in the particle, that is, the composition of aluminum on the particle surface and inside the particle is It is preferable that it is substantially uniform.

本発明のリチウム含有層状ニッケル酸化物粒子は、ニッケルの一部がコバルトによって置換されるため、充放電にともなう結晶構造の変化が抑制される。また、3価で安定なアルミニウムを含むことにより、結晶構造はさらに安定化する。   In the lithium-containing layered nickel oxide particles of the present invention, since a part of nickel is replaced by cobalt, changes in the crystal structure accompanying charge / discharge are suppressed. In addition, the crystal structure is further stabilized by including trivalent and stable aluminum.

本発明のリチウム含有層状ニッケル酸化物は、a<0.3の領域まで充電すると結晶構造が大きく変化するため、そのような領域まで充電しないことが好ましい。また、同様の理由で、放電はa≦1.05の範囲内とすることが好ましい。   When the lithium-containing layered nickel oxide of the present invention is charged to a region where a <0.3, the crystal structure changes greatly. Therefore, it is preferable not to charge to such a region. For the same reason, the discharge is preferably within a range of a ≦ 1.05.

xが0.7を下回るとコバルト系化合物を正極活物質に用いた従来の非水電解質電池と放電容量が同等にまで低下し、0.87を上回ると熱安定性が極度に低下するため、xは0.7〜0.87の範囲が好ましい。また、yが0.1を下回ると結晶構造が不安定化し、逆に0.27を上回っても結晶構造の安定化は頭打ちであり、放電容量の低下をまねくだけであるため、yは0.1〜0.27の範囲が好ましい。さらに、zが0.02を下回ると結晶構造の安定性が低下し、さらに充電時の熱安定性も低下する。しかし、zが0.1を上回ると放電容量が著しく低下するため、zは0.02〜0.1の範囲が望ましい。   When x is less than 0.7, the discharge capacity of the conventional nonaqueous electrolyte battery using a cobalt-based compound as the positive electrode active material is reduced to the same level, and when it exceeds 0.87, the thermal stability is extremely reduced. x is preferably in the range of 0.7 to 0.87. Further, if y is less than 0.1, the crystal structure becomes unstable. Conversely, even if it exceeds 0.27, the stabilization of the crystal structure reaches its peak, and only leads to a decrease in discharge capacity. A range of .1 to 0.27 is preferred. Furthermore, when z is less than 0.02, the stability of the crystal structure is lowered, and the thermal stability during charging is also lowered. However, since the discharge capacity is significantly reduced when z exceeds 0.1, z is preferably in the range of 0.02 to 0.1.

リチウム含有層状ニッケル酸化物粒子の粒子表面の組成が上記一般式の組成からはずれる原因としては、原料の混合が不十分であったり、原料の粒径が大きくて、焼成後の化合物表面に未反応の原料残渣(水酸化リチウムなど)が付着した場合や、焼成後に化合物が水分や炭酸ガスを吸収してリチウム化合物(炭酸リチウムなど)を表面に生成する場合、さらに電池作製時に化合物を溶剤中の水分を吸収してリチウム化合物を生成する場合の他に、焼成温度が適正温度(組成によって異なるが、一般的には650〜750℃)からはずれたり、焼成時間が短すぎる場合にも起こる。   The reason why the composition of the lithium-containing layered nickel oxide particles on the particle surface deviates from the composition of the above general formula is that the mixing of the raw materials is insufficient or the raw material has a large particle size and is unreacted on the surface of the compound after firing. When a raw material residue (lithium hydroxide, etc.) adheres, or when the compound absorbs moisture or carbon dioxide gas after firing to produce a lithium compound (lithium carbonate, etc.) on the surface, In addition to the case where moisture is absorbed to produce a lithium compound, it occurs when the firing temperature deviates from an appropriate temperature (depending on the composition, but generally 650 to 750 ° C.) or the firing time is too short.

このようにして、粒子表面の組成が粒子内部の組成と異なった場合でも、一般的な組成分析で用いられる発光分光分析で化合物全体の組成を定性した場合には、粒子表面の組成のずれは検知されず、化合物全体の平均組成は所定の範囲内におさまることが多い。このような状況を理解せずに粒子表面の組成が規定値からはずれた化合物を正極活物質として使用すると、製造ロットごとに放電容量や出力性能、保存性能などにばらつきが生じる。   In this way, even if the composition of the particle surface is different from the composition inside the particle, if the composition of the entire compound is qualitatively determined by emission spectroscopy used in general composition analysis, the composition deviation of the particle surface will be In many cases, the average composition of the entire compound falls within a predetermined range without being detected. If a compound whose particle surface composition deviates from the specified value is used as a positive electrode active material without understanding such a situation, variations in discharge capacity, output performance, storage performance, etc. occur for each production lot.

粒子表面の組成が所定の組成範囲内に収まる場合でも、期待される性能と実際の性能との間に、粒子表面と粒子内部との組成の差に由来する充放電容量や熱安定性のばらつきを抑えるには、粒子全体としてなるべく均質な組成であること、すなわち、粒子表面と粒子内部の組成の差ができるだけ小さいことが望ましい。   Even if the composition of the particle surface falls within the specified composition range, variation in charge / discharge capacity and thermal stability due to the difference in composition between the particle surface and the inside of the particle between expected performance and actual performance In order to suppress this, it is desirable that the entire particle has a composition as homogeneous as possible, that is, the difference in composition between the particle surface and the inside of the particle is as small as possible.

特に、結晶構造の安定化や充電時の熱安定性の向上に大きな効果はあるが、放電容量の低下や界面抵抗の上昇にも影響を与えるアルミニウムの添加量は、製造ロットごとのばらつきを少なくするためには一定であることが望ましい。無論、ニッケルやコバルトについても一定の組成が望ましいことはいうまでもない。   In particular, it has a great effect on stabilizing the crystal structure and improving the thermal stability during charging, but the amount of aluminum added, which also affects the decrease in discharge capacity and the increase in interfacial resistance, reduces variation among production lots. In order to do so, it is desirable to be constant. Of course, it is needless to say that a certain composition is desirable for nickel and cobalt.

以上のように、リチウム含有層状ニッケル酸化物粒子全体の平均組成および粒子表面の組成が、共に一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.01)で示される範囲内にある化合物を使用するには、原料、焼成方法、取り扱い方法を規定するとともに、オージェ電子分光やX線光電子分光、飛行時間形二次イオン質量分析などによる化合物表面の検査が必要である。 As described above, the average composition of the entire lithium-containing layered nickel oxide particles and the composition of the particle surface are both expressed by the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.01) In addition to defining raw materials, firing methods, and handling methods, it is necessary to inspect the compound surface by Auger electron spectroscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and the like.

なお、化合物の粒子径は1μm以上、50μm以下におさまることが好ましい。一般的に、粒子径が1μm以下の微粉は、結晶性の低い粗悪な化合物であり、粒子全体の平均組成や粒子表面の組成が請求項1で規定する範囲に収まっていない粒子が多い。このような微粉が化合物粉体中に微量混合したとしても、粉体全体としての平均組成や表面の平均組成に与える影響は小さいため請求項1を満たす場合もあるが、好ましくはこのような微粉の混入は避けたい。   In addition, it is preferable that the particle diameter of a compound falls in 1 micrometer or more and 50 micrometers or less. In general, a fine powder having a particle size of 1 μm or less is a poor compound with low crystallinity, and there are many particles whose average composition of the whole particle and composition of the particle surface are not within the range specified in claim 1. Even if such a fine powder is mixed in a small amount in the compound powder, the influence on the average composition of the powder as a whole and the average composition of the surface may be small. I want to avoid mixing.

一方、粒子径が50μm以上の粗粉は、内部まで焼成が進みにくい短所があるため、粒子全体の組成や表面の組成が請求項1を満たす場合でも、粒子内では結晶性が低い部分が生じる可能性がある。このような理由から、化合物の粒子径は1〜50μmの範囲にあることが好ましい。なお、粒度分布は、原料作製の調整方法や、焼成後の化合物の分級で調整可能である。   On the other hand, a coarse powder having a particle size of 50 μm or more has a disadvantage that firing is difficult to proceed to the inside, and therefore, even when the composition of the entire particle and the composition of the surface satisfy claim 1, a portion having low crystallinity is generated in the particle. there is a possibility. For these reasons, the particle diameter of the compound is preferably in the range of 1 to 50 μm. The particle size distribution can be adjusted by adjusting the raw material preparation or classifying the compound after firing.

本発明の非水電解質二次電池は、図1および図2に示されるように、上述のような化合物を正極活物質として用いた正極と負極とがセパレータを介して円形状または長円形状に捲回されてなる電極群を電池容器に収納し、電極群に非水電解質を含浸して構成されている。   As shown in FIG. 1 and FIG. 2, the nonaqueous electrolyte secondary battery of the present invention has a positive electrode and a negative electrode using the above compound as a positive electrode active material in a circular shape or an oval shape through a separator. The wound electrode group is housed in a battery container, and the electrode group is impregnated with a nonaqueous electrolyte.

図1は長円筒形非水電解質二次電池の外観を示す斜視図であり、図2は長円筒形非水電解質二次電池に収納された電極群の構成を示す斜視図である。図1および図2において、1は非水電解質二次電池、2は発電要素、2aは正極、2bは負極、2cはセパレータ、3は電池ケース、3aは電池ケースのケース部、3bは電池ケースの蓋部、4は正極端子、5は負極端子、6は安全弁、7は電解液注入口である。   FIG. 1 is a perspective view showing an external appearance of a long cylindrical nonaqueous electrolyte secondary battery, and FIG. 2 is a perspective view showing a configuration of an electrode group housed in the long cylindrical nonaqueous electrolyte secondary battery. 1 and 2, 1 is a non-aqueous electrolyte secondary battery, 2 is a power generation element, 2a is a positive electrode, 2b is a negative electrode, 2c is a separator, 3 is a battery case, 3a is a case part of the battery case, and 3b is a battery case. , 4 is a positive terminal, 5 is a negative terminal, 6 is a safety valve, and 7 is an electrolyte inlet.

この非水電解質二次電池に用いられる負極、セパレータおよび電解質などは、特に従来用いられてきたものと異なるところなく、通常用いられているものが使用できる。すなわち、本発明の非水電解質二次電池に用いる負極材料としては、リチウムイオンを吸蔵・放出可能な種々の炭素材料、または金属リチウムやリチウム合金が使用できる。また、遷移金属酸化物や窒化物を使用してもよい。   The negative electrode, separator, electrolyte, and the like used for this nonaqueous electrolyte secondary battery are not particularly different from those conventionally used, and those that are normally used can be used. That is, as the negative electrode material used in the nonaqueous electrolyte secondary battery of the present invention, various carbon materials that can occlude and release lithium ions, metallic lithium, and lithium alloys can be used. Transition metal oxides and nitrides may also be used.

また、本発明の非水電解質二次電池に用いるセパレータとしては、ポリエチレン等のポリオレフィン樹脂からなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであってもよい。   In addition, as the separator used in the nonaqueous electrolyte secondary battery of the present invention, a microporous membrane made of polyolefin resin such as polyethylene is used, and a plurality of microporous membranes having different materials, weight average molecular weights and porosity are laminated. Or those containing a suitable amount of various plasticizers, antioxidants, flame retardants and the like in these microporous membranes.

本発明の非水電解質二次電池に用いる電解液の有機溶媒には、特に制限はなく、例えばエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類等を用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系化合物が好ましい。これらの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、アニソール、モノグライム、4−メチル−2−ペンタノン、酢酸エチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、ジメトキシエタン、メチルフォルメイト、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチルおよびこれらの混合溶媒等を挙げることができるが、必ずしもこれらに限定されるものではない。好ましくは環状カーボネート類および環状エステル類である。もっとも好ましくは、エチレンカーボネート、プロピレンカーボネート、メチルエチルカーボネート、およびジエチルカーボネートのうち、1種または2種以上した混合物の有機溶媒である。   There are no particular restrictions on the organic solvent of the electrolyte used in the non-aqueous electrolyte secondary battery of the present invention. For example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons. , Esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane hydrocarbons, etc. can be used, among these ethers, ketones, esters, lactones, halogenated hydrocarbons , Carbonates and sulfolane compounds are preferred. Examples of these are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, ethyl acetate, methyl acetate, methyl propionate, ethyl propionate, 1,2-dichloroethane. , Γ-butyrolactone, dimethoxyethane, methyl formate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, phosphorus Examples thereof include trimethyl acid, triethyl phosphate, and mixed solvents thereof, but are not necessarily limited thereto. Cyclic carbonates and cyclic esters are preferred. Most preferably, the organic solvent is a mixture of one or more of ethylene carbonate, propylene carbonate, methyl ethyl carbonate, and diethyl carbonate.

また、本発明の非水電解質二次電池に用いる電解質塩としては、特に制限はないが、LiClO、LiBF、LiAsF、CFSOLi、LiPF、LiN(CFSO、LiN(CSO、LiI、LiAlCl等およびそれらの混合物が挙げられる。好ましくは、LiBF、LiPFのうち、1種または2種以上を混合したリチウム塩がよい。 As the electrolyte salt used for the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, LiClO 4, LiBF 4, LiAsF 6, CF 3 SO 3 Li, LiPF 6, LiN (CF 3 SO 2) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiI, LiAlCl 4 and the like and mixtures thereof. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

また、上記電解質には補助的に固体のイオン導伝性ポリマー電解質を用いることもできる。この場合、非水電解質二次電池の構成としては、正極、負極およびセパレータと有機または無機の固体電解質と上記非水電解液との組み合わせ、または正極、負極およびセパレータとしての有機または無機の固体電解質膜と上記非水電解液との組み合わせがあげられる。ポリマー電解質膜がポリエチレンオキシド、ポリアクリロニトリルまたはポリエチレングリコールおよびこれらの変成体などの場合には、軽量で柔軟性があり、巻回極板に使用する場合に有利である。さらに、ポリマー電解質以外にも、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質との混合材料などを使用することができる。   In addition, a solid ion-conducting polymer electrolyte can be used as an auxiliary material for the electrolyte. In this case, the configuration of the nonaqueous electrolyte secondary battery includes a combination of a positive electrode, a negative electrode and a separator, an organic or inorganic solid electrolyte and the nonaqueous electrolyte, or an organic or inorganic solid electrolyte as the positive electrode, the negative electrode and the separator. A combination of the membrane and the non-aqueous electrolyte solution can be mentioned. When the polymer electrolyte membrane is polyethylene oxide, polyacrylonitrile, polyethylene glycol, or a modified product thereof, the polymer electrolyte membrane is lightweight and flexible, which is advantageous when used for a wound electrode plate. In addition to the polymer electrolyte, an inorganic solid electrolyte or a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte can be used.

その他の電池の構成要素として、集電体、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いて差し支えない。   Other battery components include a current collector, a terminal, an insulating plate, a battery case, and the like. However, these components may be used as they are.

以下に、本発明の実施例を、比較例とあわせて説明する。   Examples of the present invention will be described below together with comparative examples.

[実施例1〜5、比較例1〜10に用いるニッケル系化合物の作製]
硫酸ニッケル、硫酸コバルトを所定の配合比で溶解し、さらに十分に攪拌させながら水酸化ナトリウム溶液を加えてニッケル-コバルト複合共沈水酸化物を得た。生成した共沈物を水洗、乾燥し、平均粒径1μmの水酸化アルミニウムと十分に混合した後に水酸化リチウム一水和塩を加え、リチウムと、ニッケル+コバルト+アルミニウムのモル比が、1.05:1となるように調整して前駆体を作製した。
[Production of Nickel Compounds Used in Examples 1 to 5 and Comparative Examples 1 to 10]
Nickel sulfate and cobalt sulfate were dissolved at a predetermined blending ratio, and a sodium hydroxide solution was added with sufficient stirring to obtain a nickel-cobalt composite coprecipitated hydroxide. The resulting coprecipitate was washed with water, dried, and thoroughly mixed with aluminum hydroxide having an average particle diameter of 1 μm, and then lithium hydroxide monohydrate was added. The molar ratio of lithium to nickel + cobalt + aluminum was 1.05: The precursor was prepared by adjusting to 1.

次に、この前駆体を酸素雰囲気中、700℃で20時間焼成し、室温まで冷却した後に乾燥アルゴンガス中で取り出して粉砕し、組成式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、x+y+z=1)で表される、実施例1〜5および比較例1〜10に用いた、種々のニッケル系化合物を得た。なお、得られた化合物はデシケーター中に真空保管した。 Next, the precursor was calcined at 700 ° C. for 20 hours in an oxygen atmosphere, cooled to room temperature, taken out in a dry argon gas and pulverized, and the composition formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, x + y + z = 1). 5 and various nickel compounds used in Comparative Examples 1 to 10 were obtained. In addition, the obtained compound was vacuum-stored in the desiccator.

続いて、出発原料として、炭酸リチウムと四酸化三コバルトを混合し、大気中、800℃で20時間焼成した後に、室温まで冷却したのちに大気中で粉砕し、組成式LiCoOで表されるコバルト系化合物(比較例11)を得た。得られた化合物はデシケーター中に真空保管した。 Subsequently, as a starting material, lithium carbonate and tricobalt tetroxide are mixed, calcined in the atmosphere at 800 ° C. for 20 hours, cooled to room temperature, pulverized in the atmosphere, and expressed by the composition formula LiCoO 2. A cobalt-based compound (Comparative Example 11) was obtained. The obtained compound was vacuum-stored in a desiccator.

化合物の一部をデシケーターから取り出し、定性分析をおこなった。その結果、粉末X線回折では、すべての化合物粒子について未反応の水酸化物やアルミン酸リチウム、または炭酸リチウム等の不純物のピークは認められなかった。   A part of the compound was removed from the desiccator and subjected to qualitative analysis. As a result, in powder X-ray diffraction, no peak of impurities such as unreacted hydroxide, lithium aluminate, or lithium carbonate was observed for all compound particles.

次に、各化合物の粒子表面部分の組成を調べるために、アルゴンイオンスパッタリングを併用したX線光電子分光法で深さ方向の組成分析をおこなった。分析は以下の手順でおこなった。まず、露点−50℃以下のドライルーム中で、X線光電子分光法用のサンプルステージ上に貼りつけた導電性カーボンテープ上に化合物粒子の粉体をまぶし、その上に清浄な表面を有するステンレス板を載せて油圧プレス器で適度に圧迫し、目視上、平らで密なサンプルを作製した。   Next, in order to investigate the composition of the particle surface portion of each compound, composition analysis in the depth direction was performed by X-ray photoelectron spectroscopy combined with argon ion sputtering. The analysis was performed according to the following procedure. First, in a dry room with a dew point of −50 ° C. or less, stainless steel having a clean surface coated with a powder of compound particles on a conductive carbon tape affixed on a sample stage for X-ray photoelectron spectroscopy. The plate was placed and pressed moderately with a hydraulic press, and a flat and dense sample was produced visually.

次に、このサンプルを、トランスファーベッセルを用いて大気に触れないようにX線光電子分光装置内に装着した。X線光電子分光法の分析範囲径は100μmφとしたため、得られるスペクトルは数十個の化合物粒子のからの平均値となるが、同一の化合物を用いて分析サンプルの準備からX線光電子分光測定までの作業を数十回繰り返しても、得られる情報に誤差は生じなかった。なお、化合物の最表面にはガスや不純物がわずかに吸着しているため、ここでは化合物の最表面から1nmエッチングした後のスペクトルを真の化合物表面のスペクトルと定義した。深さは単結晶Si換算の厚さで算定した。   Next, this sample was mounted in an X-ray photoelectron spectrometer so as not to be exposed to the atmosphere using a transfer vessel. Since the analysis range diameter of the X-ray photoelectron spectroscopy is 100 μmφ, the spectrum obtained is an average value from several tens of compound particles, but from the preparation of the analysis sample to the X-ray photoelectron spectroscopy measurement using the same compound No error occurred in the obtained information even if the above operation was repeated several tens of times. Since the gas and impurities are slightly adsorbed on the outermost surface of the compound, the spectrum after etching 1 nm from the outermost surface of the compound is defined as the spectrum of the true compound surface. The depth was calculated by the thickness in terms of single crystal Si.

なお、一連の化合物についての表面分析は、上記のように粉体を凝集圧迫した平板についておこなった。化合物をアセチレンブラック、ポリフッ化ビニリデンと混合して平板上に塗布し、圧迫成形した極板について同様の分析をおこなっても、アセチレンブラックやポリフッ化ビニリデン中には金属元素が含まれないため、化合物表面の特定および化合物表面の組成分析には支障をもたらさない。したがって、極板についても同様の分析が可能である。   In addition, the surface analysis about a series of compounds was performed about the flat plate which carried out the aggregation pressure of the powder as mentioned above. Even if the compound is mixed with acetylene black and polyvinylidene fluoride, applied onto a flat plate, and the same analysis is performed on the compression-molded electrode plate, the metal element is not contained in acetylene black or polyvinylidene fluoride. It does not interfere with the surface identification and composition analysis of the compound surface. Therefore, the same analysis is possible for the electrode plate.

ICP発光分光法で分析した化合物粒子全体の平均組成を表1に、また、X線光電子分光法による各元素のスペクトルの面積比から算出される粒子の、一定の深さ部分の組成を表2に示す。なお、組成式をLiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、x+y+z=1)とした場合のaの値はすべて1.03とした。 Table 1 shows the average composition of the entire compound particles analyzed by ICP emission spectroscopy, and Table 2 shows the composition of a certain depth portion of the particles calculated from the area ratio of the spectrum of each element by X-ray photoelectron spectroscopy. Shown in The composition formula is Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ When z ≦ 0.1 and x + y + z = 1), the values of a were all set to 1.03.

Figure 2005108738
Figure 2005108738

Figure 2005108738
Figure 2005108738

[実施例1〜5および比較例1〜11]
[実施例1]
表1および表2に示した実施例1の化合物87重量%、アセチレンブラック5重量%、ポリフッ化ビニリデン(PVdF)8重量%を混合し、これに含水量50ppm以下のN−メチル−2−ピロリドン(NMP)を加えてペースト状とし、このペーストをアルミニウム箔上に塗布、乾燥して正極合材層を形成させて、正極板を作製した。負極は、炭素材料(グラファイト)とPVdFとを混合し、これにNMPを加えてペースト状とし、さらに銅箔上に塗布、乾燥して負極合材層を形成させて、負極板を作製した。
[Examples 1 to 5 and Comparative Examples 1 to 11]
[Example 1]
87% by weight of the compound of Example 1 shown in Table 1 and Table 2, 5% by weight of acetylene black and 8% by weight of polyvinylidene fluoride (PVdF) were mixed, and this was mixed with N-methyl-2-pyrrolidone having a water content of 50 ppm or less. (NMP) was added to form a paste, and this paste was applied onto an aluminum foil and dried to form a positive electrode mixture layer, thereby producing a positive electrode plate. For the negative electrode, a carbon material (graphite) and PVdF were mixed, and NMP was added thereto to form a paste, which was further coated on a copper foil and dried to form a negative electrode mixture layer, thereby producing a negative electrode plate.

このようにして作製した帯状の正極板と負極板とを、図2に示すように、セパレータを介して長円形状に捲回して電極群を構成した後、この電極群を長円筒形の有底アルミニウム容器に挿入し、さらに、電極群の巻芯部に充填物をつめた後、電解液を注入し、レーザー溶接にて容器と蓋とを封口溶接した。なお、ペースト作製から電極加工、電池組立に至る全ての工程は露点50℃以下の乾燥環境下でおこなった。得られた電池を実施例1の電池とした。   As shown in FIG. 2, the thus produced belt-like positive electrode plate and negative electrode plate are wound into an oval shape through a separator to form an electrode group. After inserting into the bottom aluminum container and filling the core part of the electrode group with the filler, the electrolytic solution was injected and the container and the lid were sealed and welded by laser welding. All processes from paste preparation to electrode processing and battery assembly were performed in a dry environment with a dew point of 50 ° C. or lower. The obtained battery was referred to as the battery of Example 1.

[実施例2〜5]
表1および表2に示した実施例2の化合物を正極活物質としたこと以外は実施例1と同様にして、実施例2の電池を作製した。同様にして、表1および表2に示した実施例3〜5の化合物を正極活物質としたこと以外は実施例1と同様にして、実施例3〜5の電池を作製した。
[Examples 2 to 5]
A battery of Example 2 was produced in the same manner as Example 1 except that the compound of Example 2 shown in Table 1 and Table 2 was used as the positive electrode active material. Similarly, batteries of Examples 3 to 5 were fabricated in the same manner as in Example 1 except that the compounds of Examples 3 to 5 shown in Table 1 and Table 2 were used as the positive electrode active material.

[比較例1〜11]
表1および表2に示した比較例1の化合物を正極活物質としたこと以外は実施例1と同様にして、比較例1の電池を作製した。同様にして、表1および表2に示した比較例2〜11の化合物を正極活物質としたこと以外は実施例1と同様にして、比較例2〜11の電池を作製した。
[Comparative Examples 1 to 11]
A battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the compound of Comparative Example 1 shown in Table 1 and Table 2 was used as the positive electrode active material. Similarly, batteries of Comparative Examples 2 to 11 were produced in the same manner as in Example 1 except that the compounds of Comparative Examples 2 to 11 shown in Table 1 and Table 2 were used as the positive electrode active material.

[放電容量測定および充放電サイクル試験]
実施例1〜5および比較例1〜11の電池を、1CAの電流で4.2Vの電圧まで充電した後、1CAの電流で3.0Vの電圧まで放電したときの放電容量を測定し、正極活物質1g当たりの放電容量を算定した。 次に、これらの電池を、同じ試験条件で300サイクル充放電した後の放電容量を求め、これを初期の放電容量で除した容量保持率を算定し、これを「サイクル後容量保持率」とした。
[Discharge capacity measurement and charge / discharge cycle test]
After the batteries of Examples 1 to 5 and Comparative Examples 1 to 11 were charged to a voltage of 4.2 V with a current of 1 CA, the discharge capacity was measured when discharged to a voltage of 3.0 V with a current of 1 CA. The discharge capacity per gram of active material was calculated. Next, the discharge capacity after charging and discharging these batteries for 300 cycles under the same test conditions was calculated, and the capacity retention ratio obtained by dividing this by the initial discharge capacity was calculated, and this was referred to as “post-cycle capacity retention ratio”. did.

[熱安定性試験]
実施例1〜5および比較例1〜11の電池では、0.2CAの電流でLi0.3の状態になるまで充電し、比較例11の電池では0.2CAの電流でLi0.5の状態になるまで充電した。充電後、(社)日本蓄電池工業会発行の「リチウム二次電池安全性評価基準ガイドライン(SBA G101)」に記載の釘刺し試験方法に準じて安全性試験をおこなった。
[Thermal stability test]
In the batteries of Examples 1 to 5 and Comparative Examples 1 to 11, the battery was charged at a current of 0.2 CA until it reached a state of Li0.3, and the battery of Comparative Example 11 was changed to a state of Li0.5 at a current of 0.2 CA. Charged until After charging, a safety test was conducted in accordance with the nail penetration test method described in “Lithium Secondary Battery Safety Evaluation Standard Guidelines (SBA G101)” issued by Japan Storage Battery Industry Association.

[保存試験]
1CAの電流で4,2Vの電圧まで充電した後、1CAの電流で3.0Vまで放電する充放電を初期に3回繰り返し、3回目の放電容量を初期容量とした。次に、1CAの電流で4.2Vの電圧まで再度充電した後、電池を60℃の環境下で10日間保存し、保存後も初期と同様の充放電条件で3回充放電を繰り返し、3回目の放電容量を保存後容量として、これを初期の放電容量で除して保存後の容量保持率を算定し、これを「保存後容量保持率」とした。
[Preservation test]
After charging to a voltage of 4,2V with a current of 1CA, charging / discharging of discharging to 3.0V with a current of 1CA was repeated three times in the initial stage, and the third discharge capacity was defined as the initial capacity. Next, after charging again to a voltage of 4.2 V with a current of 1 CA, the battery was stored in an environment of 60 ° C. for 10 days, and after the storage, the battery was repeatedly charged and discharged three times under the same charge / discharge conditions as in the initial stage. The discharge capacity at the second time was taken as the capacity after storage, and this was divided by the initial discharge capacity to calculate the capacity retention after storage, which was designated as “capacity retention after storage”.

これらの試験結果を表3に示した。なお、表3において、熱安定性試験の欄は、比較例11の結果と比較して、同等の安全性であった場合は○、やや安全性が低下した場合は△、大幅に安全性が低下した場合は×と記した。   These test results are shown in Table 3. In Table 3, in the column of thermal stability test, compared to the result of Comparative Example 11, when the safety was equivalent, it was ◯, when the safety was slightly lowered, △, When it fell, it was described as x.

Figure 2005108738
Figure 2005108738

表1〜3の結果より、従来のコバルト系化合物を用いた非水電解質二次電池と比較して、放電容量、サイクル寿命性能、熱安定性、保存性能など総合的に優れる電池は、粒子全体の平均組成、および粒子表面の組成が、一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、x+y+z=1)で表されるニッケル系化合物を正極活物質に用いた電池であることがわかった。 From the results shown in Tables 1 to 3, compared to conventional non-aqueous electrolyte secondary batteries using cobalt compounds, the battery, which is comprehensively superior in terms of discharge capacity, cycle life performance, thermal stability, storage performance, etc. And the composition of the particle surface have the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ It was found that the battery uses a nickel-based compound represented by 0.27, 0.02 ≦ z ≦ 0.1, x + y + z = 1) as the positive electrode active material.

[実施例6〜9および比較例12〜14]
[実施例6]
ニッケル系化合物は、焼成条件が750℃、10時間であること以外は実施例3と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、実施例6の電池を作製した。
[Examples 6 to 9 and Comparative Examples 12 to 14]
[Example 6]
The nickel-based compound was produced under the same conditions as in Example 3 except that the firing conditions were 750 ° C. and 10 hours. And the battery of Example 6 was produced on the same conditions as Example 3 except having used this nickel-type compound for the positive electrode active material.

[実施例7]
ニッケル系化合物は、焼成条件が750℃、20時間であること以外は実施例3と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、実施例7の電池を作製した。
[Example 7]
The nickel-based compound was produced under the same conditions as in Example 3 except that the firing conditions were 750 ° C. and 20 hours. And the battery of Example 7 was produced on the same conditions as Example 3 except having used this nickel-type compound for the positive electrode active material.

[実施例8]
ニッケル系化合物は、焼成条件が800℃、20時間であること以外は実施例3と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、実施例8の電池を作製した。
[Example 8]
The nickel-based compound was produced under the same conditions as in Example 3 except that the firing conditions were 800 ° C. and 20 hours. And the battery of Example 8 was produced on the same conditions as Example 3 except having used this nickel-type compound for the positive electrode active material.

[実施例9]
ニッケル系化合物は、合成に用いた水酸化アルミニウムの平均粒径が50μmであること以外は実施例5と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例5と同一の条件で、実施例9の電池を作製した。
[Example 9]
The nickel-based compound was produced under the same conditions as in Example 5 except that the average particle diameter of aluminum hydroxide used for the synthesis was 50 μm. And the battery of Example 9 was produced on the conditions same as Example 5 except having used this nickel-type compound for the positive electrode active material.

[比較例12]
ニッケル系化合物は、合成に用いた水酸化アルミニウムの平均粒径が0.01μmであること以外は実施例5と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例5と同一の条件で、比較例12の電池を作製した。
[Comparative Example 12]
The nickel-based compound was produced under the same conditions as in Example 5 except that the average particle diameter of aluminum hydroxide used for the synthesis was 0.01 μm. And the battery of the comparative example 12 was produced on the conditions same as Example 5 except having used this nickel-type compound for the positive electrode active material.

[比較例13]
ニッケル系化合物は、焼成後の化合物は湿度50%中の大気中で炉から取り出し、その後真空保管をおこなったこと以外は実施例5と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例5と同一の条件で、比較例13の電池を作製した。
[Comparative Example 13]
The nickel-based compound was produced under the same conditions as in Example 5 except that the fired compound was taken out from the furnace in the atmosphere at 50% humidity and then vacuum-stored. And the battery of the comparative example 13 was produced on the conditions same as Example 5 except having used this nickel-type compound for the positive electrode active material.

[比較例14]
ニッケル系化合物は、焼成後の化合物は湿度50%中の大気中で炉から取り出し、その後の大気中で保管したこと以外は実施例5と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例5と同一の条件で、比較例14の電池を作製した。
[Comparative Example 14]
The nickel-based compound was produced under the same conditions as in Example 5, except that the compound after firing was taken out of the furnace in the atmosphere at 50% humidity and stored in the atmosphere thereafter. And the battery of the comparative example 14 was produced on the conditions same as Example 5 except having used this nickel-type compound for the positive electrode active material.

実施例6〜9および比較例12〜14で作製したニッケル系化合物の定性分析をおこなった。その結果、粉末X線回折では、すべての化合物について未反応の水酸化物やアルミン酸リチウム等の不純物のピークは認められなかった。   Qualitative analysis of the nickel-based compounds prepared in Examples 6-9 and Comparative Examples 12-14 was performed. As a result, in powder X-ray diffraction, no peak of impurities such as unreacted hydroxide and lithium aluminate was observed for all compounds.

ICP発光分光法で分析した化合物粒子全体の平均組成を表4に、また、アルゴンイオンスパッタリングを併用したX線光電子分光法による各元素のスペクトルの面積比から算出される粒子の、一定の深さ部分の組成を表5に示す。なお、組成式をLiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、x+y+z=1)とした場合のaの値はすべて1.03とした。 The average composition of the entire compound particles analyzed by ICP emission spectroscopy is shown in Table 4, and the constant depth of the particles calculated from the area ratio of the spectrum of each element by X-ray photoelectron spectroscopy combined with argon ion sputtering. The composition of the parts is shown in Table 5. The composition formula is Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ When z ≦ 0.1 and x + y + z = 1), the values of a were all set to 1.03.

Figure 2005108738
Figure 2005108738

Figure 2005108738
Figure 2005108738

実施例6〜9および比較例12〜14で作製した電池の正極活物質1g当たりの放電容量、充放電サイクル後の容量保持率、熱安定性試験結果、保存性能を表6に示す。試験方法は実施例1と同様である。なお、表6には、比較のため、実施例3および実施例5の測定結果も同時に示した。   Table 6 shows the discharge capacity per gram of the positive electrode active material of the batteries produced in Examples 6 to 9 and Comparative Examples 12 to 14, the capacity retention after the charge / discharge cycle, the thermal stability test results, and the storage performance. The test method is the same as in Example 1. Table 6 also shows the measurement results of Example 3 and Example 5 for comparison.

Figure 2005108738
Figure 2005108738

表4〜6に示された結果より、粒子全体の組成が一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、x+y+z=1)で規定される範囲内にあり、従来のコバルト系化合物を用いた電池より良好な諸性能を示すであろうと期待される電池においても、原料や焼成条件、焼成後の化合物の取り扱い方法などにより、粒子表面の組成が、粒子全体の組成よりずれてしまい、その結果として期待される性能が得られない場合があることが明らかになった。 From the results shown in Tables 4 to 6, the composition of the entire particle is expressed by the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0 .1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, x + y + z = 1), and shows various performances better than the battery using a conventional cobalt compound. Even in a battery that is expected to be soldered, the composition of the particle surface may deviate from the composition of the entire particle due to the raw materials, firing conditions, handling method of the compound after firing, etc., and as a result, the expected performance cannot be obtained. It became clear that there is.

つまり、ニッケル系化合物を正極活物質とした電池で期待通りの良好な性能を得るには、粒子表面においても、粒子全体の組成を表す一般式を満たす粒子を使用することが必須条件であることが本発明で明らかになった。   In other words, in order to obtain good performance as expected in a battery using a nickel-based compound as a positive electrode active material, it is essential to use particles that satisfy the general formula representing the composition of the entire particle even on the particle surface. Became clear by the present invention.

また、粒子表面の組成が、粒子全体の組成を表す一般式で示される範囲内におさまっている場合でも、期待通りの性能を得るためには組成の変動はなるべく少ないことが好ましく、特に添加量が諸性能に大きな影響をおよぼすAlの組成は±0.01程度におさまっていることが好ましい。   Even when the composition of the particle surface is within the range represented by the general formula representing the composition of the entire particle, it is preferable that the variation of the composition is as small as possible in order to obtain the expected performance. However, it is preferable that the Al composition that greatly affects various performances be within about ± 0.01.

[実施例10〜13および比較例15、16]
[実施例10]
ニッケル系化合物は、得られた粒子の粒度分布が2〜30μmの範囲であること以外は実施例3と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、実施例10の電池を作製した。
[Examples 10 to 13 and Comparative Examples 15 and 16]
[Example 10]
The nickel-based compound was produced under the same conditions as in Example 3 except that the particle size distribution of the obtained particles was in the range of 2 to 30 μm. And the battery of Example 10 was produced on the same conditions as Example 3 except having used this nickel-type compound for the positive electrode active material.

[実施例11]
ニッケル系化合物は、共沈水酸化物作製時に添加する水酸化ナトリウム量を調整し、得られた粒子の粒度分布が5〜50μmの範囲であること以外は実施例3と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、実施例11の電池を作製した。
[Example 11]
The nickel-based compound was prepared under the same conditions as in Example 3 except that the amount of sodium hydroxide added during preparation of the coprecipitated hydroxide was adjusted and the particle size distribution of the obtained particles was in the range of 5 to 50 μm. And the battery of Example 11 was produced on the same conditions as Example 3 except having used this nickel-type compound for the positive electrode active material.

[実施例12]
ニッケル系化合物は、共沈水酸化物作製時に添加する水酸化ナトリウム量を調整し、得られた粒子の粒度分布が1〜20μmの範囲であること以外は実施例3と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、実施例12の電池を作製した。
[Example 12]
The nickel-based compound was prepared under the same conditions as in Example 3 except that the amount of sodium hydroxide added during preparation of the coprecipitated hydroxide was adjusted and the particle size distribution of the obtained particles was in the range of 1 to 20 μm. And the battery of Example 12 was produced on the same conditions as Example 3 except having used this nickel-type compound for the positive electrode active material.

[実施例13]
ニッケル系化合物は、実施例12と同一の条件で作製した化合物粒子を乾式分級し、粒度分布を5〜10μmの範囲に調整した。このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、実施例13の電池を作製した。
[Example 13]
For the nickel compound, compound particles produced under the same conditions as in Example 12 were dry classified, and the particle size distribution was adjusted to a range of 5 to 10 μm. A battery of Example 13 was made under the same conditions as Example 3 except that this nickel-based compound was used as the positive electrode active material.

[比較例15]
ニッケル系化合物は、共沈水酸化物作製時に添加する水酸化ナトリウム量を調整し、得られた粒子の粒度分布が20〜80μmの範囲であること以外は実施例3と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、比較例15の電池を作製した。
[Comparative Example 15]
The nickel-based compound was prepared under the same conditions as in Example 3 except that the amount of sodium hydroxide added during preparation of the coprecipitated hydroxide was adjusted and the particle size distribution of the obtained particles was in the range of 20 to 80 μm. And the battery of the comparative example 15 was produced on the conditions same as Example 3 except having used this nickel-type compound for the positive electrode active material.

[比較例16]
ニッケル系化合物は、共沈水酸化物作製時に添加する水酸化ナトリウム量を調整し、得られた粒子の粒度分布が0.5〜15μmの範囲であること以外は実施例3と同一の条件で作製した。そして、このニッケル系化合物を正極活物質に用いた以外は実施例3と同一の条件で、比較例16の電池を作製した。
[Comparative Example 16]
The nickel-based compound is prepared under the same conditions as in Example 3 except that the amount of sodium hydroxide added during preparation of the coprecipitated hydroxide is adjusted and the particle size distribution of the obtained particles is in the range of 0.5 to 15 μm. did. And the battery of the comparative example 16 was produced on the conditions same as Example 3 except having used this nickel-type compound for the positive electrode active material.

実施例10〜13および比較例15、16で作製したニッケル系化合物の定性分析をおこなった。その結果、粉末X線回折では、すべての化合物について未反応の水酸化物やアルミン酸リチウム等の不純物のピークは認められなかった。   The qualitative analysis of the nickel-based compounds prepared in Examples 10 to 13 and Comparative Examples 15 and 16 was performed. As a result, in powder X-ray diffraction, no peak of impurities such as unreacted hydroxide and lithium aluminate was observed for all compounds.

ICP発光分光法で分析した化合物粒子全体の平均組成は、すべて一般式Li1.03Ni0.80Co0.12Al0.08であった。また、アルゴンイオンスパッタリングを併用したX線光電子分光法による各元素のスペクトルの面積比から算出される粒子の、一定の深さ部分の組成を表7に示す。 The average composition of the entire compound particles analyzed by ICP emission spectroscopy was all of the general formula Li 1.03 Ni 0.80 Co 0.12 Al 0.08 O 2 . Table 7 shows the composition of a constant depth portion of the particles calculated from the area ratio of the spectrum of each element by X-ray photoelectron spectroscopy combined with argon ion sputtering.

Figure 2005108738
Figure 2005108738

実施例10〜13および比較例15、16で作製した電池の正極活物質1g当たりの放電容量、充放電サイクル後の容量保持率、熱安定性試験結果、保存性能を表8に示す。試験方法は実施例1と同様である。   Table 8 shows the discharge capacity per gram of the positive electrode active material of the batteries prepared in Examples 10 to 13 and Comparative Examples 15 and 16, the capacity retention after the charge / discharge cycle, the thermal stability test results, and the storage performance. The test method is the same as in Example 1.

Figure 2005108738
Figure 2005108738

表7および表8に示された結果より、粉体中に50μmを超える粗粉が混入すると、粗粉の低い充放電性能に引きずられて、正極全体の放電容量や寿命性能が低下する傾向が確認される。また、1μm未満の微粉が混入した場合でも、微粉の劣悪な充放電性能や寿命性能が影響し、正極全体の性能が低下することが確認される。   From the results shown in Table 7 and Table 8, when coarse powder exceeding 50 μm is mixed in the powder, the discharge capacity and life performance of the whole positive electrode tend to be reduced due to low charge / discharge performance of the coarse powder. It is confirmed. In addition, even when fine powder of less than 1 μm is mixed, it is confirmed that poor charge / discharge performance and life performance of the fine powder are affected and the performance of the entire positive electrode is lowered.

なお、粉体中に1μm未満の微粉が混入すると電極の塗工性が低下するほか、電極の充填密度が低下するおそれがあり、一方、粒子径が50μmを超える粗粉が混入すると極板塗工の歩留まりが低下するおそれがあるため、このような意味においても粒子径は1〜50μmの範囲とすることが好ましい。   In addition, if fine powder of less than 1 μm is mixed in the powder, the electrode coating property may be lowered and the packing density of the electrode may be reduced. On the other hand, if coarse powder having a particle diameter of more than 50 μm is mixed, electrode coating may be performed. In this sense, the particle diameter is preferably in the range of 1 to 50 μm because the yield of the work may be reduced.

長円筒形非水電解質二次電池の外観を示す斜視図。The perspective view which shows the external appearance of a long cylindrical nonaqueous electrolyte secondary battery. 長円筒形非水電解質二次電池に収納された電極群の構成を示す斜視図。The perspective view which shows the structure of the electrode group accommodated in the long cylindrical nonaqueous electrolyte secondary battery.

符号の説明Explanation of symbols

1 非水電解質二次電池
2 発電要素
2a 正極
2b 負極
2c セパレータ
3 電池ケース
3a 電池ケースのケース部
3b 電池ケースの蓋部
4 正極端子
5 負極端子
6 安全弁
7 電解液注入口
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Power generation element 2a Positive electrode 2b Negative electrode 2c Separator 3 Battery case 3a Battery case case 3b Battery case cover 4 Positive electrode terminal 5 Negative electrode terminal 6 Safety valve 7 Electrolyte injection port

Claims (3)

リチウム含有層状ニッケル酸化物粒子を正極活物質に用いた非水電解質二次電池において、前記リチウム含有層状ニッケル酸化物粒子全体の平均組成および粒子表面の組成が、一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.01)で表されることを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery using lithium-containing layered nickel oxide particles as a positive electrode active material, the average composition of the entire lithium-containing layered nickel oxide particles and the composition of the particle surface are expressed by the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05,0.7 ≦ x ≦ 0.87,0.1 ≦ y ≦ 0.27,0.02 ≦ z ≦ 0.1,0.98 ≦ x + y + z ≦ 1.01). The nonaqueous electrolyte secondary battery characterized by the above-mentioned. 前記リチウム含有層状ニッケル酸化物粒子において、粒子内のすべての場所でz−0.01≦z≦z+0.01(但し、zは任意の値)が成り立つことを特徴とする請求項1記載の非水電解質二次電池。 In the lithium-containing layered nickel oxide particles, z 0 −0.01 ≦ z ≦ z 0 +0.01 (where z 0 is an arbitrary value) is established at all locations in the particle. The nonaqueous electrolyte secondary battery according to 1. 前記リチウム含有層状ニッケル酸化物粒子の平均粒子径が1〜50μmであることを特徴とする請求項1または2記載の非水電解質二次電池。





























The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the lithium-containing layered nickel oxide particles have an average particle diameter of 1 to 50 µm.





























JP2003342779A 2003-10-01 2003-10-01 Nonaqueous electrolyte secondary battery Pending JP2005108738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342779A JP2005108738A (en) 2003-10-01 2003-10-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342779A JP2005108738A (en) 2003-10-01 2003-10-01 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005108738A true JP2005108738A (en) 2005-04-21

Family

ID=34536940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342779A Pending JP2005108738A (en) 2003-10-01 2003-10-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005108738A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123448A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery, and evaluation method of positive electrode for nonaqueous electrolyte secondary battery
KR20180123220A (en) * 2016-05-27 2018-11-15 유미코아 METHOD FOR MANUFACTURING MINERAL CRYSTALLINE LITHIUM METAL COMPOSITE OXIDE POWDER
JP2020537294A (en) * 2017-10-09 2020-12-17 ハッチンソンHutchinson Cathode composition of a lithium ion battery, a method for producing the same, a cathode and a lithium ion battery comprising the cathode.
WO2021220743A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Positive electrode for secondary battery, and secondary battery
JPWO2021220745A1 (en) * 2020-04-28 2021-11-04
WO2021220744A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Positive electrode for secondary battery, and secondary battery
CN115954479A (en) * 2023-03-10 2023-04-11 四川新能源汽车创新中心有限公司 Positive electrode material, preparation method thereof and solid-state battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123448A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery, and evaluation method of positive electrode for nonaqueous electrolyte secondary battery
JP7121655B2 (en) 2016-05-27 2022-08-18 ユミコア Method for producing nickel-lithium metal composite oxide powder with small particle size
JPWO2017204334A1 (en) * 2016-05-27 2019-03-28 ユミコア Method for producing small particle size nickel lithium metal composite oxide powder
JP2020205266A (en) * 2016-05-27 2020-12-24 ユミコア Manufacturing method of small particle sized nickel-lithium metal composite oxide powder
KR20180123220A (en) * 2016-05-27 2018-11-15 유미코아 METHOD FOR MANUFACTURING MINERAL CRYSTALLINE LITHIUM METAL COMPOSITE OXIDE POWDER
KR102195395B1 (en) 2016-05-27 2020-12-28 유미코아 Method for producing small particle diameter nickel lithium metal composite oxide powder
JP2020537294A (en) * 2017-10-09 2020-12-17 ハッチンソンHutchinson Cathode composition of a lithium ion battery, a method for producing the same, a cathode and a lithium ion battery comprising the cathode.
JPWO2021220745A1 (en) * 2020-04-28 2021-11-04
WO2021220744A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Positive electrode for secondary battery, and secondary battery
WO2021220743A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Positive electrode for secondary battery, and secondary battery
JPWO2021220744A1 (en) * 2020-04-28 2021-11-04
WO2021220745A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Secondary battery
JPWO2021220743A1 (en) * 2020-04-28 2021-11-04
JP7276603B2 (en) 2020-04-28 2023-05-18 株式会社村田製作所 secondary battery
JP7276602B2 (en) 2020-04-28 2023-05-18 株式会社村田製作所 Positive electrode for secondary battery and secondary battery
JP7334857B2 (en) 2020-04-28 2023-08-29 株式会社村田製作所 Positive electrode for secondary battery and secondary battery
CN115954479A (en) * 2023-03-10 2023-04-11 四川新能源汽车创新中心有限公司 Positive electrode material, preparation method thereof and solid-state battery

Similar Documents

Publication Publication Date Title
JP4540041B2 (en) Nonaqueous electrolyte secondary battery
JP5034136B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4725728B2 (en) Secondary battery
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
KR101970909B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
US6749967B2 (en) Positive electrode active material and non-aqueous electrolyte cell
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
CN108352526B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite material paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN111226332B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery and method for producing same
US20160156020A1 (en) Method for manufacturing cathode electrode materials
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
US20110033750A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2005235624A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5224081B2 (en) Nonaqueous electrolyte secondary battery
KR101260159B1 (en) lithium ion secondary battery
US20190051929A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same, positive electrode mixed material paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN110679018B (en) Positive electrode active material, method for producing same, positive electrode composite paste, and nonaqueous electrolyte secondary battery
JP5180448B2 (en) Spinel type lithium manganate and method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using spinel type lithium manganate
WO2004088777A1 (en) Secondary battery-use anode active material, secondary battery, and production method for secondary battery-use anode active material
JP2022095988A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4720505B2 (en) Nonaqueous electrolyte secondary battery
JP2005108738A (en) Nonaqueous electrolyte secondary battery
JP7439748B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
US10096821B2 (en) Lithium secondary battery
CN108807865B (en) Positive electrode active material, method for producing same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013