JP7121924B2 - High frequency transformer and power supply circuit using the same - Google Patents

High frequency transformer and power supply circuit using the same Download PDF

Info

Publication number
JP7121924B2
JP7121924B2 JP2018165054A JP2018165054A JP7121924B2 JP 7121924 B2 JP7121924 B2 JP 7121924B2 JP 2018165054 A JP2018165054 A JP 2018165054A JP 2018165054 A JP2018165054 A JP 2018165054A JP 7121924 B2 JP7121924 B2 JP 7121924B2
Authority
JP
Japan
Prior art keywords
winding
wire
frequency transformer
primary winding
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018165054A
Other languages
Japanese (ja)
Other versions
JP2020038899A (en
Inventor
徹 阿部
慶子 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018165054A priority Critical patent/JP7121924B2/en
Publication of JP2020038899A publication Critical patent/JP2020038899A/en
Application granted granted Critical
Publication of JP7121924B2 publication Critical patent/JP7121924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は高周波トランスとそれを用いた電源回路に関する。 The present invention relates to a high frequency transformer and a power supply circuit using the same.

近年、電源の小型・軽量化、高効率化が強く要請されていて、コンバータ等の電源回路のスイッチング周波数を100kHz以上に高める対応が進められている。高周波化により電源回路に使用されるトランスを小型化することが出来るものの、トランスの巻線で生じる銅損や磁心で生じる鉄損が増加する。鉄損の低減には低損失の磁心材料の選定を行えばよいが、一方で銅損の低減には直流抵抗と交流抵抗の低減が必要である。 In recent years, there has been a strong demand for smaller, lighter, and more efficient power supplies, and efforts are being made to raise the switching frequency of power supply circuits such as converters to 100 kHz or higher. Although a transformer used in a power supply circuit can be miniaturized by increasing the frequency, the copper loss caused by the windings of the transformer and the iron loss caused by the magnetic core increase. A low-loss magnetic core material can be selected to reduce iron loss, while a reduction in copper loss requires a reduction in DC resistance and AC resistance.

高周波におけるトランスの銅損の要因は、コイルの素線断面における電流密度の偏りによって生ずる表皮効果と、近接効果に起因する交流抵抗が支配的で、周波数が高くなるとその影響が顕著となる。高周波電流をコイルに通電すると、巻線を流れる電流による磁界の時間変化によって電流分布が素線の表面に偏る。例えば断面が円形の素線では、電流分布が存在する領域として規定される表皮厚が半径以下となると、素線の外周と中心部で電流密度が大きく異なって交流抵抗が増加する。 The main causes of transformer copper loss at high frequencies are the skin effect caused by uneven current density in the wire cross section of the coil and the AC resistance caused by the proximity effect. When a high-frequency current is passed through the coil, the current distribution is biased toward the surface of the wire due to the temporal change in the magnetic field caused by the current flowing through the winding. For example, in a wire with a circular cross section, if the skin thickness defined as the region in which the current distribution exists is less than the radius, the current density is greatly different between the outer periphery and the center of the wire, increasing the AC resistance.

また、ソフトスイッチングが可能でスイッチング損失の低減可能な電源回路としてLLC共振駆動方式が知られているが、この方式はトランスの漏れインダクタンスを共振用インダクタとして用いる例が多く、この場合、漏洩磁束が巻線に鎖交することにより生じる渦電流によって交流抵抗の増加が生じやすい。更に、一方の巻線が作る磁場中に他方の巻線がある場合には、他の巻線に鎖交する磁束によって渦電流が生じ交流抵抗が増加する。 Also, the LLC resonance drive system is known as a power supply circuit capable of soft switching and reducing switching loss. The eddy currents generated by interlinking the windings tend to increase the AC resistance. Furthermore, when the other winding is present in the magnetic field created by one winding, the magnetic flux interlinking with the other winding causes an eddy current and increases the AC resistance.

つまり銅損の低減には、巻線の直流抵抗と、導体中の表皮効果、導体間の近接効果、漏洩磁束による渦電流に基づく交流抵抗を低減させることが必要である。 In other words, in order to reduce the copper loss, it is necessary to reduce the DC resistance of the winding, the skin effect in the conductor, the proximity effect between the conductors, and the AC resistance based on the eddy current due to the leakage magnetic flux.

一般に交流抵抗の低減のため、トランスの巻線に細い素線を撚り合わせた撚り線(リッツ線とも呼ばれる)が用いられる。特許文献1には撚り線を用いることで表皮効果の影響を少なくすることが記載されている。素線の断面積(線径)を小さくするとともに、本数を増加することで、表皮効果、近接効果、渦電流による損失を低減して巻線の交流抵抗を抑えることができる。 In order to reduce the AC resistance, a twisted wire (also called litz wire) is generally used for the winding of a transformer. Patent Document 1 describes that the influence of the skin effect is reduced by using a twisted wire. By reducing the cross-sectional area (wire diameter) of the strands and increasing the number of strands, it is possible to reduce losses due to the skin effect, proximity effect, and eddy currents, thereby suppressing the AC resistance of the windings.

また特許文献2では、トランスの一次巻線と二次巻線との接触面積を小さくして、一次巻線と二次巻線との間の近接効果によるトランスの温度上昇を抑制する。トランスの構造の一例を断面図として図24に示す。銅線を傘状あるいは切頭円錐状に巻回した一次巻線506と二次巻線505を、小径側が対面するように接触させて磁心520に配置してトランス500とする。 Further, in Patent Document 2, the contact area between the primary winding and the secondary winding of the transformer is reduced to suppress the temperature rise of the transformer due to the proximity effect between the primary winding and the secondary winding. An example of the structure of the transformer is shown in FIG. 24 as a cross-sectional view. A transformer 500 is formed by arranging a primary winding 506 and a secondary winding 505 formed by winding a copper wire in an umbrella shape or a truncated conical shape, and placing them in a magnetic core 520 so that their smaller diameter sides face each other.

特開昭62-219605号公報JP-A-62-219605 特開2012-169331号公報JP 2012-169331 A

撚り線をトランスの巻線に使用することや、巻線を円錐形状等にすることで交流抵抗を低減することは可能だが、電源回路の高周波化に対して、更なる交流抵抗の低減と、電源回路の効率の低下を抑制するという課題がある。そこで本発明は、交流抵抗の低減が可能な高周波トランス及び、それを用いた電源回路を提供することを目的とする。 It is possible to reduce the AC resistance by using twisted wires for the windings of transformers, or by making the windings conical, etc. There is a problem of suppressing a decrease in efficiency of the power supply circuit. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-frequency transformer capable of reducing AC resistance and a power supply circuit using the same.

第1の発明は、閉磁路磁心と、前記閉磁路磁心に巻回された一次巻線と二次巻線とを備え、前記一次巻線の巻軸方向に並んで前記二次巻線が配置され、前記一次巻線の素線占積率と前記二次巻線の素線占積率が以下の条件(1)または(2)を満たす高周波トランスである。
(1)単一の一次巻線と単一の二次巻線とが間隔をもって並置され、素線の線径がφ0.15mm以上φ0.35mm以下の撚り線で構成され、前記一次巻線の素線占積率と前記二次巻線の素線占積率とが4.0%以上13.5%以下である
(2)単一の二次巻線を挟む位置に2分割して配置された一次巻線を備え、素線の線径がφ0.05mm以上φ0.35mm以下の撚り線で構成され、前記一次巻線の素線占積率と前記二次巻線の素線占積率とが10.0%以上50.0%以下である
A first invention comprises a closed magnetic circuit magnetic core, and a primary winding and a secondary winding wound around the closed magnetic circuit magnetic core, and the secondary winding is arranged along the winding axis direction of the primary winding. and the wire space factor of the primary winding and the wire space factor of the secondary winding satisfy the following condition (1) or (2).
(1) A single primary winding and a single secondary winding are arranged side by side with a gap, and are composed of a twisted wire with a wire diameter of φ0.15 mm or more and φ0.35 mm or less, and the primary winding The wire space factor and the wire space factor of the secondary winding are 4.0% or more and 13.5% or less. The primary winding is composed of a stranded wire with a wire diameter of φ0.05 mm or more and φ0.35 mm or less, and the wire space factor of the primary winding and the wire space of the secondary winding rate is 10.0% or more and 50.0% or less

前記単一の一次巻線と前記単一の二次巻線とが、円錐状又は角錐状に旋回する形状に構成されるのが好ましい。 Preferably, said single primary winding and said single secondary winding are configured in a conical or pyramidal spiral shape.

また、前記2分割の一次巻線と前記単一の二次巻線とが、円錐状又は角錐状に旋回する形状に構成され、前記単一の二次巻線は中間部が大径、両端部が小径であるのが好ましい。 In addition, the two-part primary winding and the single secondary winding are configured in a conical or pyramidal shape, and the single secondary winding has a large diameter intermediate portion and both ends of the secondary winding. It is preferred that the portion has a small diameter.

また、前記閉磁路磁心は第1の磁心と第2の磁心とを含み、前記第1の磁心と前記第2の磁心との間に磁気ギャップを有するように組み合わせて構成されるのが好ましい。 Also, the closed magnetic circuit magnetic core includes a first magnetic core and a second magnetic core, and is preferably configured so as to have a magnetic gap between the first magnetic core and the second magnetic core.

また本発明の高周波トランスは、スイッチング周波数が100kHz~500kHzのLLC共振電源用であるのが好ましい。 Further, the high-frequency transformer of the present invention is preferably for LLC resonant power supplies with a switching frequency of 100 kHz to 500 kHz.

また本発明は、前述の高周波トランスを用いた電源回路である。 The present invention also provides a power supply circuit using the high-frequency transformer described above.

本発明によれば交流抵抗の低減が可能な高周波トランス及び、それを用いた高効率な電源回路を提供することができる。 According to the present invention, it is possible to provide a high-frequency transformer capable of reducing AC resistance and a highly efficient power supply circuit using the same.

本発明の一実施態様に係る高周波トランスの平面図である。1 is a plan view of a high frequency transformer according to one embodiment of the present invention; FIG. 本発明の他の実施態様に係る高周波トランスの平面図である。FIG. 4 is a plan view of a high frequency transformer according to another embodiment of the present invention; 集合よりの撚り線を径方向に切断して現れる断面の拡大図である。FIG. 4 is an enlarged view of a cross section that appears by radially cutting the stranded wire from the set. 集合よりを更に束ねた、複合よりの撚り線を径方向に切断して現れる断面の拡大図である。FIG. 10 is an enlarged view of a cross section that appears by radially cutting a strand of composite strands in which the set strands are further bundled; 解析を行った高周波トランスの巻線構造を示すシミュレーションモデルの部分断面図である。FIG. 4 is a partial cross-sectional view of a simulation model showing the winding structure of the high-frequency transformer analyzed. 解析を行った高周波トランスの他の巻線構造を示すシミュレーションモデルの部分断面図である。FIG. 11 is a partial cross-sectional view of a simulation model showing another winding structure of the high-frequency transformer analyzed. 解析を行った高周波トランスの他の巻線構造を示すシミュレーションモデルの部分断面図である。FIG. 11 is a partial cross-sectional view of a simulation model showing another winding structure of the high-frequency transformer analyzed. 解析を行った高周波トランスの他の巻線構造を示すシミュレーションモデルの部分断面図である。FIG. 11 is a partial cross-sectional view of a simulation model showing another winding structure of the high-frequency transformer analyzed. 解析を行った高周波トランスの他の巻線構造を示すシミュレーションモデルの部分断面図である。FIG. 11 is a partial cross-sectional view of a simulation model showing another winding structure of the high-frequency transformer analyzed. 解析を行った高周波トランスの他の巻線構造を示すシミュレーションモデルの部分断面図である。FIG. 11 is a partial cross-sectional view of a simulation model showing another winding structure of the high-frequency transformer analyzed. (a)シミュレーションに使用した磁心のモデル構造を示す正面図であり、(b)その側面図である。(a) It is a front view which shows the model structure of the magnetic core used for simulation, (b) It is the side view. (a)シミュレーションに使用したボビンのモデル構造を示す正面図であり、(b)その平側面図である。(a) It is a front view which shows the model structure of the bobbin used for simulation, (b) It is the flat side view. (a)シミュレーションに使用したボビンの他のモデル構造を示す正面図であり、(b)その側面図である。(a) is a front view showing another model structure of the bobbin used in the simulation, and (b) is a side view thereof. 素線径がφ0.2mmの一次巻線の素線占積率と交流抵抗Rac1との関係を示す図である。FIG. 4 is a diagram showing the relationship between the wire lamination factor of a primary winding having a wire diameter of φ0.2 mm and the AC resistance Rac1; 素線径がφ0.3mmの一次巻線の素線占積率と交流抵抗Rac1との関係を示す図である。FIG. 4 is a diagram showing the relationship between the wire lamination factor of a primary winding having a wire diameter of φ0.3 mm and the AC resistance Rac1; 素線径がφ0.1mmの一次巻線の素線占積率と交流抵抗Rac1との関係を示す図である。FIG. 4 is a diagram showing the relationship between the wire lamination factor of a primary winding having a wire diameter of φ0.1 mm and the AC resistance Rac1; 素線径がφ0.2mmの一次巻線の素線占積率と交流抵抗Rac1との関係を示す図である。FIG. 4 is a diagram showing the relationship between the wire lamination factor of a primary winding having a wire diameter of φ0.2 mm and the AC resistance Rac1; 素線径がφ0.1mmの二次巻線の素線占積率と交流抵抗Rac2との関係を示す図である。FIG. 5 is a diagram showing the relationship between the wire lamination factor of a secondary winding having a wire diameter of φ0.1 mm and AC resistance Rac2. 素線径がφ0.2mmの二次巻線の素線占積率と交流抵抗Rac2との関係を示す図である。FIG. 5 is a diagram showing the relationship between the wire lamination factor of a secondary winding having a wire diameter of φ0.2 mm and AC resistance Rac2; (a)本発明の高周波トランスに用いた磁心の正面図であり、(b)その側面図である。(a) It is a front view of the magnetic core used for the high frequency transformer of this invention, (b) It is the side view. 本発明の高周波トランスの斜視図である。1 is a perspective view of a high frequency transformer of the present invention; FIG. 高周波トランスの変換効率の評価回路ブロック図である。FIG. 3 is a block diagram of an evaluation circuit for conversion efficiency of a high frequency transformer; 実施例と比較例の高周波トランスの周波数と変換効率との関係を示す図である。It is a figure which shows the relationship between the frequency of the high frequency transformer of an Example and a comparative example, and conversion efficiency. 従来の高周波トランスの平面図である。1 is a plan view of a conventional high frequency transformer; FIG.

以下、本発明の一実施形態に係る高周波トランス、それを用いた電源回路について具体的に説明する。ただし、本発明はこれに限定されるものではない。なお、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。また説明において示される寸法や形状、構成部材の相対的な位置関係等は特に断わりの記載がない限りは、それのみに限定されない。さらに説明においては、同一の名称、符号については同一又は同質の部材を示していて、図示していても詳細説明を省略する場合がある。 A high-frequency transformer according to an embodiment of the present invention and a power supply circuit using the same will be specifically described below. However, the present invention is not limited to this. In addition, in some or all of the drawings, parts unnecessary for explanation are omitted, and some parts are enlarged or reduced in order to facilitate explanation. In addition, unless otherwise specified, the dimensions, shapes, relative positional relationships, and the like of constituent members shown in the description are not limited to these. Furthermore, in the description, the same names and symbols indicate the same or homogeneous members, and detailed description may be omitted even if they are illustrated.

図1は、本発明の一実施形態に係る高周波トランスを示す断面図である。図1に示すように、高周波トランス1は、弊磁路磁心を構成する一対の磁心10a、10bと一対の巻線20a、20b、そして巻線20a、20bを保持する巻枠(ボビン)15を備えていて、磁路にギャップGが構成されている。なお以降の説明では、巻線20aを一次巻線とし、巻線20bを二次巻線と呼ぶ場合があるが、入力側と出力側の区別は特に言及がなければ限定されない。 FIG. 1 is a cross-sectional view showing a high frequency transformer according to one embodiment of the present invention. As shown in FIG. 1, the high-frequency transformer 1 includes a pair of magnetic cores 10a and 10b, a pair of windings 20a and 20b, and a winding frame (bobbin) 15 for holding the windings 20a and 20b. A gap G is formed in the magnetic path. In the following description, the winding 20a may be called the primary winding and the winding 20b may be called the secondary winding, but the distinction between the input side and the output side is not limited unless otherwise specified.

図2は、本発明の一実施形態に係る高周波トランスの他の構成を示す断面図である。図1に示した高周波トランスとは一次巻線20aを分割して2つの巻線20a1、20a2で構成する点で相違する。2分割された一方の一次巻線20a1、単一の二次巻線20b、2分割された他方の一次巻線20a2の順に並んで配置され、分割された一次巻線20a1、20a2は直列接続されている。なお図示した例では、分割された一次巻線20a1、20a2で単一の二次巻線20bを挟む構成だが、二次巻線20bを分割し、その間に一次巻線20aを挟む構成としても良い。なお分割された巻線との関係で、分割されていない巻線を“単一の巻線”として区別する場合がある。 FIG. 2 is a cross-sectional view showing another configuration of the high frequency transformer according to one embodiment of the present invention. The difference from the high frequency transformer shown in FIG. 1 is that the primary winding 20a is divided into two windings 20a1 and 20a2. One primary winding 20a1 divided into two, a single secondary winding 20b, and the other primary winding 20a2 divided into two are arranged in order, and the divided primary windings 20a1 and 20a2 are connected in series. ing. In the illustrated example, the single secondary winding 20b is sandwiched between the divided primary windings 20a1 and 20a2, but the secondary winding 20b may be divided and the primary winding 20a may be sandwiched between them. . Note that, in relation to the divided winding, the undivided winding may be distinguished as a "single winding".

一次巻線20a、二次巻線20bはそれぞれ、複数の細い銅線(素線)を撚った集合よりの撚り線、あるいは集合よりを更に束ねた複合よりの撚り線で構成される。撚り線は、単一の線材と比較して小径の素線を使用するので、引用文献1にも記載されるように表皮効果の影響を顕著に低減できて損失を低減する効果を有する。 Each of the primary winding 20a and the secondary winding 20b is composed of a stranded wire formed by twisting a plurality of fine copper wires (strands) or a composite stranded wire formed by further bundling a plurality of thin copper wires (strands). A stranded wire uses strands with a smaller diameter than a single wire rod, so as described in Cited Document 1, the influence of the skin effect can be significantly reduced and the loss can be reduced.

図3は複数の細い銅線(素線)を撚った、集合よりの撚り線を径方向に切断して現れる断面の拡大図である。撚り線100の断面形状は、その外形は点線で示すように等価的に円形となる。素線110は銅線やアルミ線で、それぞれに絶縁被覆120が設けられている。絶縁被覆120は、例えばビニル樹脂、フッ素樹脂、ホルマール樹脂等である。図4は集合よりを更に束ねた、複合よりの撚り線を径方向に切断して現れる断面の拡大図である。複合よりの撚り線130の断面形状もまた点線で示すように等価的に円形となる。 FIG. 3 is an enlarged cross-sectional view of a bundle of twisted copper wires (strands) cut radially. The cross-sectional shape of the stranded wire 100 is equivalently circular as indicated by the dotted line. The wires 110 are copper wires or aluminum wires, each of which is provided with an insulating coating 120 . The insulating coating 120 is, for example, vinyl resin, fluororesin, formal resin, or the like. FIG. 4 is an enlarged view of a cross-section that appears by radially cutting a strand of composite strands in which the set strands are further bundled. The cross-sectional shape of the composite twist strand 130 is also equivalently circular, as indicated by the dashed line.

図3の例では同じ線径の7本の素線110が集合よりの撚り線100に構成され、図4の例では、同じ径の3本の集合よりの撚り線100で複合よりの撚り線130が構成されるが、素線の本数や線径等は本発明の要旨を超えない範囲で適宜変更しても良く、図示した例に限定されるものではない。 In the example of FIG. 3, seven strands 110 of the same wire diameter are formed into a set twisted wire 100, and in the example of FIG. 130 is configured, but the number of strands, wire diameter, etc. may be appropriately changed within the scope of the present invention, and is not limited to the illustrated example.

本発明において、一次巻線20a、二次巻線20bは、それぞれ素線の線径の上限をφ0.35mmとする。φ0.35mmの線径は銅の100kHzでの表皮厚の2倍に近く、線径がφ0.35mm超であると交流抵抗が増大するからである。また一次巻線20aを図2に示すような分割巻にする場合には、線径がφ0.05mm以上であり、図1に示すように一次巻線20a、二次巻線20bのどちらも単一の巻線である場合にはφ0.15mm以上とする。それぞれ線径が所定の値未満であると交流抵抗の低減効果が得られ難い場合がある。 In the present invention, the primary winding 20a and the secondary winding 20b each have an upper limit of wire diameter of φ0.35 mm. This is because a wire diameter of φ0.35 mm is nearly twice the skin thickness of copper at 100 kHz, and if the wire diameter exceeds φ0.35 mm, AC resistance increases. When the primary winding 20a is divided into windings as shown in FIG. 2, the wire diameter is φ0.05 mm or more, and as shown in FIG. In the case of one winding, the diameter should be φ0.15 mm or more. If the wire diameter is less than a predetermined value, it may be difficult to obtain the effect of reducing AC resistance.

また一次巻線20a、二次巻線20bは交流抵抗の低減効果を得るのに、一次巻線20aを分割巻にする場合に素線占積率を10.0%以上50.0%以下とする。更に素線占積率は15.0%以上が好ましく、また40.0%以下であるのが好ましい。一次巻線20a、二次巻線20bともに分割巻としない場合には、素線占積率を4.0%以上13.5%以下とする。更に素線占積率は4.5%以上が好ましく、また12.0%以下であるのが好ましい。 In order to obtain the effect of reducing the AC resistance of the primary winding 20a and the secondary winding 20b, when the primary winding 20a is divided into windings, the wire space factor should be 10.0% or more and 50.0% or less. do. Further, the wire space factor is preferably 15.0% or more, and preferably 40.0% or less. When both the primary winding 20a and the secondary winding 20b are not divided windings, the wire space factor is set to 4.0% or more and 13.5% or less. Further, the wire space factor is preferably 4.5% or more, and preferably 12.0% or less.

高周波トランス1に用いるボビン15は、一次巻線20a、二次巻線20bと磁心10a、10bとの間を仕切り、磁心10a、10bの連結部13a、13bとの間の仕切り部分15a、磁心10a、10bの中脚部11a、11bとの間の仕切り部分15b、一次巻線20a、二次巻線20b同士の間の仕切り部分15cを有する。仕切り部分15bは、磁心10a、10bの中脚部11a、11bを囲う筒状になっていて、仕切り部分15bの周囲から、仕切り部分15aと仕切り部分15cが立設される。仕切り部分15aと仕切り部分15cとで区画された領域に、一次巻線20aと二次巻線20bが並んで配置される。ボビン15は、一次巻線20a、二次巻線20bを巻回形成する巻き型であるとともに、磁心10a、10bと一次巻線20a、二次巻線20bとの間の絶縁を確保する。一対の磁心10a、10bは、中脚部11a、11bがボビン15の仕切り部15bによる筒状部に通されて接着剤で固定されるとともに、絶縁テープ、止め具、あるいはバンドで拘束固定される。 A bobbin 15 used in the high-frequency transformer 1 partitions between the primary winding 20a, the secondary winding 20b and the magnetic cores 10a and 10b, and the partitioning portion 15a between the connecting portions 13a and 13b of the magnetic cores 10a and 10b and the magnetic core 10a. , 10b, and a partition portion 15c between the primary winding 20a and the secondary winding 20b. The partition portion 15b has a tubular shape surrounding the middle legs 11a and 11b of the magnetic cores 10a and 10b, and the partition portions 15a and 15c are erected from the periphery of the partition portion 15b. A primary winding 20a and a secondary winding 20b are arranged side by side in a region defined by the partition portion 15a and the partition portion 15c. The bobbin 15 is a former for winding the primary winding 20a and the secondary winding 20b, and ensures insulation between the magnetic cores 10a and 10b and the primary winding 20a and the secondary winding 20b. The pair of magnetic cores 10a and 10b are fixed with an adhesive by passing the middle legs 11a and 11b through the tubular portion formed by the partition 15b of the bobbin 15, and restrained and fixed with an insulating tape, a fastener, or a band. .

ボビン15は、絶縁性、耐熱性及び成形性を有する樹脂により形成され、具体的にはポリフェニレンサルファイド、液晶ポリマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が好ましい。それらの成形には射出成形法など、樹脂成形方法などの方法によって形成することができる。また図示した例ではボビン15を一次巻線20aと二次巻線20bで共通としているが、一次巻線20aと二次巻線20bのそれぞれに対応したボビンとしても良い。また仕切り部分15bは後述する一次巻線20aと二次巻線20bの形態に合わせて形成するのが好ましく、例えば一次巻線20aや二次巻線20bが円錐状であれば、各巻線の内側面の傾斜に合わせた形状とすれば良い。 The bobbin 15 is made of a resin having insulating properties, heat resistance, and moldability. Specifically, polyphenylene sulfide, liquid crystal polymer, polyethylene terephthalate, polybutylene terephthalate, and the like are preferable. They can be molded by a method such as an injection molding method or a resin molding method. In the illustrated example, the bobbin 15 is shared between the primary winding 20a and the secondary winding 20b, but may be a bobbin corresponding to each of the primary winding 20a and the secondary winding 20b. Moreover, it is preferable to form the partition portion 15b in accordance with the shape of the primary winding 20a and the secondary winding 20b, which will be described later. The shape may be adjusted to the inclination of the side surface.

磁心10a、10bのそれぞれは、E字形状あるいはU字形状であることが好ましい。E字形状である場合、磁心10aは、中脚部11aおよび2つの側脚部12a、12a、それらを繋ぐ連結部13aとからなる。磁心10bも同様に、中脚部11bおよび2つの側脚部12b、12b、それらを繋ぐ連結部13bとからなる。連結部13 a、13bは略矩形板状に形成されていて、側脚部12a、12bは連結部13 a、13bの端部から互いに平行に起立し、中脚部11a、11bは、2つの側脚部12a、12bの中間にあって、連結部13a、13bの中央部から起立している。中脚部11a、11bの長さは側脚部12a、12bよりも短い。高周波トランス1は磁心10a、10bの中脚部11a、11b同士、および2つの側脚部12a、12b同士を対向させ、端部を突き合わせ正対させて組み合わせて構成される。高周波トランス1には中脚部11a、11b、側脚部12a、12b、連結部13a、13bを通ずる閉磁路が形成され、対面する中脚部11a、11bの間にはギャップGが形成される。 Each of the magnetic cores 10a, 10b is preferably E-shaped or U-shaped. In the case of the E shape, the magnetic core 10a consists of a middle leg portion 11a, two side leg portions 12a, 12a, and a connecting portion 13a connecting them. Similarly, the magnetic core 10b is composed of a middle leg portion 11b, two side leg portions 12b, 12b, and a connecting portion 13b connecting them. The connecting portions 13a and 13b are formed in a substantially rectangular plate shape, the side legs 12a and 12b stand parallel to each other from the ends of the connecting portions 13a and 13b, and the middle legs 11a and 11b are divided into two It is located between the side legs 12a and 12b and rises from the central portions of the connecting portions 13a and 13b. The length of the middle legs 11a, 11b is shorter than that of the side legs 12a, 12b. The high-frequency transformer 1 is constructed by facing the middle legs 11a and 11b of the magnetic cores 10a and 10b and the two side legs 12a and 12b with the ends facing each other. A closed magnetic circuit is formed in the high-frequency transformer 1 through the middle legs 11a and 11b, the side legs 12a and 12b, and the connecting portions 13a and 13b, and a gap G is formed between the facing middle legs 11a and 11b. .

磁心10a、10bのそれぞれは、Ni系、Mn系等のソフトフェライトや、純鉄、Fe-Si系磁性合金、Fe-Si-Al系磁性合金、Fe-Si-Cr系磁性合金、あるいはFe基、Co基等のアモルファス合金、ナノ結晶合金(典型的にはファインメット(登録商標))等の金属磁性材料を用いることができる。例えば、磁気飽和する負荷電流が相対的に小さい場合には、飽和磁束密度が小さい低損失のソフトフェライトを用いるのが好ましく、ソフトフェライトよりも大きい負荷電流まで高いインダクタンス値を維持する場合には、飽和磁束密度が大きい金属磁性材料を用いるのが好ましい。金属磁性材料がリボン状にて提供される場合、リボンを所定形状に打ち抜き積層した積層磁心としても良いし、粉末で提供される場合、絶縁被膜となる樹脂やガラスと混合し、成形し熱処理して構成される圧粉磁心としても良い。 Each of the magnetic cores 10a and 10b is made of Ni-based, Mn-based soft ferrite, pure iron, Fe--Si-based magnetic alloy, Fe--Si--Al-based magnetic alloy, Fe--Si--Cr-based magnetic alloy, or Fe-based ferrite. , Co-based amorphous alloys, nanocrystalline alloys (typically Finemet (registered trademark)), and other metallic magnetic materials can be used. For example, when the load current at which magnetic saturation occurs is relatively small, it is preferable to use a low-loss soft ferrite with a small saturation magnetic flux density. It is preferable to use a metallic magnetic material with a high saturation magnetic flux density. When the metallic magnetic material is provided in the form of a ribbon, the ribbon may be punched into a predetermined shape to form a laminated magnetic core, or when provided in the form of powder, it is mixed with a resin or glass that will serve as an insulating coating, molded, and heat-treated. It is good also as a powder magnetic core comprised.

このような高周波トランスについて、有限要素法(FEM)解析を用いたシミュレーションによる交流抵抗の抑制効果について説明する。以下に主な解析条件を示す。
・シミュレーションに使用したソフトウエア
JMAG-Designer 17.0.02v x64 editionを使用した。
・解析方法
TS(トランス解析)モジュール並びにFQ(周波数応答磁界解析)モジュールを使った2次元周波数応答磁界解析を行った。
巻線の分割数は巻線条件によって異なり交流抵抗を高精度に計算可能な条件とする。後述の解析においては、例えば450kHzでの素線径φ0.1の条件(1次側5ターン素線数59×4層の密集巻、2次側2ターン素線数233本×2層の分散巻)では44097要素である。200kHzでのφ0.1密集巻条件(1次側12ターン素線数225本、2次側18ターン素線数225本)では215700要素である。
・材料パラメータ
巻線を銅とし、抵抗率ρ=1.673×10-8Ωmとした。
磁心材として日立金属株式会社製のMn系フェライトML91S材、ML29D材の2種とした。
・磁心形状
PQ形状
With respect to such a high-frequency transformer, the effect of suppressing AC resistance by simulation using finite element method (FEM) analysis will be described. The main analysis conditions are shown below.
・Software used for simulation JMAG-Designer 17.0.02v x64 edition was used.
Analysis method A two-dimensional frequency response magnetic field analysis was performed using a TS (transformer analysis) module and an FQ (frequency response magnetic field analysis) module.
The number of divisions of the winding varies depending on the winding conditions, and the conditions are such that the AC resistance can be calculated with high accuracy. In the analysis described later, for example, the conditions of a wire diameter of φ0.1 at 450 kHz (primary side 5-turn wire number 59 × 4 layers dense winding, secondary side 2-turn wire number 233 × 2 layers dispersion Vol.) has 44097 elements. There are 215,700 elements under the φ0.1 dense winding condition at 200 kHz (225 12-turn strands on the primary side and 225 18-turn strands on the secondary side).
・Material parameters The wire was made of copper, and the resistivity ρ was set to 1.673×10 −8 Ωm.
Two types of Mn-based ferrite ML91S material and ML29D material manufactured by Hitachi Metals, Ltd. were used as magnetic core materials.
・Magnetic core shape PQ shape

図5から図10は、解析を行った高周波トランスの巻線構造を示すシミュレーションモデルの部分断面図である。図5から図7は、図1に示した高周波トランスと同様な構成を有し、図8から図10は図2に示した高周波トランスと同様な構成を有していて、それぞれ巻線の形態が異なる。 5 to 10 are partial cross-sectional views of a simulation model showing the winding structure of the high-frequency transformer analyzed. 5 to 7 have the same configuration as the high frequency transformer shown in FIG. 1, and FIGS. 8 to 10 have the same configuration as the high frequency transformer shown in FIG. is different.

図5は高周波トランスのシミュレーションモデルの一例である。一次巻線20aは連結部13aの伸長方向に4層に重なり、各層で中脚部11aの伸長方向に撚り線100が5回巻回されている。また二次巻線20bは2層に重なり、各層で撚り線100が2回巻回されている。一次巻線20aは4層の一列を並列に接続して5ターンの巻線、二次巻線20bは2層の一列を並列に接続して2ターンの巻線とした。一次巻線20aの様な撚り線を多層に整列して密に巻回する構造を説明が容易なように密集巻と呼ぶことにする。また二次巻線20bは、密集巻構造の巻線よりも線間隔が広く、離れて構成されていて、この様な撚り線を巻回する構造を分散巻と呼ぶことにする。一次巻線20a、二次巻線20bの内周面及び外周面は磁心10a、10bの中脚部11a、11bとの間のボビン15の仕切り部分15bの外周面に倣った形状の周面となる。図示した例では、一次巻線20a、二次巻線20bの内周面及び外周面がともに円周となっているが、ボビン15の仕切り部分15bの外周が矩形であれば、一次巻線20a、二次巻線20bの内周面及び外周面は、それに倣った略矩形となる。 FIG. 5 is an example of a simulation model of a high frequency transformer. The primary winding 20a is stacked in four layers in the extending direction of the connecting portion 13a, and the twisted wire 100 is wound five times in each layer in the extending direction of the middle leg portion 11a. The secondary winding 20b has two layers, and the twisted wire 100 is wound twice on each layer. The primary winding 20a has 5 turns by connecting 4 layers in parallel, and the secondary winding 20b has 2 turns by connecting 2 layers in parallel. A structure in which twisted wires such as the primary winding 20a are aligned in multiple layers and wound densely will be referred to as dense winding for ease of explanation. Further, the secondary winding 20b has a wider wire interval than the windings of the densely wound structure, and is formed farther apart. The inner and outer peripheral surfaces of the primary winding 20a and the secondary winding 20b have a shape following the outer peripheral surface of the partition portion 15b of the bobbin 15 between the cores 10a and 10b and the middle legs 11a and 11b. Become. In the illustrated example, both the inner and outer peripheral surfaces of the primary winding 20a and the secondary winding 20b are circular. , the inner peripheral surface and the outer peripheral surface of the secondary winding 20b are substantially rectangular.

図6は本発明の他の実施形態に係る高周波トランスのシミュレーションモデルである。一次巻線20a、二次巻線20bのそれぞれは、巻軸方向の両端で巻径が異なっていて、図示した例では、磁心10a側に設けられた一次巻線20aは、連結部13a側の一方から他方に向かって巻径が次第に大きくなっている。また磁心10b側に設けられた二次巻線20bは、連結部13b側に向かって、一方から他方に向かって巻径が次第に小さくなっている。一次巻線20aは一層で撚り線100が5回巻回されていて、5ターンの巻線としている。また二次巻線20bは、2層の撚り線100が2回巻回されていて、2層の撚り線を並列に接続した2ターンの巻線としている。一次巻線20a、二次巻線20bはともに、その周面は巻軸方向に対して傾斜していて、図示した例では周面の形状は円錐である。なお、周面の形状は、角錐であってもよい。この様な撚り線の巻線構造を錐状巻と呼ぶこととする。なお、二次巻線20bは2ヶ所の分散巻であり、周面とは2ヶ所の巻線を繋ぐ仮想面のことである。 FIG. 6 is a simulation model of a high frequency transformer according to another embodiment of the present invention. The primary winding 20a and the secondary winding 20b have different winding diameters at both ends in the winding axis direction. In the illustrated example, the primary winding 20a provided on the magnetic core 10a side The winding diameter gradually increases from one side to the other. The winding diameter of the secondary winding 20b provided on the magnetic core 10b side is gradually reduced from one side to the other side toward the connecting portion 13b side. The primary winding 20a has a single layer, and the stranded wire 100 is wound five times to form a five-turn winding. The secondary winding 20b is formed by winding two turns of the two-layered stranded wire 100, forming a two-turn winding in which the two-layered stranded wire is connected in parallel. The peripheral surfaces of both the primary winding 20a and the secondary winding 20b are inclined with respect to the direction of the winding axis, and in the illustrated example, the shape of the peripheral surface is conical. Note that the shape of the peripheral surface may be a pyramid. Such a stranded wire winding structure is called a conical winding. The secondary winding 20b is a distributed winding at two locations, and the circumferential surface is an imaginary surface connecting the windings at the two locations.

図7は本発明の他の実施形態に係る高周波トランスのシミュレーションモデルである。一次巻線20a、二次巻線20bのそれぞれは分散巻である。図示した例では、一次巻線20aは撚り線100が磁心10aの連結部13a側で3回巻回され、更に巻軸方向に離間した位置で2回巻回されて合計5回巻回されている。二次巻線20bも同様な構成となっていて、ともに5ターンの巻線となっている。 FIG. 7 is a simulation model of a high frequency transformer according to another embodiment of the present invention. Each of the primary winding 20a and the secondary winding 20b is a distributed winding. In the illustrated example, the primary winding 20a is formed by winding the stranded wire 100 three times on the side of the connecting portion 13a of the magnetic core 10a, and then winding it two times at a position spaced apart in the direction of the winding axis, for a total of five turns. there is The secondary winding 20b has a similar configuration, and both have 5 turns.

図11にシミュレーションに使用した磁心のモデル構造を示す。磁心10はPQ形状で、2つを組み合わせ使用する。中脚部11および2つの側脚部12、それらを繋ぐ連結部13とからなる。図で現れない背面は平坦面となっている。磁心10の各部の寸法を表1に示す。磁心材を日立金属株式会社製のMn系フェライトのML91S材とし、シミュレーションには、その直流B-H曲線の初磁化曲線データを使用した。 FIG. 11 shows the model structure of the magnetic core used for the simulation. The magnetic core 10 has a PQ shape, and two of them are used in combination. It consists of a middle leg 11, two side legs 12, and a connecting portion 13 connecting them. The back surface that does not appear in the figure is a flat surface. Table 1 shows the dimensions of each part of the magnetic core 10 . ML91S material of Mn-based ferrite manufactured by Hitachi Metals, Ltd. was used as the magnetic core material, and the initial magnetization curve data of the DC BH curve was used for the simulation.

Figure 0007121924000001
Figure 0007121924000001

図12にシミュレーションで使用したボビンのモデル構造を示す。ボビン15は一次巻線20a、二次巻線20bと磁心10a、10bとの間の仕切り部15a、15b、15c、15dを有する。シミュレーションで用いたボビン15の各部の寸法を表2に示す。 FIG. 12 shows the model structure of the bobbin used in the simulation. The bobbin 15 has partitions 15a, 15b, 15c and 15d between the primary winding 20a, the secondary winding 20b and the magnetic cores 10a and 10b. Table 2 shows the dimensions of each part of the bobbin 15 used in the simulation.

Figure 0007121924000002
Figure 0007121924000002

一次巻線20a、二次巻線20bの撚り線と巻線構造を変えてシミュレーションを行った条件を表3に、その結果を表4に示す。巻線仕様は一次巻線側の自己インダクタンス(二次巻線側オープン)が15.0μH~16.0μHとなるように、漏れインダクタンス(二次巻線側ショート)が3.0μH ~3.3μH となるように設定した。一次巻線と二次巻線との間隔LLは10mmに、ギャップ長は0.3mmに設定した。またシミュレーションでの駆動条件は、一次巻線側を周波数450kHzの正弦波で励振し、二次巻線側出力は電圧48V、電流20Aとなる様にしている。 Table 3 shows the conditions under which the simulation was performed by changing the twisted wire and winding structure of the primary winding 20a and the secondary winding 20b, and Table 4 shows the results. The winding specifications are such that the self-inductance on the primary winding side (secondary winding side open) is 15.0 μH to 16.0 μH, and the leakage inductance (secondary winding side short circuit) is 3.0 μH to 3.3 μH. was set to be The distance LL between the primary winding and the secondary winding was set to 10 mm, and the gap length was set to 0.3 mm. The drive conditions in the simulation are such that the primary winding side is excited by a sine wave with a frequency of 450 kHz, and the secondary winding side output is a voltage of 48 V and a current of 20 A.

なお表3中の素線径ds1は図3に示した銅線(素線)110の直径であり、素線径(皮膜含)DS1は絶縁被覆120を含む直径である。また撚り線の素線総断面積Slは、各素線断面積の合計であって次式で算出した。
Sl=N×π×1/4×ds1
N 素線本数
ds1 素線外径(絶縁被覆含まない)の公称値
The wire diameter ds1 in Table 3 is the diameter of the copper wire (wire) 110 shown in FIG. The strand total cross-sectional area Sl of the stranded wire is the total cross-sectional area of each strand and was calculated by the following equation.
Sl = N x pi x 1/4 x ds1 2
N Number of strands ds1 Nominal value of outside diameter of strands (not including insulation coating)

また素線占積率は、巻線の巻軸方向xと、それに直交する方向yの断面において、一次巻線20aのx方向の最大幅a1とy方向の最大高さb1で画定される矩形領域の面積S、二次巻線20bのx方向の最大幅c1とy方向の最大高さd1で画定される矩形領域の面積Sのそれぞれに対する素線総断面積Slの比Sl/Sの百分率として算出した。 The wire lamination factor is a rectangle defined by the maximum width a1 in the x direction and the maximum height b1 in the y direction of the primary winding 20a in the cross section in the winding axis direction x and the direction y orthogonal thereto. Percentage of the ratio Sl/S of the total cross-sectional area Sl of the wire to each of the area S of the area and the area S of the rectangular area defined by the maximum width c1 in the x direction and the maximum height d1 in the y direction of the secondary winding 20b calculated as

Figure 0007121924000003
Figure 0007121924000003

Figure 0007121924000004
Figure 0007121924000004

図14に素線径が0.2mmである場合(No.4~15)の一次巻線の素線占積率と交流抵抗との関係を示す。また図15に素線径が0.3mmである場合(No.17~30)の一次巻線の素線占積率と交流抵抗との関係を示す。図中破線は占積率が大きいNo.3、No.16での交流抵抗の水準を示している。分散巻あるいは円錐状巻の巻線構造では、同じ素線径で素線占積率が相対的に大きい巻線構造である場合よりも交流抵抗Rac1が低減できる素線占積率の範囲があることが分かる。素線径が大きいほうが交流抵抗Rac1の低減の比率が大きく、また分散巻よりも円錐状巻の方が僅かだが交流抵抗Rac1が低減した。分散巻では交流抵抗が最大で約21%低減し、円錐状巻では最大で約26%低減した。これは巻線の大径側どうしが対向するように円錐状巻の一次巻線20a、二次巻線20bを配置することで、ギャップG部分の漏洩磁束の影響が小さくなって近接効果が抑制された影響と思われる。 FIG. 14 shows the relationship between the wire lamination factor of the primary winding and the AC resistance when the wire diameter is 0.2 mm (Nos. 4 to 15). FIG. 15 shows the relationship between the wire lamination factor of the primary winding and the AC resistance when the wire diameter is 0.3 mm (Nos. 17 to 30). The dashed line in the figure indicates No. 1, which has a large space factor. 3, No. 16 shows the level of AC resistance at 16. In the winding structure of distributed winding or conical winding, there is a range of wire space factor in which the AC resistance Rac1 can be reduced more than in the case of the winding structure with the same wire diameter and a relatively large wire space factor. I understand. The larger the wire diameter, the greater the reduction ratio of the AC resistance Rac1, and the conical winding reduced the AC resistance Rac1 more slightly than the distributed winding. Distributed winding reduced AC resistance by up to about 21%, and conical winding reduced by up to about 26%. By arranging the conically wound primary winding 20a and secondary winding 20b so that the large diameter sides of the windings face each other, the effect of leakage magnetic flux in the gap G is reduced and the proximity effect is suppressed. It seems to be the effect of

一方、表3と表4より、二次巻線20bの交流抵抗Rac2もまた低減している。素線径が大きいほうが交流抵抗Rac2の低減の比率が大きく、交流抵抗が最大で約41%低減した。 On the other hand, from Tables 3 and 4, the AC resistance Rac2 of the secondary winding 20b is also reduced. The larger the wire diameter, the greater the reduction ratio of the AC resistance Rac2, and the AC resistance was reduced by about 41% at maximum.

更に巻線の構造を図2の高周波トランスの分割巻に変えてシミュレーションを行った。図8は本発明の他の実施形態に係る高周波トランスのシミュレーションモデルである。このモデルでは一次巻線20aが2分割された分割巻の構成となっている。一次巻線20aが分割された巻線20a1、20a2、二次巻線20bはともに円錐状巻で構成される。二次巻線20bは一方から他方に向かって巻径が次第に変わるが、両端部で巻径が小径で、中央部で大径となるように構成されている。 Furthermore, a simulation was performed by changing the structure of the windings to the divided windings of the high-frequency transformer shown in FIG. FIG. 8 is a simulation model of a high frequency transformer according to another embodiment of the present invention. This model has a split winding configuration in which the primary winding 20a is divided into two. The windings 20a1 and 20a2 obtained by dividing the primary winding 20a and the secondary winding 20b are both conical windings. The winding diameter of the secondary winding 20b gradually changes from one end to the other, and is configured such that the winding diameter is small at both ends and large at the center.

図9は本発明の一実施形態に係る高周波トランスのシミュレーションモデルである。このモデルも図2に示した構造の高周波トランスであって、一次巻線20aが2分割された分割巻の構成となっているが、図8のモデルと比べて、一次巻線20aの小径側が二次巻線20bと対面するように配置する点が異なる。 FIG. 9 is a simulation model of a high frequency transformer according to one embodiment of the present invention. This model is also a high-frequency transformer having the structure shown in FIG. It differs in that it is arranged so as to face the secondary winding 20b.

図10は本発明の一実施形態に係る高周波トランスのシミュレーションモデルである。このモデルも図2に示した構造の高周波トランスであって、一次巻線20aが2分割された分割巻の構成となっているが、図8のモデルと比べて、一次巻線20aを径方向に2回巻回し、それを巻軸方向に繰り返して円錐状巻とする点が異なる。 FIG. 10 is a simulation model of a high frequency transformer according to one embodiment of the present invention. This model is also a high-frequency transformer having the structure shown in FIG. It is different in that it is wound twice in the direction of the winding axis to form a conical winding.

図示しないが、一次巻線20aと二次巻線20bを密集巻や分散巻にした本発明の他の実施形態に係る高周波トランスついてもシミュレーションで交流抵抗を解析した。 Although not shown, the AC resistance of a high-frequency transformer according to another embodiment of the present invention, in which the primary winding 20a and the secondary winding 20b are densely wound or dispersedly wound, was analyzed by simulation.

シミュレーションモデルの磁心の構造は図11と同じであり、磁心10の各部の寸法を表5に示す。磁心材を日立金属株式会社製のMn系フェライトのML24D材とし、シミュレーションには、その直流B-H曲線の初磁化曲線データを使用した。 The structure of the magnetic core in the simulation model is the same as in FIG. 11, and Table 5 shows the dimensions of each part of the magnetic core 10. A Mn-based ferrite ML24D material manufactured by Hitachi Metals, Ltd. was used as the magnetic core material, and the initial magnetization curve data of the DC BH curve was used for the simulation.

Figure 0007121924000005
Figure 0007121924000005

図13にシミュレーションに用いたボビンのモデル構造を示す。ボビン15は一次巻線20a、二次巻線20bと磁心10a、10bとの間を仕切り部15a、15b、15c、15dを有する。一次巻線20aを設ける箇所が二次巻線20b を挟むように2箇所ある。シミュレーションで用いたボビン15の各部の寸法を表6に示す。 FIG. 13 shows the model structure of the bobbin used for the simulation. The bobbin 15 has partitions 15a, 15b, 15c and 15d between the primary winding 20a, the secondary winding 20b and the magnetic cores 10a and 10b. There are two places where the primary winding 20a is provided so as to sandwich the secondary winding 20b. Table 6 shows the dimensions of each part of the bobbin 15 used in the simulation.

Figure 0007121924000006
Figure 0007121924000006

一次巻線20a、二次巻線20bの撚り線の条件と、巻線構造を変えてシミュレーションを行った結果を表7と表8に示す。表中、図8の巻線態様を円錐状巻A、図9の巻線態様を円錐状巻B、図10の巻線態様を円錐状巻Cとしている。一次巻線20aは2分割されて一次巻線20a1、一次巻線20a2として構成されるが、表7においては一次巻線20a1の撚り線の条件を示している。一次巻線20a1と同じ条件で構成される一次巻線20a2の条件については表中記載を省略している。なお巻線仕様は一次巻線側の自己インダクタンス(二次巻線側オープン)が167μH~177μHとなるように、漏れインダクタンス(二次巻線側ショート)が19μH~21μHとなるように設定した。一次巻線と二次巻線との間隔LL1とLL2はともに5.2mmに、ギャップ長は1.0mmに設定した。またシミュレーションでの駆動条件は、一次巻線側を周波数200kHzの正弦波で励振し、二次巻線側出力は電圧360V、電流10Aとなる様にしている。 Tables 7 and 8 show the results of simulations performed by changing the twisted wire conditions of the primary winding 20a and the secondary winding 20b and the winding structure. In the table, the winding mode in FIG. 8 is called conical winding A, the winding mode in FIG. 9 is called conical winding B, and the winding mode in FIG. 10 is called conical winding C. The primary winding 20a is divided into two parts, a primary winding 20a1 and a primary winding 20a2. Table 7 shows the twisted wire conditions of the primary winding 20a1. Description of the conditions of the primary winding 20a2 configured under the same conditions as the primary winding 20a1 is omitted in the table. The winding specifications were set so that the self-inductance of the primary winding (secondary winding side open) was 167 μH to 177 μH, and the leakage inductance (secondary winding side short) was 19 μH to 21 μH. The distances LL1 and LL2 between the primary and secondary windings were both set to 5.2 mm, and the gap length was set to 1.0 mm. Driving conditions in the simulation are such that the primary winding side is excited with a sine wave of frequency 200 kHz, and the secondary winding side output is a voltage of 360 V and a current of 10 A.

Figure 0007121924000007
Figure 0007121924000007

Figure 0007121924000008
Figure 0007121924000008

図16に素線径が0.1mmである場合(No.32~39)の一次巻線の素線占積率と交流抵抗との関係を示す。また図17に素線径が0.2mmで場合(No.41~48)の一次巻線の素線占積率と交流抵抗との関係を示す。図中破線は占積率が大きいNo.31、No.40での交流抵抗の水準を示している。一次巻線20aを分散巻とした場合も、交流抵抗Rac1が低減できる素線占積率の範囲があることが分かる。また、一次巻線20aを分割巻きとしない図1に示した高周波トランスよりも広く、素線占積率が10.0%以上50.0%以下を含む範囲で交流抵抗Rac1が低減できる。 FIG. 16 shows the relationship between the wire lamination factor of the primary winding and the AC resistance when the wire diameter is 0.1 mm (Nos. 32 to 39). FIG. 17 shows the relationship between the wire lamination factor of the primary winding and the AC resistance when the wire diameter is 0.2 mm (Nos. 41 to 48). The dashed line in the figure indicates No. 1, which has a large space factor. 31, No. 40 shows the level of AC resistance. It can be seen that even when the primary winding 20a is distributed winding, there is a range of wire lamination factor in which the AC resistance Rac1 can be reduced. Further, the AC resistance Rac1 can be reduced in a range wider than that of the high frequency transformer shown in FIG. 1 in which the primary winding 20a is not divided windings, and includes a wire space factor of 10.0% or more and 50.0% or less.

図18に素線径が0.1mmである場合(No.32~39)の二次巻線の素線占積率と交流抵抗との関係を示す。また図19に素線径が0.2mmで場合(No.41~48)の二次巻線の素線占積率と交流抵抗との関係を示す。図中破線はNo.31、40での交流抵抗の水準を示している。この場合もまた、素線占積率が10.0%以上50.0%以下を含む範囲で交流抵抗Rac2が低減できる。 FIG. 18 shows the relationship between the wire lamination factor of the secondary winding and the AC resistance when the wire diameter is 0.1 mm (Nos. 32 to 39). FIG. 19 shows the relationship between the wire lamination factor of the secondary winding and the AC resistance when the wire diameter is 0.2 mm (Nos. 41 to 48). The dashed line in the figure indicates No. The level of AC resistance at 31, 40 is shown. Also in this case, the AC resistance Rac2 can be reduced within a range including the wire space factor of 10.0% or more and 50.0% or less.

図20に示す磁心を使って、図21に示す高周波トランスを作製した。この高周波トランスは図1に示した構造と同様であって、磁心10aの中脚部に配置された一次巻線20a、磁心10bの中脚部に配置された二次巻線20bを有し、一次巻線20a と二次巻線20bは絶縁樹脂からなるスペーサー16を介し、所定の間隔をもって並置されている。実施例として、磁心材は日立金属製ML24D材、磁心形状はEER53、ギャップは中脚部と側脚部に設けられたスペーサギャップ0.6mm(総ギャップ長は1.2mm)であり、一次巻線20a、二次巻線20bに素線径φ0.23mm×40本の撚り線を使用し、それぞれ巻数5回とし、円錐状巻で構成した高周波トランスを得た。比較例として実施例と同じコアとギャップで、一次巻線20a、二次巻線20bに素線径φ0.23mm×150本の撚り線を使用し巻数5回で3層の巻線を並列に接続した密集巻の高周波トランスも作成した。磁心の各部の寸法を表9に示す。ボビンは図12に示したものと同様の構造であって、各部の寸法を表10に示す。また、それぞれの素線占積率、巻線間隔LLを表11にまとめて示す。なお、一次巻線20aと二次巻線20bを円錐状巻とするように、ボビンの仕切り部分15bに絶縁デープを巻回して傾斜を形成している。 Using the magnetic core shown in FIG. 20, a high frequency transformer shown in FIG. 21 was manufactured. This high-frequency transformer has a structure similar to that shown in FIG. The primary winding 20a and the secondary winding 20b are juxtaposed with a predetermined spacing via a spacer 16 made of insulating resin. As an example, the magnetic core material is ML24D material manufactured by Hitachi Metals, the magnetic core shape is EER53, the gap is a spacer gap of 0.6 mm (total gap length is 1.2 mm) provided in the middle leg and the side leg, and the primary winding A wire 20a and a secondary winding 20b consisted of 40 twisted wires with a wire diameter of φ0.23 mm, each of which had five turns, and a high-frequency transformer composed of conical windings was obtained. As a comparative example, with the same core and gap as the example, 150 twisted wires with a wire diameter of φ0.23 mm are used for the primary winding 20a and the secondary winding 20b, and the number of turns is 5, and 3 layers of windings are arranged in parallel. A connected close-wound high-frequency transformer was also constructed. Table 9 shows the dimensions of each part of the magnetic core. The bobbin has a structure similar to that shown in FIG. 12, and Table 10 shows the dimensions of each part. In addition, Table 11 summarizes the wire lamination factor and winding interval LL of each wire. Insulating tape is wound around the partition portion 15b of the bobbin to form an inclination so that the primary winding 20a and the secondary winding 20b are conically wound.

Figure 0007121924000009
Figure 0007121924000009

Figure 0007121924000010
Figure 0007121924000010

Figure 0007121924000011
Figure 0007121924000011

得られた高周波トランスを使って図22の電源回路で変換効率を評価した。横河電機株式会社製パワーアナライザーWT3000で得られる一次巻線側と二次巻線側の電力値からトランスの変換効率を算出した。結果を図23に示す。比較例の密集巻に比べて本発明の円錐状巻のものは、広い周波数範囲特に高周波数側で98%以上の高い効率が得られた。 Using the obtained high-frequency transformer, the power supply circuit of FIG. 22 was used to evaluate the conversion efficiency. The conversion efficiency of the transformer was calculated from the power values on the primary winding side and the secondary winding side obtained by a power analyzer WT3000 manufactured by Yokogawa Electric Corporation. The results are shown in FIG. Compared to the dense winding of the comparative example, the conical winding of the present invention provided a high efficiency of 98% or more in a wide frequency range, especially on the high frequency side.

本発明の高周波トランスによれば、近接効果の影響を軽減でき、交流抵抗を低減できることが解った。また高周波トランスの変換効率は広い範囲で高くて電源回路に好適である。 It has been found that the high-frequency transformer of the present invention can reduce the influence of the proximity effect and reduce the AC resistance. Moreover, the conversion efficiency of the high-frequency transformer is high in a wide range and is suitable for power supply circuits.

1 高周波トランス
10a、10b 磁心
15 ボビン
20a 一次巻線
20b 二次巻線
100 撚り線
110 素線(銅線)
120 皮膜

1 high-frequency transformers 10a, 10b magnetic core 15 bobbin 20a primary winding 20b secondary winding 100 twisted wire 110 element wire (copper wire)
120 film

Claims (4)

閉磁路磁心と、前記閉磁路磁心に巻回された一次巻線と二次巻線とを備え、前記一次巻線の巻軸方向に並んで前記二次巻線が配置され、
前記一次巻線と前記二次巻線が以下の条件(2)を満たす高周波トランス。
(2)単一の二次巻線を挟む位置に2分割して配置された一次巻線を備え、素線の線径がφ0.05mm以上φ0.35mm以下の撚り線で構成され、前記一次巻線の素線占積率と前記二次巻線の素線占積率とが10.0%以上50.0%以下であり、前記2分割の一次巻線と前記単一の二次巻線とが、円錐状又は角錐状に旋回する形状に構成され、前記単一の二次巻線は中間部が大径、両端部が小径であ
a closed magnetic circuit magnetic core, and a primary winding and a secondary winding wound around the closed magnetic circuit magnetic core, wherein the secondary winding is arranged along the winding axis direction of the primary winding,
A high-frequency transformer in which the primary winding and the secondary winding satisfy the following condition (2) .
(2) A primary winding that is divided into two and arranged at a position sandwiching a single secondary winding, and is composed of a twisted wire with a wire diameter of φ0.05 mm or more and φ0.35 mm or less, and the primary winding The wire space factor of the winding and the wire space factor of the secondary winding are 10.0% or more and 50.0% or less, and the primary winding divided into two and the single secondary winding The windings are arranged in a conical or pyramidal spiral shape, and the single secondary winding has a large diameter in the middle part and a small diameter at both ends.
請求項1に記載の高周波トランスであって、
前記閉磁路磁心は第1の磁心と第2の磁心とを含み、前記第1の磁心と前記第2の磁心との間に磁気ギャップを有するように組み合わせて構成された高周波トランス。
A high frequency transformer according to claim 1 ,
A high-frequency transformer in which the closed magnetic circuit magnetic core includes a first magnetic core and a second magnetic core, which are combined so as to have a magnetic gap between the first magnetic core and the second magnetic core.
請求項1または2に記載の高周波トランスであって、
スイッチング周波数が100kHz~500KHzのLLC共振電源用である高周波トランス。
The high frequency transformer according to claim 1 or 2 ,
A high-frequency transformer for LLC resonant power supplies with a switching frequency of 100 kHz to 500 kHz.
請求項1からのいずれかに記載の高周波トランスを用いた電源回路。 A power supply circuit using the high-frequency transformer according to any one of claims 1 to 3 .
JP2018165054A 2018-09-04 2018-09-04 High frequency transformer and power supply circuit using the same Active JP7121924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018165054A JP7121924B2 (en) 2018-09-04 2018-09-04 High frequency transformer and power supply circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018165054A JP7121924B2 (en) 2018-09-04 2018-09-04 High frequency transformer and power supply circuit using the same

Publications (2)

Publication Number Publication Date
JP2020038899A JP2020038899A (en) 2020-03-12
JP7121924B2 true JP7121924B2 (en) 2022-08-19

Family

ID=69738368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018165054A Active JP7121924B2 (en) 2018-09-04 2018-09-04 High frequency transformer and power supply circuit using the same

Country Status (1)

Country Link
JP (1) JP7121924B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198237A (en) 2000-12-27 2002-07-12 Toko Inc Leakage flux type power converter/transformer
JP2005108654A (en) 2003-09-30 2005-04-21 Canon Inc Litz wire and exciting coil, and induction heating device using above
JP2009212370A (en) 2008-03-05 2009-09-17 Denso Corp Transformer
JP2012169331A (en) 2011-02-10 2012-09-06 Denso Corp Transformer
JP2017195350A (en) 2016-04-22 2017-10-26 古河電気工業株式会社 Winding, coil, and transformer
JP2018101750A (en) 2016-12-21 2018-06-28 Tdk株式会社 Coil device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3361822B2 (en) * 1991-05-16 2003-01-07 株式会社東芝 Inverter transformer
JP2649881B2 (en) * 1992-01-10 1997-09-03 東京特殊電線株式会社 High frequency transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198237A (en) 2000-12-27 2002-07-12 Toko Inc Leakage flux type power converter/transformer
JP2005108654A (en) 2003-09-30 2005-04-21 Canon Inc Litz wire and exciting coil, and induction heating device using above
JP2009212370A (en) 2008-03-05 2009-09-17 Denso Corp Transformer
JP2012169331A (en) 2011-02-10 2012-09-06 Denso Corp Transformer
JP2017195350A (en) 2016-04-22 2017-10-26 古河電気工業株式会社 Winding, coil, and transformer
JP2018101750A (en) 2016-12-21 2018-06-28 Tdk株式会社 Coil device

Also Published As

Publication number Publication date
JP2020038899A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP4800451B1 (en) High frequency transformer
US20230197329A1 (en) Optimized Electromagnetic Inductor Component Design and Methods Including Improved Conductivity Composite Conductor Material
US20040135661A1 (en) Magnetically controlled inductive device
US9613743B2 (en) Optimized electromagnetic transformer component design and methods including improved conductivity composite conductor material
US11972896B2 (en) Compact inductor employing redistributed magnetic flux
US20120299681A1 (en) Flat band winding for an inductor core
US20140266535A1 (en) Low loss inductor with offset gap and windings
US20210383958A1 (en) Patterned magnetic cores
JP2016152248A (en) Three-phase five-leg iron core and stationary electromagnetic apparatus
CN110024062B (en) High current half turn winding
EP2530688A1 (en) Flat band winding for an inductor core
JP5726034B2 (en) Leakage transformer
JP6171384B2 (en) Trance
JP4838842B2 (en) Transformer having laminated winding structure
JP7121924B2 (en) High frequency transformer and power supply circuit using the same
US20170236637A1 (en) Low stray-loss transformers and methods of assembling the same
JP4738545B1 (en) High frequency transformer
RU49646U1 (en) TRANSFORMER
US20150279549A1 (en) Systems and methods for promoting low loss in parallel conductors at high frequencies
JP5267802B2 (en) Reactor assembly
JP2016039322A (en) Coil and coil component
Zurek Qualitative FEM study of proximity loss reduction by various winding configurations–Part II
JP2021019104A (en) Reactor device
KR100633425B1 (en) Transformer Having Multi-Layered Winding Structure
CN221596137U (en) Laminated DUI magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220721

R150 Certificate of patent or registration of utility model

Ref document number: 7121924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350