JP2005108654A - Litz wire and exciting coil, and induction heating device using above - Google Patents

Litz wire and exciting coil, and induction heating device using above Download PDF

Info

Publication number
JP2005108654A
JP2005108654A JP2003341080A JP2003341080A JP2005108654A JP 2005108654 A JP2005108654 A JP 2005108654A JP 2003341080 A JP2003341080 A JP 2003341080A JP 2003341080 A JP2003341080 A JP 2003341080A JP 2005108654 A JP2005108654 A JP 2005108654A
Authority
JP
Japan
Prior art keywords
litz wire
coil
wire
litz
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003341080A
Other languages
Japanese (ja)
Inventor
Minoru Hayashizaki
実 林崎
Tomonori Shida
仕田  知経
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003341080A priority Critical patent/JP2005108654A/en
Publication of JP2005108654A publication Critical patent/JP2005108654A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Insulated Conductors (AREA)
  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a litz wire structure capable of responding to the higher efficiency and the higher frequency of a coil and reducing high frequency resistance by a proximity effect, an exciting coil capable of having high efficiency and reducing cost by using the litz wire, and an induction heating device, a high frequency transformer, and a coil inductance using the exciting coil. <P>SOLUTION: The litz wire is made of a plurality of twisted insulation coating conductors, a hollow litz wire A1 has the cross-section center of the litz wire as a hollow part or with a core member other than the insulation coating conductors. A double hollow litz wire A2 is made by twisting the plurality of litz wires A1 as secondary wires, with its cross-section center as a hollow part or with a core member other than the secondary wires. The exciting coil has such litz wires formed into a coil shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リッツ線、それを用いた励磁コイルおよび誘導加熱装置に関する。   The present invention relates to a litz wire, an exciting coil using the litz wire, and an induction heating device.

便宜上、複写機・プリンタ等の画像形成装置に具備させる、トナー画像を被記録材に加熱定着させる定着装置(像加熱装置)を例にして説明する。   For convenience, a fixing device (image heating device) that is provided in an image forming apparatus such as a copier or printer and heat-fixes a toner image on a recording material will be described as an example.

画像形成装置において、電子写真プロセス・静電記録プロセス・磁気記録プロセス等の適宜の画像形成プロセス手段部で被記録材(転写材シート・エレクトロファックスシート・静電記録紙・OHPシート・印刷用紙・フォーマット紙など)に転写方式あるいは直接方式にて形成担持させた目的の画像情報の未定着画像(トナー画像)を被記録材面に永久固着画像として加熱定着させる定着装置として誘導加熱装置(電磁誘導加熱方式の加熱装置)がある。   In an image forming apparatus, a recording material (transfer material sheet, electrofax sheet, electrostatic recording paper, OHP sheet, printing paper, printing paper, electrophotographic process, electrostatic recording process, magnetic recording process, etc. Induction heating device (electromagnetic induction) as a fixing device that heats and fixes an unfixed image (toner image) of the target image information formed and supported on a recording paper by a transfer method or a direct method as a permanently fixed image on the recording material surface Heating type heating device).

誘導加熱装置は励磁回路から励磁コイルに交番電流(高周波電流)を供給して交番磁束を発生させ、その交番磁束を誘導発熱性部材(金属等の導電体、磁性体、抵抗体)に作用させて渦電流を誘導させ、その渦電流によるジュール熱(誘導発熱性部材の固有抵抗による)で誘導発熱性部材を発熱させて被加熱部材を加熱するものである。   The induction heating device generates an alternating magnetic flux by supplying an alternating current (high-frequency current) from the exciting circuit to the exciting coil, and causes the alternating magnetic flux to act on the induction heat generating member (conductor such as metal, magnetic material, resistor). Then, an eddy current is induced, and the member to be heated is heated by causing the induction heat generating member to generate heat by Joule heat (due to the specific resistance of the induction heat generating member) due to the eddy current.

例えば特許文献1や2には、磁束により定着ローラに電流を誘導させてジュール熱によって発熱させる誘導加熱定着装置が開示されている。これは、誘導電流の発生を利用することで直接定着ローラを発熱させることができて、ハロゲンランプを熱源として用いた熱ローラ方式の定着装置よりも高効率の定着プロセスを達成している。   For example, Patent Documents 1 and 2 disclose an induction heating fixing device that induces a current in a fixing roller by magnetic flux and generates heat by Joule heat. This makes it possible to directly heat the fixing roller by using the generation of induced current, and achieves a fixing process that is more efficient than a heat roller type fixing device using a halogen lamp as a heat source.

このような誘導加熱装置において、励磁コイルの抵抗はそのまま誘導加熱装置の効率を左右する重要な部品である。高周波の伝播においては、導体の物性により定まる表皮効果により、導体断面の外周に近いほど電流は多く流れ、内部にいくに従って電流密度は低下する。このような表皮効果による影響を減らすため、素線として細い絶縁被覆導体、たとえば、絶縁膜を有する銅線(細線化された銅線)を、多数撚り合わせた所謂リッツ線が用いられる(例えば、特許文献3、4参照)。   In such an induction heating apparatus, the resistance of the exciting coil is an important component that directly determines the efficiency of the induction heating apparatus. In high-frequency propagation, due to the skin effect determined by the physical properties of the conductor, more current flows closer to the outer periphery of the conductor cross section, and the current density decreases as it goes inside. In order to reduce the influence due to the skin effect, a so-called litz wire obtained by twisting a large number of thin insulated conductors, for example, a copper wire (thinned copper wire) having an insulating film, is used as the element wire (for example, (See Patent Documents 3 and 4).

このようなリッツ線は、個々の素線が素線束の外周と中心とを、それぞれ均等に交番するように、撚り合せるようにして、表皮効果を抑えるようにしている。また、コイルとして形成した際の磁気分布を鑑み、個々の素線がムラなく発生磁界と交番するようにスパイラル状に撚り形成している。   In such a litz wire, the individual skin wires are twisted so that the outer periphery and the center of the wire bundle are evenly alternated to suppress the skin effect. Further, in view of the magnetic distribution when formed as a coil, each strand is twisted and formed in a spiral shape so as to alternate with the generated magnetic field without unevenness.

このようなリッツ線をコイル線材として用いて構成したコイルの巻線に流れる電流は、表皮効果により導体の表層付近に流れる。電磁波の浸み込む表皮深さσ[m]は、励磁回路の周波数f[Hz]と透磁率μと固有抵抗ρ[Ωm]で
σ=503×(ρ/fμ)1/2
により与えられる。
The current that flows in the winding of the coil configured using such a litz wire as a coil wire flows near the surface of the conductor due to the skin effect. The skin depth σ [m] into which electromagnetic waves penetrate is σ = 503 × (ρ / fμ) 1/2 with the frequency f [Hz], permeability μ and specific resistance ρ [Ωm] of the excitation circuit.
Given by.

導体の材質が銅の場合、100℃付近で、周波数20kHz〜100kHzでは446μm〜199μmとなる。表皮深さσは電磁波の電界強度が1/eになる値であるため、実際にはこの2倍程度の厚みがあれば全てのエネルギーが流れることになり、吸収体としては効率がよいことになるが、中央部の電流密度は少なくなり、実質的には無駄な厚みを有することになる。実際には表面からσの距離で1/eとなってしまうため、σよりも充分小さい半径(σ/2以下程度)を有する銅線を、数多く束ねたほうが有効断面積の低下をきたすことなく使用できることになる。たとえば外径0.3mm以下の素線を多数撚りにして使用している。   When the material of the conductor is copper, it becomes 446 μm to 199 μm at a frequency of 20 kHz to 100 kHz around 100 ° C. Since the skin depth σ is a value at which the electric field strength of the electromagnetic wave becomes 1 / e, in reality, if the thickness is about twice this, all the energy flows, and the absorber is efficient. However, the current density in the central portion is reduced, and the thickness is substantially wasted. Actually, it becomes 1 / e at the distance of σ from the surface. Therefore, if a large number of copper wires having a radius sufficiently smaller than σ (about σ / 2 or less) are bundled, the effective cross-sectional area does not decrease. It can be used. For example, many strands having an outer diameter of 0.3 mm or less are twisted and used.

表皮効果に関しては、素線を細線化することで対応できるが、近接効果に関しては素線間の距離を離すことが必要になる。このため、コイルの高周波抵抗を下げるためにリッツ線の線材を細くし、多数本の線材で構成することにより同体積に素線を詰め込み、占積率を上げて導体抵抗を減少させる目的と、コイル成形性およびユニットとしての組み立て性を良くする2つの目的から、コイルにプレスをかけ、目的とする形状になるよう成型を行っていた。   The skin effect can be dealt with by thinning the strands, but for the proximity effect, it is necessary to increase the distance between the strands. For this reason, in order to reduce the high frequency resistance of the coil, the wire of the litz wire is thinned, and the wire is packed in the same volume by being composed of a large number of wires, increasing the space factor and reducing the conductor resistance, For the two purposes of improving the coil formability and the ease of assembly as a unit, the coil was pressed to form the desired shape.

このため、コイルの巻線の、互いに異なるターン毎の絶縁は、リッツ線自身の絶縁層の厚みに依存するしかなく、絶縁膜は多少厚目(通常5〜7μmに対し10μm以上)の設定にすることでピンホール発生率を抑え、近接効果による高周波抵抗の増加を抑制するとともにプレス成型に対する信頼性を確保してきた。
実開昭51−109736号公報 特公平5−9027号公報 特開2002−373774号公報 特開2003−47252号公報
For this reason, the insulation of the coil windings at different turns depends only on the thickness of the insulating layer of the litz wire itself, and the insulating film is set to be somewhat thick (usually 10 μm or more compared to 5 to 7 μm). As a result, the pinhole occurrence rate is suppressed, an increase in high-frequency resistance due to the proximity effect is suppressed, and reliability for press molding has been secured.
Japanese Utility Model Publication No. 51-109736 Japanese Patent Publication No. 5-9027 JP 2002-373774 A JP 2003-47252 A

しかしながらより高周波の用途においては、より細いリッツ線を使用する必要があり、このような場合には素線(絶縁被覆導体)の絶縁層も薄くせざるを得なくなってくる。特に誘導加熱定着装置のような用途に用いるリッツ線は、使用環境から絶縁層の耐熱性が高いことが要求される。   However, in a higher frequency application, it is necessary to use a thinner litz wire. In such a case, the insulating layer of the strand (insulating coated conductor) must be thinned. In particular, a litz wire used for an application such as an induction heating fixing device is required to have high heat resistance of an insulating layer from the usage environment.

このため、高周波化に対応した細い素線を用いたリッツ線では、リッツ線の端子処理を行う場合にその被覆を除去する必要がある。しかし耐熱性が高いことから通常のハンダ処理では被覆を除去することが出来ないこと、化学薬品による処理では毛細管現象により所望の領域だけ被覆除去を行うことが困難であること、機械剥離が難しくなること等の理由から、細線構造の採用が難しいという問題があった。   For this reason, in the case of a litz wire using a thin strand corresponding to high frequency, it is necessary to remove the coating when the litz wire terminal treatment is performed. However, because of its high heat resistance, it is impossible to remove the coating by ordinary soldering treatment, and it is difficult to remove the coating only in the desired area due to capillary action in the treatment with chemicals, and mechanical peeling becomes difficult. For this reason, there is a problem that it is difficult to adopt a thin wire structure.

また、素線の絶縁層が薄くなり、素線の導体同士が近接して使用されることになるため、近接効果による有効断面積の高周波での減少も無視できなくなってくるという問題があった。   In addition, since the insulation layer of the wire becomes thin and the conductors of the wire are used in close proximity to each other, there is a problem that a decrease in effective area due to the proximity effect at high frequencies cannot be ignored. .

そこで本発明は、コイルのより高効率かつ高周波化に対応可能で、また近接効果による高周波抵抗を低減も可能なリッツ線構造、および該リッツ線を用いることで、効率が高くまたコストダウンを図れる励磁コイルを提供するものである。また該励磁コイルを用いた、誘導加熱装置、高周波トランス、コイルインダクタンスを提供するものである。   Therefore, the present invention can achieve higher efficiency and lower costs by using a litz wire structure that can cope with higher efficiency and higher frequency of the coil and that can reduce high frequency resistance due to the proximity effect, and the litz wire. An exciting coil is provided. The present invention also provides an induction heating device, a high frequency transformer, and a coil inductance using the exciting coil.

本発明は下記の構成を特徴とする、リッツ線、それを用いた励磁コイルおよび誘導加熱装置、高周波トランス、コイルインダクタンスである。   The present invention is a litz wire, an exciting coil and an induction heating device using the litz wire, a high-frequency transformer, and a coil inductance, characterized by the following configuration.

(1)絶縁被覆導体の複数本のより合わせからなるリッツ線であって、該リッツ線の横断面中央部分は中空部としてある、もしくは絶縁被覆導体以外のコア部材としてあることを特徴とするリッツ線。   (1) A litz wire comprising a plurality of insulated coated conductors, wherein the central portion of the cross section of the litz wire is a hollow portion or a core member other than the insulated coated conductor. line.

(2)絶縁被覆導体を一次素線とし、その複数本のより合わせからなるリッツ線であって、該リッツ線の横断面中央部分を中空部とした、もしくは絶縁被覆導体以外のコア部材としたものを二次素線とし、該二次素線の複数本のより合わせからなることを特徴とするリッツ線。   (2) The insulation coated conductor is a primary strand, and is a litz wire composed of a plurality of twisted wires, and the central portion of the cross section of the litz wire is a hollow portion or a core member other than the insulation coated conductor A litz wire characterized in that a secondary strand is used, and a plurality of the secondary strands are combined.

(3)絶縁被覆導体を一次素線とし、その複数本のより合わせからなるリッツ線であって、該リッツ線の横断面中央部分を中空部とした、もしくは絶縁被覆導体以外のコア部材としたものを二次素線とし、該二次素線の複数本のより合わせからなり、その横断面中央部分を中空部とした、もしくは二次素線以外のコア部材としたことを特徴とするリッツ線。   (3) The insulation coated conductor is a primary strand, and is a litz wire made of a plurality of twisted wires, and the central portion of the cross section of the litz wire is a hollow portion or a core member other than the insulation coated conductor A litz characterized by comprising a secondary strand and a plurality of strands of the secondary strand, the central portion of the cross section being a hollow portion or a core member other than the secondary strand line.

(4)絶縁被覆導体を一次素線とし、その複数本のより合わせからなるリッツ線を二次素線とし、該二次素線の複数本のより合わせからなり、その横断面中央部分は中空部としてある、もしくは二次素線以外のコア部材としてあることを特徴とするリッツ線。   (4) The insulation coated conductor is a primary strand, the litz wire composed of a plurality of twisted strands is a secondary strand, and the center portion of the cross section is hollow. A litz wire characterized by being a part or a core member other than a secondary strand.

(5)前記絶縁被覆導体は銅線に絶縁被覆をかぶせて直径0.3mm以下とした絶縁電線であることを特徴とする(1)から(4)の何れかに記載のリッツ線。ここで、上記の直径は、銅線の直径でも良いし、絶縁被覆(厚さ通常20μm)も含めた導体径でも良い。   (5) The litz wire according to any one of (1) to (4), wherein the insulating coated conductor is an insulated wire having a diameter of 0.3 mm or less by covering the copper wire with an insulating coating. Here, the diameter may be a copper wire diameter or a conductor diameter including an insulating coating (usually 20 μm in thickness).

(6)前記絶縁被覆導体は少なくとも横断面3層以上の層構造となっており、最外層は絶縁体層、中間層には電気伝導層、内部のコア層は中間層よりも体積抵抗率の高い層からなることを特徴とする(1)から(4)の何れかに記載のリッツ線。   (6) The insulating coated conductor has a layer structure of at least three cross sections, the outermost layer is an insulator layer, the intermediate layer is an electrically conductive layer, and the inner core layer has a volume resistivity higher than that of the intermediate layer. The litz wire according to any one of (1) to (4), which is composed of a high layer.

(7)前記コア部材はヒートパイプまたは冷却部材であることを特徴とする(1)から(6)の何れかに記載のリッツ線。   (7) The litz wire according to any one of (1) to (6), wherein the core member is a heat pipe or a cooling member.

(8)前記(1)から(7)の何れかに記載のリッツ線をコイル形状に形成したことを特徴とする励磁コイル。   (8) An exciting coil, wherein the Litz wire according to any one of (1) to (7) is formed in a coil shape.

(9)コイルとして周回したリッツ線の1ターン毎の層間に、絶縁層を設けたことを特徴とする(8)に記載の励磁コイル。   (9) The exciting coil according to (8), characterized in that an insulating layer is provided between the layers of the litz wire that circulates as a coil for each turn.

(10)前記(8)または(9)に記載の励磁コイルを、誘導発熱性部材に渦電流を誘導させて発熱させる高周波用コイルとして具備させたことを特徴とする誘導加熱装置。   (10) An induction heating apparatus comprising the exciting coil according to (8) or (9) as a high frequency coil for inducing an eddy current in an induction heat generating member to generate heat.

(11)前記(8)または(9)に記載の励磁コイルを有することを特徴とする高周波トランス。   (11) A high-frequency transformer comprising the exciting coil according to (8) or (9).

(12)前記(8)または(9)に記載の励磁コイルを有することを特徴とするコイルインダクタンス。   (12) A coil inductance comprising the exciting coil according to (8) or (9).

以上の本発明によれば、コイルのより高効率かつ高周波化に対応可能で、また近接効果による高周波抵抗を低減も可能なリッツ線構造、および該リッツ線を用いることで、加工性に優れ、効率が高くまたコストダウンを図れ、高周波対応可能な励磁コイルを提供することができた。また該励磁コイルを用いた、誘導加熱装置、高周波トランス、コイルインダクタンスを提供することができた。   According to the present invention described above, the use of the Litz wire structure, which can cope with higher efficiency and higher frequency of the coil, and can reduce the high frequency resistance due to the proximity effect, and the Litz wire are excellent in workability, It was possible to provide an exciting coil that is high in efficiency and reduced in cost and capable of handling high frequencies. In addition, an induction heating device, a high-frequency transformer, and a coil inductance using the exciting coil could be provided.

図1は本発明に従う誘導加熱装置の一例としての誘導加熱定着装置の横断面模型図である。   FIG. 1 is a schematic cross-sectional view of an induction heating fixing apparatus as an example of an induction heating apparatus according to the present invention.

(1)誘導加熱定着装置の全体的構成
10は定着ユニット(加熱ユニット)、20は加圧ローラであり、該両者10・20を上下に並行に配列して互いに圧接させて定着ニップ部Nを形成させてある。
(1) Overall Configuration of Induction Heating Fixing Device 10 is a fixing unit (heating unit), and 20 is a pressure roller. Both the members 10 and 20 are arranged in parallel vertically so that they are pressed against each other to form a fixing nip portion N. It is formed.

定着ユニット10において、11は円筒状・可撓性の定着スリーブ、12は該定着スリーブ11をルーズに外嵌させた円筒状のガイド部材、13は該ガイド部材12の前記定着ニップ部Nに対応する下面部分にガイド部材長手に沿って設けた良熱伝導性部材、14はガイド部材12内の図面上略右半部側に配設した磁場発生アセンブリ、17はガイド部材12内に挿通した加圧用剛性ステイ、18は磁場発生アセンブリ14と加圧用剛性ステイ15の間を絶縁させた絶縁部材である。磁場発生アセンブリ14は、励磁コイル(定着コイル、加熱コイル)15と磁性コア16とからなる。   In the fixing unit 10, 11 is a cylindrical / flexible fixing sleeve, 12 is a cylindrical guide member in which the fixing sleeve 11 is loosely fitted, and 13 corresponds to the fixing nip portion N of the guide member 12. A heat conductive member provided along the length of the guide member on the lower surface portion, 14 is a magnetic field generating assembly disposed on the substantially right half side of the guide member 12 in the drawing, and 17 is an additive inserted into the guide member 12. A pressure rigid stay 18 is an insulating member that insulates the magnetic field generating assembly 14 from the pressure rigid stay 15. The magnetic field generating assembly 14 includes an exciting coil (fixing coil, heating coil) 15 and a magnetic core 16.

定着スリーブ11は電磁誘導発熱性部材であり、ニッケル、鉄、強磁性SUS、ニッケル−コバルト合金等の強磁性体の円筒状金属層を電磁誘導発熱層として含み、その外側に順次に弾性層と離形層を積層した全体に可撓性を有している複合層構造のものである。   The fixing sleeve 11 is an electromagnetic induction heat generating member, and includes a cylindrical metal layer made of a ferromagnetic material such as nickel, iron, ferromagnetic SUS, or nickel-cobalt alloy as an electromagnetic induction heat generating layer, and an elastic layer sequentially formed on the outer side thereof. It has a composite layer structure having flexibility in the entire laminated release layer.

加圧ローラ20は芯金21と、前記芯金周りに同心一体にローラ状に成形被覆させた、シリコーンゴム・フッ素ゴム・フッ素樹脂などの耐熱性・弾性材層222とで構成されており、芯金21の両端部を装置の不図示のシャーシ側板金間に回転自由に軸受け保持させて配設してある。   The pressure roller 20 is composed of a cored bar 21 and a heat-resistant / elastic material layer 222 such as silicone rubber, fluororubber, or fluororesin that is concentrically and integrally formed around the cored bar. Both ends of the core metal 21 are rotatably supported between the chassis side metal plates (not shown) of the apparatus.

上記の定着ユニット10はこの加圧ローラ20の上側に良熱伝導性部材13側を下向きにして加圧ローラ20に並行に配置し、加圧用剛性ステイ7の両端部をそれぞれ加圧バネ(不図示)で下方に押し下げ付勢状態にしてある。加圧用剛性ステイ17はガイド部材12の内底面に当接していて、この加圧用剛性ステイ17の押し下げ付勢によりガイド部材12の下面の良熱伝導性部材13が定着スリーブ11を挟んで加圧ローラ20の上面に弾性材層22の弾性に抗して圧接して定着スリーブ11と加圧ローラ20との間に所定幅の定着ニップ部Nが形成される。   The fixing unit 10 is arranged above the pressure roller 20 in parallel with the pressure roller 20 with the good heat conductive member 13 facing downward, and both ends of the pressure rigid stay 7 are respectively connected to pressure springs (not suitable). In FIG. The pressurizing rigid stay 17 is in contact with the inner bottom surface of the guide member 12, and the good heat conductive member 13 on the lower surface of the guide member 12 presses the fixing sleeve 11 with the pressing rigid stay 17 pressed. A fixing nip portion N having a predetermined width is formed between the fixing sleeve 11 and the pressure roller 20 by pressing against the elasticity of the elastic material layer 22 on the upper surface of the roller 20.

加圧ローラ20は駆動手段Mにより矢示の反時計方向に回転駆動される。この加圧ローラ20の回転駆動による定着ニップ部Nにおける加圧ローラ20と定着スリーブ11の外面との摩擦力で定着スリーブ11に回転力が作用し、定着スリーブ11がその内面が定着ニップNにおいて良熱伝導部材13の下面に密着して摺動しながら矢示の時計方向に加圧ローラ20の回転周速度にほぼ対応した周速度をもってガイド部材12の外回りを回転状態になる。定着スリーブ11は端部が不図示のフランジ部材に受け止められることで、定着スリーブ11の回転に伴うガイド部材長手に沿う寄り移動が規制される。   The pressure roller 20 is rotationally driven by the driving means M in the counterclockwise direction indicated by the arrow. A rotational force acts on the fixing sleeve 11 by the frictional force between the pressure roller 20 and the outer surface of the fixing sleeve 11 in the fixing nip portion N by the rotation driving of the pressure roller 20, and the inner surface of the fixing sleeve 11 is in the fixing nip N. The outer periphery of the guide member 12 is rotated in a clockwise direction as indicated by an arrow with a peripheral speed substantially corresponding to the rotational peripheral speed of the pressure roller 20 while sliding in close contact with the lower surface of the good heat conducting member 13. Since the end portion of the fixing sleeve 11 is received by a flange member (not shown), the movement of the fixing sleeve 11 along the length of the guide member with the rotation of the fixing sleeve 11 is restricted.

定着ニップ部Nにおける良熱伝導部材13の下面と定着スリーブ11の内面との相互摺動摩擦力を低減化させるために定着ニップ部Nの良熱伝導部材13の下面と定着スリーブ11の内面との間に耐熱性グリスなどの潤滑剤を介在させる、あるいは良熱伝導性部材13の下面を潤滑部材で被覆することもできる。これは、良熱伝導部材13としてアルミニウムを用いた場合のように表面滑り性が材質的によくない或いは仕上げ加工を簡素化した場合に、摺動する定着スリーブ11の内面に傷をつけて定着スリーブ11の耐久性が悪化してしまうことを防ぐものである。   In order to reduce the mutual sliding frictional force between the lower surface of the heat conductive member 13 and the inner surface of the fixing sleeve 11 in the fixing nip portion N, the lower surface of the heat conductive member 13 and the inner surface of the fixing sleeve 11 in the fixing nip portion N are reduced. A lubricant such as heat-resistant grease may be interposed therebetween, or the lower surface of the good heat conductive member 13 may be covered with a lubricant member. This is because the surface slipperiness is not good as in the case where aluminum is used as the good heat conducting member 13 or the finishing process is simplified, and the inner surface of the sliding fixing sleeve 11 is damaged and fixed. This prevents the durability of the sleeve 11 from deteriorating.

また磁場発生アセンブリ14の励磁コイル15には励磁回路(不図示)を接続してある。励磁回路は20kHzから500kHzの高周波をスイッチング電源で発生できるようになっている。励磁コイル15は励磁回路から供給される交番電流(高周波電流)によって交番磁束を発生する。交番磁束は磁性コア16に導かれて、定着スリーブ11の電磁誘導発熱層に作用して、電磁誘導発熱層に渦電流を発生させる。この渦電流は電磁誘導発熱層の固有抵抗によって電磁誘導発熱層にジュール熱(渦電流損)を発生させる。即ち、回転する定着スリーブ11が磁場発生アセンブリ14の部分で誘導加熱されて定着ニップ部Nに回り込み、定着ニップ部Nが加熱される。   An excitation circuit (not shown) is connected to the excitation coil 15 of the magnetic field generating assembly 14. The excitation circuit can generate a high frequency of 20 kHz to 500 kHz by a switching power supply. The exciting coil 15 generates an alternating magnetic flux by an alternating current (high frequency current) supplied from an exciting circuit. The alternating magnetic flux is guided to the magnetic core 16 and acts on the electromagnetic induction heat generating layer of the fixing sleeve 11 to generate an eddy current in the electromagnetic induction heat generating layer. This eddy current generates Joule heat (eddy current loss) in the electromagnetic induction heating layer due to the specific resistance of the electromagnetic induction heating layer. That is, the rotating fixing sleeve 11 is induction-heated at the portion of the magnetic field generating assembly 14 and goes around the fixing nip portion N, and the fixing nip portion N is heated.

19はサーミスタなどの温度センサであり、ガイド部材12の良熱伝導性部材13よりも定着スリーブ11の回転方向下流側で良熱伝導性部材近傍位置においてガイド部材12の外面に配設してあり、定着スリーブ11の内面温度を検知する。定着ニップ部Nの温度は、この温度センサ19を含む温調系により励磁回路から励磁コイル15に対する電流供給が制御されることで所定の温度が維持されるように温調される。   Reference numeral 19 denotes a temperature sensor such as a thermistor, which is disposed on the outer surface of the guide member 12 at a position near the good heat conductive member on the downstream side in the rotation direction of the fixing sleeve 11 relative to the good heat conductive member 13 of the guide member 12. The inner surface temperature of the fixing sleeve 11 is detected. The temperature of the fixing nip N is controlled so that a predetermined temperature is maintained by controlling the current supply from the excitation circuit to the excitation coil 15 by the temperature control system including the temperature sensor 19.

而して、定着スリーブ11が回転し、励磁回路から励磁コイル15への給電により上記のように定着スリーブ11の電磁誘導発熱がなされて定着ニップ部Nが所定の温度に立ち上がって温調された状態において、画像形成手段部(不図示)から搬送された未定着トナー画像tが形成された被記録材Pが定着ニップ部Nの定着スリーブ11と加圧ローラ20との間に画像面が上向き、即ち定着スリーブ面に対向して導入され、定着ニップ部Nにおいて画像面が定着スリーブ11の外面に密着して定着スリーブ1と一緒に定着ニップ部Nを挟持搬送されていく。この定着ニップ部Nを定着スリーブ11と一緒に被記録材Pが挟持搬送されていく過程において定着スリーブ11の電磁誘導発熱で加熱されて被記録材P上の未定着トナー画像tが加熱定着される。被記録材Pは定着ニップ部Nを通過すると回転定着スリーブ11の外面から分離して排出搬送されていく。被記録材上の加熱定着トナー画像は定着ニップ部通過後、冷却して永久固着像となる。   Thus, the fixing sleeve 11 is rotated, and the electromagnetic induction heat generation of the fixing sleeve 11 is performed as described above by supplying power from the excitation circuit to the excitation coil 15, and the fixing nip portion N rises to a predetermined temperature and is adjusted in temperature. In the state, the recording material P on which the unfixed toner image t conveyed from the image forming unit (not shown) is formed is directed upward between the fixing sleeve 11 and the pressure roller 20 of the fixing nip N. In other words, the toner image is introduced so as to face the fixing sleeve surface, and in the fixing nip portion N, the image surface is brought into close contact with the outer surface of the fixing sleeve 11 and the fixing nip portion N is nipped and conveyed together with the fixing sleeve 1. In the process in which the recording material P is nipped and conveyed together with the fixing sleeve 11 through the fixing nip N, the fixing sleeve 11 is heated by electromagnetic induction heat generation, and the unfixed toner image t on the recording material P is heated and fixed. The When the recording material P passes through the fixing nip portion N, it is separated from the outer surface of the rotary fixing sleeve 11 and discharged and conveyed. The heat-fixed toner image on the recording material is cooled to a permanently fixed image after passing through the fixing nip.

良熱伝導部材13は長手方向の温度分布を均一にする効果があり、例えば、小サイズ紙を通紙した場合、定着スリーブ11での非通紙部の熱量が、良熱伝導部材13へ伝熱し、良熱伝導部材13における長手方向の熱伝導により、非通紙部の熱量が小サイズ紙通紙部へ伝熱される。これにより、小サイズ紙通紙時の消費電力を低減させる効果も得られる。   The good heat conducting member 13 has an effect of making the temperature distribution in the longitudinal direction uniform. For example, when small-size paper is passed, the heat amount of the non-paper passing portion of the fixing sleeve 11 is transferred to the good heat conducting member 13. By heat conduction in the longitudinal direction of the good heat conducting member 13, the heat amount of the non-sheet passing portion is transferred to the small size sheet passing portion. Thereby, the effect of reducing the power consumption at the time of passing small size paper is also acquired.

30はサーモスイッチであり、磁場発生アセンブリ14の発生交番磁束の作用による定着スリーブ11の発熱域に対向する位置に配設されて、暴走時の励磁コイル15への給電を遮断する役目をしている。   A thermoswitch 30 is disposed at a position facing the heat generation area of the fixing sleeve 11 due to the action of the alternating magnetic flux generated by the magnetic field generating assembly 14, and serves to block power supply to the exciting coil 15 during runaway. Yes.

(2)励磁コイル15
図2は励磁コイル15の外観斜視模型図である。この励磁コイル15は本発明に従う2重中空リッツ線A2をコイル線材(巻線)として用い、これを12ターン巻いて舟形の励磁コイル15を形成したものである。
(2) Excitation coil 15
FIG. 2 is an external perspective model view of the exciting coil 15. This exciting coil 15 uses a double hollow litz wire A2 according to the present invention as a coil wire (winding) and is wound for 12 turns to form a boat-shaped exciting coil 15.

図3はここで用いた2重中空リッツ線A2の構造説明図である。(a)は一次素線として用いた絶縁被覆導体aの拡大横断面模型図であり、本例のものはφ0.3mm以下程度の銅線1に絶縁被覆2を施した絶縁電線である。この一次素線aを6本より合わせて(b)の拡大横断面模型図のような横断面中央部分は中空部とした中空リッツ線A1を作成する。この中空リッツ線A1を二次素線としてこれを6本より合わせて(c)の拡大横断面模型図のような横断面中央部分は中空部とした2重中空リッツ線A2を作成する。この2重中空リッツ線A2をコイル線材として用いて図2のような励磁コイル15を形成したものである。   FIG. 3 is an explanatory diagram of the structure of the double hollow litz wire A2 used here. (A) is the expansion cross-sectional model figure of the insulation coating conductor a used as a primary strand, and the thing of this example is the insulated wire which gave the insulation coating 2 to the copper wire 1 of about φ0.3 mm or less. A hollow litz wire A1 is formed by combining the primary strands a from six and making the central portion of the cross section as shown in the enlarged cross section model diagram of FIG. This hollow litz wire A1 is made into a secondary strand, and this is combined from 6 pieces, and the double hollow litz wire A2 which made the hollow cross-section center part like the enlarged cross-sectional model figure of (c) is made is created. This double hollow litz wire A2 is used as a coil wire to form an exciting coil 15 as shown in FIG.

また、コイルとして形成した際の磁気分布を鑑み、コイルを形成する個々の素線がムラなく発生磁界と交番するように、図3の(b)の中空リッツ線A1の一次素線aも、(c)の2重中空リッツ線A2の二次素線A1も、(d)の模型図のようにスパイラル状に撚り形成している。   In view of the magnetic distribution when formed as a coil, the primary strand a of the hollow litz wire A1 in FIG. 3B is also arranged so that the individual strands forming the coil alternate with the generated magnetic field without unevenness. The secondary strand A1 of the double hollow litz wire A2 in (c) is also twisted in a spiral shape as shown in the model diagram in (d).

構造比較例として図4に従来型の密集巻きリッツ線の拡大横断面模型図を示した。(a)は一次素線としての絶縁電線aを7本より合わせた密集巻きリッツ線A3である。(b)はこの密集巻きリッツ線A3を二次素線としてこれを7本より合わせた2重密集巻きリッツ線A4である。   FIG. 4 shows an enlarged cross-sectional model view of a conventional densely wound litz wire as a structural comparison example. (A) is a densely wound litz wire A3 in which seven insulated wires a as primary wires are combined. (B) is a double densely wound litz wire A4 in which this densely wound litz wire A3 is used as a secondary strand and is combined from 7 wires.

前述した図3の(b)の6本の一次素線aのより合わせからなる中空リッツ線A1は、上記図4の(a)の一次素線aの7本より合わせの密集巻きリッツ線A3から中央部の素線aを1本を抜いた形となっており、内部は中空となっている。   The hollow litz wire A1 formed by twisting the six primary strands a in FIG. 3 (b) described above is a densely wound litz wire A3 that is matched with the seven primary strands a in FIG. 4 (a). Is formed by removing one strand a from the center, and the inside is hollow.

コイル巻線に流れる電流は、誘導加熱を行うような高周波(20kHz〜100kHz程度)では、表皮効果により導体の表層付近に流れる。とともに、近接効果により互いの素線間で対向する面の電流密度は低下することになる。   The current flowing in the coil winding flows near the surface of the conductor due to the skin effect at a high frequency (about 20 kHz to 100 kHz) at which induction heating is performed. At the same time, due to the proximity effect, the current density on the surfaces facing each other between the strands decreases.

従ってコイル巻線の直流抵抗は、素線数の少ない中空リッツ線が高い抵抗を示す。しかしながら周波数が10kHz、100kHzと上昇するに従って抵抗の相対値は逆転し、素線が多い筈の密集巻きリッツ線の方が素線の少ない中空リッツ線より抵抗が高くなる。   Accordingly, the direct current resistance of the coil winding is high when the hollow litz wire having a small number of strands is used. However, as the frequency increases to 10 kHz and 100 kHz, the relative value of the resistance is reversed, and the densely wound litz wire with many strands has a higher resistance than the hollow litz wire with few strands.

また、中空リッツ線の素線毎の絶縁被覆厚みも、隣り合う電線の影響を受け難くし、近接効果の影響による抵抗上昇を抑えるため、厚め(10〜20μm)に設定している。   Moreover, the insulation coating thickness for each strand of the hollow litz wire is also set to be thick (10 to 20 μm) in order to make it less susceptible to the influence of adjacent electric wires and to suppress an increase in resistance due to the effect of the proximity effect.

励磁コイル15は、絶縁被覆の厚みが確保できる場合には、コイルとしての組み立て、運搬等のハンドリング容易性を求めるべく、圧力の影響によりコイル巻線を構成している中空リッツ線に影響を与えない程度に外部から圧力を加えて成形性を向上させてもよい。   When the thickness of the insulation coating can be ensured, the exciting coil 15 affects the hollow litz wire constituting the coil winding due to the influence of pressure in order to obtain ease of handling such as assembly and transportation as a coil. The moldability may be improved by applying pressure from the outside to the extent that it is not.

図3の(c)と(d)のように中空リッツ線A1を1本の素線と考えこれを二次素線として、さらに中空に撚った2重中空リッツ線A2の構造とすることで、高周波特性を飛躍的に改善し、コイル重量を下げることが可能となる。さらに、使用する一次素線aの線材量を減少させることが出来、コストを下げることが可能となる。   As shown in (c) and (d) of FIG. 3, the hollow litz wire A1 is considered as one strand, and this is used as a secondary strand, and the structure of a double hollow litz wire A2 twisted in the hollow is further formed. As a result, the high-frequency characteristics can be dramatically improved and the coil weight can be reduced. Furthermore, it is possible to reduce the amount of the primary strand a to be used, thereby reducing the cost.

誘導加熱において、励磁コイル15と被加熱体である定着スリーブ11との距離は非常に重要であり、距離を一定に保つために励磁コイル15の強度および精度が必要になる。また、定着ユニットとして組み立てていく中で、励磁コイル1の組み立て性、運搬の容易性は組み立て工数に大きく影響することから、プレス型に2重中空リッツ線Aを周回し、中空線に影響を与えない程度に外部から圧力を加えて成形性を向上させている。   In induction heating, the distance between the exciting coil 15 and the fixing sleeve 11 that is the object to be heated is very important, and the strength and accuracy of the exciting coil 15 are required to keep the distance constant. In addition, while assembling as a fixing unit, the assembly of the exciting coil 1 and the ease of transportation greatly affect the assembly man-hours. Therefore, the double hollow litz wire A is circulated around the press die and the hollow wire is affected. Formability is improved by applying pressure from the outside to such an extent that it is not applied.

図5の(a)は図3の(b)の中空リッツ線A1を二次素線として用いてこれをさらに7本より合わせた中空リッツ線A5であり、(b)は図4の(a)の密集巻きリッツ線A3を二次素線として用いてこれを6本中空により合わせた中空リッツ線A6である。この図5の(a)や(b)のような形態の中空リッツ線A5やA6も前述した2重中空リッツ線A2と同様の効果を有する。また、図3の(b)の中空リッツ線A1をそのままコイル線材として用いても同様の効果がえられる。   FIG. 5 (a) is a hollow litz wire A5 in which the hollow litz wire A1 of FIG. 3 (b) is used as a secondary strand and further combined with seven wires, and FIG. 5 (b) is a view of FIG. ) Is a hollow litz wire A6 in which six densely wound litz wires A3 are used as secondary strands and are combined in a hollow shape. The hollow litz wires A5 and A6 in the form as shown in FIGS. 5A and 5B also have the same effect as the above-described double hollow litz wire A2. The same effect can be obtained even if the hollow litz wire A1 of FIG. 3B is used as a coil wire as it is.

本実施例では一例として、一次素線aの6本撚りの中空リッツ線A1、一次素線aの7本撚りの密集巻きリッツ線A3、および該リッツ線A1またはA3を二次素線としてこれをさらに6本あるいは7本撚りした中空タイプのリッツ線A5・A6を示すものの、用途およびコストによっては一次素線aの本数、二次素線線A1またはA3の本数は任意である。実際には3本以上、現実的なところでは30本程度までの一次素線・二次素線を用いてもかまわない。   In this embodiment, as an example, a six-stranded hollow litz wire A1 of the primary strand a, a seven-stranded densely wound litz wire A3 of the primary strand a, and the litz wire A1 or A3 as a secondary strand. The number of primary strands a and the number of secondary strands A1 or A3 are arbitrary depending on the application and cost. Actually, it is possible to use three or more primary strands / secondary strands where practical, up to about 30.

中空リッツ線、2重中空リッツ線の中空部分は完全に中空である必要はなく、このリッツ線を用いたコイルのプレス成型時の型崩れや物流運搬、管理時の変形をなくす目的で、中空部分にリッツ線を構成する一次素線または二次素線以外のコア部材を存在させたリッツ線形態にすることもできる。コア部材としては、例えば、グラスファイバやテフロン(登録商標)(4フッ化エチレン樹脂)、ポリイミド、ポリアミドイミド、ポリウレタンなどの絶縁体からなる線材等が使用できる。   The hollow part of the hollow litz wire and the double hollow litz wire do not have to be completely hollow. For the purpose of eliminating deformation at the time of press molding of the coil using this litz wire, logistics transportation, and deformation at the time of management, A litz wire configuration in which a core member other than the primary strand or the secondary strand constituting the litz wire is present in the portion can also be used. As the core member, for example, a wire made of an insulator such as glass fiber, Teflon (registered trademark) (tetrafluoroethylene resin), polyimide, polyamideimide, polyurethane, or the like can be used.

具体例として、図6の(a)は図3の(b)の中空リッツ線A1の中空部にコア線材bを存在させたもの、(b)は図3の(c)の2重中空リッツ線A2の二次素線としての各中空リッツ線A1の中空部にコア線材bを存在させるとともに、2重中空リッツ線A2の中央部分の大径の中空部分にも大径のコア線材cを存在させたもの、(c)は図5の(a)の中空リッツ線A5の二次素線としての各中空リッツ線A1の中空部にコア線材bを存在させたもの、(d)は図5の(b)の中空リッツ線A6の中央部分の大径の中空部分に大径のコア線材cを存在させたもの、である。   As a specific example, (a) in FIG. 6 is the one in which the core wire b is present in the hollow portion of the hollow litz wire A1 in (b) in FIG. 3, and (b) is the double hollow litz in (c) in FIG. The core wire b is present in the hollow portion of each hollow litz wire A1 as a secondary strand of the wire A2, and the large-diameter core wire c is also formed in the large-diameter hollow portion of the central portion of the double hollow litz wire A2. (C) shows the core wire b in the hollow part of each hollow litz wire A1 as the secondary strand of the hollow litz wire A5 in FIG. 5 (a), (d) shows the figure. 5 (b), in which a large-diameter core wire c is present in the large-diameter hollow portion at the center of the hollow litz wire A6.

コア線材b・cは、例えば、冷却用の部材として高熱伝導性を有するPDA系高分子材料、炭素系フィラメントを添加した樹脂、アルミ、ヒートパイプなどである。   The core wires b and c are, for example, a PDA polymer material having high thermal conductivity as a cooling member, a resin to which a carbon filament is added, aluminum, a heat pipe, and the like.

コイル巻線に流れる電流は、誘導加熱を行うような高周波(20kHz〜100kHz程度)では、表皮効果により導体の表層付近に流れる。とともに、近接効果により互いの素線間で対向する面の電流密度は低下することになる。また、金属の抵抗率は温度上昇に伴って大きくなるため、コイルの温度上昇に伴って表皮効果は緩和されることになるが、抵抗値の上昇が最も効果が大きく、効率はやはり悪くなる。従って、コイルを効率よく冷却する必要が生じてくる。   The current flowing in the coil winding flows near the surface of the conductor due to the skin effect at a high frequency (about 20 kHz to 100 kHz) at which induction heating is performed. At the same time, due to the proximity effect, the current density on the surfaces facing each other between the strands decreases. In addition, since the resistivity of the metal increases as the temperature rises, the skin effect is alleviated as the coil temperature rises. However, the increase in resistance value is the most effective, and the efficiency is still worse. Therefore, it becomes necessary to cool the coil efficiently.

このような構成で、図6の(a)〜(d)の例のように中空リッツ線の中空部に存在させるコア線材b・cとして上記例のような冷却部材を使用することで、熱による抵抗上昇を抑えるとともに高周波特性を改善することが可能となった。   With such a configuration, by using the cooling member as in the above example as the core wire b · c to be present in the hollow portion of the hollow litz wire as in the examples of FIGS. It is possible to suppress the increase in resistance due to the noise and improve the high frequency characteristics.

さらに、先述したように、誘導加熱において、励磁コイル15と被加熱体である定着スリーブ11との距離を一定にすることは非常に重要であり、距離を一定に保つためにコイルの強度および精度が必要になるため、コイルにはプレス成型を最小限行っている。中空構造だけでは大きなプレス圧をかける事が出来なかったが、中空部分に熱伝導部材(冷却部材)等のコア線材b・cを設けることによりプレス時の成型性を向上させることも可能となっている。   Furthermore, as described above, in induction heating, it is very important to make the distance between the exciting coil 15 and the fixing sleeve 11 that is the object to be heated constant, and in order to keep the distance constant, the strength and accuracy of the coil. Therefore, the coil is minimally pressed. Although a large pressing pressure could not be applied only with the hollow structure, it is possible to improve the moldability during pressing by providing core wires b and c such as a heat conducting member (cooling member) in the hollow portion. ing.

図7の(a)〜(f)に一次素線としての絶縁被覆導体aの各種構造模型を示した。これらの例は、少なくとも横断面3層以上の層構造となっており、最外層a3は数μmのコーティング絶縁体層、中間層a2には電気伝導層、内部のコア層a1は中間層よりも体積抵抗率の高い層からなる絶縁被覆導体である。   7A to 7F show various structural models of the insulated coated conductor a as the primary strand. These examples have a layer structure of at least three layers in cross section, the outermost layer a3 is a coating insulator layer of several μm, the intermediate layer a2 is an electrically conductive layer, and the inner core layer a1 is more than the intermediate layer. It is an insulating coated conductor composed of a layer having a high volume resistivity.

絶縁層a3には、使用環境により、ウレタン系高分子材料やポリイミド、ポリアミドイミド、PTFE、無機高分子等が用いられる。一方で高周波用途においては細線化の傾向があり、耐熱グレードの高い絶縁物を用いた場合には、端子処理などのためにその絶縁被覆を取り除くことが困難であった。(a)〜(c)の各例における絶縁層a3は、UE(ウレタン)、PI(ポリイミド)、EI(エステルイミド)、AI(アミドイミド)、またはSiOである。(d)〜(f)の各例における絶縁層a3は、UE、PI、EI、AI、glass(ガラス系絶縁材料)またはSiOである。 For the insulating layer a3, urethane polymer material, polyimide, polyamideimide, PTFE, inorganic polymer, or the like is used depending on the use environment. On the other hand, there is a tendency for thinning in high frequency applications, and when an insulator with a high heat resistance grade is used, it is difficult to remove the insulation coating for terminal processing or the like. Insulating layer a3 in each example of (a) ~ (c) is, UE (urethane), PI (polyimide), EI (ester imide), AI (amideimide), or SiO 2. The insulating layer a3 in each example of (d) to (f) is UE, PI, EI, AI, glass (glass-based insulating material) or SiO 2 .

コア層a1と中間層a2として、(b)のように、AlコアにCuをクラッド層として設けることにより、高周波での抵抗率低下を抑えて、絶縁剥離の加工時の加工性を著しく向上することが可能となる。たとえば1MHzの周波数においては、Cuの表皮深さは49.6μm程度となり、従来方式では素線径は0.05mm以下でなければならない。細い電線は絶縁剥離が困難になる以外にも、線材がやわらかくなり、コイルとして構成した際の組み立て性が損なわれること、素線を線噛みしやすくなることなど、組み立て性にはさまざまな問題があった。   As shown in (b), as the core layer a1 and the intermediate layer a2, by providing Cu as a clad layer on the Al core, the decrease in resistivity at high frequency is suppressed, and the workability at the time of insulation peeling is remarkably improved. It becomes possible. For example, at a frequency of 1 MHz, the skin depth of Cu is about 49.6 μm, and in the conventional method, the wire diameter must be 0.05 mm or less. In addition to making it difficult to insulate thin wires, there are various problems in assembling, such as the wire becomes soft, the assembling property is impaired when it is configured as a coil, and the wire becomes easy to bite. there were.

ここではAlコアたとえば50μに、Cuを25μm程度コーティングした例を示す。このような場合素線径は0.10μm程度となり、機械剥離が容易になるなど加工性に富む電線を作成することが比較的容易になる。プレス加工を行う際にも成形性が良い構造とすることが出来る。また、(a)のようにCuコアのAgコーティング等、中央部の導体と外周部の導体の抵抗率が中央部の導体の抵抗率より低くなるよう設定すれば良い。さらに、コアa1は導体ではなく、(c)〜(f)の各例におけるようにPIやPTFE、ナイロン、グラスファイバ等の絶縁体を使用しても良い。   Here, an example is shown in which an Al core, for example, 50 μm, is coated with about 25 μm of Cu. In such a case, the wire diameter is about 0.10 μm, and it becomes relatively easy to produce an electric wire with high workability such as easy mechanical peeling. A structure with good moldability can be obtained even when pressing. Moreover, what is necessary is just to set so that the resistivity of the conductor of a center part and the conductor of an outer peripheral part may become lower than the resistivity of the conductor of a center part, such as Ag coating of Cu core like (a). Further, the core a1 is not a conductor, and an insulator such as PI, PTFE, nylon, glass fiber or the like may be used as in each of the examples (c) to (f).

このような場合、端子処理を行った後にリッツ線の絶縁層コーティングを行っても良い。   In such a case, the insulating layer coating of the litz wire may be performed after the terminal treatment.

リッツ線をコイル線材としてこれを周回してコイル15としたとき、各周回毎の線材が重なるような構成では、1周回あたりの電圧がコイルの絶縁層すなわち素線の絶縁層に印加されることになる。   When a litz wire is used as a coil wire to wrap around the coil 15 and the coil is overlapped, the voltage per turn is applied to the insulating layer of the coil, that is, the insulating layer of the strand. become.

誘導加熱定着装置に使用する励磁コイルは、幅が通紙する用紙幅程度と大きく、コイルの面積が大きいために必要なインダクタンスを得るためのターン数が少ない。しかしながらコイル駆動時の印加電圧は500V〜1000Vと高電圧になるため、コイル線材1ターン毎に印加される電圧は50V以上と高い電圧になる。また、使用する周波数の上昇に伴って、線間容量も大きくなってくる。そこで、コイルとして周回したリッツ線の1ターン毎の層間の絶縁を行うとともに、線間容量を下げるために、絶縁部材をコイルとして周回したリッツ線の各周回毎に挟むよう構成している。絶縁部材にはノーメックステープ、PI、ポリアミドイミド、PTFE、ウレタン系高分子材料等が用いられている。テープなどを挟み込む代わりにコイルホルダにリブを立てて距離を確保するよう構成しても良い。   The exciting coil used in the induction heating fixing device has a width as large as the width of the paper to be passed, and the number of turns for obtaining a necessary inductance is small because the area of the coil is large. However, since the applied voltage at the time of driving the coil is as high as 500V to 1000V, the voltage applied per turn of the coil wire is as high as 50V or more. Further, as the frequency to be used increases, the line capacity increases. Therefore, the Litz wire that is circulated as a coil is insulated between layers for each turn, and in order to reduce the capacitance between the lines, the insulating member is configured to be sandwiched for each lap of the Litz wire that is circulated as a coil. As the insulating member, nomex tape, PI, polyamideimide, PTFE, urethane polymer material, or the like is used. You may comprise so that a distance may be ensured by standing a rib in a coil holder instead of pinching a tape etc.

図8は本発明に従うリッツ線をコイルにした高周波トランス100の例であり、(a)は外観斜視模型図、(b)は横断面模型図、(c)は平面図である。101がトランスコイルであり、前述した図3の(b)のような中空リッツ線A1、(c)のような2重中空リッツ線A2、図5の(a)や(b)のような中空リッツ線A5やA6、図6の(a)〜(d)のようなコア部材bやcを存在させたリッツ線A1・A2・A5・A6を巻いたものである。リッツ線の一次素線aは第3の実施例で述べた、AlコアにCuクラッド等の構成のものとすることができる。   FIG. 8 shows an example of a high-frequency transformer 100 in which a litz wire is used as a coil according to the present invention, where (a) is an external perspective model diagram, (b) is a cross-sectional model diagram, and (c) is a plan view. 101 is a transformer coil, and the hollow litz wire A1 as shown in FIG. 3 (b), the double hollow litz wire A2 as shown in (c), and the hollow as shown in FIGS. 5 (a) and 5 (b). Litz wires A5, A6, and litz wires A1, A2, A5, and A6 in which core members b and c as shown in FIGS. 6A to 6D exist are wound. The primary strand a of the litz wire can be made of an Al core, such as a Cu clad, as described in the third embodiment.

本発明に従うリッツ線はコイルにしてコイルインダクタンスとするなど、その他各種のものに利用して有効である。   The litz wire according to the present invention is effective when used for various other things such as a coil and a coil inductance.

ここで、中空リッツ線A1、A2、A5、A6のような形態のものの製造要領としては、例えば、芯金を入れて撚り上げて、後から芯金を抜く方法が採用できる。リッツ線を撚りながら芯金を抜く方法により長尺のものが製作可能である。他の方法としては、リッツ線の耐熱温度が高い(少なくとも180℃以上)ことから、150〜180℃でベーキングすることで溶解してしまうような樹脂材料を芯材として使用し、通常の撚りを行った後、ベーキングを行う等が考えられる。   Here, as a manufacturing point of a thing like a hollow litz wire A1, A2, A5, and A6, for example, a method of putting a cored bar and twisting it up and then pulling out the cored bar can be adopted. Long ones can be manufactured by removing the cored bar while twisting the litz wire. As another method, since the heat-resistant temperature of the litz wire is high (at least 180 ° C. or higher), a resin material that dissolves by baking at 150 to 180 ° C. is used as a core material, and a normal twist is used. After performing, baking etc. can be considered.

本発明に従う誘導加熱装置の一例としての誘導加熱定着装置の横断面模型図Cross-sectional model diagram of an induction heating fixing device as an example of an induction heating device according to the present invention 励磁コイルの外観斜視模型図Appearance perspective model of exciting coil 2重中空リッツ線の構造説明図Structure diagram of double hollow litz wire 構造比較例としての従来型の密集巻きリッツ線の拡大横断面模型図Expanded cross-sectional model of a conventional densely wound litz wire as a structural comparison example (a)と(b)はそれぞれ中空リッツ線の他の構造例の拡大横断面模型図(A) and (b) are enlarged cross-sectional model views of other structural examples of hollow litz wires, respectively. (a)〜(d)はそれぞれ中空リッツ線の中空部分にコア部材を存在させた形態の拡大横断面模型図(A)-(d) is an expanded cross-sectional model figure of the form which made the core member exist in the hollow part of a hollow litz wire, respectively. 一次素線としての絶縁被覆導体の各種の構造模型図Various structural model diagrams of insulated coated conductors as primary wires 実施例5の高周波トランスの図Diagram of high-frequency transformer of Example 5

符号の説明Explanation of symbols

15・・励磁コイル、A1・A2・A5・A6・・中空リッツ線、a・・素線(一次素線、絶縁被覆導体)、b・c・・コア部材   15 .... excitation coil, A1, A2, A5, A6 ... hollow litz wire, a ... strand (primary strand, insulated conductor), b ... c ... core member

Claims (12)

絶縁被覆導体の複数本のより合わせからなるリッツ線であって、該リッツ線の横断面中央部分は中空部としてある、もしくは絶縁被覆導体以外のコア部材としてあることを特徴とするリッツ線。   A litz wire comprising a plurality of twisted insulation-coated conductors, wherein the central portion of the cross-section of the litz wire is a hollow portion or a core member other than the insulation-coated conductor. 絶縁被覆導体を一次素線とし、その複数本のより合わせからなるリッツ線であって、該リッツ線の横断面中央部分を中空部とした、もしくは絶縁被覆導体以外のコア部材としたものを二次素線とし、該二次素線の複数本のより合わせからなることを特徴とするリッツ線。   A litz wire composed of a plurality of stranded wires with an insulation coated conductor as a primary strand, the center of the cross section of the litz wire being a hollow portion or a core member other than the insulation coated conductor A litz wire, characterized in that the wire is a secondary strand, and is composed of a plurality of twisted secondary strands. 絶縁被覆導体を一次素線とし、その複数本のより合わせからなるリッツ線であって、該リッツ線の横断面中央部分を中空部とした、もしくは絶縁被覆導体以外のコア部材としたものを二次素線とし、該二次素線の複数本のより合わせからなり、その横断面中央部分を中空部とした、もしくは二次素線以外のコア部材としたことを特徴とするリッツ線。   A litz wire composed of a plurality of stranded wires with an insulation coated conductor as a primary strand, the center of the cross section of the litz wire being a hollow portion or a core member other than the insulation coated conductor A litz wire, characterized in that it is made of a plurality of strands of secondary strands, and the central portion of the cross section is a hollow portion or a core member other than the secondary strands. 絶縁被覆導体を一次素線とし、その複数本のより合わせからなるリッツ線を二次素線とし、該二次素線の複数本のより合わせからなり、その横断面中央部分は中空部としてある、もしくは二次素線以外のコア部材としてあることを特徴とするリッツ線。   The insulation coated conductor is a primary strand, the litz wire composed of a plurality of twisted strands is a secondary strand, and the center portion of the cross section is a hollow portion. A litz wire characterized by being a core member other than a secondary strand. 前記絶縁被覆導体は銅線に絶縁被覆をかぶせて直径0.3mm以下とした絶縁電線であることを特徴とする請求項1から4の何れかに記載のリッツ線。   The litz wire according to any one of claims 1 to 4, wherein the insulating coated conductor is an insulated electric wire having a diameter of 0.3 mm or less by covering the copper wire with an insulating coating. 前記絶縁被覆導体は少なくとも横断面3層以上の層構造となっており、最外層は絶縁体層、中間層には電気伝導層、内部のコア層は中間層よりも体積抵抗率の高い層からなることを特徴とする請求項1から4の何れかに記載のリッツ線。   The insulating coated conductor has a layer structure of at least three layers in cross section, the outermost layer is an insulator layer, the intermediate layer is an electrically conductive layer, and the inner core layer is a layer having a higher volume resistivity than the intermediate layer. The Litz wire according to any one of claims 1 to 4, wherein 前記コア部材はヒートパイプまたは冷却部材であることを特徴とする請求項1から6の何れかに記載のリッツ線。   The litz wire according to any one of claims 1 to 6, wherein the core member is a heat pipe or a cooling member. 請求項1から7の何れかに記載のリッツ線をコイル形状に形成したことを特徴とする励磁コイル。   8. An exciting coil, wherein the Litz wire according to claim 1 is formed in a coil shape. コイルとして周回したリッツ線の1ターン毎の層間に、絶縁層を設けたことを特徴とする請求項8に記載の励磁コイル。   The exciting coil according to claim 8, wherein an insulating layer is provided between the layers of the litz wire that circulates as a coil for each turn. 請求項8または9に記載の励磁コイルを、誘導発熱性部材に渦電流を誘導させて発熱させる高周波用コイルとして具備させたことを特徴とする誘導加熱装置。   An induction heating apparatus comprising the exciting coil according to claim 8 or 9 as a high-frequency coil that generates heat by inducing an eddy current in an induction heat generating member. 請求項8または9に記載の励磁コイルを有することを特徴とする高周波トランス。   A high frequency transformer comprising the exciting coil according to claim 8. 請求項8または9に記載の励磁コイルを有することを特徴とするコイルインダクタンス。   A coil inductance comprising the exciting coil according to claim 8.
JP2003341080A 2003-09-30 2003-09-30 Litz wire and exciting coil, and induction heating device using above Pending JP2005108654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341080A JP2005108654A (en) 2003-09-30 2003-09-30 Litz wire and exciting coil, and induction heating device using above

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341080A JP2005108654A (en) 2003-09-30 2003-09-30 Litz wire and exciting coil, and induction heating device using above

Publications (1)

Publication Number Publication Date
JP2005108654A true JP2005108654A (en) 2005-04-21

Family

ID=34535790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341080A Pending JP2005108654A (en) 2003-09-30 2003-09-30 Litz wire and exciting coil, and induction heating device using above

Country Status (1)

Country Link
JP (1) JP2005108654A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311106A (en) * 2006-05-17 2007-11-29 Hitachi Cable Ltd Electric cable
JP2008060432A (en) * 2006-09-01 2008-03-13 Swcc Showa Device Technology Co Ltd Litz wire coil
JP2008262712A (en) * 2007-03-20 2008-10-30 Yazaki Corp High-frequency wire, wiring harness having the same wire, manufacturing method for high frequency wire, and manufacturing device for manufacturing high frequency wire
JP2008270120A (en) * 2007-04-25 2008-11-06 Matsushita Electric Ind Co Ltd Induction heating device, and manufacturing method of flat coil conductor
JP2009032836A (en) * 2007-07-26 2009-02-12 Swcc Showa Device Technology Co Ltd Method of manufacturing multiple coil
JP2010021260A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Current lead for cryogenic apparatus, and terminal connection structure
JP2010129986A (en) * 2008-12-01 2010-06-10 Tdk-Lambda Corp Reactor element for power source
JP2011192533A (en) * 2010-03-15 2011-09-29 Hitachi Cable Ltd Bend resistant cable
WO2011118634A1 (en) 2010-03-23 2011-09-29 株式会社フジクラ High frequency cable and high frequency coil
WO2012001955A1 (en) * 2010-06-30 2012-01-05 パナソニック株式会社 Wireless electric power transmission system and electric power transmitting and receiving device provided with heat release structure
JP2012195059A (en) * 2011-03-15 2012-10-11 Panasonic Corp Heating coil and induction heating cooker using the same
WO2013042671A1 (en) 2011-09-22 2013-03-28 株式会社フジクラ Electric wire and coil
EP2621057A2 (en) 2010-08-20 2013-07-31 Fujikura Ltd. Electric wire, coil, apparatus for designing electric wire, and electric motor
JP2013149460A (en) * 2012-01-19 2013-08-01 Kanzacc Co Ltd Electric wire and coil
CN103334157A (en) * 2013-06-14 2013-10-02 中山大学 Energy-saving induction coil and crystal growth furnace adopting same
JP2014048513A (en) * 2012-08-31 2014-03-17 Canon Inc Fixing device and image forming device
JP2014096349A (en) * 2012-10-11 2014-05-22 Kanzacc Co Ltd Litz wire
KR20140070757A (en) * 2012-11-27 2014-06-11 동양하이테크산업주식회사 Process for preparing surface-expanded spiral wire
KR20140070759A (en) * 2012-11-27 2014-06-11 동양하이테크산업주식회사 Process for preparing silver-coated and surface-expanded spiral wire for high efficiency and high frequency transformer
WO2014148430A1 (en) 2013-03-18 2014-09-25 株式会社フジクラ Wire and coil
WO2015046153A1 (en) 2013-09-25 2015-04-02 株式会社フジクラ High-frequency wire and high-frequency coil
WO2015083531A1 (en) * 2013-12-02 2015-06-11 矢崎総業株式会社 Transmission cable
WO2015083456A1 (en) 2013-12-02 2015-06-11 株式会社フジクラ High-frequency electrical wire and coil
WO2017051556A1 (en) * 2015-09-24 2017-03-30 富士機械製造株式会社 Coil for noncontact power supply and noncontact power supply system
CN107204233A (en) * 2016-03-18 2017-09-26 福建新大陆环保科技有限公司 A kind of Large Copacity dry type high frequency high voltage transformer
CN108019794A (en) * 2016-11-02 2018-05-11 浙江绍兴苏泊尔生活电器有限公司 Coil panel and induction cooker
JP2018092824A (en) * 2016-12-05 2018-06-14 三洲電線株式会社 Twisted wire conductor
US20190244726A1 (en) * 2018-02-02 2019-08-08 Averatek Corporation Maximizing surfaces and minimizing proximity effects for electric wires and cables
JP2019204837A (en) * 2018-05-22 2019-11-28 東京特殊電線株式会社 High-frequency coil wire and coil
JP2020038899A (en) * 2018-09-04 2020-03-12 日立金属株式会社 High frequency transformer and power supply circuit using the same
JP2020527279A (en) * 2017-07-17 2020-09-03 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Inductor coil for inductive welding of packaging materials
JP7452347B2 (en) 2020-09-18 2024-03-19 株式会社プロテリアル cable

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311106A (en) * 2006-05-17 2007-11-29 Hitachi Cable Ltd Electric cable
JP2008060432A (en) * 2006-09-01 2008-03-13 Swcc Showa Device Technology Co Ltd Litz wire coil
JP2008262712A (en) * 2007-03-20 2008-10-30 Yazaki Corp High-frequency wire, wiring harness having the same wire, manufacturing method for high frequency wire, and manufacturing device for manufacturing high frequency wire
JP2008270120A (en) * 2007-04-25 2008-11-06 Matsushita Electric Ind Co Ltd Induction heating device, and manufacturing method of flat coil conductor
JP2009032836A (en) * 2007-07-26 2009-02-12 Swcc Showa Device Technology Co Ltd Method of manufacturing multiple coil
JP2010021260A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Current lead for cryogenic apparatus, and terminal connection structure
JP2010129986A (en) * 2008-12-01 2010-06-10 Tdk-Lambda Corp Reactor element for power source
JP2011192533A (en) * 2010-03-15 2011-09-29 Hitachi Cable Ltd Bend resistant cable
US9478328B2 (en) 2010-03-23 2016-10-25 Fujikura Ltd. High frequency cable, high frequency coil and method for manufacturing high frequency cable
WO2011118634A1 (en) 2010-03-23 2011-09-29 株式会社フジクラ High frequency cable and high frequency coil
US9123456B2 (en) 2010-03-23 2015-09-01 Fujikura Ltd. High frequency cable, high frequency coil and method for manufacturing high frequency cable
CN103026436A (en) * 2010-06-30 2013-04-03 松下电器产业株式会社 Wireless electric power transmission system and electric power transmitting and receiving device provided with heat release structure
CN103026436B (en) * 2010-06-30 2016-05-25 松下知识产权经营株式会社 Possess the Wireless power transmission system of heat-dissipating structure and send current-collecting device
US8917511B2 (en) 2010-06-30 2014-12-23 Panasonic Corporation Wireless power transfer system and power transmitting/receiving device with heat dissipation structure
WO2012001955A1 (en) * 2010-06-30 2012-01-05 パナソニック株式会社 Wireless electric power transmission system and electric power transmitting and receiving device provided with heat release structure
EP2621057A2 (en) 2010-08-20 2013-07-31 Fujikura Ltd. Electric wire, coil, apparatus for designing electric wire, and electric motor
US8866019B2 (en) 2010-08-20 2014-10-21 Fujikura Ltd. Electric wire, coil, device for designing electric wire, and electric motor
US8723387B2 (en) 2010-08-20 2014-05-13 Fujikura Ltd. Electric wire, coil, device for designing electric wire, and electric motor
US9425662B2 (en) 2010-08-20 2016-08-23 Fujikura Ltd. Electric wire, coil, device for designing electric wire, and electric motor
JP2012195059A (en) * 2011-03-15 2012-10-11 Panasonic Corp Heating coil and induction heating cooker using the same
WO2013042671A1 (en) 2011-09-22 2013-03-28 株式会社フジクラ Electric wire and coil
EP3082135A2 (en) 2011-09-22 2016-10-19 Fujikura Ltd. Electric wire and coil
US8987600B2 (en) 2011-09-22 2015-03-24 Fujikura Ltd. Electric wire and coil
US8946560B2 (en) 2011-09-22 2015-02-03 Fujikura Ltd. Electric wire and coil
JP2013149460A (en) * 2012-01-19 2013-08-01 Kanzacc Co Ltd Electric wire and coil
JP2014048513A (en) * 2012-08-31 2014-03-17 Canon Inc Fixing device and image forming device
JP2014096349A (en) * 2012-10-11 2014-05-22 Kanzacc Co Ltd Litz wire
KR101964079B1 (en) 2012-11-27 2019-08-01 동양하이테크산업주식회사 Process for preparing silver-coated and surface-expanded spiral wire for high efficiency and high frequency transformer
KR20140070759A (en) * 2012-11-27 2014-06-11 동양하이테크산업주식회사 Process for preparing silver-coated and surface-expanded spiral wire for high efficiency and high frequency transformer
KR20140070757A (en) * 2012-11-27 2014-06-11 동양하이테크산업주식회사 Process for preparing surface-expanded spiral wire
JP6062035B2 (en) * 2013-03-18 2017-01-18 株式会社フジクラ Electric wires and coils
WO2014148430A1 (en) 2013-03-18 2014-09-25 株式会社フジクラ Wire and coil
CN105051833A (en) * 2013-03-18 2015-11-11 株式会社藤仓 Wire and coil
US9859032B2 (en) 2013-03-18 2018-01-02 Fujikura Ltd. Electric wire for reducing AC resistance to be equal to or less than copper wire
EP2977994A4 (en) * 2013-03-18 2017-01-11 Fujikura Ltd. Wire and coil
CN105051833B (en) * 2013-03-18 2017-03-15 株式会社藤仓 Electric wire and coil
CN103334157A (en) * 2013-06-14 2013-10-02 中山大学 Energy-saving induction coil and crystal growth furnace adopting same
WO2015046153A1 (en) 2013-09-25 2015-04-02 株式会社フジクラ High-frequency wire and high-frequency coil
US10026526B2 (en) 2013-09-25 2018-07-17 Fujikura Ltd. High-frequency wire and high-frequency coil
WO2015083456A1 (en) 2013-12-02 2015-06-11 株式会社フジクラ High-frequency electrical wire and coil
WO2015083531A1 (en) * 2013-12-02 2015-06-11 矢崎総業株式会社 Transmission cable
KR20160065959A (en) 2013-12-02 2016-06-09 가부시키가이샤후지쿠라 High-frequency electrical wire and coil
WO2017051555A1 (en) * 2015-09-24 2017-03-30 富士機械製造株式会社 Coil for noncontact power supply and noncontact power supply system
US10672551B2 (en) * 2015-09-24 2020-06-02 Fuji Corporation Non-contact power feeding coil and non-contact power feeding system
WO2017051556A1 (en) * 2015-09-24 2017-03-30 富士機械製造株式会社 Coil for noncontact power supply and noncontact power supply system
JPWO2017051555A1 (en) * 2015-09-24 2018-07-05 株式会社Fuji Non-contact power supply coil and non-contact power supply system
JPWO2017051556A1 (en) * 2015-09-24 2018-07-12 株式会社Fuji Non-contact power supply coil and non-contact power supply system
CN108028127A (en) * 2015-09-24 2018-05-11 富士机械制造株式会社 Non-contact power coil and contactless power supply system
US20180262063A1 (en) * 2015-09-24 2018-09-13 Fuji Machine Mfg. Co., Ltd. Non-contact power feeding coil and non-contact power feeding system
CN108028127B (en) * 2015-09-24 2020-11-03 株式会社富士 Coil for non-contact power supply and non-contact power supply system
CN107204233A (en) * 2016-03-18 2017-09-26 福建新大陆环保科技有限公司 A kind of Large Copacity dry type high frequency high voltage transformer
CN108019794A (en) * 2016-11-02 2018-05-11 浙江绍兴苏泊尔生活电器有限公司 Coil panel and induction cooker
JP2018092824A (en) * 2016-12-05 2018-06-14 三洲電線株式会社 Twisted wire conductor
JP2020527279A (en) * 2017-07-17 2020-09-03 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Inductor coil for inductive welding of packaging materials
JP7344194B2 (en) 2017-07-17 2023-09-13 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Inductor coil for induction welding of packaging materials
US20190244726A1 (en) * 2018-02-02 2019-08-08 Averatek Corporation Maximizing surfaces and minimizing proximity effects for electric wires and cables
JP2019204837A (en) * 2018-05-22 2019-11-28 東京特殊電線株式会社 High-frequency coil wire and coil
JP7146449B2 (en) 2018-05-22 2022-10-04 東京特殊電線株式会社 Wires and coils for high frequency coils
JP2020038899A (en) * 2018-09-04 2020-03-12 日立金属株式会社 High frequency transformer and power supply circuit using the same
JP7121924B2 (en) 2018-09-04 2022-08-19 日立金属株式会社 High frequency transformer and power supply circuit using the same
JP7452347B2 (en) 2020-09-18 2024-03-19 株式会社プロテリアル cable

Similar Documents

Publication Publication Date Title
JP2005108654A (en) Litz wire and exciting coil, and induction heating device using above
JP3743608B2 (en) Fixing device using induction heating
JP2001092283A (en) Fixing device
JPWO2003039196A1 (en) Electromagnetic induction heat roller, manufacturing method thereof, heating device and image forming apparatus
JP6270457B2 (en) Image heating device
JP2000098781A (en) Induction exothermic type fixing device and process for producing its induction current generating material
US7684743B2 (en) Fixing device
JP6614952B2 (en) Roller member and image heating apparatus
JP2000029332A (en) Heat roller device
US9519248B2 (en) Fixing device including an induction heating unit with ducting for airflow, and image forming apparatus incorporating same
US7085527B2 (en) Fixing apparatus having fixing roller and induction heating device therein
JP2017097146A (en) Cylindrical rotor, manufacturing method of the same, and fixing device
JP2005203273A (en) Heater, fixing device, and image recording device using it
JP2009295443A (en) Induction coil and electromagnetic induction heating apparatus
JP2008210532A (en) Coil for electromagnetic induction heating, fixing device, and manufacturing method of coil for electromagnetic induction heating
JP5131641B2 (en) Electromagnetic induction heating device
JP3750718B2 (en) Fixing device
JP2004061998A (en) Exciting coil for electromagnetic induction heating for heating roller and method for winding the coil
JP2003084589A (en) Fixing device
JP2001188427A (en) Induction heating device
JP2002287540A (en) Fixing device
JP2002006654A (en) Wire for electromagnetic induction heating coil
JP3680926B2 (en) Fixing device
JP3584969B2 (en) Fixing device
JP2004020821A (en) Electric wire used for excitation coil