JP2005105387A - Titanium sheet excellent in surface property - Google Patents

Titanium sheet excellent in surface property Download PDF

Info

Publication number
JP2005105387A
JP2005105387A JP2003343335A JP2003343335A JP2005105387A JP 2005105387 A JP2005105387 A JP 2005105387A JP 2003343335 A JP2003343335 A JP 2003343335A JP 2003343335 A JP2003343335 A JP 2003343335A JP 2005105387 A JP2005105387 A JP 2005105387A
Authority
JP
Japan
Prior art keywords
grain size
crystal grain
average crystal
titanium plate
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003343335A
Other languages
Japanese (ja)
Inventor
Soichiro Kojima
壮一郎 小島
Hideto Oyama
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003343335A priority Critical patent/JP2005105387A/en
Publication of JP2005105387A publication Critical patent/JP2005105387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium sheet having excellent appearance reduced in macro patterns, and useful for building materials or the like. <P>SOLUTION: The titanium sheet having excellent appearance is composed of a titanium sheet having an Fe content of 0.030 to 0.25 mass%. In the crystal grain size distribution in the case that at optional five places photographed at a magnification of 400 times at the surface of the titanium sheet, the average crystal grain size is measured at a 1 mm pitch over the length of 10 mm orthogonal to the rolling direction, the existence ratio of the part having coarse crystal grain sizes where the average crystal grain size is ≥1.25 times to the minimum average crystal grain size is ≤20%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は表面性状に優れたチタン板に関し、特に光沢度差によって生じる筋状斑(本明細書では「マクロ模様」という)が少なくて美麗な外観を有するチタン板に関するものである。   The present invention relates to a titanium plate having excellent surface properties, and more particularly to a titanium plate having a beautiful appearance with few streaky spots (referred to herein as “macro patterns”) caused by a difference in glossiness.

チタン板は、表面に形成される不動態皮膜が非常に安定で優れた耐食性と美観を有しており、しかもステンレス鋼板などに比べて軽量で且つ高い比強度を有していることから、建材用や各種ケーシング材用などとしてその需要はますます増大する傾向が覗われる。   Titanium plate is a building material because the passive film formed on the surface is very stable and has excellent corrosion resistance and aesthetics, and is lighter and has higher specific strength than stainless steel plate. There is a tendency for the demand to increase for use in various applications and casing materials.

ところで、例えば建材用のチタン板には、圧延後の焼鈍工程やその後の酸洗工程等で、局部的に光沢度の高い筋状斑(マクロ模様)を生じ、外観劣化の原因になることが知られている。そこでこうしたマクロ模様を改善すべく、焼鈍条件の適正化(再結晶粒の粒径制御など)や酸洗条件の適正化(酸洗量の調整や均質化など)など様々の方法を採用し、板材全面の光沢度が極力均一となる様に工夫されている(特許文献1など)。   By the way, for example, a titanium plate for building materials may cause streaky spots (macro pattern) having high gloss locally in an annealing process after rolling, a subsequent pickling process, and the like, which may cause appearance deterioration. Are known. Therefore, in order to improve such macro patterns, various methods such as optimization of annealing conditions (controlling the grain size of recrystallized grains, etc.) and optimization of pickling conditions (adjustment of pickling amount, homogenization, etc.) are adopted. It is devised so that the glossiness of the entire surface of the plate material is as uniform as possible (Patent Document 1, etc.).

しかし、焼鈍条件や酸洗条件などを可及的に均一且つ適正化したとしてもマクロ模様を完全に無くすことは容易でなく、少なからず生じるマクロ模様が製品板の品質を損なうことも多い。
特開平9−291326号公報
However, even if annealing conditions, pickling conditions, and the like are made as uniform and appropriate as possible, it is not easy to completely eliminate the macro pattern, and the resulting macro pattern often impairs the quality of the product plate.
Japanese Patent Laid-Open No. 9-291326

本発明は上記の様な事情に着目してなされたものであって、その目的は、マクロ模様が少なく美麗な外観を有し、建材用などとして有用なチタン板を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and an object of the present invention is to provide a titanium plate having a beautiful appearance with few macro patterns and useful as a building material.

上記課題を解決することのできた本発明に係るチタン板とは、Fe含量が0.030〜0.25質量%であるチタン板からなり、該チタン板の表面を400倍の倍率で写真撮影した任意の5箇所において、圧延方向に対し直交する長さ10mmに渡り1mmピッチで平均結晶粒径を測定したときの結晶粒径分布のうち、最小平均結晶粒径に対し平均結晶粒径が1.25倍以上である粗大な結晶粒径を有する部分の存在比率が20%以下であるところに特徴を有している。   The titanium plate according to the present invention capable of solving the above problems is composed of a titanium plate having an Fe content of 0.030 to 0.25% by mass, and the surface of the titanium plate was photographed at a magnification of 400 times. Of the crystal grain size distribution when the average grain size is measured at a pitch of 1 mm over a length of 10 mm perpendicular to the rolling direction at any five locations, the average grain size is 1. It is characterized in that the proportion of the portion having a coarse crystal grain size that is 25 times or more is 20% or less.

本発明に係る該チタン板は、マクロ模様が少なくて表面性状に優れたもので、特に建材用として極めて有用である。   The titanium plate according to the present invention has few macro patterns and excellent surface properties, and is particularly useful for building materials.

本発明によれば、JIS規格では純チタン板に属する低Fe含量のチタン板において、特にFe含量の下限値を規定し、更には圧延後の焼鈍条件などを適正に制御してFe希薄領域を生じさせないようにすることで、マクロ模様の原因となる粗大結晶の生成を抑制することにより、マクロ模様のない美麗な外観のチタン板を提供できる。   According to the present invention, the JIS standard defines a lower limit value of the Fe content particularly in a low Fe content titanium plate belonging to a pure titanium plate, and further controls the annealing conditions after rolling appropriately to control the Fe diluted region. By preventing the generation of coarse crystals that cause macro patterns, it is possible to provide a titanium plate having a beautiful appearance without macro patterns.

本発明者らは前述した様な従来技術の下で、チタン板の表面に生じるマクロ模様の発生原因を明らかにし、その原因を低減乃至解消することで、マクロ模様が実質的に観察されないチタン板を提供すべく、様々の角度から研究を進めてきた。その結果、チタン中に微量含まれるFeの量によってマクロ模様の多少に顕著な影響が現れることを知った。   Under the prior art as described above, the present inventors have clarified the cause of the occurrence of a macro pattern on the surface of a titanium plate, and reduced or eliminated the cause, so that the macro pattern is not substantially observed. We have been researching from various angles. As a result, it was found that the amount of Fe contained in a trace amount in titanium has a remarkable effect on the macro pattern.

チタン中に含まれる微量のFeは、一般に、チタン溶湯が凝固する際に吐き出されて柱状晶の間で濃化し、部分的にFe濃化領域を形成すると考えられている。ところが本発明者らが確認したところ、次の様なことが明らかになってきた。即ち、Fe含量の極めて少ないチタン(純チタン)では、凝固の初期段階で同様に柱状晶間でFeの濃化が起こるが、基本的にFeは固溶限の範囲で固相に取り込まれるため、マクロ的には部分的にFeの希薄な領域が形成される。そしてFe濃度の僅かな違いによって、チタンを板状に加工した後の焼鈍時における再結晶や粒成長挙動に差異が生じ、圧延方向に筋状に引き延ばされたFe希薄領域で基地部分よりも粗大な結晶粒が生成し、これがマクロ模様となって現われるのである。   It is considered that a very small amount of Fe contained in titanium is generally discharged during the solidification of the molten titanium and concentrated between columnar crystals to partially form an Fe concentrated region. However, the present inventors have confirmed that the following has become clear. That is, in titanium (pure titanium) with an extremely low Fe content, concentration of Fe occurs between columnar crystals in the initial stage of solidification, but basically, Fe is taken into the solid phase within the solid solution limit. In a macro manner, a partially Fe-diluted region is formed. And due to the slight difference in Fe concentration, there is a difference in recrystallization and grain growth behavior during annealing after processing titanium into a plate shape, and from the base part in the Fe dilute region stretched in a streak shape in the rolling direction Coarse crystal grains are formed and appear as a macro pattern.

即ち、再結晶時の粒成長で周囲の基地部分よりも粗大となった組織は、その後の酸洗によって光沢度が高まり、筋状もしくは帯状のマクロ模様となって現われるのである。そして、マクロ模様として認識し得る程度にFe希薄領域が形成されるのは、バルク状態でのFe濃度(すなわち、Fe含量)が0.030質量%(以下、成分含量の場合は単に%と記す)未満の純チタンを使用したときであり、Fe含量が0.030%以上であれば、仮にFe濃度差が存在していたとしても、再結晶時の粒成長が極端に促進される様なFe希薄領域は形成されなくなるのである。   That is, the structure that has become coarser than the surrounding base portion due to grain growth during recrystallization increases its glossiness by subsequent pickling, and appears as a streak-like or strip-like macro pattern. The reason why the Fe diluted region is formed to such an extent that it can be recognized as a macro pattern is that the Fe concentration in the bulk state (that is, Fe content) is 0.030% by mass (hereinafter referred to simply as “%” in the case of component content). ) When less than pure titanium is used, and if the Fe content is 0.030% or more, even if there is a difference in Fe concentration, the grain growth during recrystallization is extremely accelerated. Fe diluted regions are not formed.

但しFe含量が多過ぎると、β相を形成することで前記メカニズムとは異なった別のマクロ模様が現われるばかりでなく、建材用などとして適用する際の成形加工性も劣化してくるので、JIS−2種に規定される純チタン中のFe含量の上限である0.25%以下に抑えるべきである。   However, if the Fe content is too large, not only another macro pattern different from the above mechanism appears due to the formation of the β phase, but also the molding processability when applied as a building material is deteriorated. -2 should be suppressed to 0.25% or less which is the upper limit of the Fe content in pure titanium specified in the above.

また、チタン板表面でマクロ模様として知覚される部位は、前述の如く周囲の結晶組織に比べて結晶粒が粗大化しているが、対象となるチタン板の表面を400倍の倍率で写真撮影した任意の5箇所で、圧延方向に対し直交する長さ10mmに渡り1mmピッチで平均結晶粒径を測定したときの結晶粒径分布において、最小平均結晶粒径に対し平均結晶粒径が1.25倍以上である粗大な平均結晶粒径を持った部分が20%を超える比率で存在している場合、建材用等として好ましくないマクロ模様として知覚されること、従って、マクロ模様として実質的に認識できない程度に表面外観を高めるには、平均結晶粒径が粗大な上記部分の存在比率を20%以下に抑えればよいことを確認した。   In addition, the portion perceived as a macro pattern on the surface of the titanium plate is coarser than the surrounding crystal structure as described above, but the surface of the target titanium plate was photographed at a magnification of 400 times. In the crystal grain size distribution when the average crystal grain size is measured at a pitch of 1 mm over a length of 10 mm orthogonal to the rolling direction at an arbitrary five locations, the average crystal grain size is 1.25 with respect to the minimum average crystal grain size. If there is a portion with a coarse average crystal grain size that is more than twice as large as 20%, it is perceived as an unfavorable macro pattern for building materials, etc., and is therefore substantially recognized as a macro pattern. In order to enhance the surface appearance to such an extent that it cannot be achieved, it was confirmed that the abundance ratio of the above portion having a coarse average crystal grain size should be suppressed to 20% or less.

尚、上記の様に最小平均結晶粒径に対し平均結晶粒径が1.25倍以上である粗大な平均結晶粒径を持った部分の存在比率を20%以下に抑えるための具体的な条件は特に制限されないが、上記の様にチタン素材中のFe含量を0.030〜0.25%の範囲に調整することを前提として、熱間圧延後の焼鈍を700±20℃で3分以上、好ましくは5分以上行なうことが望ましく、また、その際の加熱時におけるチタン板の昇温速度は3.9℃/秒以上とすることが望ましい。   Specific conditions for suppressing the abundance ratio of the portion having a coarse average crystal grain size whose average crystal grain size is 1.25 times or more to the minimum average crystal grain size to 20% or less as described above. Is not particularly limited, but on the premise that the Fe content in the titanium material is adjusted to a range of 0.030 to 0.25% as described above, annealing after hot rolling is performed at 700 ± 20 ° C. for 3 minutes or more. Preferably, the heating is performed for 5 minutes or more, and the heating rate of the titanium plate during heating is preferably 3.9 ° C./second or more.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実施例1
表1に示す化学成分のJIS−1種相当の純チタンを真空アーク溶解(VAR)法によって溶製し、8.5トンの純チタン鋳塊を得る。これをβ温度域(980〜1020℃)に加熱してから鍛造し、厚さ150mmのスラブを得た。このスラブを870℃に加熱してから、1ヒートで厚さ4mmまで熱間圧延し、700℃で5分間のライン焼鈍を行ってから厚さ1.3mmにまで冷間圧延し、更に700℃で3分間のライン焼鈍を行ってチタン冷延板を得た。
Example 1
Pure titanium equivalent to JIS-1 of chemical components shown in Table 1 is melted by a vacuum arc melting (VAR) method to obtain 8.5 tons of pure titanium ingot. This was heated to a β temperature range (980 to 1020 ° C.) and then forged to obtain a slab having a thickness of 150 mm. This slab is heated to 870 ° C., then hot-rolled to a thickness of 4 mm with one heat, subjected to line annealing at 700 ° C. for 5 minutes, then cold-rolled to a thickness of 1.3 mm, and further to 700 ° C. The line was annealed for 3 minutes to obtain a titanium cold-rolled sheet.

得られた各チタン冷延板に、ソルト処理(500℃の塩浴)および酸洗(酸洗液;2%フッ酸+10%硝酸水溶液)を施し、各々について表面の結晶粒径分布を測定すると共に、表面マクロ模様の発生状況を調べた。結果を、表1に併記する。なお成分分析はスラブ段階で行い、結晶粒径分布の測定には下記の方法を採用した。   Each obtained titanium cold-rolled sheet is subjected to salt treatment (500 ° C. salt bath) and pickling (pickling solution; 2% hydrofluoric acid + 10% nitric acid aqueous solution), and the surface grain size distribution is measured for each. At the same time, the occurrence of surface macro patterns was examined. The results are also shown in Table 1. The component analysis was performed at the slab stage, and the following method was adopted for the measurement of the crystal grain size distribution.

[結晶粒径分布の測定法]
各供試チタン板の表面を400倍の顕微鏡で写真撮影し、その写真の任意の5箇所で、圧延方向に対し直交する長さ10mmの線分を引き、該線で切断される結晶粒の数を測定する。そして、10個の結晶粒が切断されたときの線分の長さ(L)を400倍のスケールで測定する(写真上の10mmが25μm相当する)。この写真の視野における平均結晶粒径を求め、該平均結晶粒径をL/10μmとする。これを10mm線分について各々5箇所で求め、合計50個の結晶粒径分布を測定する。
[Measurement method of crystal grain size distribution]
The surface of each test titanium plate was photographed with a 400 × microscope, and a line segment having a length of 10 mm perpendicular to the rolling direction was drawn at any five locations in the photograph, and the crystal grains cut by the line Measure the number. Then, the length (L) of the line segment when 10 crystal grains are cut is measured on a 400-fold scale (10 mm on the photograph corresponds to 25 μm). The average crystal grain size in the field of view of this photograph is determined, and the average crystal grain size is L / 10 μm. This is calculated | required in each 5 places about a 10 mm line segment, and a total of 50 crystal grain size distribution is measured.

表1からも明らかな如く、Fe含量が0.030%を超えるNo.1〜12では、実用上問題となる様なマクロ模様は認められず、美麗な表面肌のチタン板が得られている。また、Fe含量が0.030%であるNo.13のチタン板では、ごく軽微なマクロ模様が観察されたが、工業的には全く問題ない。また、それらNo.1〜13のチタン板は何れも、最小平均結晶粒径に対し平均結晶粒径が1.25倍以上である粗大な結晶粒径を有する部分の存在比率が20%以下である。   As can be seen from Table 1, the Fe content exceeding 0.030%. In Nos. 1 to 12, a macro pattern which causes a problem in practical use is not recognized, and a titanium plate having a beautiful surface skin is obtained. Moreover, No. whose Fe content is 0.030%. On the 13th titanium plate, a very slight macro pattern was observed, but there is no problem industrially. In addition, those No. In any of the 1 to 13 titanium plates, the abundance ratio of the portion having a coarse crystal grain size having an average crystal grain size of 1.25 times or more with respect to the minimum average crystal grain size is 20% or less.

これらに対しFe含量が0.030%未満であるNo.14〜20のチタン板では、何れも顕著な筋状のマクロ模様が観察された。しかも、上記と同様の方法で測定した平均結晶粒径分布によると、最小平均結晶粒径に対し平均結晶粒径が1.25倍以上である粗大な結晶粒径を有する部分の存在比率が何れも20%を超えている。尚、Fe以外の成分とマクロ模様の間に相関性は認められなかった。   On the other hand, No. whose Fe content is less than 0.030%. In each of the 14 to 20 titanium plates, a remarkable streak-like macro pattern was observed. Moreover, according to the average crystal grain size distribution measured by the same method as described above, the abundance ratio of the portion having a coarse crystal grain size whose average crystal grain size is 1.25 times or more with respect to the minimum average crystal grain size is any Is over 20%. Incidentally, no correlation was observed between the components other than Fe and the macro pattern.

図1は、マクロ模様が顕著に認められたNo.14のチタン板の外観写真であり、ダークグレーの基地の中に、圧延方向に対し直行方向にほぼ平行なライトグレーの筋状模様(マクロ模様)が多数認められる。図2,3は、図1における基地部分(図2)とマクロ模様部分(図3)の顕微鏡写真(倍率;400倍)であり、表面は酸洗により粒界が優先的にエッチングされて凹凸が形成されている。   FIG. 1 shows the case where the macro pattern was remarkably recognized. It is an external appearance photograph of 14 titanium plates, and many light gray streak patterns (macro patterns) almost parallel to the direction perpendicular to the rolling direction are recognized in the dark gray base. 2 and 3 are photomicrographs (magnification: 400 times) of the base portion (FIG. 2) and the macro pattern portion (FIG. 3) in FIG. Is formed.

これらの写真から、基地部分とマクロ模様部分の平均結晶粒径を切片法によって求めたところ、基地部分は約8μmであったのに対し、マクロ模様部分は約10μmであった。   From these photographs, when the average crystal grain size of the base portion and the macro pattern portion was determined by the intercept method, the base portion was about 8 μm, whereas the macro pattern portion was about 10 μm.

また図4は、基地部分とマクロ模様部分における表面から内部方向へのFeの濃度分布をSIMS(2次イオン質量分析法)によって調べた結果を示したもので、この図からも明らかな様に、基地部分に対してマクロ模様部分のFeは希薄である。このことから、チタン板中のFe含量が0.030%未満では、Feの希薄領域で結晶粒の粗大化が起り、結晶粒径の違いが酸洗によって露呈されることで、マクロ模様として表われたものと考えられる。換言すると、基地部分に対して局所的に平均結晶粒径の差が生じていても、平均結晶粒径の差が1.25倍未満であれば、マクロ模様としては認識され難く、美麗な表面のチタン板になると思われる。   FIG. 4 shows the result of the SIMS (secondary ion mass spectrometry) study of the Fe concentration distribution from the surface to the inside in the base portion and the macro pattern portion. As is apparent from FIG. The Fe of the macro pattern portion is dilute with respect to the base portion. From this, when the Fe content in the titanium plate is less than 0.030%, the coarsening of the crystal grains occurs in the Fe dilute region, and the difference in the crystal grain size is exposed by pickling, so that it is expressed as a macro pattern. It is thought that it was broken. In other words, even if there is a difference in the average crystal grain size locally with respect to the base portion, if the difference in the average crystal grain size is less than 1.25 times, it is difficult to recognize as a macro pattern, and a beautiful surface It seems to be a titanium plate.

実施例2
前記実施例1でマクロ模様が認められなかったNo.1の冷延上りチタン板に対し、実験室において各種昇温条件で700℃×3分間の焼鈍を施し、実施例1と同様の条件でソルト処理および酸洗を行なった後、マクロ模様の発生状況を調べた。
Example 2
In Example 1, no macro pattern was observed. The cold-rolled titanium plate of No. 1 was annealed at 700 ° C. for 3 minutes under various temperature rising conditions in the laboratory, and after performing salt treatment and pickling under the same conditions as in Example 1, generation of macro patterns I checked the situation.

結果は表2に示す通りであり、試験No.1a,1bでは焼鈍時の昇温速度が遅いため顕著なマクロ模様が観察された。しかも、各チタン板表面の粒径分布を前記と同様の方法で調べたところ、最小平均結晶粒径に対して1.25倍以上の粗粒物の存在比率は20%を超えていた。これに対し、焼鈍時の昇温速度を十分に高めた試験No.1c,1dでは、問題となる様なマクロ模様は観察されず、また最小平均結晶粒径に対して1.25倍以上の粒径となる粗大な粒の存在比率は20%以下であった。   The results are as shown in Table 2. In 1a and 1b, a remarkable macro pattern was observed because the temperature rising rate during annealing was slow. Moreover, when the particle size distribution on the surface of each titanium plate was examined by the same method as described above, the abundance ratio of coarse particles more than 1.25 times the minimum average crystal particle size exceeded 20%. On the other hand, test No. 1 in which the temperature rising rate during annealing was sufficiently increased. In 1c and 1d, no problematic macro pattern was observed, and the abundance ratio of coarse grains having a grain size of 1.25 times or more with respect to the minimum average crystal grain size was 20% or less.

マクロ模様を有するチタン板の外観写真(実寸)である。It is an external appearance photograph (actual size) of a titanium plate having a macro pattern. 基地部分の顕微鏡写真(400倍)である。It is a microscope picture (400 times) of a base part. マクロ模様部分の顕微鏡写真(400倍)である。It is a microscope picture (400 times) of a macro pattern part. SIMSによって求めたマクロ模様部と基地部分における表面から深さ方向へのFeイオン強度を対比して示すグラフである。It is a graph which compares and compares the Fe ion intensity | strength from the surface in the macro pattern part and base part which were calculated | required by SIMS to the depth direction.

Claims (2)

Fe含量が0.030〜0.25質量%であるチタン板からなり、該チタン板の表面を400倍の倍率で写真撮影した任意の5箇所において、圧延方向に対し直交する長さ10mmに渡り1mmピッチで平均結晶粒径を測定したときの結晶粒径分布のうち、最小平均結晶粒径に対し平均結晶粒径が1.25倍以上である粗大な結晶粒径を有する部分の存在比率が20%以下であることを特徴とするマクロ模様が少なく表面性状に優れたチタン板。   It consists of a titanium plate with an Fe content of 0.030 to 0.25% by mass, and the surface of the titanium plate is photographed at a magnification of 400 times at any five locations, over a length of 10 mm perpendicular to the rolling direction. In the crystal grain size distribution when the average crystal grain size is measured at a pitch of 1 mm, the abundance ratio of the portion having a coarse crystal grain size whose average crystal grain size is 1.25 times or more with respect to the minimum average crystal grain size is A titanium plate with less macro pattern and excellent surface properties, characterized by being 20% or less. 建材用として使用されるものである請求項1に記載のチタン板。   The titanium plate according to claim 1, which is used for building materials.
JP2003343335A 2003-10-01 2003-10-01 Titanium sheet excellent in surface property Pending JP2005105387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343335A JP2005105387A (en) 2003-10-01 2003-10-01 Titanium sheet excellent in surface property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343335A JP2005105387A (en) 2003-10-01 2003-10-01 Titanium sheet excellent in surface property

Publications (1)

Publication Number Publication Date
JP2005105387A true JP2005105387A (en) 2005-04-21

Family

ID=34537339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343335A Pending JP2005105387A (en) 2003-10-01 2003-10-01 Titanium sheet excellent in surface property

Country Status (1)

Country Link
JP (1) JP2005105387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148211A1 (en) * 2013-03-19 2014-09-25 株式会社神戸製鋼所 Titanium sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360247A (en) * 1986-08-29 1988-03-16 Olympus Optical Co Ltd Titanium material for forming
JPS63103056A (en) * 1986-10-17 1988-05-07 Kobe Steel Ltd Manufacture of pure titanium sheet
JPH10317118A (en) * 1997-05-21 1998-12-02 Nippon Steel Corp Pure titanium suited to grain size control by batch type annealing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360247A (en) * 1986-08-29 1988-03-16 Olympus Optical Co Ltd Titanium material for forming
JPS63103056A (en) * 1986-10-17 1988-05-07 Kobe Steel Ltd Manufacture of pure titanium sheet
JPH10317118A (en) * 1997-05-21 1998-12-02 Nippon Steel Corp Pure titanium suited to grain size control by batch type annealing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148211A1 (en) * 2013-03-19 2014-09-25 株式会社神戸製鋼所 Titanium sheet
JP2014205904A (en) * 2013-03-19 2014-10-30 株式会社神戸製鋼所 Titanium plate
CN105308199A (en) * 2013-03-19 2016-02-03 株式会社神户制钢所 Titanium sheet
CN105308199B (en) * 2013-03-19 2017-11-24 株式会社神户制钢所 Titanium plate

Similar Documents

Publication Publication Date Title
JP6154565B1 (en) Cu-Ni-Si-based copper alloy sheet and manufacturing method
Li et al. Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum
Kim et al. Effects of oxygen concentration and temperature on deformation behavior of Ti-Nb-Zr-Ta-O alloys
Park et al. Influence of primary annealing condition on texture development in grain oriented electrical steels
KR102302032B1 (en) High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same
WO2015046459A1 (en) Copper alloy and copper alloy sheet
JP2009013479A (en) High strength aluminum alloy material having excellent stress corrosion cracking resistance, and method for producing the same
JP7202121B2 (en) Cu-Ni-Al-based copper alloy plate material, manufacturing method thereof, and conductive spring member
KR20170125805A (en) Copper alloy material and method for producing same
JP4439003B2 (en) Titanium copper alloy excellent in strength and bending workability and manufacturing method thereof
JP2013204079A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP AND METHOD FOR PRODUCING THE SAME
Choi Aging behavior and precipitate analysis of copper-rich Cu–Fe–Mn–P alloy
Shen et al. The effect of texture on the Portevin–Le Chatelier effect in 2090 Al–Li alloy
JP2005105387A (en) Titanium sheet excellent in surface property
JP4432831B2 (en) Aluminum material having granite surface pattern and method for producing the same
WO2019132497A1 (en) Magnesium alloy sheet and manufacturing method thereof
JP2016211054A (en) Copper alloy
JP2004052008A (en) Titanium-copper alloy and manufacturing method therefor
EP3919636A1 (en) Grain-oriented electrical steel sheet and iron core using same
Muñoz-Morris et al. Softening produced by the microstructural instability of the intermetallic alloy Ti–46.5 Al–2W–0.5 Si
US11542577B2 (en) Magnesium alloy sheet and manufacturing method thereof
TW201816135A (en) Copper alloy capable of providing characteristics of high strength, high conductivity, and excellent heat resistance
JPH0774420B2 (en) Method for producing beryllium copper alloy
JP3967897B2 (en) Titanium for copper foil production drum having uniform metal structure and production method thereof
Wenwen et al. The microstructure and mechanical properties of as-extruded Ca-containing Mg–6Zn–3La alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080104

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525