JP2010079321A - Method and system for design support for reinforcement of steel beam through-hole - Google Patents

Method and system for design support for reinforcement of steel beam through-hole Download PDF

Info

Publication number
JP2010079321A
JP2010079321A JP2008237482A JP2008237482A JP2010079321A JP 2010079321 A JP2010079321 A JP 2010079321A JP 2008237482 A JP2008237482 A JP 2008237482A JP 2008237482 A JP2008237482 A JP 2008237482A JP 2010079321 A JP2010079321 A JP 2010079321A
Authority
JP
Japan
Prior art keywords
hole
steel beam
stress
ring
shaped hardware
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008237482A
Other languages
Japanese (ja)
Other versions
JP5229799B2 (en
Inventor
Harukatsu Kadoya
治克 角屋
Manabu Murata
学 村田
Takaaki Hirayama
貴章 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okabe Co Ltd
Original Assignee
Okabe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okabe Co Ltd filed Critical Okabe Co Ltd
Priority to JP2008237482A priority Critical patent/JP5229799B2/en
Publication of JP2010079321A publication Critical patent/JP2010079321A/en
Application granted granted Critical
Publication of JP5229799B2 publication Critical patent/JP5229799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly and quickly obtain an installable range of a through-hole and ring-shaped hardware for reinforcing the through-hole. <P>SOLUTION: A through-hole design support system 1 of a steel beam is used in reinforcing a through-hole formed in the web of a steel beam by using ring-shaped hardware, and includes: an input part 2 for inputting the type of a steel beam, span length, and long-term loading conditions as an input value; an arithmetic part 3 for calculating a stress generated in a steel beam to the input value in a status which is before the through-hole is formed as an estimated stress, for comparing the estimated stress with a proof stress being in a status in which the ring-shaped hardware is reinforced to the through-hole after the through-hole is formed, and for calculating a region where the estimated stress does not exceed the proof stress; and an output part 4 for outputting the region where the estimated stress does not exceed the proof stress and the specifications of the ring-shaped hardware corresponding to the diameter of the through-hole as the possible range for the formation of the through-hole. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄骨梁のウェブに形成された貫通孔をリング状金物を用いて補強する際に用いられる鉄骨梁貫通孔の補強設計支援方法及びシステムに関する。   The present invention relates to a reinforcing design support method and system for a steel beam through-hole used when a through-hole formed in a steel beam web is reinforced with a ring-shaped hardware.

鉄骨構造物においてさまざまな配管を床下あるいは天井懐に配置する場合、鉄骨梁と床下あるいは天井との間に配管を配置すれば、配管と鉄骨梁との干渉を防ぐことができるが、その分、階高が大きくなって建物全体のコストに大きな影響を及ぼす。   When placing various pipes in the steel structure under the floor or ceiling, if the pipe is placed between the steel beam and the floor or ceiling, interference between the pipe and the steel beam can be prevented. The height of the floor will increase, greatly affecting the cost of the entire building.

そのため、鉄骨梁に貫通孔を形成し、該貫通孔に配管を通すことで鉄骨梁と配管との干渉を防ぐケースが多いが、かかる場合には、鉄骨梁に強度上の品質低下が生じる懸念がある。   For this reason, there are many cases where a through hole is formed in the steel beam and the pipe is passed through the through hole to prevent interference between the steel beam and the pipe. There is.

そのため、旧来においては、大きな応力が発生する梁端部を避け、そこから所定の距離だけ離れた応力が小さい位置に貫通孔を形成することによって、貫通孔に起因した鉄骨梁の強度低下が構造体としての性能に影響しないようにしていた。   Therefore, in the past, by avoiding the beam end where large stress occurs and forming a through hole at a position where the stress away from it by a predetermined distance is small, the strength of the steel beam due to the through hole is reduced. I tried not to affect my performance.

一方、このような対策では、配管を配置する経路が貫通孔の位置で制約されるため、配管工事を効率よく行うにはどうしても限界がある。   On the other hand, with such a countermeasure, the route for arranging the piping is restricted by the position of the through hole, and therefore there is a limit to efficiently performing the piping work.

かかる制約を解消すべく、リング状などの補強金物を貫通孔に取り付けることで貫通孔の補強を行う手法が採用されるようになってきた。   In order to eliminate such restrictions, a method of reinforcing a through hole by attaching a reinforcing metal such as a ring shape to the through hole has come to be adopted.

特開2005−105674号公報Japanese Patent Laid-Open No. 2005-105675 特開2007−164322号公報JP 2007-164322 A 特開2007−172099号公報JP 2007-172099 A 「鉄骨はり貫通孔補強工法 OSリング」、 岡部株式会社、インターネット<URL :http://www.okabe.co.jp/os_ring/download.html>、[平成20年8月18日検索]“Steel beam through-hole reinforcement method OS ring”, Okabe Corporation, Internet <URL: http: //www.okabe.co.jp/os_ring/download.html>, [Search August 18, 2008]

リング状金物を用いて鉄骨梁のウェブに形成された貫通孔を補強するには、貫通孔の径に応じた大きさのリング状金物を準備し、これを貫通孔の開口縁部に沿って溶接等で固着する。   In order to reinforce the through-hole formed in the steel beam web using the ring-shaped hardware, a ring-shaped hardware having a size corresponding to the diameter of the through-hole is prepared, and is attached along the opening edge of the through-hole. It is fixed by welding.

ここで、貫通孔形成による鉄骨梁の耐力低下がリング状金物で適切に補強されているかどうかを判断するにあたっては、鉄骨梁の種類に応じて、リング状金物の規格ごとに貫通孔部分の耐力を予め評価するとともに、貫通孔がない場合の想定応力を鉄骨梁のスパン長や長期荷重条件ごとに構造計算で算出し、かかる想定応力が耐力を上回っていないことを確認しなければならない。   Here, in determining whether the decrease in the yield strength of the steel beam due to the formation of the through-hole is appropriately reinforced with the ring-shaped hardware, the yield strength of the through-hole portion is determined for each standard of the ring-shaped hardware depending on the type of the steel beam. In addition, the assumed stress when there is no through hole must be calculated by structural calculation for each span length of the steel beam and long-term load conditions, and it should be confirmed that the assumed stress does not exceed the proof stress.

しかしながら、鉄骨梁の種類、スパン長、長期荷重条件及び貫通孔の径、又はその径に応じたリング状金物の規格の組み合わせは膨大であって、たとえそれらの組み合わせを早見表として予め作成しておいたとしても、想定応力と耐力との比較作業はきわめて煩雑であるという問題を生じていた。   However, there are a huge number of combinations of steel beam types, span lengths, long-term load conditions and through-hole diameters, or ring-shaped hardware standards according to the diameters. Even if it is left, the problem of comparing the assumed stress and the proof stress is extremely complicated.

また、上述した比較作業を支援するシステムも構築されてはいるが、貫通孔の径、又はその径に応じたリング状金物の規格を入力せねばならない等、入力作業がなお煩雑であり、改善の余地があった。   In addition, although a system for supporting the above-described comparison work has been constructed, the input work is still complicated and improved, such as the diameter of the through hole or the specification of the ring-shaped hardware corresponding to the diameter must be entered. There was room for.

さらに、このシステムの入力条件である貫通孔の径や位置、個数などは設備計画時において検討されることから、それら貫通孔の諸条件が変更又は追加されるたびに構造設計を一から検討し直さなければならず、非常に手間がかかっていた。   Furthermore, since the diameter, position, and number of through-holes, which are the input conditions for this system, are examined at the time of facility planning, the structural design must be studied from the beginning each time various conditions for these through-holes are changed or added. I had to fix it and it was very time consuming.

本発明は、上述した事情を考慮してなされたもので、貫通孔及びこれを補強するリング状金物の設置可能範囲を適切かつ迅速に把握可能な鉄骨梁貫通孔の補強設計支援方法及びシステムを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and provides a reinforcing design support method and system for a steel beam through-hole capable of appropriately and quickly grasping a through-hole and a settable range of a ring-shaped hardware that reinforces the through-hole. The purpose is to provide.

上記目的を達成するため、本発明に係る鉄骨梁貫通孔の補強設計支援方法は請求項1に記載したように、鉄骨梁のウェブに形成された貫通孔をリング状金物を用いて補強する際に用いられる鉄骨梁貫通孔の補強設計支援方法であって、   In order to achieve the above object, the steel beam through hole reinforcement design supporting method according to the present invention provides a method for reinforcing a through hole formed in a steel beam web using a ring-shaped hardware as described in claim 1. A steel beam through-hole reinforcement design support method used for

前記鉄骨梁の種類及びスパン長並びに長期荷重条件を入力値として入力し、   Enter the steel beam type and span length and long-term load conditions as input values,

前記入力値に対して前記鉄骨梁に生じる応力を、前記貫通孔が形成される前の状態で算出して想定応力とし、   The stress generated in the steel beam with respect to the input value is calculated in a state before the through-hole is formed, and assumed stress,

該想定応力を、前記貫通孔が形成された後であって該貫通孔に前記リング状金物が補強された状態の耐力と比較し、   The assumed stress is compared with the proof stress after the through-hole is formed and the ring-shaped hardware is reinforced in the through-hole,

前記想定応力が前記耐力を上回らない領域を、貫通孔の形成可能範囲として貫通孔の径又は該貫通孔の径に対応するリング状金物の規格とともに出力するものである。   A region where the assumed stress does not exceed the proof stress is output as a through-hole formable range together with the diameter of the through-hole or a ring-shaped hardware standard corresponding to the diameter of the through-hole.

また、本発明に係る鉄骨梁貫通孔の補強設計支援方法は、前記領域を、鉄骨梁の端部からの距離、又は鉄骨梁の端部からの距離及び鉄骨梁に対する許容偏心量として出力するものである。   The steel beam through-hole reinforcement design support method according to the present invention outputs the region as the distance from the end of the steel beam, or the distance from the end of the steel beam and the allowable eccentricity with respect to the steel beam. It is.

また、本発明に係る鉄骨梁貫通孔の補強設計支援システムは請求項3に記載したように、鉄骨梁のウェブに形成された貫通孔をリング状金物を用いて補強する際に用いられる鉄骨梁貫通孔の補強設計支援システムにおいて、   Further, the steel beam through hole reinforcement design support system according to the present invention is a steel beam used for reinforcing a through hole formed in a steel beam web with a ring-shaped hardware. In the reinforcement design support system for through-holes,

前記鉄骨梁の種類及びスパン長並びに長期荷重条件を入力値として入力する入力部と、   An input unit for inputting the steel beam type and span length and long-term load conditions as input values;

前記入力値に対して前記鉄骨梁に生じる応力を、前記貫通孔が形成される前の状態で算出して想定応力とするとともに、該想定応力を、前記貫通孔が形成された後であって該貫通孔に前記リング状金物が補強された状態の耐力と比較する演算部と、   The stress generated in the steel beam with respect to the input value is calculated in a state before the through-hole is formed and is assumed stress, and the assumed stress is after the through-hole is formed. A calculation unit for comparing with the proof stress of the ring-shaped hardware reinforced in the through hole;

前記想定応力が前記耐力を上回らない領域を貫通孔の径又は該貫通孔の径に対応するリング状金物の規格とともに貫通孔の形成可能範囲として出力する出力部とを備えたものである。   An output portion that outputs a region in which the assumed stress does not exceed the proof stress and outputs the through hole as well as the diameter of the through hole or a ring-shaped hardware corresponding to the diameter of the through hole.

また、本発明に係る鉄骨梁貫通孔の補強設計支援システムは、前記領域が、鉄骨梁の端部からの距離、又は鉄骨梁の端部からの距離及び鉄骨梁に対する許容偏心量として出力されるように、前記出力部を構成したものである。   In the reinforcing design support system for a steel beam through-hole according to the present invention, the region is output as a distance from the end of the steel beam, or a distance from the end of the steel beam and an allowable eccentricity with respect to the steel beam. Thus, the output unit is configured.

本発明に係る鉄骨梁貫通孔の補強設計支援システムによりリング状金物を用いて貫通孔の補強を設計するには、まず、鉄骨梁の種類及びスパン長並びに長期荷重条件を入力値として入力する。   In order to design reinforcement of a through hole using a ring-shaped hardware by the reinforcing design support system for a steel beam through hole according to the present invention, first, the type and span length of a steel beam and a long-term load condition are input as input values.

この入力工程は、キーボード、マウス等の入力部を介して行うが、鉄骨梁の種類については、ハードディスク等の記憶装置に予め蓄積しておき、これらをモニター等の出力部に出力させた上、入力部で適宜選択できるようにしておくのが望ましい。なお、入力されたデータは、メモリー、ハードディスク等の記憶装置に適宜蓄積する。   This input process is performed via an input unit such as a keyboard and a mouse, but the type of steel beam is stored in advance in a storage device such as a hard disk, and these are output to an output unit such as a monitor. It is desirable to be able to select appropriately at the input section. The input data is appropriately stored in a storage device such as a memory or a hard disk.

次に、入力値に対して鉄骨梁に生じる応力を貫通孔が形成される前の状態で演算部で算出し、想定応力とする。ここで、想定応力とは、貫通孔が形成される前、すなわち貫通孔がない状態で長期、短期、終局時の設計によってそれぞれ得られた応力を言う。   Next, the stress generated in the steel beam with respect to the input value is calculated by the calculation unit in a state before the through hole is formed, and is assumed as the assumed stress. Here, the assumed stress refers to the stress obtained by the long-term, short-term, and final design before the through-hole is formed, that is, without the through-hole.

次に、想定応力の算出工程と同時に又は相前後して、貫通孔が形成された後であって該貫通孔にリング状金物が補強された状態の耐力を評価するとともに該耐力データを記憶装置に蓄積しておく。   Next, simultaneously with or before or after the assumed stress calculation step, the proof stress is evaluated after the through hole is formed and the ring-shaped hardware is reinforced in the through hole, and the proof stress data is stored in the storage device. To accumulate.

次に、想定応力と耐力とを演算部で比較する。   Next, the assumed stress and the proof stress are compared in the calculation unit.

次に、モニター等の出力部を介して、想定応力が耐力を上回らない領域を、貫通孔の径又は該貫通孔の径に対応するリング状金物の規格とともに貫通孔の形成可能範囲として出力する。   Next, an area where the assumed stress does not exceed the proof stress is output as a through hole forming range together with the diameter of the through hole or a ring-shaped hardware standard corresponding to the diameter of the through hole via an output unit such as a monitor. .

このようにすれば、どのような規格のリング状金物で鉄骨梁のどの箇所に貫通孔を設けることができるのかを、一目で把握することができる。   In this way, it is possible to grasp at a glance which standard ring-shaped hardware can be used to provide the through-hole at which part of the steel beam.

想定応力が耐力を上回らない領域は、貫通孔の形成可能範囲として把握できる限り、その出力形態は任意であり、例えば、鉄骨梁の端部からの距離、又は鉄骨梁の端部からの距離及び鉄骨梁に対する許容偏心量として出力することができる。   As long as the assumed stress does not exceed the yield strength, the output form is arbitrary as long as it can be grasped as the range where the through hole can be formed.For example, the distance from the end of the steel beam, or the distance from the end of the steel beam and It can be output as an allowable eccentricity for the steel beam.

以下、本発明に係る鉄骨梁貫通孔の補強設計支援方法及びシステムの実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF EMBODIMENTS Embodiments of a steel beam through-hole reinforcement design support method and system according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る鉄骨梁貫通孔の補強設計支援システムを示したブロック図である。同図でわかるように、本実施形態に係る鉄骨梁貫通孔の補強設計支援システム1は、鉄骨梁のウェブに形成された貫通孔をリング状金物を用いて補強する際に用いられるものであり、鉄骨梁の種類及びスパン長並びに長期荷重条件を入力値として入力する入力部2と、入力値に対して鉄骨梁に生じる応力を、貫通孔が形成される前の状態で算出して想定応力とするとともに、該想定応力を、貫通孔が形成された後であって該貫通孔にリング状金物が補強された状態の耐力と比較して想定応力が耐力を上回らない領域を演算する演算部3と、想定応力が耐力を上回らない領域を、貫通孔の形成可能範囲として貫通孔の径に対応するリング状金物の規格とともに出力する出力部4とを備える。   FIG. 1 is a block diagram showing a reinforcing design support system for a steel beam through hole according to the present embodiment. As can be seen from the figure, the steel beam through hole reinforcement design support system 1 according to the present embodiment is used to reinforce a through hole formed in a steel beam web using a ring-shaped hardware. , The input part 2 that inputs the steel beam type and span length and long-term load conditions as input values, and the stress that occurs in the steel beam with respect to the input values calculated in the state before the through hole is formed And a calculation unit that calculates a region in which the assumed stress does not exceed the proof stress compared to the proof stress after the through-hole is formed and the ring-shaped hardware is reinforced in the through-hole. 3 and an output unit 4 that outputs a region where the assumed stress does not exceed the proof stress as a range in which the through hole can be formed, together with the standard of the ring-shaped hardware corresponding to the diameter of the through hole.

入力部2は、キーボード、マウス等で構成すればよい。また、演算部3は、例えばパソコン本体で、出力部4は、該パソコン本体に接続されたモニターでそれぞれ構成することができる。   The input unit 2 may be configured with a keyboard, a mouse, or the like. Further, the calculation unit 3 can be constituted by, for example, a personal computer main body, and the output unit 4 can be constituted by a monitor connected to the personal computer main body.

出力部4は、想定応力が耐力を上回らない領域を、鉄骨梁の端部からの距離及び鉄骨梁に対する許容偏心量として出力するようになっている。   The output unit 4 outputs a region where the assumed stress does not exceed the proof stress as a distance from the end of the steel beam and an allowable eccentricity with respect to the steel beam.

図2は、本実施形態に係る鉄骨梁貫通孔の補強設計支援システム1を実施する手順を示したフローチャートである。同図でわかるように、鉄骨梁貫通孔の補強設計支援システム1によりリング状金物を用いて貫通孔の補強を設計するには、まず、鉄骨梁の種類及びスパン長並びに長期荷重条件を、後述するように入力する(ステップ101a、101b)。   FIG. 2 is a flowchart showing a procedure for implementing the steel beam through-hole reinforcement design support system 1 according to the present embodiment. As can be seen in the figure, in order to design reinforcement of a through hole using a ring-shaped hardware by the steel beam through hole reinforcement design support system 1, first, the type and span length of the steel beam and the long-term load condition are described later. (Steps 101a and 101b).

この入力工程は、入力部2を構成するキーボード、マウス等を介して行うが、鉄骨梁の種類については、ハードディスク等の記憶装置に予め蓄積しておき、これらを出力部4であるモニターに表示させた上、該モニター上で適宜選択できるようにしておくのが望ましい。なお、入力されたデータは、メモリー、ハードディスク等に適宜蓄積する。   This input process is performed via a keyboard, mouse, or the like that constitutes the input unit 2. The types of steel beams are stored in advance in a storage device such as a hard disk and displayed on a monitor that is the output unit 4. In addition, it is desirable to be able to select appropriately on the monitor. The input data is appropriately stored in a memory, hard disk or the like.

図3は、出力部4を構成するモニターに入力値と貫通孔の形成可能範囲が出力表示されている様子を示したものである。   FIG. 3 shows a state in which the input value and the range in which the through hole can be formed are output and displayed on the monitor that constitutes the output unit 4.

同図でわかるように、モニターの左側が主として入力項目を表示するエリア31となっており、該エリアのうち、梁の情報を入力するエリア32には図4(a)に示すように、梁の名称を入力するフィールド33、位置を入力するフィールド34、梁鋼材のF値を入力するフィールド35、梁の種別及び梁のサイズを入力するフィールド36を設けてある。   As can be seen in the figure, the left side of the monitor is an area 31 for displaying input items mainly. In the area 32 for inputting beam information, the beam is shown in FIG. 4 (a). A field 33 for inputting the name of the beam, a field 34 for inputting the position, a field 35 for inputting the F value of the beam steel material, and a field 36 for inputting the type and size of the beam.

鉄骨梁の種類及びスパン長並びに長期荷重条件を入力値として入力するには、まず図4(a)に示すように、梁の名称や梁の位置といった梁に関する書誌事項を入力するとともに、梁鋼材のF値、梁の種別及び梁のサイズをエリア32の各フィールドにそれぞれ入力する(ステップ101a)。   To input the steel beam type and span length and long-term load conditions as input values, as shown in Fig. 4 (a), first enter bibliographic items about the beam, such as beam name and beam position, and beam steel materials. The F value, the beam type, and the beam size are input to each field of the area 32 (step 101a).

ここで、フィールド36においては、梁がJISシリーズ又は外法一定サイズの場合、梁のシリーズを選択入力してから、梁のサイズを選択入力する。   Here, in the field 36, when the beam is a JIS series or a constant outer size, a beam series is selected and input, and then the beam size is selected and input.

一方、図3に示したエリア31のうち、荷重条件を仮定するための情報を入力するエリア38には図4(b)に示すように、梁の内法スパン長を入力するフィールド39、梁の種類を入力するフィールド40、長期荷重を直接入力する場合のチェックを入力するフィールド41、及び長期荷重を直接入力しない場合における長期荷重の仮定条件を選択入力するフィールド42を設けてあるので、これらの各フィールドに梁の内法スパン長、梁の種類、長期荷重を直接入力する場合のチェック、長期荷重を直接入力しない場合における長期荷重の仮定条件をそれぞれ入力する(ステップ101b)。   On the other hand, of the area 31 shown in FIG. 3, an area 38 for inputting information for assuming a load condition is a field 39 for inputting the internal span length of the beam, as shown in FIG. A field 40 for inputting the type of the load, a field 41 for inputting a check when the long-term load is directly input, and a field 42 for selecting and inputting the long-term load assumption condition when the long-term load is not directly input. In this field, the internal span length of the beam, the type of the beam, a check when the long-term load is directly input, and an assumption condition of the long-term load when the long-term load is not directly input are input (step 101b).

ここで、貫通孔の径に応じたリング状金物については、後述するように、規格ごとに貫通孔の形成可能範囲が出力されるので、貫通孔の径に応じたリング状金物の情報については入力不要である。   Here, as for the ring-shaped hardware corresponding to the diameter of the through-hole, as described later, since the formable range of the through-hole is output for each standard, information on the ring-shaped hardware corresponding to the diameter of the through-hole is output. No input is required.

次に、上述した入力値に対し、鉄骨梁に生じる応力を、貫通孔が形成される前の状態で演算部3で算出し、これを想定応力とする(ステップ102)。ここで、想定応力とは、貫通孔が形成される前、すなわち貫通孔がない状態で長期、短期、終局時の設計によってそれぞれ得られた応力を言う。想定応力については、公知の構造計算方法に従って上述した入力値から適宜演算を行えばよい。   Next, with respect to the input value described above, the stress generated in the steel beam is calculated by the calculation unit 3 in a state before the through hole is formed, and this is assumed as the assumed stress (step 102). Here, the assumed stress refers to the stress obtained by the long-term, short-term, and final design before the through-hole is formed, that is, without the through-hole. The assumed stress may be appropriately calculated from the input values described above according to a known structure calculation method.

次に、算出された想定応力を、事前に評価された耐力と比較するとともに、想定応力が耐力を上回らない領域を演算部3で演算する(ステップ103)。   Next, the calculated assumed stress is compared with the proof stress evaluated in advance, and a region where the assumed stress does not exceed the proof strength is calculated by the calculation unit 3 (step 103).

耐力は、貫通孔が形成された後であって該貫通孔にリング状金物が補強された状態のものであり、許容応力度設計に基づく考え方をはじめとした公知の手法を用いて適宜評価することができる。   The proof stress is after the through-hole is formed and the ring-shaped hardware is reinforced in the through-hole, and is appropriately evaluated using a known method including a concept based on the allowable stress design. be able to.

耐力を求めるには、例えば、以下の4つの応力状態、すなわち、   In order to obtain the yield strength, for example, the following four stress states, that is,

(a)鉄骨梁のフランジ、ウェブ(貫通孔による欠損部分を除く)及びリング状金物が曲げモーメントを負担するケース(純曲げ)、   (a) Steel beam flange, web (excluding defects due to through-holes) and ring-shaped hardware bearing the bending moment (pure bending),

(b)鉄骨梁のフランジ及びリング状金物が曲げモーメントを負担し、ウェブ(貫通孔による欠損部分を除く)がせん断力を負担するケース、   (b) The case where the flange of the steel beam and the ring-shaped hardware bear the bending moment, and the web (excluding the defective part due to the through hole) bears the shearing force,

(c)鉄骨梁のフランジが曲げモーメントを負担し、リング状金物及びウェブ(貫通孔による欠損部分を除く)がせん断力を負担するケース、及び   (c) The case where the flange of the steel beam bears the bending moment, and the ring-shaped hardware and web (excluding the defective part due to the through hole) bear the shearing force, and

(d)リング状金物及びウェブ(貫通孔による欠損部分を除く)がせん断力を負担するケース(純せん断)、   (d) A case (pure shear) where the ring-shaped hardware and web (excluding the defective portion due to the through hole) bear the shearing force,

を想定し、それぞれのケースにおける耐力を曲げモーメント及びせん断力で評価する。 , And the yield strength in each case is evaluated by the bending moment and shear force.

次に、4つのケース以外のケースは、これらの曲げモーメント及びせん断力が線形に変化するものと考えて、M−Q相関曲線を作成する。このように作成されたM−Q相関曲線を図5に示す。ここで、曲線61aは長期、61bは短期、61cは終局時のM−Q相関曲線である。   Next, in cases other than the four cases, these bending moments and shearing forces are assumed to change linearly, and an MQ correlation curve is created. The MQ correlation curve created in this way is shown in FIG. Here, the curve 61a is a long term, 61b is a short term, and 61c is an MQ correlation curve at the end.

想定応力と耐力とを比較して該想定応力が耐力を上回るどうかを評価するには、ステップ102で算出された想定応力を、M−Q相関曲線と同じ座標上にプロットし、そのプロット位置がM−Q相関曲線の内側に入るかどうかで判断すればよい。   In order to compare the assumed stress with the yield strength and evaluate whether the assumed stress exceeds the yield strength, the assumed stress calculated in step 102 is plotted on the same coordinates as the MQ correlation curve, and the plot position is What is necessary is just to judge by whether it is inside the MQ correlation curve.

図5には、曲線61a,61b及び61cと併せて、一例として、任意の方向から力が加わった際に、一方の梁端から他方の梁端に向かって連続的に算出された想定応力を曲線62として示してある。想定応力は、便宜上、終局時のものだけを曲線62として示した。   In FIG. 5, in combination with the curves 61a, 61b and 61c, as an example, when a force is applied from an arbitrary direction, an assumed stress continuously calculated from one beam end to the other beam end is shown. Shown as curve 62. For the sake of convenience, the assumed stress is shown as a curve 62 only at the final time.

曲線62は、鉄骨梁の左端に相当する点AからB,C,D点を経て鉄骨梁の右端に相当する点Eまで概ね左上方向に向かって延びているが、これを終局時のM−Q相関曲線61cと比較すると、まず点Aは、わずかではあるが曲線61cで囲まれた領域に入っており、B点で曲線61cと交差していったん曲線61cの外側に出た後、上昇に転じて再び曲線61cと点Cで交差し、点Dでは曲線61cと再び交差して曲線61cの外側に出る。   The curve 62 extends from the point A corresponding to the left end of the steel beam to the point E corresponding to the right end of the steel beam through points B, C, and D. Compared with the Q correlation curve 61c, the point A first enters a region surrounded by the curve 61c, though slightly, crosses the curve 61c at the point B, and once goes out of the curve 61c, then rises. In turn, it intersects with the curve 61c again at the point C, and at the point D, it intersects with the curve 61c again and goes outside the curve 61c.

すなわち、   That is,

A点〜B点;貫通孔を設置できる範囲   A point to B point: Range in which a through hole can be installed

B点〜C点;貫通孔を設置できない範囲   B point to C point; the range where the through hole cannot be installed

C点〜D点;貫通孔を設置できる範囲   C point to D point: Range in which a through hole can be installed

D点〜E点;貫通孔を設置できない範囲   D point to E point; the range where the through hole cannot be installed

となる。 It becomes.

なお、この比較を、任意の方向とは逆の方向から力が加わった際に一方の梁端から他方の梁端に向かって算出された想定応力でも同様に行うことにより、後述する貫通孔の形成可能範囲が決定される。さらに、これら比較については、リング状金物の規格(貫通孔の径)ごとに行う。算出された演算結果については、メモリーやハードディスク等の記憶装置に適宜記憶しておく。   This comparison is performed in the same manner with the assumed stress calculated from one beam end to the other beam end when a force is applied from a direction opposite to an arbitrary direction. A formable range is determined. Further, these comparisons are made for each ring-shaped hardware standard (diameter of the through hole). The calculated calculation result is appropriately stored in a storage device such as a memory or a hard disk.

次に、メモリーや記憶装置から演算結果を読み出し、想定応力が耐力を上回らない領域を貫通孔の形成可能範囲として出力部4を構成するモニターに画像表示する(ステップ104)。ここで、貫通孔の形成可能範囲は、梁端からの距離及び貫通孔の許容偏心量として、かつ貫通孔の径に対応するリング状金物の規格ごとに画像表示する。   Next, the calculation result is read out from the memory or the storage device, and an image is displayed on the monitor that constitutes the output unit 4 in a region where the assumed stress does not exceed the proof stress, and the through hole can be formed (step 104). Here, the range in which the through hole can be formed is displayed as an image of the distance from the beam end and the allowable eccentric amount of the through hole, and for each ring-shaped hardware standard corresponding to the diameter of the through hole.

図3に示すようにモニターの右側は、主として検討結果であるところの形成可能範囲52を表示するエリア51になっており、該エリアの左下でエリア31の下に位置するエリア53には図4(c)に示すように、梁端からの距離Lh及び貫通孔の許容偏心量eを鉄骨梁上でわかりやすく図示してある。貫通孔の許容偏心量eは、同図でわかる通り、梁フランジ天端から貫通孔中心までの距離である。また、孔径比は、貫通孔径を梁成で除した数値である。   As shown in FIG. 3, the right side of the monitor is an area 51 that displays a formable range 52 that is mainly a result of the examination, and an area 53 located below the area 31 at the lower left of the area is shown in FIG. 4. As shown in (c), the distance Lh from the beam end and the allowable eccentricity e of the through hole are shown in an easy-to-understand manner on the steel beam. The permissible eccentricity e of the through hole is the distance from the top end of the beam flange to the center of the through hole, as can be seen in the figure. The hole diameter ratio is a numerical value obtained by dividing the diameter of the through hole by the beam formation.

貫通孔の形成可能範囲52は図6に示すように、梁端からの距離Lh及び貫通孔の許容偏心量eとして、かつ貫通孔の径に対応するリング状金物の規格ごとに出力されてなるものであり、例えば、内径が100mmである100Sという規格のリング状金物(ここでは、OSリングを使用。OSリングは、岡部株式会社の登録商標)を用いるのであれば、梁左端から貫通孔中心までの距離Lhが384〜6616mm、偏心量eが131〜351mmとなるように、100mmの貫通孔を形成すればよいことがわかる。   As shown in FIG. 6, the formation range 52 of the through hole is output as the distance Lh from the beam end and the permissible eccentricity e of the through hole and for each ring-shaped hardware standard corresponding to the diameter of the through hole. For example, if you use a ring-shaped metal fitting of 100S with an inner diameter of 100 mm (here, OS ring is used, OS ring is a registered trademark of Okabe Co., Ltd.) It can be seen that a 100 mm through hole should be formed so that the distance Lh to 384 to 6616 mm and the eccentricity e to 131 to 351 mm.

以上説明したように、本実施形態に係る鉄骨梁貫通孔の補強設計支援方法及びシステムによれば、貫通孔の形成可能範囲52が、貫通孔の径に対応するリング状金物の規格ごとに画面表示されるので、鉄骨梁のどの箇所に貫通孔を形成することができるのか、さらには、その際にどのような規格のリング状金物を使用すればよいのかが一目で把握することができる。   As described above, according to the steel beam through-hole reinforcement design support method and system according to the present embodiment, the through-hole formable range 52 is displayed for each ring-shaped hardware standard corresponding to the diameter of the through-hole. Since it is displayed, it can be grasped at a glance at which part of the steel beam the through-hole can be formed, and what standard ring-shaped hardware should be used at that time.

そのため、リング状金物を用いた貫通孔の補強設計を、早見表等を使った従前の方法よりもはるかに迅速かつ確実に実施することが可能となる。   Therefore, it becomes possible to carry out the reinforcement design of the through hole using the ring-shaped hardware much more quickly and reliably than the conventional method using a quick reference table or the like.

本実施形態では、想定応力が耐力を上回らない領域を、鉄骨梁の端部からの距離及び鉄骨梁に対する許容偏心量として出力するように、出力部4を構成したが、これに代えて、鉄骨梁に対する許容偏心量を省略し、鉄骨梁の端部からの距離として出力するように構成してもよい。   In the present embodiment, the output unit 4 is configured to output the region where the assumed stress does not exceed the proof stress as the distance from the end of the steel beam and the allowable eccentricity with respect to the steel beam. The allowable eccentricity with respect to the beam may be omitted, and the distance from the end of the steel beam may be output.

また、本実施形態では、貫通孔の形成可能範囲を梁端からの距離として画像表示するようにしたが、必ずしも梁端を基準にする必要はなく、例えば柱中心からの距離を採用してもよい。同様に、本実施形態では、貫通孔の形成可能範囲を梁フランジ天端からの距離としたが、これに代えて、例えば梁の部材中心軸からの距離としてもよい。   Further, in the present embodiment, the image is displayed as the distance from the beam end where the through hole can be formed. However, it is not always necessary to use the beam end as a reference. For example, the distance from the column center may be adopted. Good. Similarly, in the present embodiment, the range in which the through hole can be formed is the distance from the top end of the beam flange, but instead of this, for example, the distance from the member central axis of the beam may be used.

また、本実施形態では、貫通孔の形成可能範囲52として貫通孔の径に対応するリング状金物の規格、すなわち、”100S”、”125S”等とともに出力するようにしたが、これに代えて、貫通孔の径、すなわち”100mm”、”125mm”等とともに出力するようにしてもよい。   Further, in the present embodiment, as the through hole forming range 52, the ring-shaped hardware corresponding to the diameter of the through hole is output together with the standard, that is, “100S”, “125S”, etc. The output may be performed together with the diameter of the through hole, that is, “100 mm”, “125 mm”, and the like.

本実施形態に係る鉄骨梁貫通孔の補強設計支援システムの概略図。The schematic diagram of the reinforcement design support system of the steel beam penetration hole concerning this embodiment. 本実施形態に係る鉄骨梁貫通孔の補強設計支援方法を実施する手順を示したフローチャート。The flowchart which showed the procedure which implements the reinforcement design support method of the steel beam through-hole which concerns on this embodiment. 出力部4を構成するモニターに入力値と貫通孔の設置可能範囲が表示された様子を示した図。The figure which showed a mode that the input value and the installation possible range of the through-hole were displayed on the monitor which comprises the output part 4. FIG. 入力値が表示された様子をエリアごとに示したものであり、(a)はエリア32を示した詳細図、(b)はエリア38を示した詳細図、(c)はエリア53を示した詳細図。The state in which the input value is displayed is shown for each area. (A) is a detailed view showing the area 32, (b) is a detailed view showing the area 38, and (c) is showing the area 53. Detail view. 耐力を表すM−Q相関曲線とそれに重ねられた想定応力。MQ correlation curve representing proof stress and assumed stress superimposed on it. 貫通孔の形成可能範囲52が表示された様子を示した詳細図。The detail figure which showed a mode that the formation possible range 52 of the through-hole was displayed.

符号の説明Explanation of symbols

1 鉄骨梁貫通孔の補強設計支援システム
2 入力部
3 演算部
4 出力部
1 Steel beam through-hole reinforcement design support system 2 Input unit 3 Calculation unit 4 Output unit

Claims (4)

鉄骨梁のウェブに形成された貫通孔をリング状金物を用いて補強する際に用いられる鉄骨梁貫通孔の補強設計支援方法であって、
前記鉄骨梁の種類及びスパン長並びに長期荷重条件を入力値として入力し、
前記入力値に対して前記鉄骨梁に生じる応力を、前記貫通孔が形成される前の状態で算出して想定応力とし、
該想定応力を、前記貫通孔が形成された後であって該貫通孔に前記リング状金物が補強された状態の耐力と比較し、
前記想定応力が前記耐力を上回らない領域を、貫通孔の形成可能範囲として貫通孔の径又は該貫通孔の径に対応するリング状金物の規格とともに出力することを特徴とする鉄骨梁貫通孔の補強設計支援方法。
A method for supporting reinforcement design of a steel beam through-hole used when reinforcing a through-hole formed in a steel beam web using a ring-shaped hardware,
Enter the steel beam type and span length and long-term load conditions as input values,
The stress generated in the steel beam with respect to the input value is calculated in the state before the through hole is formed, and assumed stress,
The assumed stress is compared with the proof stress after the through-hole is formed and the ring-shaped hardware is reinforced in the through-hole,
A region where the assumed stress does not exceed the yield strength is output as a through-hole formable range together with the diameter of the through-hole or the standard of the ring-shaped hardware corresponding to the diameter of the through-hole. Reinforcement design support method.
前記領域を、鉄骨梁の端部からの距離、又は鉄骨梁の端部からの距離及び鉄骨梁に対する許容偏心量として出力する請求項1記載の鉄骨梁貫通孔の補強設計支援方法。 The method of supporting reinforcement design of a steel beam through-hole according to claim 1, wherein the region is output as a distance from the end of the steel beam, or a distance from the end of the steel beam and an allowable eccentricity with respect to the steel beam. 鉄骨梁のウェブに形成された貫通孔をリング状金物を用いて補強する際に用いられる鉄骨梁貫通孔の補強設計支援システムにおいて、
前記鉄骨梁の種類及びスパン長並びに長期荷重条件を入力値として入力する入力部と、
前記入力値に対して前記鉄骨梁に生じる応力を、前記貫通孔が形成される前の状態で算出して想定応力とするとともに、該想定応力を、前記貫通孔が形成された後であって該貫通孔に前記リング状金物が補強された状態の耐力と比較する演算部と、
前記想定応力が前記耐力を上回らない領域を貫通孔の径又は該貫通孔の径に対応するリング状金物の規格とともに貫通孔の形成可能範囲として出力する出力部とを備えたことを特徴とする鉄骨梁貫通孔の補強設計支援システム。
In the reinforcement design support system for a steel beam through-hole used when reinforcing a through-hole formed in a steel beam web with a ring-shaped hardware,
An input unit for inputting the steel beam type and span length and long-term load conditions as input values;
The stress generated in the steel beam with respect to the input value is calculated in a state before the through-hole is formed and is assumed stress, and the assumed stress is after the through-hole is formed. A calculation unit for comparing the proof stress of the ring-shaped hardware reinforced in the through hole;
An output portion that outputs a region where the assumed stress does not exceed the proof stress and outputs the through hole as well as the diameter of the through hole or a ring-shaped hardware corresponding to the diameter of the through hole is provided. Steel beam through hole reinforcement design support system.
前記出力部は、前記領域を、鉄骨梁の端部からの距離、又は鉄骨梁の端部からの距離及び鉄骨梁に対する許容偏心量として出力する請求項3記載の鉄骨梁貫通孔の補強設計支援システム。 4. The steel beam through-hole reinforcement design support according to claim 3, wherein the output unit outputs the region as a distance from an end of the steel beam, or a distance from the end of the steel beam and an allowable eccentricity with respect to the steel beam. system.
JP2008237482A 2008-08-23 2008-09-17 Method and system for supporting reinforcement design of steel beam through hole Active JP5229799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237482A JP5229799B2 (en) 2008-08-23 2008-09-17 Method and system for supporting reinforcement design of steel beam through hole

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008214727 2008-08-23
JP2008214727 2008-08-23
JP2008237482A JP5229799B2 (en) 2008-08-23 2008-09-17 Method and system for supporting reinforcement design of steel beam through hole

Publications (2)

Publication Number Publication Date
JP2010079321A true JP2010079321A (en) 2010-04-08
JP5229799B2 JP5229799B2 (en) 2013-07-03

Family

ID=42209736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237482A Active JP5229799B2 (en) 2008-08-23 2008-09-17 Method and system for supporting reinforcement design of steel beam through hole

Country Status (1)

Country Link
JP (1) JP5229799B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134737A (en) * 2011-12-27 2013-07-08 Okabe Co Ltd Reinforcement design support system for beam through-hole
CN105975778A (en) * 2016-05-09 2016-09-28 中国电力科学研究院 Method and apparatus for calculating reduced bolt hole number of connecting member
CN110580383A (en) * 2019-08-16 2019-12-17 天津大学 method for stacking stress of grouped topological radial loaded circular ring
JP2020094339A (en) * 2018-12-10 2020-06-18 清水建設株式会社 Steel beam and design method of steel beam
JP2020119437A (en) * 2019-01-28 2020-08-06 高砂熱学工業株式会社 Design device, design system, design support method for pipeline, and program
JP7423419B2 (en) 2020-05-22 2024-01-29 清水建設株式会社 Steel beam design method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105674A (en) * 2003-09-30 2005-04-21 Daiwa House Ind Co Ltd Reinforcement standard indication implement for through-hole of steel-frame beam, and reinforcement design support device
JP2007164322A (en) * 2005-12-12 2007-06-28 Hitachi Metals Techno Ltd Reinforcement designing support system and program, fabricator computer, structure computer, selection computer, construction computer, program for fabricator computer, program for structure computer, program for selection computer, and program for construction computer
JP2007172099A (en) * 2005-12-20 2007-07-05 Hitachi Metals Techno Ltd Reinforcement design support device and reinforcement design support program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105674A (en) * 2003-09-30 2005-04-21 Daiwa House Ind Co Ltd Reinforcement standard indication implement for through-hole of steel-frame beam, and reinforcement design support device
JP2007164322A (en) * 2005-12-12 2007-06-28 Hitachi Metals Techno Ltd Reinforcement designing support system and program, fabricator computer, structure computer, selection computer, construction computer, program for fabricator computer, program for structure computer, program for selection computer, and program for construction computer
JP2007172099A (en) * 2005-12-20 2007-07-05 Hitachi Metals Techno Ltd Reinforcement design support device and reinforcement design support program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134737A (en) * 2011-12-27 2013-07-08 Okabe Co Ltd Reinforcement design support system for beam through-hole
CN105975778A (en) * 2016-05-09 2016-09-28 中国电力科学研究院 Method and apparatus for calculating reduced bolt hole number of connecting member
CN105975778B (en) * 2016-05-09 2020-11-03 中国电力科学研究院 Method and device for calculating number of reduced holes of connecting member bolt
JP2020094339A (en) * 2018-12-10 2020-06-18 清水建設株式会社 Steel beam and design method of steel beam
JP7207982B2 (en) 2018-12-10 2023-01-18 清水建設株式会社 Steel beams and how to design steel beams
JP2020119437A (en) * 2019-01-28 2020-08-06 高砂熱学工業株式会社 Design device, design system, design support method for pipeline, and program
CN110580383A (en) * 2019-08-16 2019-12-17 天津大学 method for stacking stress of grouped topological radial loaded circular ring
CN110580383B (en) * 2019-08-16 2023-06-30 天津大学 Grouping topology radial loaded ring stress superposition method
JP7423419B2 (en) 2020-05-22 2024-01-29 清水建設株式会社 Steel beam design method

Also Published As

Publication number Publication date
JP5229799B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5229799B2 (en) Method and system for supporting reinforcement design of steel beam through hole
Lim et al. Stiffness prediction for bolted moment-connections between cold-formed steel members
Zhu et al. Theoretical and numerical predictions of burst pressure of pipelines
Xue et al. Parametric FEA study of burst pressure of cylindrical shell intersections
Jay et al. Spirally welded steel wind towers: Buckling experiments, analyses, and research needs
Yousefi et al. Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition
Yang et al. Criterion for preventing self-loosening of preloaded cap screws under transverse cyclic excitation
Morrison et al. Seismic enhancement of welded unreinforced flange-bolted web steel moment connections
Ghazijahani et al. Influence of a cutout on circular steel hollow sections under cyclic loading
American Society of Civil Engineers Specification for the design of cold-formed stainless steel structural members
Shaheen A new idea to improve the cyclic performance of end plate beam–column connections
Huynh et al. On the finite element modeling of the screwed connections of cold-formed steel
Shaheen et al. A novel device to improve robustness of end plate beam–column connections: Analytical model development
Cai et al. Testing, numerical and analytical modelling of self-drilling screw connections between thin steel sheets in shear
Araujo et al. Failure of a bucket-wheel stacker reclaimer: metallographic and structural analyses
Ding et al. Strength of bolted lap joints in steel sheets with small end distance
JP4761929B2 (en) Steel beam reinforcement hardware and its construction method
Xue et al. Burst analysis of cylindrical shells
JP4822413B2 (en) Reinforcement design support device, reinforcement design support program
Wang et al. Evolution of Linepipe Manufacturing and its Implications on Weld Properties and Pipeline Service
JP4855770B2 (en) Reinforcement design support system, fabricator computer, structural computer, selection computer, construction computer, reinforcement design support program, program for fabricator computer, program for structural computer, program for selection computer, program for construction computer.
Qian et al. Mode mixity for circular hollow section X joints with weld toe cracks
Soussi et al. Prediction efficiency of the ultimate load capacity of nut thread with insufficient engagement length
Tanaka Evaluation of maximum strength and optimum haunch length of steel beam-end with horizontal haunch
Takahashi et al. Evaluation of creep strength reduction factors for welded joints of Grade 122 steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150