JP2005235624A - Manufacturing method for nonaqueous electrolyte secondary battery - Google Patents

Manufacturing method for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005235624A
JP2005235624A JP2004044407A JP2004044407A JP2005235624A JP 2005235624 A JP2005235624 A JP 2005235624A JP 2004044407 A JP2004044407 A JP 2004044407A JP 2004044407 A JP2004044407 A JP 2004044407A JP 2005235624 A JP2005235624 A JP 2005235624A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
lithium
active material
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004044407A
Other languages
Japanese (ja)
Inventor
Jo Sasaki
丈 佐々木
Sumio Mori
澄男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2004044407A priority Critical patent/JP2005235624A/en
Publication of JP2005235624A publication Critical patent/JP2005235624A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To exhibit sufficient performance of a battery using a Ni based compound as a positive active material by removing a residual alkali from the nickel based positive active material. <P>SOLUTION: In the manufacturing method for the nonaqueous electrolyte secondary battery wherein a power generation element comprising a positive electrode using a lithium content stratified nickel oxide represented by a general formula Li<SB>a</SB>Ni<SB>x</SB>M<SB>y</SB>O<SB>2</SB>(0.3≤a≤1.05, 0.7≤x≤1, 0≤y≤0.3, 1≤x+y≤1.02, M is at least one kind of an element selected from B, Al, Mg, Fe, Sn, Cr, Cu, Ti, Zn, Co and Mn.) as an active material, a negative electrode using a carbon material capable of storing and releasing lithium as an active material, a nonaqueous electrolyte and a separator are housed in a battery case, a pulse voltage is applied in a period of 1 to 100 ms so that an open circuit potential of the positive electrode is 3.8-4.2V to the dissolution and deposition potential of lithium and a closed circuit electric potential of the positive electrode is 4.4-4.5V to a dissolution and deposition potential of lithium in a condition that a battery case is opened, then it is sealed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水電解液二次電池の製造方法に関するものである。   The present invention relates to a method for producing a non-aqueous electrolyte secondary battery.

電子機器の急激な小型軽量化に伴い、その電源である電池に対して小型で軽量かつ高エネルギー密度、更に繰り返し充放電が可能な二次電池開発への要求が高まっている。また、大気汚染や二酸化炭素の増加等の環境問題により、電気自動車の早期実用化が望まれており、高効率、高出力、高エネルギー密度、軽量等の特徴を有する、優れた二次電池の開発が要望されている。   With the rapid reduction in size and weight of electronic devices, there is an increasing demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged with respect to the battery that is the power source. In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, early commercialization of electric vehicles is desired, and an excellent secondary battery having features such as high efficiency, high output, high energy density, and light weight. Development is desired.

これらの要求を満たす二次電池として、非水電解質を使用した二次電池が実用化されている。この電池は、従来の水溶液電解質を使用した電池の数倍のエネルギー密度を有している。その例として、非水電解質二次電池の正極にリチウム含有層状コバルト酸化物(以下Co系化合物)、リチウム含有層状ニッケル酸化物(以下Ni系化合物)又はスピネル型リチウムマンガン複合酸化物(以下Mn系化合物)を用い、負極にリチウムが吸蔵・放出可能な炭素材料などを用いた長寿命な4V級非水電解質二次電池が実用化されている。   As a secondary battery that satisfies these requirements, a secondary battery using a non-aqueous electrolyte has been put into practical use. This battery has an energy density several times that of a battery using a conventional aqueous electrolyte. For example, a lithium-containing layered cobalt oxide (hereinafter referred to as a Co-based compound), a lithium-containing layered nickel oxide (hereinafter referred to as a Ni-based compound) or a spinel-type lithium manganese composite oxide (hereinafter referred to as a Mn-based) is used as a positive electrode of a nonaqueous electrolyte secondary battery. And a long-life 4V class non-aqueous electrolyte secondary battery using a carbon material capable of inserting and extracting lithium in the negative electrode has been put into practical use.

中でもNi系化合物は、非水電解質二次電池内で実際に使用される電位範囲内(3.0〜4.3V vs.Li/Li)において挿入脱離可能なリチウム量が、Co系化合物やMn系化合物よりも多いという特長があり、資源も豊富であることから、高容量かつ低コストな電池の開発を目指して多くの開発がなされてきた。 Among these, the Ni-based compound has a lithium-based amount of lithium that can be inserted and desorbed within the potential range (3.0 to 4.3 V vs. Li / Li + ) actually used in the nonaqueous electrolyte secondary battery. Since it has more features than Mn-based compounds and is rich in resources, many developments have been made with the aim of developing batteries with high capacity and low cost.

特許文献1にも示されているように、現在までに広く採用されてきたCo系化合物と比較して、Ni系化合物は合成が難しく、当初は結晶構造が均質なものを大量に製造することは困難であったが、その後、リチウム源を過剰に混合して焼成する等の工夫で結晶性の向上がはかられてきた。   As shown in Patent Document 1, Ni-based compounds are difficult to synthesize compared to Co-based compounds that have been widely adopted up to now, and initially produce large quantities of homogeneous crystals. However, after that, improvement in crystallinity has been devised by means such as excessive mixing of lithium sources and firing.

しかし、特許文献2に示されるように、焼成時に過剰のリチウム源が残存すると炉内や大気中での取り扱い時に空気中の水分と反応し、活物質の表面あるいは内部に水酸化リチウム等のアルカリを生成する問題が起こるようになった。この残留アルカリ分は、電池内で徐々にガスを発生して、抵抗増大による容量低下や内圧上昇による液漏れを誘発する恐れがあるため、満足な寿命性能や信頼性を得るためには、残留アルカリが少ないほど好ましいといえる。   However, as shown in Patent Document 2, when an excess lithium source remains during firing, it reacts with moisture in the air during handling in the furnace or in the air, and an alkali such as lithium hydroxide is present on the surface or inside of the active material. The problem of generating came to happen. This residual alkali content may gradually generate gas in the battery, leading to a decrease in capacity due to an increase in resistance and a liquid leakage due to an increase in internal pressure. Therefore, in order to obtain satisfactory life performance and reliability, It can be said that the smaller the alkali, the better.

また、特許文献2の実施例1に示されているように、リチウム原料と金属酸化物のモル比を1にすると、上述のように良好な結晶性が得られない場合が多く、また、酸素気流を用いて焼成に合計35時間も費やす工程はコストがかかるため、工業的には成立しないと予測される。また、焼成工程を厳密に管理しても、焼成後の保管状況、極板製造時や電池組立時の雰囲気によっては、残留アルカリが急激に増加して電池性能を損なう危険性もあるため、焼成条件の最適化以外での有効で簡便な除去方法の発明も必要であった。   Further, as shown in Example 1 of Patent Document 2, when the molar ratio of the lithium raw material to the metal oxide is set to 1, good crystallinity is often not obtained as described above, and oxygen The process of spending a total of 35 hours on firing using an air current is costly and is not expected to be industrially feasible. In addition, even if the firing process is strictly controlled, depending on the storage conditions after firing and the atmosphere at the time of electrode plate manufacturing and battery assembly, there is a risk that residual alkali may increase rapidly and impair battery performance. An invention of an effective and simple removal method other than the optimization of conditions was also required.

残留アルカリの分解は、特許文献3に示されるように、過充電状態で速やかに進行する。したがって、電池作製後の除去方法としては、電池ケースを開口したまま過充電をおこなう方法が思いつく。しかし、過充電をおこなうと、正極活物質の結晶構造が劣化し、電解液は酸化分解を起こして劣化し、また、負極上には金属リチウムが析出するといった多くの問題が起こるため適当ではない。なお、過充電による正極結晶構造の劣化は、充電の進行によりc軸長が膨張から収縮へ転換する電位以上で急速に進行し、活物質の組成によって多少の変動はあるが、正極の開回路電位がリチウムの溶解析出電位に対して4.3V付近から収縮は開始する。また、電解液の酸化分解も正極が4.3V付近まで充電されてから急速に進行する。したがって、ここでの過充電状態とは、正極の開回路電位が4.3V以上にある状態とする。   As shown in Patent Document 3, the decomposition of the residual alkali proceeds promptly in an overcharged state. Therefore, as a method for removing the battery after fabrication, a method of overcharging with the battery case opened can be conceived. However, if overcharge is performed, the crystal structure of the positive electrode active material deteriorates, the electrolytic solution deteriorates due to oxidative decomposition, and many problems such as deposition of metallic lithium on the negative electrode are not appropriate. . Note that the deterioration of the positive electrode crystal structure due to overcharge proceeds rapidly at a potential higher than the potential at which the c-axis length changes from expansion to contraction due to the progress of charging, and there are some fluctuations depending on the composition of the active material. Shrinkage starts when the potential is around 4.3 V with respect to the dissolution precipitation potential of lithium. Also, the oxidative decomposition of the electrolyte proceeds rapidly after the positive electrode is charged to near 4.3V. Therefore, the overcharged state here means a state in which the open circuit potential of the positive electrode is 4.3 V or higher.

特開平10−092429号公報JP 10-092429 A 特開平7−142093号公報JP 7-142033 A 特開平5−242913号公報JP-A-5-242913

一般式LiNi(0.3≦a≦1.05、0.7≦x≦1、0≦y≦0.3、1≦x+y≦1.02、MはB、Al、Mg、Fe、Sn、Cr、Cu、Ti、Zn、Co、Mnから選ばれる少なくとも1種)で示されるリチウム含有層状ニッケル酸化物を活物質とする正極と、リチウムを吸蔵放出可能な炭素材を活物質とする負極と、非水電解液およびセパレーターからなる発電要素が電池ケースに収納された非水電解液二次電池は、正極活物質上の残留アルカリが徐々に分解してガスを発生し、放電容量や寿命性能の低下、または漏液などを起こしやすい問題があった。また、この残留アルカリの量は、原料の製造ロットや保管状況、電池作製時期などによってばらつきがあるため、生産した電池の性能が予測できないといった問題もあった。 General formula Li a Ni x M y O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 1, 0 ≦ y ≦ 0.3, 1 ≦ x + y ≦ 1.02, M is B, Al , Mg, Fe, Sn, Cr, Cu, Ti, Zn, Co, Mn) and a carbon material capable of occluding and releasing lithium, and a positive electrode using a lithium-containing layered nickel oxide as an active material A non-aqueous electrolyte secondary battery in which a power generation element consisting of a negative electrode with an active material and a non-aqueous electrolyte and separator is housed in a battery case generates residual gas on the positive electrode active material gradually decomposes to generate gas However, there has been a problem that the discharge capacity and the life performance are deteriorated or liquid leakage is liable to occur. In addition, since the amount of the residual alkali varies depending on the raw material production lot, storage condition, battery production time, etc., there is a problem that the performance of the produced battery cannot be predicted.

本発明者が残留アルカリの発生原因について調査すると、原料焼成工程だけではなく、原料保管時や電池作製時においても化合物と周囲の水分あるいは炭酸ガスとの反応が進行し、水酸化リチウムや炭酸リチウムが生成することが判明した。したがって、残留アルカリの影響を防ぐためには、電池作製後に実施可能な除去手段が必要であることがわかった。   When the present inventor investigated the cause of the generation of residual alkali, the reaction between the compound and the surrounding water or carbon dioxide gas progresses not only during the raw material firing step but also during raw material storage and battery preparation, and lithium hydroxide and lithium carbonate. Was found to produce. Therefore, in order to prevent the influence of the residual alkali, it has been found that a removal means that can be carried out after the production of the battery is necessary.

本発明で解決しようとする課題は、Ni系化合物の焼成条件の最適化以外で、有効かつ簡便な残留アルカリの除去方法を提案することにある。本発明の目的は、このような残留アルカリの除去手段を実用することで、Ni系化合物を正極活物質に用いた電池の性能が十分に発揮されるようにすることである。   The problem to be solved by the present invention is to propose an effective and simple method for removing residual alkali, other than optimization of the firing conditions of the Ni-based compound. An object of the present invention is to use such a means for removing residual alkali so that the performance of a battery using a Ni-based compound as a positive electrode active material is sufficiently exhibited.

前記の問題点を鑑みて、本発明者は、周期の短い電流を印加し、正極活物質の表面近傍のみに過充電状態を誘起することで、活物質の表面に存在する残留アルカリ分を効果的に除去する方法を考案し、高容量、長寿命かつ信頼性の高い非水電解液二次電池を得た。   In view of the above problems, the present inventor has applied a short-period current and induced an overcharged state only in the vicinity of the surface of the positive electrode active material, so that the residual alkali content present on the surface of the active material can be effectively obtained. A non-aqueous electrolyte secondary battery with high capacity, long life and high reliability was obtained.

請求項1の発明は、一般式LiNi(0.3≦a≦1.05、0.7≦x≦1、0≦y≦0.3、1≦x+y≦1.02、MはB、Al、Mg、Fe、Sn、Cr、Cu、Ti、Zn、Co、Mnから選ばれる少なくとも1種)で示されるリチウム含有層状ニッケル酸化物を活物質とする正極と、リチウムを吸蔵放出可能な炭素材を活物質とする負極と、非水電解液、およびセパレーターからなる発電要素が電池ケースに収納された非水電解液二次電池の製造方法において、正極の開回路電位がリチウムの溶解析出電位に対して3.8〜4.2Vであり、かつ、電池ケースが開口した状態で、正極の閉回路電位が4.4〜4.5Vとなるように1〜100msの周期でパルス電圧を印加し、その後封口したことを特徴とする。 The invention according to claim 1, the general formula Li a Ni x M y O 2 (0.3 ≦ a ≦ 1.05,0.7 ≦ x ≦ 1,0 ≦ y ≦ 0.3,1 ≦ x + y ≦ 1. 02, M is a positive electrode using a lithium-containing layered nickel oxide represented by B, Al, Mg, Fe, Sn, Cr, Cu, Ti, Zn, Co, and Mn) as an active material, lithium In a method for producing a non-aqueous electrolyte secondary battery in which a power generation element comprising a carbon material capable of occluding and releasing carbon, a non-aqueous electrolyte, and a separator is housed in a battery case, the open circuit potential of the positive electrode Is 3.8 to 4.2 V with respect to the dissolution and precipitation potential of lithium, and 1-100 ms so that the closed circuit potential of the positive electrode is 4.4 to 4.5 V with the battery case opened. It is characterized by applying a pulse voltage at a period and then sealing it. .

請求項2の発明は、上記非水電解液二次電池の製造方法において、電圧の印加回数が100〜10,000回であることを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing a non-aqueous electrolyte secondary battery, the number of times of voltage application is 100 to 10,000.

本発明者によれば、周期の短いパルス電圧を印加し、正極活物質の表面近傍のみの反応を誘起することで、電池性能の劣化をともなわずに残留アルカリの分解が過不足なく進行し、Ni系化合物上に残留するアルカリ分を効果的に除去できることから、Ni系化合物を正極活物質に用いた電池の性能が十分に発揮され、本来の優れた性能が得られるとともに、残留アルカリの分解に起因する放電容量や寿命性能の低下、漏液の危険性などが抑制され、従来のCo系化合物を用いた電池より放電容量や寿命特性に優れる電池を安定して供給できるようになるため、その工業的価値は高い。   According to the present inventor, by applying a pulse voltage with a short period and inducing a reaction only in the vicinity of the surface of the positive electrode active material, decomposition of residual alkali proceeds without excess or deficiency without deterioration in battery performance, Since the alkaline content remaining on the Ni-based compound can be effectively removed, the performance of the battery using the Ni-based compound as the positive electrode active material is fully exhibited, the original excellent performance is obtained, and the residual alkali is decomposed. Because it is possible to stably supply batteries with superior discharge capacity and life characteristics compared to batteries using conventional Co-based compounds, the discharge capacity and life performance degradation due to the risk of leakage, and the risk of leakage are suppressed. Its industrial value is high.

以下、本発明にかかる非水電解液二次電池の具体的な実施の形態について説明する。   Hereinafter, specific embodiments of the non-aqueous electrolyte secondary battery according to the present invention will be described.

本発明において、正極活物質として用いるリチウム含有層状ニッケル酸化物全体の組成は、一般式LiNi(0.3≦a≦1.05、0.7≦x≦1、0≦y≦0.3、1≦x+y≦1.02、MはB、Al、Mg、Fe、Sn、Cr、Cu、Ti、Zn、Co、Mnから選ばれる少なくとも1種)で表される。 In the present invention, the overall composition of lithium-containing layered nickel oxide used as cathode active material, the general formula Li a Ni x M y O 2 (0.3 ≦ a ≦ 1.05,0.7 ≦ x ≦ 1,0 ≦ y ≦ 0.3, 1 ≦ x + y ≦ 1.02, and M is represented by at least one selected from B, Al, Mg, Fe, Sn, Cr, Cu, Ti, Zn, Co, and Mn.

この一般式LiNiで表されるリチウム含有層状ニッケル酸化物の中では、MがCoおよびAlである一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.02)で表される酸化物が好ましい。この酸化物では、ニッケルの一部がコバルトによって置換されるため、充放電にともなう結晶構造の変化が抑制される。また、3価で安定なアルミを添加することにより、結晶構造はさらに安定化する。 Among the lithium-containing layered nickel oxides represented by the general formula Li a Ni x M y O 2 , the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.02) Things are preferred. In this oxide, since a part of nickel is substituted by cobalt, the change of the crystal structure accompanying charging / discharging is suppressed. Moreover, the crystal structure is further stabilized by adding trivalent and stable aluminum.

さらに、a<0.3の領域まで充電するとc軸長の大きな変化をともない、結晶構造の崩壊と極板抵抗の増加が加速されるため、そのような領域まで充電しないことが好ましい。また、同様の理由で、放電はa≦1.05の範囲内におさめることが好ましい。   Furthermore, charging to a region where a <0.3 is accompanied by a large change in the c-axis length, which accelerates the collapse of the crystal structure and the increase in plate resistance. Therefore, it is preferable not to charge to such a region. For the same reason, it is preferable that the discharge be within a range of a ≦ 1.05.

また、xが0.7を下回るとコバルト系化合物を正極活物質に用いた従来の非水電解質電池と放電容量が同等にまで低下し、0.87を上回ると熱安定性が極度に低下するため、xは0.7〜0.87の範囲が好ましい。また、yが0.1を下回ると結晶構造が不安定化し、逆に0.27を上回っても結晶構造の安定化は頭打ちであり、放電容量の低下をまねくだけであるため、yは0.1〜0.27の範囲が好ましい。zが0.02を下回ると結晶構造の安定性が低下し、さらに充電時の熱安定性も低下する。しかし、zが0.1を上回ると放電容量が著しく低下するため、zは0.02〜0.1の範囲が望ましい。   Further, when x is less than 0.7, the discharge capacity is reduced to the same level as that of a conventional non-aqueous electrolyte battery using a cobalt-based compound as a positive electrode active material, and when it is more than 0.87, the thermal stability is extremely reduced. Therefore, x is preferably in the range of 0.7 to 0.87. Further, if y is less than 0.1, the crystal structure becomes unstable. Conversely, even if it exceeds 0.27, the stabilization of the crystal structure reaches its peak, and only leads to a decrease in discharge capacity. A range of .1 to 0.27 is preferred. When z is less than 0.02, the stability of the crystal structure is lowered, and the thermal stability during charging is also lowered. However, when z exceeds 0.1, the discharge capacity is remarkably reduced. Therefore, z is preferably in the range of 0.02 to 0.1.

このような化合物を正極活物質として使用することで、現行の主流であるCo系化合物を正極活物質とした電池より高容量かつ長寿命な電池を設計できる。   By using such a compound as the positive electrode active material, it is possible to design a battery having a higher capacity and a longer life than a battery using a Co-based compound, which is the current mainstream, as the positive electrode active material.

次に、正極の開回路電位がリチウムの溶解析出電位に対して3.8〜4.2Vであり、かつ、電池ケースが開口した状態で、1〜100msの周期で、正極の閉回路電位が4.4〜4.5Vとなるようなパルス電圧を印加し、その後封口することで残留アルカリの悪影響を除去できる。正極の開回路電位が3.8V以下でパルス電圧を印加すると電流値が大きくなり、不均一充電による正極の局所的な過充電や負極でのリチウムの電析が進行する恐れが高くなり、また発熱の恐れも生じるため好ましくない。また、開回路電位が4.2V以上の状態でパルス電圧を印加すると表面近傍のみならず、活物質内部まで過充電される可能性が高くなるため好ましくない。   Next, the open circuit potential of the positive electrode is 3.8 to 4.2 V with respect to the dissolution and precipitation potential of lithium, and the closed circuit potential of the positive electrode is in a cycle of 1 to 100 ms with the battery case opened. The adverse effect of residual alkali can be removed by applying a pulse voltage of 4.4 to 4.5 V and then sealing. When a pulse voltage is applied when the open circuit potential of the positive electrode is 3.8 V or less, the current value increases, and there is a high risk of local overcharge of the positive electrode due to non-uniform charging and lithium electrodeposition on the negative electrode. This is not preferable because it may cause heat generation. In addition, it is not preferable to apply a pulse voltage with an open circuit potential of 4.2 V or higher because the possibility of overcharging not only near the surface but also inside the active material increases.

残留アルカリは4.3V付近から分解が始まるが、分解速度を上げるには電位は高いほどよい。しかし、正極電位を上げる、すなわち電池電圧を上げすぎると、電解液の酸化分解や負極でのリチウムの電析が急速に進行するため、パルス電圧印加時の閉回路電位は4.4〜4.5Vの範囲に制限することが適当である。   The residual alkali begins to decompose at around 4.3 V, but the higher the potential, the better to increase the decomposition rate. However, if the positive electrode potential is raised, that is, if the battery voltage is raised too much, the oxidative decomposition of the electrolyte and the electrodeposition of lithium on the negative electrode proceed rapidly, so the closed circuit potential when the pulse voltage is applied is 4.4-4. It is appropriate to limit the range to 5V.

Ni系化合物の反応素過程を交流インピーダンス法で解析すると、Cole−Coleプロットには、一般に二つのセミサークルが現れ、10Hz〜1kHz付近に正極/電解液界面の表面層インピーダンスに由来するセミサークルが、1Hz〜10mHz付近に電荷移動インピーダンスに由来するセミサークルが観察される(Journal of Power Sources 54, 209(1995))。 When the reaction process of Ni-based compounds is analyzed by the AC impedance method, two semicircles generally appear in the Cole-Cole plot, and the semicircle derived from the surface layer impedance at the positive electrode / electrolyte interface is around 10 Hz to 1 kHz. A semi-circle derived from charge transfer impedance is observed in the vicinity of 1 Hz to 10 mHz (Journal of Power Sources 54, 209 (1995)).

本発明の主旨は、化合物表面層の反応を誘起して残留アルカリを分解することにあり、化合物の充放電をおこなう必要はない。むしろ、過充電による化合物自身の劣化を防ぐには、後者が起こらぬようにパルス電圧を印加する必要がある。そのためには、印加するパルス電圧の周期は1ms(1kHz相当)〜100ms(10Hz相当)が好ましい。   The gist of the present invention is to induce reaction of the compound surface layer to decompose residual alkali, and it is not necessary to charge and discharge the compound. Rather, in order to prevent deterioration of the compound itself due to overcharging, it is necessary to apply a pulse voltage so that the latter does not occur. For this purpose, the period of the applied pulse voltage is preferably 1 ms (corresponding to 1 kHz) to 100 ms (corresponding to 10 Hz).

なお、印加するパルス電圧パターンは、特開2002−216850号公報に記載されたのと同様の、図2〜図4に示すような、矩形波パルスや三角波、正弦波等が使用できる。なお、図2〜図4において、横軸は時間(ms)、縦軸はリチウムの溶解析出電位に対する正極の電位(V)、CCVは正極の最大閉回路電位、OCVは正極の開回路電位を示す。なお、図2の矩形波において、T〜Tは「パルス幅」、T〜Tは「パルス間隔」であり、図2〜図4において、T〜Tは「周期」である。また、図3において、T〜Tの時間とT〜Tの時間は等しいものとした。 Note that the pulse voltage pattern to be applied may be a rectangular wave pulse, a triangular wave, a sine wave, or the like as shown in FIG. 2 to FIG. 4 as described in Japanese Patent Laid-Open No. 2002-216850. 2 to 4, the horizontal axis represents time (ms), the vertical axis represents the positive electrode potential (V) with respect to the lithium precipitation potential, CCV represents the maximum positive circuit potential of the positive electrode, and OCV represents the open circuit potential of the positive electrode. Show. 2, T 1 to T 2 are “pulse widths”, T 2 to T 3 are “pulse intervals”, and in FIGS. 2 to 4, T 1 to T 3 are “periods”. is there. In FIG. 3, the time from T 1 to T 2 is equal to the time from T 2 to T 3 .

電流の印加回数が少ないと、残留アルカリの分解が十分でなく本発明による効果が得にくい。一方、印加回数が多い場合は、正極全体としての開回路電位が4.2V以下であっても、部分的な過充電が進行して電池性能が低下するおそれがある。したがって、印加回数は100〜10,000回程度が好ましい。   When the number of times of application of current is small, the residual alkali is not sufficiently decomposed and it is difficult to obtain the effect of the present invention. On the other hand, when the number of times of application is large, even if the open circuit potential of the positive electrode as a whole is 4.2 V or less, partial overcharge may progress and battery performance may be degraded. Therefore, the number of times of application is preferably about 100 to 10,000.

このようにして、後の充電放置時や高温放置時に徐々に分解するであろう残留アルカリを、電池作製時にあらかじめ分解してしまい、分解で生じたガスを脱気した後に封口することで、電池の膨張や内部抵抗の上昇を抑制することが可能となるため、容量低下や寿命低下が起こる可能性が低く、Ni系化合物本来の優れた性能を発揮する非水電解液二次電池を安定して製造することができる。   In this way, the residual alkali that will gradually decompose when left after charging or when left at high temperature is decomposed in advance when the battery is produced, and the gas generated in the decomposition is degassed and sealed, thereby sealing the battery. It is possible to suppress the expansion of the battery and the increase in internal resistance, so there is little possibility of a decrease in capacity and life, and a non-aqueous electrolyte secondary battery that exhibits the excellent performance inherent in Ni-based compounds can be stabilized. Can be manufactured.

本発明の非水電解質二次電池の断面構造を図1に示す。図1において、1は非水電解質二次電池、2は電極群、3は負極板、4は正極板、5はセパレータ、6は電池容器、7は蓋、8は安全弁、9は負極端子、10は負極リード、11は微小なリチウム参照極である。   A cross-sectional structure of the nonaqueous electrolyte secondary battery of the present invention is shown in FIG. In FIG. 1, 1 is a non-aqueous electrolyte secondary battery, 2 is an electrode group, 3 is a negative electrode plate, 4 is a positive electrode plate, 5 is a separator, 6 is a battery container, 7 is a lid, 8 is a safety valve, 9 is a negative electrode terminal, 10 is a negative electrode lead, and 11 is a minute lithium reference electrode.

この非水電解質二次電池は、上述のような化合物を正極活物質として用いた正極板4と負極板3とがセパレーター5を介して円形状または長円形状に捲回されてなる電極群2を電池容器6に収納し、電極群2に非水電解液(図示せず)を含浸して構成されている。正極板1の集電体は電池容器6と接合され、電池容器6は正極端子を兼ねている。この非水電解液二次電池に用いられる負極、セパレーターおよび電解液などは、特に従来用いられてきたものと異なるところなく、通常用いられているものが使用できる。   This non-aqueous electrolyte secondary battery includes an electrode group 2 in which a positive electrode plate 4 and a negative electrode plate 3 using the above compound as a positive electrode active material are wound into a circular shape or an oval shape via a separator 5. Is stored in the battery container 6 and the electrode group 2 is impregnated with a non-aqueous electrolyte (not shown). The current collector of the positive electrode plate 1 is joined to the battery container 6, and the battery container 6 also serves as a positive electrode terminal. The negative electrode, separator, and electrolytic solution used in this non-aqueous electrolyte secondary battery are not particularly different from those conventionally used, and those that are usually used can be used.

すなわち、本発明の非水電解質二次電池に用いる負極材料としては、リチウムイオンを吸蔵・放出可能な天然グラファイト、人造グラファイト、コークス類、カーボンブラック、熱分解炭素類、炭素繊維などの炭素材料が挙げられる。   That is, as the negative electrode material used for the nonaqueous electrolyte secondary battery of the present invention, carbon materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, and carbon fibers capable of occluding and releasing lithium ions are available. Can be mentioned.

また、本発明の非水電解質二次電池に用いるセパレーターとしては、ポリエチレン等のポリオレフィン樹脂からなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであってもよい。   In addition, as the separator used in the nonaqueous electrolyte secondary battery of the present invention, a microporous membrane made of a polyolefin resin such as polyethylene is used, and a plurality of microporous membranes having different materials, weight average molecular weights and porosity are laminated. Or those containing a suitable amount of various plasticizers, antioxidants, flame retardants and the like in these microporous membranes.

本発明の非水電解質二次電池に用いる電解液の有機溶媒には、特に制限はなく、例えばエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類等を用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系化合物が好ましい。これらの例としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、アニソール、モノグライム、4-メチル-2-ペンタノン、酢酸エチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、ジメトキシエタン、メチルフォルメイト、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチルおよびこれらの混合溶媒等を挙げることができるが、必ずしもこれらに限定されるものではない。好ましくは環状カーボネート類および環状エステル類である。もっとも好ましくは、エチレンカーボネート、プロピレンカーボネート、メチルエチルカーボネート、およびジエチルカーボネートのうち、1種または2種以上した混合物の有機溶媒である。   There are no particular restrictions on the organic solvent of the electrolyte used in the non-aqueous electrolyte secondary battery of the present invention. For example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons. , Esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane hydrocarbons, etc. can be used, among these ethers, ketones, esters, lactones, halogenated hydrocarbons , Carbonates and sulfolane compounds are preferred. Examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, ethyl acetate, methyl acetate, methyl propionate, ethyl propionate, 1,2-dichloroethane. , Γ-butyrolactone, dimethoxyethane, methyl formate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, phosphorus Examples thereof include trimethyl acid, triethyl phosphate, and mixed solvents thereof, but are not necessarily limited thereto. Cyclic carbonates and cyclic esters are preferred. Most preferably, the organic solvent is a mixture of one or more of ethylene carbonate, propylene carbonate, methyl ethyl carbonate, and diethyl carbonate.

また、本発明の非水電解質二次電池に用いる電解質塩としては、特に制限はないが、LiClO、LiBF、LiAsF、CFSOLi、LiPF、LiN(CFSO、LiN(CSO、LiI、LiAlCl等およびそれらの混合物が挙げられる。好ましくは、LiBF、LiPFのうち、1種または2種以上を混合したリチウム塩がよい。 As the electrolyte salt used for the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, LiClO 4, LiBF 4, LiAsF 6, CF 3 SO 3 Li, LiPF 6, LiN (CF 3 SO 2) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiI, LiAlCl 4 and the like and mixtures thereof. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

その他の電池の構成要素として、集電体、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いて差し支えない。   Other battery components include a current collector, a terminal, an insulating plate, a battery case, and the like. However, these components may be used as they are.

以下に、本発明の実施例を、比較例とあわせて説明する。   Examples of the present invention will be described below together with comparative examples.

[Ni系正極活物質の合成]
[ニッケル酸リチウムの合成]
水酸化ニッケルと水酸化リチウムを、リチウムとニッケルのモル比が1.05:1となるように、ボールミルを用いて均一に混合し、この混合物を、酸素雰囲気中700℃で20時間焼成し、室温まで冷却したのちに乾燥アルゴン中で粉砕し、組成式LiNiOで表されるニッケル酸リチウム(正極活物質記号N0)を得た。
[Synthesis of Ni-based positive electrode active material]
[Synthesis of lithium nickelate]
Nickel hydroxide and lithium hydroxide were mixed uniformly using a ball mill so that the molar ratio of lithium to nickel was 1.05: 1, and this mixture was calcined at 700 ° C. for 20 hours in an oxygen atmosphere. After cooling to room temperature, the mixture was pulverized in dry argon to obtain lithium nickelate (positive electrode active material symbol N0) represented by the composition formula LiNiO 2 .

[Niの一部をCoおよびAlで置換した正極活物質の合成]
硫酸ニッケル、硫酸コバルトを所定の配合比で溶解し、さらに十分に攪拌させながら水酸化ナトリウム溶液を加えてニッケル−コバルト複合共沈水酸化物を得た。
[Synthesis of positive electrode active material in which a part of Ni is substituted with Co and Al]
Nickel sulfate and cobalt sulfate were dissolved at a predetermined blending ratio, and a sodium hydroxide solution was added with sufficient stirring to obtain a nickel-cobalt composite coprecipitated hydroxide.

生成した共沈物を水洗、乾燥し、水酸化アルミニウムと十分に混合した後に水酸化リチウム一水和塩を加え、リチウムとニッケル+コバルト+アルミニウムのモル比が1.05:1となるように調整して前駆体を作製した。   The produced coprecipitate was washed with water, dried, mixed well with aluminum hydroxide, and then lithium hydroxide monohydrate was added so that the molar ratio of lithium to nickel + cobalt + aluminum was 1.05: 1. The precursor was prepared by adjusting.

次に、この前駆体を酸素雰囲気中、700℃で20時間焼成し、室温まで冷却した後に乾燥アルゴンガス中で取り出して粉砕し、組成式一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.02)で表される種々のNi系化合物(正極活物質記号N1〜N15)を得た。なお、得られた化合物はデシケーター中に真空保管した。 Next, this precursor was calcined in an oxygen atmosphere at 700 ° C. for 20 hours, cooled to room temperature, taken out in a dry argon gas and pulverized, and the composition formula: general formula Li a Ni x Co y Al z O 2 (0 .3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.02) Various expressed Ni-based compounds (positive electrode active material symbols N1 to N15) were obtained. In addition, the obtained compound was vacuum-stored in the desiccator.

続いて、出発原料として、炭酸リチウムと四酸化三コバルトを混合し、大気中、800℃で20時間焼成した後に、室温まで冷却したのちに大気中で粉砕し、組成式LiCoOで表されるCo系化合物(正極活物質記号C1)を得た。得られた化合物はデシケーター中に真空保管した。 Subsequently, as a starting material, lithium carbonate and tricobalt tetroxide are mixed, calcined in the atmosphere at 800 ° C. for 20 hours, cooled to room temperature, pulverized in the atmosphere, and expressed by the composition formula LiCoO 2. A Co-based compound (positive electrode active material symbol C1) was obtained. The obtained compound was vacuum-stored in a desiccator.

化合物の一部をデシケーターから取り出し、定性分析をおこなった。その結果、粉末X線回折では、すべての化合物について未反応の水酸化物やアルミン酸リチウム、または炭酸リチウム等の不純物のピークは認められなかった。ICP発光分光法で分析した化合物全体の平均組成を表1に示す。   A part of the compound was removed from the desiccator and subjected to qualitative analysis. As a result, in powder X-ray diffraction, no peak of impurities such as unreacted hydroxide, lithium aluminate, or lithium carbonate was observed for all compounds. Table 1 shows the average composition of all the compounds analyzed by ICP emission spectroscopy.

つぎに、正極活物質記号N0、N1〜N15およびC1を用いて試験電池を作製した。正極は、上記化合物87重量%、アセチレンブラック5重量%、ポリフッ化ビニリデン8重量%を混合し、これに含水量50ppm以下のN−メチル−2−ピロリドン(NMP)を加えてペースト状とし、さらにアルミニウム箔上に塗布、乾燥して正極合材層を形成させて作製した。負極は、炭素材料(グラファイト)とポリフッ化ビニリデン(PVdF)とを混合し、これにNMPを加えてペースト状とし、さらに銅箔上に塗布、乾燥して負極合材層を形成させて作製した。このようにして作製した帯状の正極と負極とを、セパレーターを介して長円形状に捲回して電極群を構成した後、この電極群を長円筒形の有底アルミニウム容器に挿入し、さらに、電極群の巻芯部に充填物をつめた後、電解液を注入し、レーザー溶接にて容器と蓋とを封口溶接した。なお、ペースト作製から電極加工、電池組立に至る全ての工程は露点50℃以下の乾燥環境下でおこなった。   Next, test batteries were prepared using the positive electrode active material symbols N0, N1 to N15, and C1. The positive electrode was mixed with 87% by weight of the above compound, 5% by weight of acetylene black, and 8% by weight of polyvinylidene fluoride, and N-methyl-2-pyrrolidone (NMP) having a water content of 50 ppm or less was added to make a paste. It was produced by applying and drying on an aluminum foil to form a positive electrode mixture layer. The negative electrode was prepared by mixing a carbon material (graphite) and polyvinylidene fluoride (PVdF), adding NMP to this to form a paste, and applying and drying on a copper foil to form a negative electrode mixture layer. . After forming the electrode group by winding the belt-like positive electrode and negative electrode thus produced in an oval shape through a separator, this electrode group was inserted into a long cylindrical bottomed aluminum container, After filling the core part of the electrode group with a filler, an electrolytic solution was injected, and the container and the lid were sealed and welded by laser welding. All processes from paste preparation to electrode processing and battery assembly were performed in a dry environment with a dew point of 50 ° C. or lower.

これらの試験電池を、800mAの電流で4.2Vの電圧まで充電した後、800mAの電流で3.0Vの電圧まで放電したときの放電容量を測定し、正極活物質1g当たりの放電容量を算定した。これらの値を表1に示す。   After charging these test batteries to a voltage of 4.2 V at a current of 800 mA, the discharge capacity when discharging to a voltage of 3.0 V at a current of 800 mA is measured, and the discharge capacity per gram of the positive electrode active material is calculated. did. These values are shown in Table 1.

次に、これらの試験電池を、上記充放電と同じ試験条件で300サイクル充放電し、300サイクル目の放電容量を求め、これを1サイクル目の放電容量で除し、これを「サイクル後容量保持率」とした。これらの値を表1に示す。   Next, these test batteries are charged and discharged for 300 cycles under the same test conditions as the above charge and discharge, the discharge capacity at the 300th cycle is obtained, and this is divided by the discharge capacity at the first cycle. "Retention rate". These values are shown in Table 1.

次に、充放電サイクルに供した電池と同時に作製した別の電池を用いて、これらの試験電池の熱安定性試験を行った。正極活物質記号N0、N1〜N15の試験電池では、160mAの電流でLi0.3の状態になるまで充電し、正極活物質記号C1の試験電池では160mAの電流でLi0.5の状態になるまで充電した。充電後、(社)日本蓄電池工業会発行の「リチウム二次電池安全性評価基準ガイドライン(SBA G101)」に記載の釘刺し試験方法に準じて安全性試験をおこなった。これらの結果を表1に示す。正極活物質記号C1を用いた電池の試験結果と比較して、同等の安全性であった場合は○、やや安全性が低下した場合は△、大幅に安全性が低下した場合は×と記してある。   Next, the thermal stability test of these test batteries was performed using another battery manufactured simultaneously with the battery subjected to the charge / discharge cycle. In the test batteries of the positive electrode active material symbols N0 and N1 to N15, the battery is charged at a current of 160 mA until the state of Li0.3 is reached, and in the test batteries of the positive electrode active material symbol C1 until the state of Li0.5 is obtained at a current of 160 mA. Charged. After charging, a safety test was conducted in accordance with the nail penetration test method described in “Lithium Secondary Battery Safety Evaluation Standard Guidelines (SBA G101)” issued by Japan Storage Battery Industry Association. These results are shown in Table 1. Compared with the test results of the battery using the positive electrode active material symbol C1, it is marked as ◯ when the safety is equivalent, △ when the safety is slightly lowered, and × when the safety is significantly lowered. It is.

充放電サイクル試験、熱安定性試験に供した電池と同時に作製した別の電池で保存特性を比較した。1CAの電流で4.2Vの電圧まで充電した後、800mAの電流で3.0Vまで放電する充放電を初期に3回繰り返し、3回目の放電容量を初期容量とした。次に、800mAの電流で4.2Vの電圧まで再度充電した後、電池を60℃の環境下で10日間保存し、保存後も初期と同様の充放電条件で3回充放電を繰り返し、3回目の放電容量を保存後容量とした。そして、保存後容量を初期容量で除し、これを「保存後容量保持率」とした。これらの値を表1に示す。   The storage characteristics of the batteries prepared at the same time as the batteries subjected to the charge / discharge cycle test and the thermal stability test were compared. After charging to a voltage of 4.2 V with a current of 1 CA, charging / discharging of discharging to 3.0 V with a current of 800 mA was repeated three times in the initial stage, and the third discharge capacity was defined as the initial capacity. Next, after charging again to a voltage of 4.2 V at a current of 800 mA, the battery was stored in an environment of 60 ° C. for 10 days, and after the storage, charging and discharging were repeated three times under the same charging and discharging conditions as in the initial stage. The discharge capacity for the second time was defined as the capacity after storage. Then, the capacity after storage was divided by the initial capacity, and this was defined as “capacity retention after storage”. These values are shown in Table 1.

Figure 2005235624
Figure 2005235624

表1の結果より、従来のCo系化合物を用いた非水電解質二次電池と比較して、放電容量、サイクル寿命性能、熱安定性、保存性能など総合的に優れる電池は、化合物全体の平均組成、および化合物表面の組成が一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.02)で表されるNi系化合物を正極活物質に用いた電池であることがわかった。 From the results shown in Table 1, compared to conventional non-aqueous electrolyte secondary batteries using Co-based compounds, batteries that are comprehensively superior in terms of discharge capacity, cycle life performance, thermal stability, storage performance, etc. The composition and the composition of the compound surface are the general formulas Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27 , 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.02), which was found to be a battery using a positive electrode active material.

[実施例1〜12および比較例1〜11]
実施例1〜12および比較例1〜11では、正極活物質記号N1の全体平均組成がLi1.03Ni0.70Co0.20Al0.10で表されるNi系化合物を用いた。正極活物質記号N1は、合成後デシケーター中に保管したものを用いた。正極活物質記号N1のNi系化合物は、粉末X線回折による定性分析では、未反応の水酸化物やアルミン酸リチウム等の不純物のピークは認められず、また、ICP発光分光法で分析した化合物全体の平均組成も実施例1と同一であった。
[Examples 1 to 12 and Comparative Examples 1 to 11]
In Examples 1 to 12 and Comparative Examples 1 to 11, a Ni-based compound in which the overall average composition of the positive electrode active material symbol N1 is represented by Li 1.03 Ni 0.70 Co 0.20 Al 0.10 O 2 is used. It was. As the positive electrode active material symbol N1, one stored in a desiccator after synthesis was used. The Ni-based compound of the positive electrode active material symbol N1 is a compound analyzed by ICP emission spectroscopy in which no peak of impurities such as unreacted hydroxide and lithium aluminate is observed in the qualitative analysis by powder X-ray diffraction. The overall average composition was also the same as in Example 1.

[実施例1]
正極活物質記号N1を用いて試験電池を作製した。正極は、正極活物質記号N1を87重量%、アセチレンブラック5重量%、ポリフッ化ビニリデン8重量%を混合し、これに含水量50ppm以下のN−メチル−2−ピロリドン(NMP)を加えてペースト状とし、さらにアルミニウム箔上に塗布、乾燥して正極合材層を形成させて作製した。負極は、炭素材料(グラファイト)とポリフッ化ビニリデン(PVdF)とを混合し、これにNMPを加えてペースト状とし、さらに銅箔上に塗布、乾燥して負極合材層を形成させて作製した。このようにして作製した帯状の正極と負極とを、セパレーターを介して長円形状に捲回して電極群を構成した後、この電極群を長円筒形の有底アルミニウム容器に挿入し、さらに、電極群の巻芯部に充填物をつめた後、電解液を注入した。
[Example 1]
A test battery was fabricated using the positive electrode active material symbol N1. For the positive electrode, 87% by weight of the positive electrode active material symbol N1, 5% by weight of acetylene black, and 8% by weight of polyvinylidene fluoride are mixed, and N-methyl-2-pyrrolidone (NMP) having a water content of 50 ppm or less is added to the paste. In addition, it was applied on an aluminum foil and dried to form a positive electrode mixture layer. The negative electrode was prepared by mixing a carbon material (graphite) and polyvinylidene fluoride (PVdF), adding NMP to this to form a paste, and applying and drying on a copper foil to form a negative electrode mixture layer. . After forming the electrode group by winding the belt-like positive electrode and negative electrode thus produced in an oval shape through a separator, this electrode group was inserted into a long cylindrical bottomed aluminum container, After filling the core part of the electrode group with the filler, the electrolyte was injected.

注液後、蓋を溶接せずに、正極開回路電位が4.1Vになるように充電し、その後正極閉回路電位を4.45Vとして、図2に示した矩形波パルスで電圧を印加した。矩形波パルスの条件は、CCVは4.45V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回とした。そして電圧印加後にレーザー溶接にて容器と蓋とを封口溶接した。なお、本電池においてもペースト作製から電極加工、電池組立、さらに電流印加に至る全ての工程は、露点50℃以下の乾燥環境下でおこなった。これを実施例1の電池とした。   After pouring, the lid was not welded and charged so that the positive electrode open circuit potential was 4.1 V, and then the positive electrode closed circuit potential was 4.45 V, and the voltage was applied with the rectangular pulse shown in FIG. . The conditions of the rectangular wave pulse were as follows: CCV was 4.45 V, OCV was 4.1 V, pulse width was 5 ms, pulse interval was 5 ms, cycle was 10 ms, and the number of applications was 1000 times. After the voltage application, the container and the lid were sealed and welded by laser welding. Also in this battery, all processes from paste preparation to electrode processing, battery assembly, and current application were performed in a dry environment with a dew point of 50 ° C. or less. This was designated as the battery of Example 1.

なお、正極の開回路電位および閉回路電位は、図1のA部に挿入した微小なリチウム参照極11を用いて測定した。参照極は正極および負極と絶縁されており、参照極に接続した電位測定用リードは電池外までのびており、電位測定用リードと正極端子間の電位を測定した。参照極はすべての電池に挿入する必要はなく、本発明による充電方法はひとつの電池で条件出しをおこなった。   Note that the open circuit potential and the closed circuit potential of the positive electrode were measured using a small lithium reference electrode 11 inserted in the A part of FIG. The reference electrode was insulated from the positive electrode and the negative electrode, and the potential measurement lead connected to the reference electrode extended to the outside of the battery, and the potential between the potential measurement lead and the positive electrode terminal was measured. The reference electrode does not need to be inserted into every battery, and the charging method according to the present invention performed the condition determination with one battery.

[実施例2]
パルス電圧印加前に正極開回路電位が3.9Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは3.9V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例2の電池を作製した。
[Example 2]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 3.9 V, and the rectangular wave pulse conditions are as follows: CCV is 4.45 V, OCV is 3.9 V, pulse width is 5 ms, pulse interval is 5 ms, period Was set to 10 ms, and the battery of Example 2 was fabricated under the same conditions as in Example 1 except that the number of times of application was 1000.

[実施例3]
パルス電圧印加前に正極開回路電位が4.2Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.2V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例3の電池を作製した。
[Example 3]
Before applying the pulse voltage, it is charged so that the positive open circuit potential is 4.2V, and the rectangular wave pulse conditions are as follows: CCV is 4.45V, OCV is 4.2V, pulse width is 5ms, pulse interval is 5ms, period Was set to 10 ms, and the battery of Example 3 was fabricated under the same conditions as Example 1 except that the number of times of application was 1000 times.

[実施例4]
パルス電圧印加前に正極開回路電位が3.8Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは3.8V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例4の電池を作製した。
[Example 4]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 3.8V, and the rectangular wave pulse conditions are as follows: CCV is 4.45V, OCV is 3.8V, pulse width is 5ms, pulse interval is 5ms, cycle Was set to 10 ms, and the battery of Example 4 was fabricated under the same conditions as in Example 1 except that the number of times of application was 1000.

[実施例5]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.4V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例5の電池を作製した。
[Example 5]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.4V, OCV is 4.1V, pulse width is 5ms, pulse interval is 5ms, period Was set to 10 ms, and the battery of Example 5 was fabricated under the same conditions as in Example 1 except that the number of times of application was 1000.

[実施例6]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.5V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例6の電池を作製した。
[Example 6]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V. The conditions of the rectangular wave pulse are as follows: CCV is 4.5V, OCV is 4.1V, pulse width is 5ms, pulse interval is 5ms, period Was set to 10 ms, and the battery of Example 6 was fabricated under the same conditions as Example 1 except that the number of times of application was 1000 times.

[実施例7]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.1V、パルス幅は0.5ms、パルス間隔は0.5ms、周期は1msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例7の電池を作製した。
[Example 7]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1 V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45 V, OCV is 4.1 V, pulse width is 0.5 ms, and pulse interval is 0 A battery of Example 7 was fabricated under the same conditions as in Example 1 except that the period was 0.5 ms, the period was 1 ms, and the number of applications was 1000.

[実施例8]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.1V、パルス幅は50ms、パルス間隔は50ms、周期は100msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例6の電池を作製した。
[Example 8]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V. The conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 4.1V, pulse width is 50ms, pulse interval is 50ms, period Was set to 100 ms, and the number of times of application was 1000. A battery of Example 6 was fabricated under the same conditions as in Example 1.

[実施例9]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は100回としたこと以外は実施例1と同一の条件で、実施例9の電池を作製した。
[Example 9]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 4.1V, pulse width is 5ms, pulse interval is 5ms, period Was set to 10 ms, and the battery of Example 9 was fabricated under the same conditions as in Example 1 except that the number of times of application was 100 times.

[実施例10]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は10000回としたこと以外は実施例1と同一の条件で、実施例10の電池を作製した。
[Example 10]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 4.1V, pulse width is 5ms, pulse interval is 5ms, period Was 10 ms, and the battery of Example 10 was fabricated under the same conditions as in Example 1 except that the number of times of application was 10,000.

[実施例11]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、図3に示した三角波パルス電圧を印加し、三角波パルスの条件を、CCVは4.45V、OCVは4.1V、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例11の電池を作製した。
[Example 11]
Before applying the pulse voltage, the positive electrode open circuit potential is charged to 4.1 V, the triangular wave pulse voltage shown in FIG. 3 is applied, and the triangular wave pulse conditions are as follows: CCV is 4.45 V, OCV is 4.1 V, A battery of Example 11 was produced under the same conditions as Example 1 except that the period was 10 ms and the number of times of application was 1000.

[実施例12]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、図4に示した正弦波パルス電圧を印加し、正弦波パルスの条件を、CCVは4.45V、OCVは4.1V、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、実施例12の電池を作製した。
[Example 12]
Before applying the pulse voltage, the positive electrode open circuit potential is charged to 4.1 V, the sine wave pulse voltage shown in FIG. 4 is applied, and the conditions of the sine wave pulse are 4.45 V for CCV and 4. V for OCV. A battery of Example 12 was fabricated under the same conditions as Example 1 except that the voltage was 1 V, the period was 10 ms, and the number of times of application was 1000.

[比較例1]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.6V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、比較例1の電池を作製した。
[Comparative Example 1]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.6V, OCV is 4.1V, pulse width is 5ms, pulse interval is 5ms, period Was set to 10 ms, and the battery of Comparative Example 1 was fabricated under the same conditions as in Example 1 except that the number of times of application was 1000.

[比較例2]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.3V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、比較例2の電池を作製した。
[Comparative Example 2]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.3V, OCV is 4.1V, pulse width is 5ms, pulse interval is 5ms, period Was set to 10 ms, and the battery of Comparative Example 2 was fabricated under the same conditions as in Example 1 except that the number of times of application was 1000.

[比較例3]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.1V、パルス幅は0.05ms、パルス間隔は0.05ms、周期は0.1msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、比較例3の電池を作製した。
[Comparative Example 3]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1 V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45 V, OCV is 4.1 V, pulse width is 0.05 ms, and pulse interval is 0 A battery of Comparative Example 3 was manufactured under the same conditions as in Example 1 except that the period was set to 0.05 ms, the period was 0.1 ms, and the number of times of application was 1000 times.

[比較例4]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.1V、パルス幅は500ms、パルス間隔は500ms、周期は1000msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、比較例4の電池を作製した。
[Comparative Example 4]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 4.1V, pulse width is 500ms, pulse interval is 500ms, period Was set to 1000 ms, and the battery of Comparative Example 4 was produced under the same conditions as in Example 1 except that the number of times of application was 1000 times.

[比較例5]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は10回としたこと以外は実施例1と同一の条件で、比較例5の電池を作製した。
[Comparative Example 5]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 4.1V, pulse width is 5ms, pulse interval is 5ms, period Was set to 10 ms, and the battery of Comparative Example 5 was fabricated under the same conditions as in Example 1 except that the number of times of application was 10.

[比較例6]
パルス電圧印加前に正極開回路電位が4.1Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.1V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は100000回としたこと以外は実施例1と同一の条件で、比較例6の電池を作製した。
[Comparative Example 6]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.1V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 4.1V, pulse width is 5ms, pulse interval is 5ms, period Was 10 ms, and the number of times of application was 100,000. A battery of Comparative Example 6 was produced under the same conditions as in Example 1.

[比較例7]
電解液を注入後、すぐにレーザー溶接にて容器と蓋とを封口溶接し、その後、正極開回路電位が4.1Vになるように充電し、比較例6と同一の条件で矩形波パルス電圧を印加したこと以外は実施例1と同一の条件で、比較例7の電池を作製した。
[Comparative Example 7]
Immediately after injecting the electrolyte, the container and the lid are sealed and welded by laser welding, and then charged so that the positive electrode open circuit potential is 4.1 V. A rectangular wave pulse voltage under the same conditions as in Comparative Example 6 A battery of Comparative Example 7 was produced under the same conditions as in Example 1 except that was applied.

[比較例8]
パルス電圧印加前に正極開回路電位が4.4Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.4V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、比較例8の電池を作製した。
[Comparative Example 8]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.4V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 4.4V, pulse width is 5ms, pulse interval is 5ms, period Was 10 ms, and the battery of Comparative Example 8 was fabricated under the same conditions as in Example 1 except that the number of times of application was 1000.

[比較例9]
パルス電圧印加前に正極開回路電位が3.7Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは3.7V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、比較例9の電池を作製した。
[Comparative Example 9]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 3.7V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 3.7V, pulse width is 5ms, pulse interval is 5ms, period Was 10 ms, and the battery of Comparative Example 9 was produced under the same conditions as in Example 1 except that the number of times of application was 1000.

[比較例10]
パルス電圧印加前に正極開回路電位が4.3Vになるように充電し、矩形波パルスの条件を、CCVは4.45V、OCVは4.3V、パルス幅は5ms、パルス間隔は5ms、周期は10msとし、印加回数は1000回としたこと以外は実施例1と同一の条件で、比較例10の電池を作製した。
[Comparative Example 10]
Before applying the pulse voltage, it is charged so that the positive circuit open circuit potential is 4.3V, and the conditions of the rectangular wave pulse are as follows: CCV is 4.45V, OCV is 4.3V, pulse width is 5ms, pulse interval is 5ms, period Was set to 10 ms, and the battery of Comparative Example 10 was produced under the same conditions as in Example 1 except that the number of times of application was 1000 times.

[比較例11]
電解液を注入後、すぐにレーザー溶接にて容器と蓋とを封口溶接し、パルス電圧を印加しなかったこと以外は実施例1と同一の条件で、比較例11の電池を作製した。
[Comparative Example 11]
Immediately after injecting the electrolyte, the container and the lid were sealed by laser welding, and a battery of Comparative Example 11 was produced under the same conditions as in Example 1 except that no pulse voltage was applied.

実施例1〜12の、パルス電圧印加前充電時の正極開回路電位およびパルス条件を表2に示し、比較例1〜11の同じ条件を表3に示した。   The positive open circuit potential and the pulse conditions during charging before applying the pulse voltage of Examples 1 to 12 are shown in Table 2, and the same conditions of Comparative Examples 1 to 11 are shown in Table 3.

Figure 2005235624
Figure 2005235624

Figure 2005235624
Figure 2005235624

実施例1〜12および比較例1〜11の試験電池について、放電容量測定試験、充放電サイクル試験、保存試験を行った。   About the test battery of Examples 1-12 and Comparative Examples 1-11, the discharge capacity measurement test, the charging / discharging cycle test, and the storage test were done.

放電容量測定試験は、試験電池を25℃環境下、800mAの電流で4.2Vの電圧まで充電した後、1CAの電流で3.0Vの電圧まで放電し、この容量を「初期放電容量」とし、さらに、放電後に、1kHzでの交流内部抵抗および電池厚みを測定し、「初期内部抵抗」および「初期電池厚み」とした。   In the discharge capacity measurement test, the test battery is charged to a voltage of 4.2 V at a current of 800 mA in a 25 ° C. environment, and then discharged to a voltage of 3.0 V at a current of 1 CA. This capacity is defined as an “initial discharge capacity”. Further, after the discharge, the AC internal resistance and the battery thickness at 1 kHz were measured to obtain “initial internal resistance” and “initial battery thickness”.

充放電サイクル試験は、試験電池を、放電容量測定試験と同じ条件で300サイクル充放電し、300サイクル目の放電容量を「サイクル後放電容量」とし、このサイクル後放電容量を初期放電容量で除して「サイクル後容量保持率」を算定した。また、300サイクル充放電後にも、1kHzでの交流内部抵抗および電池厚みを測定し、「サイクル後内部抵抗」および「サイクル後電池厚み」とした。   In the charge / discharge cycle test, the test battery is charged / discharged for 300 cycles under the same conditions as the discharge capacity measurement test, the discharge capacity at the 300th cycle is defined as “post-cycle discharge capacity”, and the post-cycle discharge capacity is divided by the initial discharge capacity. The “capacity retention after cycle” was calculated. Further, even after 300 cycles of charge and discharge, the AC internal resistance and battery thickness at 1 kHz were measured, and were defined as “post-cycle internal resistance” and “post-cycle battery thickness”.

保存試験は、充放電サイクル試験に供した電池と同時に作製した別の電池で保存特性を比較することで行った。ICAの電流で4.2Vの電圧まで充電した後、1CAの電流で3.0Vまで放電する充放電を初期に3回繰り返し、3回目の放電容量を「保存前放電容量」とした。次に、1CAの電流で4.2Vの電圧まで再度充電した後、電池を60℃の環境下で10日間保存し、保存後も初期と同様の充放電条件で3回充放電を繰り返し、3回目の放電容量を「保存後放電容量」とした。そして、保存後放電容量を保存前放電容量で除して「保存後容量保持率」を算定した。また、保存後に、1kHzでの交流内部抵抗および電池厚みを測定し、「保存後内部抵抗」および「保存後電池厚み」とした。   The storage test was performed by comparing the storage characteristics of another battery produced at the same time as the battery subjected to the charge / discharge cycle test. After charging to a voltage of 4.2 V with an ICA current, charging / discharging to discharge to 3.0 V with a current of 1 CA was repeated three times in the initial stage, and the third discharge capacity was defined as “discharge capacity before storage”. Next, after charging again to a voltage of 4.2 V with a current of 1 CA, the battery was stored in an environment of 60 ° C. for 10 days, and after the storage, the battery was repeatedly charged and discharged three times under the same charge / discharge conditions as in the initial stage. The discharge capacity at the second time was defined as “discharge capacity after storage”. Then, the “discharge capacity after storage” was calculated by dividing the discharge capacity after storage by the discharge capacity before storage. Moreover, the AC internal resistance and battery thickness at 1 kHz were measured after storage, and were set as “internal resistance after storage” and “battery thickness after storage”.

これらの測定結果を表4〜7に示した。   These measurement results are shown in Tables 4-7.

Figure 2005235624
Figure 2005235624

Figure 2005235624
Figure 2005235624

Figure 2005235624
Figure 2005235624

Figure 2005235624
Figure 2005235624

表4〜表7に示された結果より、実施例1〜12の電池のように、正極の開回路電位が3.8〜4.2Vの状態で、かつ、電池ケースを開口した状態で正極の閉回路電位が4.4〜4.5Vとなるように、周期が1〜100msのパルス電流を印加することにより、電池組立後においても残留アルカリを有効に除去できるようになったため、Ni系化合物を正極活物質に用いた電池の放電容量が向上し、安全性を損なうことなく、寿命性能、放置性能ともに向上できることがわかった。また、パルス電流の印加回数は、少ない場合や多すぎる場合の効果はほとんどなく、100〜10000回の電流印加が最適であることがわかった。   From the results shown in Tables 4 to 7, as in the batteries of Examples 1 to 12, the positive electrode was in a state where the open circuit potential of the positive electrode was 3.8 to 4.2 V and the battery case was opened. By applying a pulse current having a period of 1 to 100 ms so that the closed circuit potential of the battery becomes 4.4 to 4.5 V, the residual alkali can be effectively removed even after the battery is assembled. It was found that the discharge capacity of the battery using the compound as the positive electrode active material was improved, and both the life performance and the standing performance could be improved without sacrificing safety. In addition, it was found that there is almost no effect when the number of application of the pulse current is small or too large, and the current application of 100 to 10,000 times is optimal.

なお、比較例1〜11の電池のように、パルス電流印加の条件が本願発明の範囲をはずれた場合には、実施例1〜12の電池と比較して、サイクル後容量保持率や保存後容量保持率が低下し、サイクル後内部抵抗やサイクル後電池厚みが増加し、また、保存後内部抵抗や保存後電池厚みが増加することがわかった。   In addition, like the batteries of Comparative Examples 1 to 11, when the pulse current application conditions deviate from the scope of the present invention, compared with the batteries of Examples 1 to 12, the capacity retention rate after cycling and after storage It was found that the capacity retention ratio decreased, the internal resistance after cycling and the battery thickness after cycling increased, and the internal resistance after storage and the battery thickness after storage increased.

実施例1〜12および比較例1〜11では、正極活物質記号N1の全体平均組成がLi1.03Ni0.70Co0.20Al0.10で表されるNi系化合物を正極活物質として使用したが、正極活物質記号N1以外の、表1に示した正極活物質記号N0、N2〜N15を使用した場合においても、パルス電流印加の条件を本願発明の範囲とすることにより、電池組立後においても残留アルカリを有効に除去でき、電池の放電容量が向上し、安全性を損なうことなく、寿命性能、放置性能ともに向上できることを確認している。 In Examples 1 to 12 and Comparative Examples 1 to 11, a Ni-based compound in which the overall average composition of the positive electrode active material symbol N1 is represented by Li 1.03 Ni 0.70 Co 0.20 Al 0.10 O 2 is used as the positive electrode. Although used as an active material, even when the positive electrode active material symbols N0 and N2 to N15 shown in Table 1 other than the positive electrode active material symbol N1 are used, the pulse current application conditions are within the scope of the present invention. It has been confirmed that residual alkali can be effectively removed even after the battery is assembled, the discharge capacity of the battery is improved, and both the life performance and the leaving performance can be improved without sacrificing safety.

非水電解質二次電池の断面構造を示す図。The figure which shows the cross-section of a nonaqueous electrolyte secondary battery. 矩形波パルス電圧パターンを示す図。The figure which shows a rectangular wave pulse voltage pattern. 三角波パルス電圧パターンを示す図。The figure which shows a triangular wave pulse voltage pattern. 正弦波パルス電圧パターンを示す図。The figure which shows a sine wave pulse voltage pattern.

符号の説明Explanation of symbols

1 非水電解質二次電池
2 電極群
3 負極板
4 正極板
5 セパレータ
6 電池容器
7 蓋
8 安全弁
9 負極端子
10 負極リード
11 微小なリチウム参照極
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Negative electrode plate 4 Positive electrode plate 5 Separator 6 Battery container 7 Lid 8 Safety valve 9 Negative electrode terminal 10 Negative electrode lead 11 Minute lithium reference electrode

Claims (2)

一般式LiNi(0.3≦a≦1.05、0.7≦x≦1、0≦y≦0.3、1≦x+y≦1.02、MはB、Al、Mg、Fe、Sn、Cr、Cu、Ti、Zn、Co、Mnから選ばれる少なくとも1種)で示されるリチウム含有層状ニッケル酸化物を活物質とする正極と、リチウムを吸蔵放出可能な炭素材を活物質とする負極と、非水電解液、およびセパレーターからなる発電要素が電池ケースに収納された非水電解液二次電池の製造方法において、正極の開回路電位がリチウムの溶解析出電位に対して3.8〜4.2Vであり、かつ、電池ケースが開口した状態で、正極の閉回路電位がリチウムの溶解析出電位に対して4.4〜4.5Vとなるように、1〜100msの周期でパルス電圧を印加し、その後封口したことを特徴とする非水電解液二次電池の製造方法。 General formula Li a Ni x M y O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 1, 0 ≦ y ≦ 0.3, 1 ≦ x + y ≦ 1.02, M is B, Al , Mg, Fe, Sn, Cr, Cu, Ti, Zn, Co, Mn) and a carbon material capable of occluding and releasing lithium, and a positive electrode using a lithium-containing layered nickel oxide as an active material In the method of manufacturing a non-aqueous electrolyte secondary battery in which a power generation element comprising a negative electrode made of an active material, a non-aqueous electrolyte, and a separator is housed in a battery case, the open circuit potential of the positive electrode is changed to a lithium dissolution precipitation potential. On the other hand, it is 3.8 to 4.2 V, and in the state where the battery case is opened, the closed circuit potential of the positive electrode is 4.4 to 4.5 V with respect to the lithium dissolution precipitation potential. A pulse voltage was applied at a period of 100 ms and then sealed. Non-aqueous method for producing a liquid electrolyte secondary battery characterized by and. 電圧の印加回数が100〜10000回であることを特徴とする請求項1記載の非水電解液二次電池の製造方法。



























2. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the voltage is applied 100 to 10,000 times.



























JP2004044407A 2004-02-20 2004-02-20 Manufacturing method for nonaqueous electrolyte secondary battery Pending JP2005235624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044407A JP2005235624A (en) 2004-02-20 2004-02-20 Manufacturing method for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044407A JP2005235624A (en) 2004-02-20 2004-02-20 Manufacturing method for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005235624A true JP2005235624A (en) 2005-09-02

Family

ID=35018348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044407A Pending JP2005235624A (en) 2004-02-20 2004-02-20 Manufacturing method for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005235624A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226752A (en) * 2007-03-15 2008-09-25 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
CN100426569C (en) * 2006-11-01 2008-10-15 北京科技大学 Stable laminated structure positive electrode material of lithium ion battery and its preparing method
JP2008251224A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
WO2011040446A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
WO2011108355A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2013035187A1 (en) * 2011-09-08 2013-03-14 トヨタ自動車株式会社 Lithium secondary battery manufacturing method
JPWO2011108389A1 (en) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN103262327A (en) * 2010-12-17 2013-08-21 丰田自动车株式会社 Method for producing lithium secondary cell
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
WO2018054233A1 (en) * 2016-09-22 2018-03-29 Grst International Limited Electrode assemblies
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
CN110071291A (en) * 2019-03-19 2019-07-30 长沙市秒冲电池技术与材料研究所 Power battery, negative electrode tab, cathode composite foil and preparation method thereof
CN111771302A (en) * 2017-12-22 2020-10-13 株式会社Posco Positive electrode active material for lithium secondary battery, preparation method thereof and lithium secondary battery
CN113782743A (en) * 2021-08-27 2021-12-10 合肥国轩高科动力能源有限公司 Lithium ion battery positive electrode material and preparation method and application thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426569C (en) * 2006-11-01 2008-10-15 北京科技大学 Stable laminated structure positive electrode material of lithium ion battery and its preparing method
JP2008226752A (en) * 2007-03-15 2008-09-25 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008251224A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
WO2011040446A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
US9977090B2 (en) 2009-09-30 2018-05-22 Dai Nippon Printing Co., Ltd. Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
US9076601B2 (en) 2009-09-30 2015-07-07 Dai Nippon Printing Co., Ltd. Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
JP5699337B2 (en) * 2009-09-30 2015-04-08 大日本印刷株式会社 Insulation defect inspection apparatus, insulation defect inspection method using the same, and electrochemical cell manufacturing method
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP5313392B2 (en) * 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5843753B2 (en) * 2010-03-04 2016-01-13 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011108355A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JPWO2011108389A1 (en) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2011108355A1 (en) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9406967B2 (en) 2010-12-17 2016-08-02 Toyota Jidosha Kabushiki Kaisha Method for producing lithium secondary cell
CN103262327A (en) * 2010-12-17 2013-08-21 丰田自动车株式会社 Method for producing lithium secondary cell
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2013035187A1 (en) * 2011-09-08 2013-03-14 トヨタ自動車株式会社 Lithium secondary battery manufacturing method
CN103782441A (en) * 2011-09-08 2014-05-07 丰田自动车株式会社 Lithium secondary battery manufacturing method
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
WO2018054233A1 (en) * 2016-09-22 2018-03-29 Grst International Limited Electrode assemblies
CN111771302A (en) * 2017-12-22 2020-10-13 株式会社Posco Positive electrode active material for lithium secondary battery, preparation method thereof and lithium secondary battery
CN111771302B (en) * 2017-12-22 2023-08-25 浦项控股股份有限公司 Positive electrode active material of lithium secondary battery, preparation method of positive electrode active material and lithium secondary battery
CN110071291A (en) * 2019-03-19 2019-07-30 长沙市秒冲电池技术与材料研究所 Power battery, negative electrode tab, cathode composite foil and preparation method thereof
CN113782743A (en) * 2021-08-27 2021-12-10 合肥国轩高科动力能源有限公司 Lithium ion battery positive electrode material and preparation method and application thereof
CN113782743B (en) * 2021-08-27 2022-07-12 合肥国轩高科动力能源有限公司 Lithium ion battery positive electrode material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2005235624A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5894388B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP5135764B2 (en) Nonaqueous electrolyte secondary battery
JP2007273108A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using the same
JPWO2004105162A6 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
JP5224081B2 (en) Nonaqueous electrolyte secondary battery
JP2012014851A (en) Electrode for electrochemical element, and nonaqueous secondary battery
EP2436066A1 (en) Titanium system composite and the preparing method of the same
JP2005129489A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2011023335A (en) Electrode for nonaqueous secondary battery and nonaqueous secondary battery
KR102332440B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2008251191A (en) Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
JP4540041B2 (en) Nonaqueous electrolyte secondary battery
JP2022095988A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN107112527B (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2008060076A (en) Nonaqueous electrolyte secondary battery
KR101655241B1 (en) Manufacturing method of lithium manganese complex oxide coated with lithium polysilicate, lithium manganese complex oxide for lithium rechargeable batteries made by the same, and lithium rechargeable batteries comprising the same
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP7056659B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery
US7527896B2 (en) Nonaqueous electrolyte secondary battery
JP2009087647A (en) Nonaqueous electrolyte secondary battery
KR20180043276A (en) POSITIVE ACTIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR PRODUCING THE SAME, AND NON-
KR101676687B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
US20140203787A1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213