JP2005105674A - Reinforcement standard indication implement for through-hole of steel-frame beam, and reinforcement design support device - Google Patents
Reinforcement standard indication implement for through-hole of steel-frame beam, and reinforcement design support device Download PDFInfo
- Publication number
- JP2005105674A JP2005105674A JP2003340501A JP2003340501A JP2005105674A JP 2005105674 A JP2005105674 A JP 2005105674A JP 2003340501 A JP2003340501 A JP 2003340501A JP 2003340501 A JP2003340501 A JP 2003340501A JP 2005105674 A JP2005105674 A JP 2005105674A
- Authority
- JP
- Japan
- Prior art keywords
- reinforcement
- hole
- distance
- row
- displayed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002787 reinforcement Effects 0.000 title claims abstract description 219
- 238000013461 design Methods 0.000 title claims abstract description 31
- 229910000831 Steel Inorganic materials 0.000 claims description 75
- 239000010959 steel Substances 0.000 claims description 75
- 230000003014 reinforcing effect Effects 0.000 claims description 56
- 238000005452 bending Methods 0.000 claims description 32
- 238000010008 shearing Methods 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 229910001294 Reinforcing steel Inorganic materials 0.000 claims 2
- 238000000034 method Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Conveying And Assembling Of Building Elements In Situ (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
Description
この発明は、鉄骨梁のウェブに、設備用配管類等を通すための貫通孔を設ける場合に、鉄骨梁の貫通孔の形成部周辺を補強する標準の補強内容を示す鉄骨梁貫通孔の補強標準表示具、および補強設計支援装置に関する。 This invention reinforces a steel beam through-hole showing a standard reinforcement content for reinforcing the periphery of a through-hole formation portion of a steel beam when a through-hole for passing equipment piping or the like is provided in a steel beam web The present invention relates to a standard display device and a reinforcement design support device.
鉄骨梁のウェブに貫通孔を設けて、設備用配管類を直接貫通させる有孔梁が多用されている。有孔梁を用いて階高を下げれば、鋼材量の削減や外壁面積の削減に繋がり、経済性に大きく貢献する。特に近年では、快適性の追求やOA化の進展に伴って空調容量等が増加し、梁に必要とされる貫通孔の量が増加している。
鉄骨造の梁に貫通孔を設けた場合の問題点は、梁耐力の低下と塑性変形能力の低下である。しかし、有孔梁については学会規準などの一般的な設計規準は定められておらず、各社、各設計者がそれぞれの考え方で標準を定め、補強しているというのが現状である。一般的には、梁貫通孔に作用する曲げモーメントやせん断力の大小にかかわらず、慣例的に貫通孔について補強を行っている。適宜の設計法の論文、書籍等を参考にして、スリーブ孔補強標準図を作成し、実務に活用することも行われているが、鉄骨梁に設ける貫通孔の位置までは考慮されておらず、鉄骨梁の長さ方向のどの位置に貫通孔を設ける場合も、同様な補強を行う補強標準図とされている。
The problem when a through-hole is provided in a steel frame beam is a decrease in beam strength and a decrease in plastic deformation capacity. However, there are no general design standards such as academic standards for perforated beams, and the current situation is that each company and each designer sets and reinforces standards based on their own ideas. In general, the through-holes are conventionally reinforced regardless of the bending moment and shearing force acting on the beam through-holes. The sleeve hole reinforcement standard drawing is created by referring to papers, books, etc. of the appropriate design method and used in practice, but the position of the through hole provided in the steel beam is not considered In any position in the length direction of the steel beam, the through hole is provided as a standard reinforcement diagram for performing similar reinforcement.
鉄骨梁に作用する曲げモーメント、せん断力は、材長によって変化し、梁端部での応力は大きく、逆に梁中央部の応力は小さい。このため、上記従来のスリーブ孔補強標準図に従うと、梁の中央部に貫通孔がある場合は、過剰な、つまり無駄な補強となる可能性がある。 The bending moment and shear force acting on the steel beam vary depending on the material length, and the stress at the beam end is large, while the stress at the beam center is small. For this reason, according to the conventional sleeve hole reinforcement standard diagram, if there is a through-hole in the center of the beam, there is a possibility that excessive, that is, useless reinforcement.
この発明の目的は、梁断面,孔径,孔位置に応じて、必要な補強内容が判り、かつ孔位置に応じた補強不要領域が簡単に判り、無駄な補強をできるだけ避ける設計が容易に行える鉄骨梁貫通孔の補強標準表示具、および補強設計支援装置を提供することである。 The object of the present invention is to provide a steel frame that can be easily designed to avoid unnecessary reinforcement as much as possible by knowing necessary reinforcement contents according to the beam cross-section, hole diameter, and hole position, and easily knowing the area that does not require reinforcement according to the hole position. It is to provide a reinforcement standard indicator for a beam through-hole and a reinforcement design support device.
この発明の鉄骨梁貫通孔の補強標準表示具(10)は、鉄骨梁のウェブに貫通孔を設ける場合に、鉄骨梁の貫通孔の形成部周辺を補強する補強内容を示す鉄骨梁貫通孔の補強標準表示具であって、次の表(11)により構成される。
この表(11)は、見出しとなる列(B0)の各行(A1〜Am)に、行見出し表示(12)として各種断面寸法の鉄骨梁の断面寸法情報を表示する。断面寸法情報は、断面寸法諸元であっても、また梁材の断面を示す区分、型番等の情報であっても良い。見出しとなる行(A0)の各列に列見出し表示(13)として、上記ウェブに明ける貫通孔の各種孔径を順に表示する。所定の行(An)の行見出し表示(14)として、梁端から無補強領域までの距離(L2)を示す行であることを示す。
この無補強領域までの距離(L2)を示す行(An)における各列部分となる各セル内に、上記無補強領域までの各種の距離(L2)を順に表示する。
上記表(11)の断面寸法情報で行見出し(12)が表示された任意の行(Ai)と孔径で列見出し(13)が表示された任意の列(Bj)とが交差する領域となるセル(Sij)内に、見出し表示内容に対応する断面寸法情報、孔径、およびそのセル(Sij)の位置する列(Bj)の上記所定行(An)に表示された無補強領域までの距離(L2)、の各条件に対応する補強内容(15)を表示する。
このセル(Sij)内に表示される補強内容(15)は、梁の貫通孔を設ける箇所が上記の無補強領域までの距離(L2)以上である場合に、
(梁に作用する曲げモーメント)<(補強された梁の曲げ耐力)
であって、かつ
(梁に作用するせん断力)<(補強された梁のせん断耐力)
となる条件を充足する補強内容である。
この補強内容として、補強が不要であるセル(Sij)には補強不要の旨を示す表示(15a)を施す。
The steel beam through-hole reinforcement standard indicator (10) according to the present invention is a steel beam through-hole indicating a reinforcing content for reinforcing the periphery of a steel beam through-hole formation portion when a through-hole is provided in a steel beam web. It is a reinforcement standard display tool, Comprising: The following table | surface (11) is comprised.
This table (11) displays the cross-sectional dimension information of the steel beam having various cross-sectional dimensions as the row header display (12) in each row (A1 to Am) of the column (B0) serving as the header. The cross-sectional dimension information may be a cross-sectional dimension specification, or information such as a section indicating a cross-section of the beam material, a model number, or the like. As the column heading display (13) in each column of the row (A0) serving as the heading, various hole diameters of the through-holes opened on the web are displayed in order. The row heading display (14) of the predetermined row (An) indicates that the row indicates the distance (L2) from the beam end to the unreinforced region.
Various distances (L2) to the non-reinforcing region are displayed in order in each cell that is a column portion in the row (An) indicating the distance (L2) to the non-reinforcing region.
An arbitrary row (Ai) in which the row heading (12) is displayed by the cross-sectional dimension information in the table (11) and an arbitrary column (Bj) in which the column heading (13) is displayed by the hole diameter intersect with each other. In the cell (Sij), the sectional dimension information corresponding to the headline display content, the hole diameter, and the distance to the unreinforced region displayed in the predetermined row (An) of the column (Bj) where the cell (Sij) is located ( The reinforcement content (15) corresponding to each condition of L2) is displayed.
The reinforcement content (15) displayed in the cell (Sij) is when the location where the through hole of the beam is provided is equal to or greater than the distance (L2) to the non-reinforcement region.
(Bending moment acting on beam) <(Bending strength of reinforced beam)
And (shearing force acting on the beam) <(shearing strength of the reinforced beam)
It is the content of the reinforcement that satisfies the following conditions.
As the contents of reinforcement, a display (15a) indicating that reinforcement is not required is given to a cell (Sij) that does not require reinforcement.
なお、鉄骨梁の貫通孔の形成部周辺を補強する補強構造は、各種の構造を採用できるが、例えば梁に重ねて溶接する補強プレートを溶接する補強構造とする。この補強構造とする場合に、上記セル内に表示される補強必要な場合の補強内容は、例えば、補強プレートの幅および板厚寸法とする。 Various structures can be adopted as the reinforcing structure that reinforces the periphery of the through-hole forming portion of the steel beam. For example, a reinforcing structure that welds a reinforcing plate that is overlapped and welded to the beam is used. In the case of this reinforcing structure, the reinforcing contents displayed in the cell when the reinforcing is necessary are, for example, the width and thickness of the reinforcing plate.
この構成の補強標準表示具(10)は、次のように使用される。設計しようとする鉄骨梁の断面の寸法情報、貫通孔の孔径、および梁端から孔中心位置までの距離に対応して、次のセル内の補強内容を見る。表(11)中の断面寸法情報で行見出し(12)が表示された任意の行(Ai)と、孔径で列見出しが表示された任意の列(Bj)とが交差する領域となる該当セル(Sij)を見る。この該当セル(Sij)内に、見出し表示内容に対応する断面寸法情報および孔径の場合に必要な補強内容(15)が示されている。また、この該当セル(Sij)内の補強内容は、その該当セル(Sij)の位置する列の所定行(An)に表示された無補強領域までの距離(L2)の各条件を充足する補強内容となっており、貫通孔を設ける位置が該当セルのある列の無補強領域までの距離(L2)よりも梁中央側の位置であれば、補強内容に示された補強を行えば良い。貫通孔を設ける位置が該当セル(Sij)の列の無補強領域までの距離(L2)よりも梁端側であれば、貫通孔を設けることができない。該当セル(Sij)内の補強内容として、補強不要の表示(15a)があれば、貫通孔周辺に補強を行う必要がない。
このように、無補強領域までの距離(L2)を表(11)中に示すようにしたため、補強標準として、補強が不要であることを簡明に表示でき、無駄に補強を行うことが回避される。また、各セル(Sij)内の補強内容を、貫通孔の梁端からの距離を条件に含めた内容としてあるため、孔位置が梁端に近い場合の余裕を補強内容に考慮する必要がなく、補強内容として示す補強量が削減できる。この補強標準表示具(10)を用いると、これらにより、無駄な補強をできるだけ避ける設計を容易に行うことができる。
The reinforced standard display tool (10) having this configuration is used as follows. Corresponding to the dimension information of the cross section of the steel beam to be designed, the hole diameter of the through hole, and the distance from the beam end to the hole center position, the reinforcement contents in the next cell are viewed. Corresponding cell that is an area where an arbitrary row (Ai) in which the row heading (12) is displayed by the cross-sectional dimension information in the table (11) and an arbitrary column (Bj) in which the column heading is displayed by the hole diameter intersect. Look at (Sij). In the corresponding cell (Sij), the cross-sectional dimension information corresponding to the headline display content and the reinforcement content (15) necessary for the hole diameter are shown. The reinforcement content in the corresponding cell (Sij) is the reinforcement satisfying each condition of the distance (L2) to the unreinforced region displayed in the predetermined row (An) of the column where the corresponding cell (Sij) is located. If the position where the through hole is provided is a position closer to the center of the beam than the distance (L2) to the non-reinforcing region of the row with the corresponding cell, the reinforcement shown in the reinforcement content may be performed. If the position where the through hole is provided is closer to the beam end than the distance (L2) to the unreinforced region in the row of the corresponding cell (Sij), the through hole cannot be provided. If there is an indication (15a) indicating that no reinforcement is required as the reinforcement content in the cell (Sij), there is no need to reinforce around the through hole.
Thus, since the distance (L2) to the non-reinforcement region is shown in the table (11), it can be simply displayed that the reinforcement is unnecessary as the reinforcement standard, and unnecessary reinforcement is avoided. The Further, since the contents of reinforcement in each cell (Sij) are the contents including the distance from the beam end of the through hole as a condition, there is no need to consider the margin when the hole position is close to the beam end. The amount of reinforcement shown as reinforcement content can be reduced. When this reinforcement standard display tool (10) is used, the design which avoids useless reinforcement as much as possible by these can be performed easily.
この発明の鉄骨梁貫通孔の補強標準表示具(10)において、上記セル(Sij)内に表示される上記補強内容の表示(15)は、次の(16)式で示されるせん断耐力Qh が、(8) 式の作用せん断力を上回る場合に補強不要の表示とし、下回る場合に補強量を表示するものとし、補強量は、(21)式を充足する補強内容としても良い。
ただし、
d:梁端からの距離、
dQ:梁端からd離れた位置に作用するせん断力、
Mp :梁の全塑性モーメント、
w:梁に作用する等分布荷重、
L:梁スパン、
h:梁せい、
Qh :有孔部のせん断耐力
Qph:有孔部ウェブの降伏せん断力
Mph:Q=0時の有孔部の全塑性モーメント、
Mphf :Q=Qph時の有孔部フランジの全塑性モーメント、
Qh ’:補強有り孔部のせん断力
Qph’:補強有孔部ウェブの降伏せん断耐力
Mph’:Q=0時の補強有孔部の全塑性モーメント、
Mphf ’:Q=Qph時の補強有孔部フランジの全塑性モーメント、
However,
d: distance from beam end,
d Q: Shear force acting at a position d away from the beam end,
M p : Total plastic moment of the beam,
w: equally distributed load acting on the beam,
L: Beam span,
h: Sir Liang,
Q h : Shear strength of the perforated part Q ph : Yield shear force of the perforated part web M ph : Total plastic moment of the perforated part when Q = 0
M phf : Total plastic moment of the perforated flange when Q = Q ph ,
Q h ': Shear force of the hole with reinforcement Q ph ': Yield shear strength of the reinforced hole web M ph ': Total plastic moment of the hole with reinforcement at Q = 0,
M phf ': the total plastic moment of the reinforced perforated flange when Q = Q ph
この数式(8) 式、(16)式、(21)式による補強有無判断および補強内容が、効果的であることが、有限要素法を用いた数値解析によって検証できた。
なお、補強不要の表示は、(16)式で示されるせん断耐力Qh が、(8) 式の作用せん断力を上回る場合に行うが、この場合において、(16)式のせん断耐力Qh から安全量を差し引いた値が(8) 式の作用せん断力を上回る場合に補強不要の表示を行うものとしても良い。
It was verified by numerical analysis using the finite element method that the presence / absence of reinforcement and the contents of reinforcement by the equations (8), (16), and (21) are effective.
The indication that reinforcement is not required is performed when the shear strength Q h shown in equation (16) exceeds the acting shear force in equation (8). In this case, from the shear strength Q h in equation (16) When the value obtained by subtracting the safe amount exceeds the acting shear force of Equation (8), it may be displayed that no reinforcement is required.
この発明の鉄骨梁貫通孔の補強標準表示具(10)は、適用条件として、貫通孔の中心位置が鉄骨梁の梁芯から所定の偏芯量までの範囲に位置すること、および貫通孔が複数設けられる場合には、貫通孔間の距離が所定の離間距離以上であることを含むものとしても良い。これらの適用条件は、表(11)とは別に、または表(11)中に表示しておくことが望ましい。 In the steel beam through hole reinforcement standard indicator (10) of the present invention, as an application condition, the center position of the through hole is located in a range from the beam core of the steel beam to a predetermined eccentric amount, and the through hole is In the case where a plurality of holes are provided, the distance between the through holes may include a predetermined distance or more. These application conditions are desirably displayed separately from the table (11) or in the table (11).
この発明の鉄骨梁貫通孔の補強設計支援装置(30)は、鉄骨梁のウェブに貫通孔を設ける場合に、鉄骨梁の貫通孔の形成部周辺を補強する補強内容を示す鉄骨梁貫通孔の補強設計支援装置であって、鉄骨梁の断面寸法情報、梁長さ、貫通孔の孔径、および梁端から貫通孔中心までの距離を少なくとも含む条件データを入力しまたは所定のデータ登録手段から取り込む条件入力手段(31)と、この条件入力手段で得た条件データから、上記補強の有無判定および補強が必要な場合の補強量の演算を行う補強判定演算手段(32)と、この補強判定演算手段(32)で演算された結果を表示する演算結果表示手段(33)とを備える。
上記補強判定演算手段(32)は、次の(16)式で示されるせん断耐力Qh が、(8) 式の作用せん断力を上回る場合に補強不要と判定し、補強必要と判定した場合に、式(21)を充足する補強内容を演算するものとする。
The reinforcing determination calculation means (32), when the shear strength Q h represented by the following equation (16) is, it is determined reinforced unnecessary and determines, reinforcement required when exceeding the action shearing force (8) Suppose that the reinforcement content satisfying equation (21) is calculated.
ただし、式中の各文字の示す意味は、補強標準表示具(10)について示したとおりである。 However, the meaning which each character in a formula shows is as having shown about the reinforcement standard indicator (10).
この構成の補強設計支援装置(30)によると、鉄骨梁の断面寸法情報、梁長さ、貫通孔の孔径、および梁端から貫通孔中心までの距離等の条件データを入力することで、補強の有無判定、および補強が必要な場合の補強量の演算が行われ、その結果が表示される。そのため必要な補強内容が簡単にわかる。この場合の補強の有無判定および補強量の演算は、梁端から貫通孔中心までの距離を条件に含み、上記の各式によるため、孔位置に応じた必要な補強となり、無駄に補強を行うことが回避される。 According to the reinforcement design support device (30) having this configuration, it is possible to reinforce by inputting condition data such as the cross-sectional dimension information of the steel beam, the beam length, the diameter of the through hole, and the distance from the beam end to the center of the through hole. The presence / absence determination and the amount of reinforcement when reinforcement is required are calculated and the result is displayed. Therefore, it is easy to understand the necessary reinforcement. In this case, the presence / absence of reinforcement and the calculation of the amount of reinforcement include the distance from the beam end to the center of the through hole, and are based on the above formulas. It is avoided.
この発明の鉄骨梁貫通孔の補強標準表示具は、鉄骨梁の断面寸法情報と孔径に対応させて補強内容を表示した表において、所定の行に梁端から無補強領域までの距離を示し、補強不要の条件となる箇所にその不要の表示を行うようにしたため、梁断面,孔径,孔位置に応じて、補強の必要有無が一目で判る。また、上記補強内容として梁端から孔位置までの条件を含んだ計算内容を表示するため、標準として示す補強量を、無駄な余裕を省いた補強量とできる。これらにより、過剰な補強をできるだけ無くし、必要な補強を行う設計が簡単に行える。
この発明の鉄骨梁貫通孔の補強設計支援装置は、梁端から貫通孔中心までの距離を条件に含み、上述の数式に従い、梁に作用する曲げモーメント、せん断力、および梁の曲げ耐力、せん断耐力を演算して補強の必要の有無および補強量を示すものであるため、画一的な補強による過剰補強を回避し、補強の不要を明確に示すと共に、過剰とならない必要補強量を示すことができる。
The steel beam through hole reinforcement standard indicator of this invention shows the distance from the beam end to the unreinforced region in a predetermined row in the table displaying the reinforcement content corresponding to the cross-sectional dimension information of the steel beam and the hole diameter, Since unnecessary indications are made at locations that do not require reinforcement, the necessity of reinforcement can be determined at a glance according to the beam cross section, hole diameter, and hole position. Further, since the calculation content including the condition from the beam end to the hole position is displayed as the reinforcement content, the reinforcement amount shown as a standard can be made the reinforcement amount with no useless margin. As a result, excessive reinforcement is eliminated as much as possible, and a design for performing necessary reinforcement can be easily performed.
The steel beam through hole reinforcement design support device according to the present invention includes the distance from the beam end to the center of the through hole as a condition, and according to the above formula, the bending moment acting on the beam, the shearing force, the bending strength of the beam, the shearing Since the proof stress is calculated to indicate the necessity and amount of reinforcement, avoid excessive reinforcement by uniform reinforcement, clearly indicate the necessity of reinforcement, and indicate the amount of reinforcement that does not become excessive Can do.
この発明の一実施形態を図面と共に説明する。図1,図2は、この鉄骨梁貫通孔の補強標準表示具を示し、図3は対象となる鉄骨梁および貫通孔の関係を、図4は鉄骨梁の形状とその補強構造の例をそれぞれ示す。
図4において、鉄骨梁1のウェブ1aに貫通孔2を設ける場合に、鉄骨梁1の貫通孔2の形成部周辺を補強プレート3等の補強手段で補強する。鉄骨梁1は、I形鋼からなり、ウェブ1aと上下のフランジ1bを有するものである。貫通孔2は円孔である。補強手段は、補強プレート3の他に、補強管やリブ状のスチフナー等であっても良いが、以下の例は、補強手段が補強プレート3である場合につき説明する。補強プレート3は、ウェブ1aに重ねて溶接される鋼板であり、鉄骨梁1に明ける貫通孔2よりも略溶接代分だけ大きな径の孔を形成した正方形状ないし矩形状の板とされる。補強プレート3の溶接は、例えばその外周および内周の全周に渡って行われる。補強プレート3をウェブ1aの両面に設けるか、片面に設けるかは、必要な補強量によって定められる。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 show a standard reinforcement indicator for this steel beam through hole, FIG. 3 shows the relationship between the target steel beam and the through hole, and FIG. 4 shows an example of the shape of the steel beam and its reinforcing structure, respectively. Show.
In FIG. 4, when the through hole 2 is provided in the web 1 a of the steel beam 1, the periphery of the portion where the through hole 2 of the steel beam 1 is formed is reinforced by a reinforcing means such as a reinforcing plate 3. The steel beam 1 is made of I-shaped steel and has a web 1a and upper and lower flanges 1b. The through hole 2 is a circular hole. The reinforcing means may be a reinforcing pipe or a rib-like stiffener in addition to the reinforcing plate 3, but the following example will be described when the reinforcing means is the reinforcing plate 3. The reinforcing plate 3 is a steel plate that is overlapped and welded to the web 1a, and is a square or rectangular plate in which a hole having a diameter substantially larger than the through hole 2 in the steel beam 1 is formed by a welding amount. The reinforcing plate 3 is welded, for example, over the entire outer circumference and inner circumference. Whether the reinforcing plate 3 is provided on both sides or one side of the web 1a is determined by the required amount of reinforcement.
図3において、鉄骨梁1に貫通孔2を設ける場合に、どれだけの補強が必要であるか、補強が不要であるか、また設けることが不可能であるかは、鉄骨梁1の断面寸法諸元、貫通孔2の孔径の他に、貫通孔2の梁端からの距離(すなわち柱フェース4aからの距離)によって変わる。これは、梁端からの距離によって、鉄骨梁1に作用する曲げモーメントおよびせん断力が変わり、梁スパンの中央ほど、荷重要件が軽減されるためである。
貫通孔2の孔径や鉄骨梁1の断面寸法によっても距離が変わるが、同図に示すように、梁端から所定の距離L1までは、鉄骨梁1に貫通孔2を設けることができない。この領域E1を塑性化領域E1と呼ぶことにする。梁端から所定の距離L2以上の領域E2は、補強を要しない。これを無補強領域E2と呼ぶことにする。この塑性化領域E1と無補強領域E2との間では、梁端からの距離等に応じた補強量の補強を行えば、支障なく貫通孔2を設けることができる。
In FIG. 3, when the through-hole 2 is provided in the steel beam 1, how much reinforcement is necessary, whether reinforcement is not necessary, or impossible to provide is the cross-sectional dimension of the steel beam 1. In addition to the specifications and the hole diameter of the through hole 2, the distance varies from the beam end of the through hole 2 (that is, the distance from the column face 4a). This is because the bending moment and shearing force acting on the steel beam 1 change depending on the distance from the beam end, and the load requirement is reduced at the center of the beam span.
Although the distance varies depending on the diameter of the through hole 2 and the cross-sectional dimension of the steel beam 1, the through hole 2 cannot be provided in the steel beam 1 from the beam end to a predetermined distance L 1 as shown in FIG. This region E1 will be called a plasticized region E1. A region E2 having a predetermined distance L2 or more from the beam end does not require reinforcement. This will be referred to as an unreinforced region E2. Between the plasticized region E1 and the non-reinforcing region E2, the through hole 2 can be provided without hindrance if the reinforcing amount is reinforced according to the distance from the beam end or the like.
図1,図2に示す鉄骨梁貫通孔の補強標準表示具10は、このような、梁断面寸法、孔径、孔位置に応じた補強の有無、補強量を、設計の標準として表に示したものである。図2は、補強標準表示具10となる表11の全体の概要を示し、図1は図2の一部を拡大して示す。図2に示すように、この実施形態では、鉄骨梁を細幅系列と中幅系列とに区分して、表の上下部分に分けて示しているが、必ずしもこの区分は必要ではない。この補強標準表示具10は、表11のみからなるものであっても良く、またこの表11と補足説明表示手段とを含むものであっても良い。補足説明表示手段については、後に説明する。上記の表11は、紙等に表示されたものに限らず、例えば電子データであって、画面または用紙等への出力によって、人間が視覚的に表として認識できるものであれば良い。 The steel beam through-hole reinforcement standard indicator 10 shown in FIG. 1 and FIG. 2 shows the presence / absence of reinforcement according to the beam cross-sectional dimension, hole diameter, hole position, and the amount of reinforcement as a design standard. Is. FIG. 2 shows an overview of the entire table 11 serving as the reinforcing standard display tool 10, and FIG. 1 shows an enlarged part of FIG. As shown in FIG. 2, in this embodiment, the steel beam is divided into a narrow width series and a medium width series and divided into upper and lower parts of the table, but this division is not necessarily required. This reinforcing standard display tool 10 may consist of only Table 11 or may include this Table 11 and supplementary explanation display means. The supplementary explanation display means will be described later. The above table 11 is not limited to the data displayed on paper or the like, and may be any electronic data that can be visually recognized as a table by output to a screen or paper.
図1において、この補強標準表示具10となる表11は、見出しとなる列B0の各行A1〜Am(mは任意の整数)に、行見出し表示12として各種断面寸法の鉄骨梁の断面寸法情報を表示する。断面寸法情報は、断面寸法諸元であっても、また梁材の断面を示す区分、型番等の情報であっても良いが、この実施形態では断面寸法諸元を用いている。この断面寸法諸元として、梁せいH、梁幅B、ウェブ板厚t1、フランジ板厚t2、およびウェブ・フランジ間の角部断面円弧の曲率半径rを示している。 In FIG. 1, the table 11 serving as the reinforcing standard display tool 10 includes cross-sectional dimension information of steel beams having various cross-sectional dimensions as the row heading display 12 in each row A1 to Am (m is an arbitrary integer) of the column B0 serving as a heading. Is displayed. The cross-sectional dimension information may be a cross-sectional dimension specification, or information such as a section indicating the cross-section of the beam material, a model number, etc., but in this embodiment, the cross-sectional dimension specification is used. As the cross-sectional dimensions, the beam length H, the beam width B, the web plate thickness t1, the flange plate thickness t2, and the radius of curvature r of the corner cross-section arc between the web and the flange are shown.
見出しとなる行A0の各列には、列見出し表示13として、上記ウェブ1b(図4)に明ける貫通孔2の各種孔径を順に表示する。図1の例では、「D=50」,「D=75」等の表示形態で、貫通孔直径を示す文字「D」とその数値とを表示している。 In each column of the row A0 serving as a headline, various hole diameters of the through-holes 2 in the web 1b (FIG. 4) are sequentially displayed as a column headline display 13. In the example of FIG. 1, the letter “D” indicating the diameter of the through hole and its numerical value are displayed in a display form such as “D = 50” and “D = 75”.
表11の所定の行Anには、行見出し表示14として、梁端から無補強領域E2(図3)までの距離L2を示す行である旨を示す。梁端の位置は柱フェースの位置のことであり、この表11では、行見出し表示14として、「柱フェースから無補強領域までの距離:L2」と示している。なお、貫通孔2の梁端からの距離は、鉄骨梁1の一端からの距離と他端からの距離とで異なるが、短い方の距離、つまり曲げモーメントが大きく計算される方の距離を上記の距離L2とする。表11を使用する場合も上記と同じく、短い方の距離を用いる。 A predetermined row An in Table 11 indicates that the row heading display 14 indicates a distance L2 from the beam end to the unreinforced region E2 (FIG. 3). The position of the beam end is the position of the column face, and in Table 11, “Distance from the column face to the unreinforced region: L2” is shown as the row header display 14. The distance from the beam end of the through hole 2 differs depending on the distance from one end of the steel beam 1 and the distance from the other end, but the shorter distance, that is, the distance on which the bending moment is greatly calculated is the above-mentioned distance. Distance L2. When Table 11 is used, the shorter distance is used as described above.
この無補強領域E2までの距離L2を示す所定の行Anにおける各列部分となる各セルSn1…内に、無補強領域までの各種の距離L2を順に表示する。同図の例では、800mm、1400mm、700mm、2000mm、…の距離を表示している。この各セルSn1…内に示す距離L2の値は、設計の便宜等に応じて適宜の値とすれば良い。 Various distances L2 to the non-reinforcing region are sequentially displayed in each cell Sn1... Which is each column portion in a predetermined row An indicating the distance L2 to the non-reinforcing region E2. In the example of the figure, distances of 800 mm, 1400 mm, 700 mm, 2000 mm,... Are displayed. The value of the distance L2 shown in each of the cells Sn1... May be an appropriate value depending on the design convenience.
表11において、断面寸法情報で行見出し12が表示された任意の行Aiと、孔径で列見出し13が表示された任意の列Bjとが交差する領域となるセルSij内に、各見出し表示12,13の内容に対応する断面寸法情報、孔径、およびそのセルSijの位置する列Bjの上記所定行AnのセルSniに表示された無補強領域までの距離L2を条件とする補強内容の表示15を施す。補強内容は、補強構造に応じかつ補強量を含む適宜の内容とすれば良いが、この例では、補強プレート3(図4)の板厚t、幅I、および1枚か2枚かの区別表示によって補強内容を示している。また、補強プレート3は正方形であるとし、その1辺の寸法を上記の幅Iとして示している。 In Table 11, each headline display 12 is displayed in a cell Sij that is an area where an arbitrary row Ai in which the row heading 12 is displayed by the cross-sectional dimension information and an arbitrary column Bj in which the column heading 13 is displayed by the hole diameter intersect. , 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13. Apply. The reinforcement content may be an appropriate content according to the reinforcement structure and including the amount of reinforcement. In this example, the thickness t, the width I of the reinforcement plate 3 (FIG. 4), and the distinction between one and two The contents of reinforcement are shown by the display. Further, the reinforcing plate 3 is assumed to be square, and the dimension of one side thereof is shown as the width I described above.
各セルSij内の補強内容表示15の補強内容は、鉄骨梁1の貫通孔2を設ける箇所が上記の無補強領域までの距離L2以上である場合に、
(梁に作用する曲げモーメント)<(補強された梁の曲げ耐力)
であって、かつ
(梁に作用するせん断力)<(補強された梁のせん断耐力)
となる条件を充足する補強内容である。
The reinforcement content of the reinforcement content display 15 in each cell Sij is when the location where the through hole 2 of the steel beam 1 is provided is equal to or greater than the distance L2 to the non-reinforcement region,
(Bending moment acting on beam) <(Bending strength of reinforced beam)
And (shearing force acting on the beam) <(shearing strength of the reinforced beam)
It is the content of the reinforcement that satisfies the following conditions.
この補強内容として、補強が不要であるセルSij内には、補強不要の旨を示す表示15aを施す。この例では、「無補強」と表示している。補強が不要である複数のセルSijが隣接する場合に、それらのセルSijを統合した範囲に、まとめて上記「無補強」等の補強不要の旨を示す表示15aを施しても良い。 As the contents of reinforcement, a display 15a indicating that reinforcement is not required is provided in the cell Sij that does not require reinforcement. In this example, “unreinforced” is displayed. When a plurality of cells Sij that do not need reinforcement are adjacent to each other, a display 15a indicating that the reinforcement is not necessary, such as “no reinforcement”, may be collectively performed in a range in which the cells Sij are integrated.
貫通孔2の孔径が、鉄骨梁1の断面寸法に対して大きい場合は、強度不足となって孔明けが不可であるが、表11におけるそのようなセル内には「スリーブ穴明け不可」等のような孔明け不可の表示17が施される。 When the hole diameter of the through hole 2 is larger than the cross-sectional dimension of the steel beam 1, the strength is insufficient and drilling is impossible. However, in such a cell in Table 11, “sleeve drilling is impossible” or the like. A non-drilling display 17 such as is given.
補強が必要な場合の補強内容の表示15(15a)は、具体的には次の(16)式で示されるせん断耐力Qh が、(8) 式の作用せん断力を上回る場合に補強不要の表示15aとし、下回る場合に補強量を表示するものとする。
補強内容は、次の(21)式を充足する内容とする。これら(8) 式、(16)式、(21)式の理由は、後に説明する。
The reinforcement content shall satisfy the following equation (21). The reason for these equations (8), (16), and (21) will be described later.
ただし、
d:梁端からの距離、
dQ:梁端からd離れた位置に作用するせん断力、
Mp :梁の全塑性モーメント、
w:梁に作用する等分布荷重、
L:梁スパン、
h:梁せい、
Qh :有孔部のせん断耐力
Qph:有孔部ウェブの降伏せん断力
Mph:Q=0時の有孔部の全塑性モーメント、
Mphf :Q=Qph時の有孔部フランジの全塑性モーメント、
Qh ’:補強有り孔部のせん断力
Qph’:補強有孔部ウェブの降伏せん断耐力
Mph’:Q=0時の補強有孔部の全塑性モーメント、
Mphf ’:Q=Qph時の補強有孔部フランジの全塑性モーメント、
However,
d: distance from beam end,
d Q: Shear force acting at a position d away from the beam end,
M p : Total plastic moment of the beam,
w: equally distributed load acting on the beam,
L: Beam span,
h: Sir Liang,
Q h : Shear strength of the perforated part Q ph : Yield shear force of the perforated part web M ph : Total plastic moment of the perforated part when Q = 0
M phf : Total plastic moment of the perforated flange when Q = Q ph ,
Q h ': Shear force of the hole with reinforcement Q ph ': Yield shear strength of the reinforced hole web M ph ': Total plastic moment of the hole with reinforcement at Q = 0,
M phf ': the total plastic moment of the reinforced perforated flange when Q = Q ph
なお、この補強標準表示具10は、図4のように貫通孔2の中心位置が鉄骨梁1の梁芯と一致する場合、および図5のように貫通孔2が偏心していても、梁芯から孔中心までの偏心量eが所定の偏芯量までの範囲に位置する場合に用いることを適用条件としている。図6または図7に示すように、鉄骨梁1に貫通孔2が複数設けられる場合は、隣合う貫通孔2間の距離が所定の離間距離、例えば梁せいH以上であることを適用条件とする。この適用条件化で上記曲げ耐力,せん断耐力の条件が充足する補強内容が補強内容表示15に示される。このような適用条件、および適用条件を説明する図等は、表11とは別に設けた補足説明表示手段(図示せず)、または表11中に表示しておくことが望ましい。 In addition, this reinforcing standard indicator 10 has a beam core even when the center position of the through hole 2 coincides with the beam core of the steel beam 1 as shown in FIG. 4 and even when the through hole 2 is eccentric as shown in FIG. To be used when the eccentricity e from the center of the hole to the center of the hole is in a range up to a predetermined eccentricity. As shown in FIG. 6 or FIG. 7, when a plurality of through holes 2 are provided in the steel beam 1, the distance between adjacent through holes 2 is a predetermined separation distance, for example, a beam length H or more. To do. Reinforcing content display 15 shows the reinforcing content that satisfies the conditions of the bending strength and shear strength under the application conditions. It is desirable to display such an application condition and a figure explaining the application condition in supplementary explanation display means (not shown) provided separately from Table 11 or in Table 11.
この構成の補強標準表示具10は、次のように使用される。設計しようとする鉄骨梁1の断面の寸法情報、貫通孔2の孔径、および梁端から孔中心位置までの距離L2に対応して、次のセル内の補強内容を見る。表11中の断面寸法情報で行見出し12が表示された任意の行Aiと、孔径で列見出し13が表示された任意の列Bjとが交差する領域となる該当セルSijを見る。この該当セルSij内に、見出し表示12,13の内容に対応する断面寸法情報および孔径の場合に必要な補強内容が、補強プレート3の板厚,幅、枚数によって示されている。この該当セルSij内の補強内容は、その該当セルSijの位置する列Bjの所定行Anに表示された無補強領域までの距離L2の各条件を充足する補強内容となっており、貫通孔2を設ける位置が該当セルSijのある列Bjの無補強領域までの距離L2よりも梁中央側の位置であれば、補強内容表示15に示された補強を行えば良い。貫通孔2を設ける位置が無補強領域までの距離L2よりも梁端側であれば、貫通孔2を設けることができない。 The reinforced standard display tool 10 having this configuration is used as follows. Corresponding to the dimension information of the cross section of the steel beam 1 to be designed, the hole diameter of the through hole 2, and the distance L2 from the beam end to the hole center position, the contents of reinforcement in the next cell are viewed. A corresponding cell Sij that is an area where an arbitrary row Ai in which the row heading 12 is displayed with the cross-sectional dimension information in Table 11 and an arbitrary column Bj in which the column heading 13 is displayed with the hole diameter intersect is seen. In the corresponding cell Sij, the cross-sectional dimension information corresponding to the contents of the headline indications 12 and 13 and the reinforcing contents necessary for the hole diameter are indicated by the thickness, width and number of reinforcing plates 3. The reinforcement contents in the corresponding cell Sij are the reinforcement contents satisfying the respective conditions of the distance L2 to the non-reinforcement area displayed in the predetermined row An of the column Bj where the corresponding cell Sij is located. Is provided on the beam center side with respect to the distance L2 to the unreinforced region of the column Bj where the cell Sij is located, the reinforcement shown in the reinforcement content display 15 may be performed. If the position where the through hole 2 is provided is closer to the beam end than the distance L2 to the unreinforced region, the through hole 2 cannot be provided.
該当セルSij内の補強内容として、補強不要の表示15aがあれば、貫通孔周辺に補強を行う必要がない。 If there is a reinforcement-free display 15a as the reinforcement content in the cell Sij, there is no need to reinforce around the through hole.
このように、無補強領域までの距離L2を表11中に示すようにしたため、補強標準として、補強が不要であることを簡明に表示でき、無駄に補強を行うことが回避される。
また、各セルSij内の補強内容を、貫通孔2の梁端からの距離L2を条件に含めた内容としてあるため、孔位置か梁端に近い場合の余裕を補強内容に考慮する必要がなく、補強内容として示す補強量が削減できる。例えば、従来の画一的な補強の場合に比べて、全体的に板厚が1サイズ小さくなるなど、補強量が大幅に削減される。
この補強標準表示具10は、このように経済的な補強標準となっており、これを用いると、無駄な補強をできるだけ避ける設計を容易に行うことができる。
Thus, since the distance L2 to the non-reinforcement region is shown in Table 11, it can be simply displayed that the reinforcement is unnecessary as the reinforcement standard, and unnecessary reinforcement is avoided.
Further, since the contents of reinforcement in each cell Sij are the contents including the distance L2 from the beam end of the through hole 2 as a condition, it is not necessary to consider the margin when the hole position or the beam end is close to the reinforcement contents. The amount of reinforcement shown as reinforcement content can be reduced. For example, the amount of reinforcement is greatly reduced, for example, the plate thickness is reduced by one size as a whole compared to the case of conventional uniform reinforcement.
The reinforcement standard indicator 10 is thus an economical reinforcement standard, and by using this, it is possible to easily perform a design that avoids unnecessary reinforcement as much as possible.
次に、上記各式(8),(16),(21) 等の根拠を説明する。
(1) 有孔梁の設計
(1-1) 終局時に貫通孔に作用する曲げモーメントとせん断力
加藤、金子の文献(非特許文献1)を参考にして、有孔梁の設計式を導く。図8に示すように、水平荷重と等分布荷重wを受ける梁を想定する。梁端部(無欠損部)の全塑性状態における曲げモーメントME とせん断力QE のM−Q相関関係(図9)を次式のように仮定する。
Next, the grounds for the above equations (8), (16), (21), etc. will be described.
(1) Design of perforated beam (1-1) Bending moment and shear force acting on through-holes at the end of time Refer to Kato and Kaneko's literature (Non-Patent Document 1) to derive a design formula for perforated beams. As shown in FIG. 8, a beam that receives a horizontal load and a uniform load w is assumed. Assume that the M-Q correlation (FIG. 9) between the bending moment M E and the shearing force Q E in the all-plastic state of the beam end (defect-free portion) is as follows:
ここで、Mp は梁の全塑性モーメント、Mpfはフランジの全塑性モーメント、Qy はウェブの降伏せん断力(無欠損部)である。
梁が両端でせん断力を考慮した全塑性状態になっている時の曲げモーメント分布は次式で表される。
Here, M p is the total plastic moment of the beam, M pf is the total plastic moment of the flange, and Q y is the yield shear force (defect-free portion) of the web.
The bending moment distribution when the beam is in a fully plastic state considering the shearing force at both ends is expressed by the following equation.
ここで、MpLとMpRはそれぞれ左端と右端の全塑性状態における曲げモーメント、Lは梁スパン、xは梁端からの距離、Wは梁に作用する等分布荷重である。
等分布荷重wは、終局時においてスパン内に最大曲げモーメントが生じないことを条件とする。この条件は(4) 式で表される。
The equally distributed load w is on condition that no maximum bending moment is generated in the span at the end. This condition is expressed by equation (4).
全塑性状態における梁端せん断力は次式(5L),(5R)で表される。
ここでQL とQR は、それぞれ左端と右端の全塑性状態におけるせん断力である。
梁端の全塑性状態における曲げモーメントMpLとMpRは、(1) 式のQE に(5) 式を代入して連立方程式を解けば、次式が得られる。
The bending moments M pL and M pR in the fully plastic state of the beam end can be obtained by substituting Equation (5) into Q E in Equation (1) and solving the simultaneous equations.
ここでhは梁せいである。(6) 式を(5) 式に代入すれば、梁端の全塑性状態におけるせん断力QL とQR は次式で表される。
梁端からd離れた位置に作用するせん断力 dQL と dQR は、(3) 式でx=d,L−dとし、(6) 式を用いれば次式で表される。上記のdは、図1,図3等に示した距離L2に対応する。 Shear force d Q L and d Q R which acts on a position away d from the beam end, (3) and x = d, and L-d by the formula is represented by the following equation by using the equation (6). The above d corresponds to the distance L2 shown in FIGS.
梁端からd離れた位置に作用する曲げモーメントdMpLとdMpRは、(2) 式でx=d,L−とし、(6) 式を用いれば次式で表される。
(1-2) 補強の要否判定
全塑性状態における有孔部の曲げ耐力Mh とせん断力Qh のM−Q相関関係を次式で与える(図10)。
ここで、MphはQ=0時の有孔部の全塑性モーメント、Mphf はQ=Qph時の有孔部フランジの全塑性モーメント、Qphは有孔部ウェブの降伏せん断力で、それぞれ次式で与える。
ここで、Mpfは梁のフランジのみの全塑性モーメントである。αは有孔梁のせん断耐力を求める時の孔中心断面のウェブのせん断耐力に対する低減係数、βは有孔梁の曲げ耐力Mphf のMpfに対する低減係数で、非特許文献2に示されている式を引用する。
ここでRは貫通孔の半径、Bは梁幅、tf はフランジ板厚、tW はウェブ板厚である。 (10)式の有孔部の曲げ耐力Mh が(9) 式の作用モーメント dML および dMR に等しくなる時の有孔部のせん断耐力Qh は次式で表される。
このQh が(8) 式の作用せん断力を上回る場合は補強不要、下回る場合は補強が必要となる。 If this Q h exceeds the acting shear force of equation (8), reinforcement is not necessary, and if Q h is less, reinforcement is necessary.
(1-3) 必要補強量の算定
補強が必要な場合は、板厚tp の補強プレートをウェブに溶接して有孔部を補強する。図11に補強方法を示す。全塑性状態における補強有孔部の曲げ耐力Mh ’と、せん断耐力Qh ’のM−Q相関関係を次式で与える。
(1-3) Calculation of the required amount of reinforcement When reinforcement is required, the perforated part is reinforced by welding a reinforcing plate of thickness t p to the web. FIG. 11 shows a reinforcing method. The MQ correlation between the bending strength M h ′ of the reinforced perforated portion in the fully plastic state and the shear strength Q h ′ is given by the following equation.
ここで、Mph’はQ=0時の補強有孔部の全塑性モーメント、Mphf ’はQ=Qph時の補強有孔部フランジの全塑性モーメント、Qph’は補強有孔部ウェブの降伏せん断耐力であり、それぞれ次式で与える。
ここで、tp は補強プレートの板厚、Lp は補強プレートの幅、eは有孔部の溶接しろである。
(17)式の補強有孔部の曲げ耐力Mh ’が、(9) 式の作用曲げモーメント dML と dMR に等しくなる時の補強有孔部のせん断力Qh ’は次式で表される。
(17) reinforcing the perforated portion of the bending strength M h 'of, (9) of the working bending moment d M L and d M shear reinforcement perforated portion when equal to R Q h' is the following formula It is represented by
このQh ’が(8) 式の作用せん断力を上回ることを条件として、補強プレートの板厚および幅を算定する。 The thickness and width of the reinforcing plate are calculated on the condition that this Q h ′ exceeds the acting shear force of Equation (8).
(2)数値解析による検証
有限要素法を用いた数値解析により、設計式ならびに補強の妥当性について検討する。解析方法は材料非線形と幾何学的非線形を考慮した弾塑性有限要素解析で、汎用構造解析プログラムMSC.Marc2000(商品名)を用いて行った。
図12に解析対象、図13に有限要素モデルを示す。要素は4節点厚肉シェル要素を用いている。材端に集中荷重が作用する片持梁を想定し、等分布荷重についてはw=0と仮定する。
(2) Verification by numerical analysis Examine the validity of design formulas and reinforcement by numerical analysis using the finite element method. The analysis method was elasto-plastic finite element analysis considering material nonlinearity and geometric nonlinearity, and was performed using general-purpose structural analysis program MSC.Marc2000 (trade name).
FIG. 12 shows an analysis target, and FIG. 13 shows a finite element model. The element is a 4-node thick shell element. A cantilever beam with concentrated load acting on the end of the material is assumed, and w = 0 is assumed for an evenly distributed load.
表1に解析モデルの一覧を示す。解析パラメータは梁サイズについて5種類、材長さについて3種類で、それぞれ無孔梁、有孔梁、補強有孔梁の3種類を設定し、全部で45例の数値解析を行った。貫通孔の径は梁せいHの0.6倍とし、梁端からH離れた位置に孔を設けた。補強部分の板厚と幅は、3節で導いた設計式に基づいて設定した。
図14は、梁サイズH-500x200x10x16 、材長さ3,000mm の解析例について、無孔梁と有孔梁の荷重- 変形関係を比較して示したものある。また図15は、部材角θ=0.15の時の開口部周辺の変形及び応力分布の状態を示したものである。無補強有孔梁は開口部周辺の塑性化が先行し、ウェブの座屈に伴って早期に耐力が低下している。一方、補強した有孔梁は、開口部周辺の歪集中が緩和されて、無孔梁と同等の耐力と塑性変形能力を有している。 FIG. 14 shows a comparison of the load-deformation relationship between a non-perforated beam and a perforated beam for an analysis example with a beam size of H-500 × 200 × 10 × 16 and a material length of 3,000 mm. FIG. 15 shows the state of deformation and stress distribution around the opening when the member angle θ = 0.15. The unreinforced perforated beam is preceded by plasticization around the opening, and the yield strength is lowered early with the buckling of the web. On the other hand, the reinforced perforated beam has a proof strength and plastic deformation capability equivalent to those of a non-perforated beam because the strain concentration around the opening is relaxed.
図16は耐力上昇率について、有孔梁と無孔梁を比較して示したものである。ここで、耐力上昇率は最大耐力を無孔梁の全塑性モーメントで除したものである。縦軸に有孔梁、横軸に無孔梁の値をとっており、○印は無補強有孔梁、●印は補強した有孔梁を示している。無補強有孔梁は無孔梁に比べて大幅に耐力が低下している。一方、補強した有孔梁は無孔梁に比べてほぼ同等の耐力を有している。
図17は塑性変形能力について、有孔梁と無孔梁とを比較して示したものである。ここで、塑性変形能力は最大耐力時の変形を全塑性モーメントに対応する弾性部材角で除したものである。縦軸に有孔梁、横軸に無孔梁の値をとっており、○印は無補強有孔梁、●印は補強した有孔梁を示している。無補強有孔梁は無孔梁に比べて大幅に塑性変形能力が低下している。一方、補強した有孔梁は無孔梁に比べて、同等以上の塑性変形能力を有している。
FIG. 16 shows the rate of increase in yield strength by comparing a perforated beam and a non-perforated beam. Here, the rate of increase in yield strength is the maximum yield strength divided by the total plastic moment of the non-porous beam. The vertical axis represents the value of the perforated beam, the horizontal axis represents the value of the non-perforated beam, the ◯ mark indicates the unreinforced perforated beam, and the ● mark indicates the reinforced perforated beam. The strength of unreinforced perforated beams is significantly lower than that of non-perforated beams. On the other hand, reinforced perforated beams have almost the same strength as non-perforated beams.
FIG. 17 shows a comparison between a perforated beam and a non-perforated beam in terms of plastic deformation ability. Here, the plastic deformation capacity is obtained by dividing the deformation at the maximum proof stress by the elastic member angle corresponding to the total plastic moment. The vertical axis represents the value of the perforated beam, the horizontal axis represents the value of the non-perforated beam, the ◯ mark indicates the unreinforced perforated beam, and the ● mark indicates the reinforced perforated beam. Non-reinforced perforated beams have a significantly lower plastic deformation capacity than non-perforated beams. On the other hand, a reinforced perforated beam has a plastic deformation capacity equal to or greater than that of a non-perforated beam.
(3)まとめ
このように、梁端部に貫通孔を有する梁を、プレート補強により補強する例について、既往の研究成果を参考にして設計式を導き、数値解析により設計式の妥当性について検討した。梁端部に貫通孔を有する場合でも、プレート補強により適切な補強を施せば、無孔梁と同等の耐力と塑性変形能力を有することを示した。
(3) Summary In this way, for the example of reinforcing a beam with a through hole at the end of the beam by plate reinforcement, a design formula is derived with reference to past research results, and the validity of the design formula is examined by numerical analysis. did. Even when the beam has a through hole at the beam end, it was shown that if it was properly reinforced by plate reinforcement, it had the same yield strength and plastic deformation capability as a non-hole beam.
以上の研究結果に基づいて、上記の補強標準表示具10(図1,図2)を作成した。この特徴は、次の各点である。
・梁中央部に無補強領域を設定した。
・補強量を梁端からの孔位置に応じて設定した。
・梁端からの孔位置に応じた補強量とすることで、梁端部に孔を明ける場合も示した。
Based on the above research results, the above-mentioned standard reinforcing indicator 10 (FIGS. 1 and 2) was prepared. This feature is as follows.
・ An unreinforced area was set at the center of the beam.
-The amount of reinforcement was set according to the hole position from the beam end.
・ The case where a hole is drilled at the beam end by setting the amount of reinforcement according to the hole position from the beam end is also shown.
次に、図18ないし図21と共に、鉄骨梁貫通孔の補強設計支援装置30につき説明する。この補強設計支援装置30は、コンピュータにより構成される。この補強設計支援装置30は、上記のように鉄骨梁1(図4)のウェブ1aに貫通孔2を設ける場合に、鉄骨梁1の貫通孔2の形成部周辺を補強する補強内容を示すものであって、次の条件入力手段31、補強判定演算手段32、演算結果表示手段33、および表示装置34を備える。表示装置34は、液晶表示装置やCRT等の画面表示を行う装置である。 Next, the reinforcing design support device 30 for the steel beam through-hole will be described with reference to FIGS. The reinforcement design support device 30 is configured by a computer. This reinforcement design support apparatus 30 shows the reinforcement content which reinforces the periphery of the formation part of the through-hole 2 of the steel beam 1 when providing the through-hole 2 in the web 1a of the steel beam 1 (FIG. 4) as mentioned above. The following condition input means 31, reinforcement determination calculation means 32, calculation result display means 33, and display device 34 are provided. The display device 34 is a device that performs screen display such as a liquid crystal display device or a CRT.
条件入力手段31は、鉄骨梁の断面寸法情報、梁長さ、貫通孔の孔径、および梁端から貫通孔中心までの距離dを少なくとも含む条件データを入力し、または所定のデータ登録手段から取り込む手段である。条件入力手段31によるデータ入力は、キーボード等からオペレータが入力するようにしても、また適宜の建物設計過程で自動入力されるものとしても良い。条件入力手段31は、具体的には、例えば図19に示すように、入力画面G1を表示装置34に出力し、この画面に、入力項目に対応した空欄部分を設け、この空欄部分に入力項目となる数値または数字,記号等を入力させるものとする。 The condition input means 31 inputs condition data including at least the cross-sectional dimension information of the steel beam, the beam length, the hole diameter of the through hole, and the distance d from the beam end to the center of the through hole, or takes in from predetermined data registration means. Means. Data input by the condition input means 31 may be input by an operator from a keyboard or the like, or may be automatically input in an appropriate building design process. Specifically, the condition input means 31 outputs an input screen G1 to the display device 34, for example, as shown in FIG. 19, and provides a blank portion corresponding to the input item on this screen, and the input item is displayed in this blank portion. Numerals, numbers, symbols, etc. shall be entered.
図18の演算結果表示手段33は、補強判定演算手段32で演算された結果を表示装置34またはプリンタ等に出力する手段である。図19の下部に、その演算結果の出力画面G2の例を示す。同図の例では、入力画面G1と演算結果の出力画面G2とが同じ表示装置34の同じ画面上に並べて表示されている。 The calculation result display means 33 in FIG. 18 is a means for outputting the result calculated by the reinforcement determination calculation means 32 to the display device 34 or a printer. An example of the calculation result output screen G2 is shown in the lower part of FIG. In the example shown in the figure, the input screen G1 and the calculation result output screen G2 are displayed side by side on the same screen of the same display device 34.
図18の補強判定演算手段32は、条件入力手段31で得た条件データから、上記補強の有無の判定および補強が必要な場合の補強量の演算を行う手段である。
この補強判定演算手段は、次の(16)式で示されるせん断耐力Qh が、(8) 式の作用せん断力を上回る場合に補強不要と判定し、補強必要と判定した場合に、(21)式を充足する補強内容を演算するものとされる。式中の各符号の示す意味は、補強標準表示具10について説明した意味と同じである。
This reinforcement determination calculating means determines that the reinforcement is not necessary when the shear strength Q h expressed by the following equation (16) exceeds the acting shear force of the equation (8), and (21 ) It is assumed that the reinforcement content that satisfies the equation is calculated. The meaning of each symbol in the formula is the same as the meaning described for the reinforcing standard display tool 10.
補強計算としては、補強手段として図4に示すような補強プレート3を用いる場合の板厚、幅、および枚数が1枚か2枚かの区別について行う。 For the reinforcement calculation, the plate thickness, width, and number of sheets when the reinforcing plate 3 as shown in FIG.
図20,図21は、図18の補強判定演算手段32の各演算ステップの流れ図である。この補強判定演算手段32は、次の各ステップT1〜T9を有する。
・梁端モーメントと等分布荷重を受ける梁の想定過程(T1)。
・スパン中央に最大曲げモーメントが生じない条件の演算過程(T2)。
・梁端から距離dの位置に作用するせん断力の演算過程(T3)。
・梁端からd位置に作用する曲げモーメントの演算過程(T4)。
・有孔部曲げ耐力が作用曲げモメントに等しくなるときの有孔部のせん断耐力の演算過程(T5)。
20 and 21 are flowcharts of the calculation steps of the reinforcement determination calculation means 32 of FIG. The reinforcement determination calculating means 32 has the following steps T1 to T9.
・ An assumed process (T1) of a beam that receives a beam end moment and an equally distributed load.
A calculation process (T2) under the condition that the maximum bending moment does not occur at the center of the span.
A calculation process (T3) of the shear force acting on the position of the distance d from the beam end.
Calculation process of bending moment acting on the d position from the beam end (T4).
A calculation process (T5) of the shear strength of the perforated portion when the perforated portion bending strength becomes equal to the acting bending moment.
・有孔部ウェブの降伏せん断耐力の演算過程(T6)。
・(作用せん断力)<(終局せん断耐力)の条件より補強有無を判断する過程(T7)。・補強有孔部曲げ耐力が作用曲げモーメントに等しくなるときの補強有孔部のせん断耐力を演算する過程(T8)。
・(作用せん断力)<(終局せん断力)の条件より、補強量を演算する過程(T9)。
-Calculation process of yield shear strength of perforated web (T6).
-The process of judging the presence or absence of reinforcement from the condition of (working shear force) <(final shear strength) (T7). A process of calculating the shear strength of the reinforced perforated portion when the reinforced perforated portion bending strength becomes equal to the acting bending moment (T8).
A process of calculating the amount of reinforcement from the condition of (acting shear force) <(final shear force) (T9).
図20,図21の各ステップで行う演算は、上記の(8) 式、(16)式、(21)式と、これらの式(8) ,(16),(21)に代入する値を導く演算であり、上記の式(1) 〜(21)と共に前述したため、各ステップ中に演算式を示し、重複する説明を省略する。 The operations performed in each step of FIGS. 20 and 21 are the above-mentioned equations (8), (16), (21) and the values to be substituted into these equations (8), (16), (21). Since the calculation is a calculation that has been described above with the above-described equations (1) to (21), the calculation equation is shown in each step, and a duplicate description is omitted.
この構成の補強設計支援装置30によると、鉄骨梁1の断面寸法情報、梁長さ、貫通孔2の孔径、および梁端から貫通孔中心までの距離d等の条件データを入力することで、補強の有無判定、および補強が必要な場合の補強量の演算が行われ、その結果が表示装置34の画面に表示される。そのため必要な補強内容が簡単にわかる。この場合の補強の有無判定および補強量の演算は、梁端から貫通孔中心までの距離dを条件に含み、上記の各式によるため、孔位置に応じた必要な補強となり、無駄に補強を行うことが回避される。 According to the reinforcement design support device 30 of this configuration, by inputting condition data such as the cross-sectional dimension information of the steel beam 1, the beam length, the hole diameter of the through hole 2, and the distance d from the beam end to the center of the through hole, The presence / absence of reinforcement and the calculation of the amount of reinforcement when reinforcement is required are performed, and the result is displayed on the screen of the display device 34. Therefore, it is easy to understand the necessary reinforcement. In this case, the presence / absence of reinforcement and the calculation of the amount of reinforcement include the distance d from the beam end to the center of the through hole, and are based on the above formulas. It is avoided to do.
1…鉄骨梁
2…貫通孔
3…補強プレート
4…柱
10…補強標準表示具
11…表
12…行見出し表示
13…列見出し表示
14…無補強領域までの距離を示す行であることを示す表示
15…補強内容表示
15a…補強不要の旨を示す表示
E1…塑性化領域
E2…無補強領域
L1…塑性化領域までの距離
L2…無補強領域までの距離
DESCRIPTION OF SYMBOLS 1 ... Steel beam 2 ... Through-hole 3 ... Reinforcement plate 4 ... Column 10 ... Reinforcement standard indicator 11 ... Table 12 ... Row header display 13 ... Column header display 14 ... It shows that it is a row which shows the distance to an unreinforced area | region. Display 15 ... Reinforcement content display 15a ... Display indicating that reinforcement is not required E1 ... Plasticized region E2 ... Unreinforced region L1 ... Distance to plasticized region L2 ... Distance to unreinforced region
Claims (4)
表の見出しとなる列の各行に行見出し表示として各種断面寸法の鉄骨梁の断面寸法情報を表示し、上記表の見出しとなる行の各列に列見出し表示として、上記ウェブに明ける貫通孔の各種孔径を順に表示し、上記表の所定の行の行見出し表示として、梁端から無補強領域までの距離を示す行であることを示し、
この無補強領域までの距離を示行における各列部分となる各セル内に、上記無補強領域までの各種の距離を順に表示し、
上記表の断面寸法情報で行見出しが表示された任意の行と孔径で列見出しが表示された任意の列とが交差する領域となるセル内に、見出し表示内容に対応する断面寸法情報、孔径、およびそのセルの位置する列の上記所定行に表示された無補強領域までの距離、の各条件に対応する補強内容を表示し、
このセル内に表示される補強内容は、梁の貫通孔を設ける箇所が上記の無補強領域までの距離以上である場合に、
(梁に作用する曲げモーメント)<(補強された梁の曲げ耐力)
であって、かつ
(梁に作用するせん断力)<(補強された梁のせん断耐力)
となる条件を充足する補強内容であり、
この補強内容として、補強が不要であるセルには補強不要の旨を示す表示を施したことを特徴とする鉄骨梁貫通孔の補強標準表示具。 When providing a through hole in a steel beam web, a steel beam through hole reinforcement standard indicating tool for reinforcing the periphery of the steel beam through hole forming part,
The cross-sectional dimension information of steel beams of various cross-sectional dimensions is displayed in each row of the column that becomes the heading of the table, and the through hole in the web is displayed as the column heading display in each column of the row that becomes the heading of the table. Various hole diameters are displayed in order, and as a row header display of a predetermined row in the above table, it indicates a row indicating the distance from the beam end to the unreinforced region,
In each cell, which is each column portion in the row indicating the distance to this unreinforced region, various distances to the unreinforced region are displayed in order,
The cross-sectional dimension information and the hole diameter corresponding to the heading display content in the cell that is the region where any row where the row heading is displayed with the cross-sectional dimension information in the above table and any column where the column heading is displayed with the hole diameter intersects. , And the reinforcement content corresponding to each condition of the distance to the unreinforced region displayed in the predetermined row of the column where the cell is located,
The reinforcement content displayed in this cell is when the location where the through hole of the beam is provided is greater than or equal to the distance to the unreinforced region,
(Bending moment acting on beam) <(Bending strength of reinforced beam)
And (shearing force acting on the beam) <(shearing strength of the reinforced beam)
It is a reinforcement content that satisfies the conditions
As a reinforcement content, a steel beam through-hole reinforcement standard display tool characterized in that a cell indicating that reinforcement is not required is displayed indicating that reinforcement is not required.
次の(16)式で示されるせん断耐力Qh が、(8) 式の作用せん断力を上回る場合に補強不要の表示とし、下回る場合に補強量を表示するものとし、
補強量は、式(21)を充足する内容とする鉄骨梁貫通孔の補強標準表示具。
d:梁端からの距離、
dQ:梁端からd離れた位置に作用するせん断力、
Mp :梁の全塑性モーメント、
w:梁に作用する等分布荷重、
L:梁スパン、
h:梁せい、
Qh :有孔部のせん断耐力
Qph:有孔部ウェブの降伏せん断力
Mph:Q=0時の有孔部の全塑性モーメント、
Mphf :Q=Qph時の有孔部フランジの全塑性モーメント、
Qh ’:補強有り孔部のせん断力
Qph’:補強有孔部ウェブの降伏せん断耐力
Mph’:Q=0時の補強有孔部の全塑性モーメント、
Mphf ’:Q=Qph時の補強有孔部フランジの全塑性モーメント、 The display of the reinforcement content displayed in the cell according to claim 1,
When the shear strength Q h shown by the following equation (16) exceeds the acting shear force of equation (8), it is indicated that reinforcement is not required, and when it is below, the amount of reinforcement is indicated.
Reinforcing amount is a standard indicator for reinforcing steel beam through holes that satisfies the expression (21).
d: distance from beam end,
d Q: Shear force acting at a position d away from the beam end,
M p : Total plastic moment of the beam,
w: equally distributed load acting on the beam,
L: Beam span,
h: Sir Liang,
Q h : Shear strength of the perforated part Q ph : Yield shear force of the perforated part web M ph : Total plastic moment of the perforated part when Q = 0
M phf : Total plastic moment of the perforated flange when Q = Q ph ,
Q h ': Shear force of the hole with reinforcement Q ph ': Yield shear strength of the reinforced hole web M ph ': Total plastic moment of the hole with reinforcement at Q = 0,
M phf ': the total plastic moment of the reinforced perforated flange when Q = Q ph
鉄骨梁の断面寸法情報、梁長さ、貫通孔の孔径、および梁端から貫通孔中心までの距離を少なくとも含む条件データを入力しまたは所定のデータ登録手段から取り込む条件入力手段と、
この条件入力手段で得た条件データから、上記補強の有無判定および補強が必要な場合の補強量の演算を行う補強判定演算手段と、
この補強判定演算手段で演算された結果を表示する演算結果表示手段とを備え、
上記補強判定演算手段は、次の(16)式で示されるせん断耐力Qh が、(8) 式の作用せん断力を上回る場合に補強不要と判定し、補強必要と判定した場合に、式(21)を充足する補強量の補強内容を演算するものとした鉄骨梁貫通孔の補強設計支援装置。
d:梁端からの距離、
dQ:梁端からd離れた位置に作用するせん断力、
Mp :梁の全塑性モーメント、
w:梁に作用する等分布荷重、
L:梁スパン、
h:梁せい、
Qh :有孔部のせん断耐力
Qph:有孔部ウェブの降伏せん断力
Mph:Q=0時の有孔部の全塑性モーメント、
Mphf :Q=Qph時の有孔部フランジの全塑性モーメント、
Qh ’:補強有り孔部のせん断力
Qph’:補強有孔部ウェブの降伏せん断耐力
Mph’:Q=0時の補強有孔部の全塑性モーメント、
Mphf ’:Q=Qph時の補強有孔部フランジの全塑性モーメント、
When providing a through-hole in a steel beam web, the steel beam through-hole reinforcement design support device showing reinforcement contents for reinforcing the periphery of the formation portion of the through-hole of the steel beam,
Condition input means for inputting condition data including at least the cross-sectional dimension information of the steel beam, the beam length, the hole diameter of the through hole, and the distance from the beam end to the center of the through hole, or taking in from the predetermined data registration means,
From the condition data obtained by this condition input means, the reinforcement determination calculation means for calculating the presence or absence of reinforcement and the amount of reinforcement when reinforcement is required,
Computation result display means for displaying the result computed by the reinforcement judgment computation means,
The reinforcing determination calculation unit, when shear strength Q h represented by the following equation (16) is, it is determined reinforced unnecessary and determines, reinforcement required when exceeding the action shearing force (8), the formula ( Steel beam through hole reinforcement design support device that calculates the reinforcement content of the reinforcement amount that satisfies 21).
d: distance from beam end,
d Q: Shear force acting at a position d away from the beam end,
M p : Total plastic moment of the beam,
w: equally distributed load acting on the beam,
L: Beam span,
h: Sir Liang,
Q h : Shear strength of the perforated part Q ph : Yield shear force of the perforated part web M ph : Total plastic moment of the perforated part when Q = 0
M phf : Total plastic moment of the perforated flange when Q = Q ph ,
Q h ': Shear force of the hole with reinforcement Q ph ': Yield shear strength of the reinforced hole web M ph ': Total plastic moment of the hole with reinforcement at Q = 0,
M phf ': the total plastic moment of the reinforced perforated flange when Q = Q ph
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003340501A JP4246588B2 (en) | 2003-09-30 | 2003-09-30 | Steel beam through hole reinforcement standard indicator and reinforcement design support device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003340501A JP4246588B2 (en) | 2003-09-30 | 2003-09-30 | Steel beam through hole reinforcement standard indicator and reinforcement design support device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005105674A true JP2005105674A (en) | 2005-04-21 |
JP4246588B2 JP4246588B2 (en) | 2009-04-02 |
Family
ID=34535380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003340501A Expired - Lifetime JP4246588B2 (en) | 2003-09-30 | 2003-09-30 | Steel beam through hole reinforcement standard indicator and reinforcement design support device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4246588B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007164322A (en) * | 2005-12-12 | 2007-06-28 | Hitachi Metals Techno Ltd | Reinforcement designing support system and program, fabricator computer, structure computer, selection computer, construction computer, program for fabricator computer, program for structure computer, program for selection computer, and program for construction computer |
JP2007172099A (en) * | 2005-12-20 | 2007-07-05 | Hitachi Metals Techno Ltd | Reinforcement design support device and reinforcement design support program |
JP2008248616A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Metals Techno Ltd | Steel frame beam reinforcing metal fitting |
JP2010079321A (en) * | 2008-08-23 | 2010-04-08 | Okabe Co Ltd | Method and system for design support for reinforcement of steel beam through-hole |
CN102234980A (en) * | 2010-05-04 | 2011-11-09 | 华泰(南通)船务有限公司 | Method for manufacturing standard component of steel beam for bridges |
JP2012012798A (en) * | 2010-06-30 | 2012-01-19 | Okabe Co Ltd | Reinforcing member for through-hole of steel beam and through-hole reinforcing structure thereof |
JP2013134737A (en) * | 2011-12-27 | 2013-07-08 | Okabe Co Ltd | Reinforcement design support system for beam through-hole |
JP2013142224A (en) * | 2012-01-08 | 2013-07-22 | Daiwa House Industry Co Ltd | Reinforcement standard indicator for steel frame beam through hole, reinforcement design method, and reinforcement design support device |
JP2015036489A (en) * | 2013-08-13 | 2015-02-23 | 大和ハウス工業株式会社 | Fire resistive covering structure at penetration part of shaped steel joist |
JP2017210785A (en) * | 2016-05-25 | 2017-11-30 | 株式会社大林組 | Method for evaluating beam |
-
2003
- 2003-09-30 JP JP2003340501A patent/JP4246588B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007164322A (en) * | 2005-12-12 | 2007-06-28 | Hitachi Metals Techno Ltd | Reinforcement designing support system and program, fabricator computer, structure computer, selection computer, construction computer, program for fabricator computer, program for structure computer, program for selection computer, and program for construction computer |
JP2007172099A (en) * | 2005-12-20 | 2007-07-05 | Hitachi Metals Techno Ltd | Reinforcement design support device and reinforcement design support program |
JP2008248616A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Metals Techno Ltd | Steel frame beam reinforcing metal fitting |
JP2010079321A (en) * | 2008-08-23 | 2010-04-08 | Okabe Co Ltd | Method and system for design support for reinforcement of steel beam through-hole |
CN102234980A (en) * | 2010-05-04 | 2011-11-09 | 华泰(南通)船务有限公司 | Method for manufacturing standard component of steel beam for bridges |
JP2012012798A (en) * | 2010-06-30 | 2012-01-19 | Okabe Co Ltd | Reinforcing member for through-hole of steel beam and through-hole reinforcing structure thereof |
JP2013134737A (en) * | 2011-12-27 | 2013-07-08 | Okabe Co Ltd | Reinforcement design support system for beam through-hole |
JP2013142224A (en) * | 2012-01-08 | 2013-07-22 | Daiwa House Industry Co Ltd | Reinforcement standard indicator for steel frame beam through hole, reinforcement design method, and reinforcement design support device |
JP2015036489A (en) * | 2013-08-13 | 2015-02-23 | 大和ハウス工業株式会社 | Fire resistive covering structure at penetration part of shaped steel joist |
JP2017210785A (en) * | 2016-05-25 | 2017-11-30 | 株式会社大林組 | Method for evaluating beam |
Also Published As
Publication number | Publication date |
---|---|
JP4246588B2 (en) | 2009-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11821806B2 (en) | Calculation method of ultimate moment resistance and moment-rotation curve for steel beam to concrete-filled steel tube column connections with bidirectional bolts | |
JP4246588B2 (en) | Steel beam through hole reinforcement standard indicator and reinforcement design support device | |
US8589121B2 (en) | Fracture prediction method, processing device, program product and recording medium | |
Hagen et al. | Shear capacity of steel plate girders with large web openings, Part I: Modeling and simulations | |
Mirghaderi et al. | The rigid seismic connection of continuous beams to column | |
Keerthan et al. | Elastic shear buckling characteristics of LiteSteel beams | |
Hassanein | Shear strength of tubular flange plate girders with square web openings | |
Zhu et al. | Numerical study and design of aluminium alloy channel section columns with welds | |
Zhao et al. | Shear capacity of H-shaped steel beam with randomly located pitting corrosion | |
Balarupan | Structural behaviour and design of cold-formed steel hollow section columns under simulated fire conditions | |
El-Khoriby et al. | Tubular flange plate girders with corner square web openings in the panel of maximum shear: Strength and behaviour | |
Borgsmiller | Simplified method for design or moment end-plate connections | |
JP5908282B2 (en) | Steel beam through hole reinforcement design method and reinforcement design support device | |
Ghobadi et al. | Seismic demand assessment of code-designed continuity plate in panel zone | |
Sagiroglu Maali et al. | Influence of beam/gusset plate thicknesses on the moment–rotation capacity of cold-formed steel screwed back-to-back sections | |
Prochnow et al. | Local flange bending and local web yielding limit states in steel moment-resisting connections | |
Zuberi et al. | Design optimization of EOT crane bridge | |
JPH0836591A (en) | Building equipment drawing generating device | |
Dexter et al. | Evaluation of the design requirements for column stiffeners and doublers and the variation in properties of A992 shapes | |
Dhungana | Shear Lag Factor for Longitudinally Welded Tension Member Using Finite Element Method | |
JP3759883B2 (en) | Signboard post member selection support program and program recording medium, and signboard post member selection support method and apparatus | |
Koltsakis et al. | Numerical investigation of the plastic behaviour of short welded aluminium double-T beams | |
Zheng et al. | Design of stainless steel gapped K-joints in cold-formed square hollow sections | |
Basta | Behaviour of stainless steel and cold C sections with large web openings in bending and shear | |
JP2015045211A (en) | Method for prospecting diaphragm rigidity in steel tube column joint part jointing upper and lower columns having different diameter and method for determining thickness of plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060810 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4246588 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150116 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |