JP2005105370A - Method of producing rotary body provided with pressure resistant face for sliding on circumferential face, such as gear - Google Patents

Method of producing rotary body provided with pressure resistant face for sliding on circumferential face, such as gear Download PDF

Info

Publication number
JP2005105370A
JP2005105370A JP2003341884A JP2003341884A JP2005105370A JP 2005105370 A JP2005105370 A JP 2005105370A JP 2003341884 A JP2003341884 A JP 2003341884A JP 2003341884 A JP2003341884 A JP 2003341884A JP 2005105370 A JP2005105370 A JP 2005105370A
Authority
JP
Japan
Prior art keywords
powder
sliding
gear
pressure
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003341884A
Other languages
Japanese (ja)
Inventor
Kinya Kawase
欣也 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003341884A priority Critical patent/JP2005105370A/en
Publication of JP2005105370A publication Critical patent/JP2005105370A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow a rotary body provided with a pressure resistant face for sliding on the circumferential face such as a gear which can be recycled, to increase the density of the circumferential face, and to improve the pressure resistance in its sliding face. <P>SOLUTION: When after a lubricating layer B is beforehand formed at a through hole 1 formed with a forming part 1A of teeth T on the inner circumferential face, iron powder for powder metallurgy is stored therein as raw material powder M, and then a powder compact A is subjected to press molding, the lubricity between the forming part 1A and the raw material powder is improved, and the density of the site corresponding to the teeth of a gear in the powder compact is increased to increase its facial pressure resistance for sliding. Iron powder containing only carbon powder and Fe with inevitable impurities is used as the raw material powder M, thereby a sintered alloy is easily extracted as the metals of various single elements, so that its recycling properties can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば自動車のギヤや高面圧が負荷されるスプロケット、カム等周面に摺動用耐圧面を備えた回転体の製造方法に関する。   The present invention relates to a method of manufacturing a rotating body including a sliding pressure-resistant surface on a circumferential surface of a sprocket, a cam, or the like, for example, an automobile gear or a high surface pressure.

従来、この種のものとしてしてC、Mo、Niを含有する鉄基焼結合金からなる焼結スプロケットが公知であり、また焼結スプロケットの製造方法として粉末成形体を仮焼結した後にサイジングし、次いで、この仮焼結材をプレス成形し、本焼結した後にサイジングし、そして、その際のプレス成形とサイジングを2回づつ行うことによりスプロケットの密度を増加させるものが公知である。(例えば、特許文献1参照)。   Conventionally, a sintered sprocket made of an iron-based sintered alloy containing C, Mo, and Ni has been known as this type, and sizing after pre-sintering a powder compact as a method for producing a sintered sprocket Then, it is known that the presintered material is press-molded, sized after the main sintering, and then the density of the sprocket is increased by performing press molding and sizing twice at that time. (For example, refer to Patent Document 1).

さらに高温安定性を備えた潤滑材と黒鉛粉と粉末冶金用鉄粉を混合した粉末を100℃以上に加熱し、120℃以上に加熱した金型を用いて圧縮成形を行い、その後1180℃以上の高温で焼結すると共に、前記粉末冶金用鉄粉がNi:2.0〜5.0%、Mo:0.2〜1.0%、Cu:0.5〜2.0%、残部Feおよび不可避不純物からなり、該鉄粉が鉄粒子の回りにNi,Mo,Cuの金属粒子が拡散接合されてなるサイレントチェーン用焼結スプロケットの製造方法が公知である(例えば、特許文献2参照)。   Further, a powder having a mixture of a lubricant having high temperature stability, graphite powder, and iron powder for powder metallurgy is heated to 100 ° C. or higher, compression-molded using a mold heated to 120 ° C. or higher, and then 1180 ° C. or higher. And the iron powder for powder metallurgy is Ni: 2.0-5.0%, Mo: 0.2-1.0%, Cu: 0.5-2.0%, balance Fe And a method for producing a sintered sprocket for silent chain, in which the iron powder is formed by diffusion bonding of metal particles of Ni, Mo, and Cu around the iron particles (see, for example, Patent Document 2). .

また、スプロケットの歯面の耐摩耗性を改善するため、歯面の密度を向上させる手段として、2回成形2回焼結によりスプロケットを製造したり、温間成形によりスプロケットを製造したり、さらにスプロケットの焼結成形後に、密閉型内で熱間精密鍛造を施し、機械的性質を向上させる焼結鍛造法や、スプロケットの焼結後に、ダイスとしてのギヤを焼結金属製スプロケットに噛み合わせるギヤ転造法も公知である(例えば、特許文献3参照)。
特開2002−129295号公報(段落0003,0004) 特開2001−295915号公報(段落0009,0010) 特開特開2001−25838号公報(段落0002,0003)
In addition, in order to improve the wear resistance of the tooth surface of the sprocket, as a means for improving the tooth surface density, a sprocket can be manufactured by two-time molding and two-time sintering, a sprocket can be manufactured by warm molding, After the sprocket is sintered, hot precision forging is performed in a closed mold to improve the mechanical properties, or the gear as a die meshes with the sintered metal sprocket after the sprocket is sintered. A rolling method is also known (see, for example, Patent Document 3).
JP 2002-129295 A (paragraphs 0003 and 0004) JP 2001-295915 A (paragraphs 0009, 0010) JP 2001-25838 A (paragraphs 0002, 0003)

前記合金中に含まれるC、Mo、Cu、Ni等は材料強度や耐摩耗性の向上に寄与するものである。ところで、このような合金をリサイクルするには、合金を溶融して各種の成分に分離をする必要があるが、Ni、Cuは回収し難く、この結果このような成分を有する焼結体をリサイクルし難いという問題がある。一方、Cと残部Fe及び不可避不純物のみからなる粉末冶金用鉄粉を成形し粉末成形体を成形した後に焼結した焼結体は、リサイクル性には優れるものの、強度や表面の耐摩耗性に劣る問題がある。   C, Mo, Cu, Ni and the like contained in the alloy contribute to improvement of material strength and wear resistance. By the way, in order to recycle such an alloy, it is necessary to melt the alloy and separate it into various components. However, Ni and Cu are difficult to recover, and as a result, a sintered body having such a component is recycled. There is a problem that it is difficult. On the other hand, a sintered body obtained by molding iron powder for powder metallurgy consisting only of C, the remaining Fe and inevitable impurities and then molding the powder molded body is excellent in recyclability, but has high strength and surface wear resistance. There is an inferior problem.

そして、このようなリサイクル可能な金属材料の材料強度や耐摩耗性を向上させる手段として、前記焼結鍛造法やギヤ転造法が公知であるが、このような手段による製造方法であっても、前者は表層部に欠陥が発生しやすく、後者は密度向上に限界があり、ギア、高面圧が負荷されるスプロケット、カム等周面に摺動用耐圧面を備えた回転体には適しないものであった。また2回プレス2回焼結を行った後にギア転造する方法ではコスト高が問題となる。   And, as a means for improving the material strength and wear resistance of such recyclable metal materials, the sintering forging method and the gear rolling method are known, but the manufacturing method by such means is also possible. The former is prone to defects in the surface layer, and the latter is limited in density improvement. It is not suitable for gears, sprockets loaded with high surface pressure, and rotating bodies with a pressure-resistant surface for sliding on cams, etc. It was a thing. Further, in the method of rolling the gears after performing the press twice and sintering twice, high cost becomes a problem.

そこで、本発明は、リサイクル可能であって、周面の密度を高めて摺動面における耐圧を向上することができるギア等周面に摺動用耐圧面を備えた回転体の製造方法を提供することを目的とする。   Therefore, the present invention provides a method of manufacturing a rotating body having a sliding pressure-resistant surface on a circumferential surface of a gear or the like that can be recycled and can increase the density of the peripheral surface to improve the pressure resistance on the sliding surface. For the purpose.

請求項1の発明は、内周面に摺動用耐圧面の成形部を形成した前記成形型本体に予め潤滑層を形成した後に、原料粉末としてC:0.1〜1.0重量%と残部Fe及び不可避不純物のみからなる鉄粉を収容して粉末成形体を加圧成形することを特徴とするギア等周面に摺動用耐圧面を備えた回転体の製造方法であり、成形部に潤滑層を形成することで、成形部により粉末成形体を成形する際に、成形部と粉末冶金用鉄粉との潤滑性が向上して、粉末成形体の表面密度を向上することができる。粉末成形体、ひいては摺動用耐圧面の表面の密度を向上することで、摺動用耐面圧を大きくすることができると共に、焼結体のリサイクルも行いやすい。   According to the first aspect of the present invention, a lubricant layer is formed in advance on the mold body in which a molded part of a sliding pressure-resistant surface is formed on the inner peripheral surface, and then C: 0.1 to 1.0% by weight and the balance as a raw material powder A method of manufacturing a rotating body having a sliding pressure-resistant surface on a circumferential surface of a gear or the like, characterized by containing iron powder consisting of only Fe and inevitable impurities and press-molding a powder molded body, and lubricating a molded part By forming the layer, when the powder molded body is molded by the molded section, the lubricity between the molded section and the iron powder for powder metallurgy is improved, and the surface density of the powder molded body can be improved. By improving the density of the surface of the powder compact, and hence the pressure-resistant surface for sliding, the surface pressure for sliding can be increased, and the sintered body can be easily recycled.

請求項2の発明は、前記潤滑層を、潤滑剤を溶媒に溶解した溶液を前記成形部に付着させ、該溶液を蒸発させた晶出層により形成することを特徴とする請求項1記載のギア等周面に摺動用耐圧面を備えた回転体の製造方法であり、晶出層により成形部の潤滑層を均一な層に形成することができ、このため成形部に粉末冶金用鉄粉を収容し前記粉末成形体を成形した際、粉末成形体、ひいては摺動用耐圧面の表面の密度を均一にすることができる。粉末成形体、ひいては摺動用耐圧面の表面の密度を均一にすることで、摺動用耐面圧をいっそう大きくすることができる。   The invention according to claim 2 is characterized in that the lubricating layer is formed by a crystallization layer in which a solution in which a lubricant is dissolved in a solvent is adhered to the molding portion and the solution is evaporated. This is a method of manufacturing a rotating body having a sliding pressure-resistant surface on the circumferential surface of a gear, etc., and a lubrication layer of a molding part can be formed into a uniform layer by a crystallization layer. For this reason, iron powder for powder metallurgy is formed in the molding part. When the powder compact is accommodated and the powder compact is molded, the density of the powder compact, and hence the pressure-resistant surface for sliding, can be made uniform. The surface pressure for sliding can be further increased by making the density of the powder compact, and thus the surface of the pressure-resistant surface for sliding uniform.

請求項3の発明は、前記粉末成形体を焼結した焼結体を転造した後、さらに熱処理することを特徴とする前記請求項1又は2記載のギア等周面に摺動用耐圧面を備えた回転体の製造方法であり、ダイスを焼結体の周面に噛み合わせることで、周面を正確に形成することができると共に緻密にすることができる。摺動用耐圧面の精度を向上でき、さらに密度を向上して摺動用耐面圧を向上することができる。   The invention according to claim 3 is characterized in that after the sintered compact obtained by sintering the powder compact is rolled, heat treatment is further performed, and the sliding pressure-resistant surface is provided on the circumferential surface of the gear according to claim 1 or 2. This is a manufacturing method of a rotating body provided, and the peripheral surface can be formed accurately and densely by meshing the die with the peripheral surface of the sintered body. The accuracy of the sliding pressure resistant surface can be improved, and the density can be further improved to improve the sliding resistant pressure.

請求項1の発明によれば、粉末成形体、ひいては摺動用耐圧面の表面の密度を向上することで、摺動用耐面圧を大きくすることができると共に、焼結体のリサイクルも行いやすい。   According to the first aspect of the invention, by improving the density of the powder compact, and thus the surface of the sliding pressure-resistant surface, the sliding surface pressure can be increased and the sintered body can be easily recycled.

請求項2の発明によれば、粉末成形体、ひいては摺動用耐圧面の表面の密度を均一にすることで、摺動用耐面圧をいっそう大きくすることができる。   According to the invention of claim 2, the surface pressure for sliding can be further increased by making the density of the surface of the powder compact, and thus the surface of the pressure-resistant surface for sliding uniform.

請求項3の発明によれば、、摺動用耐圧面の精度を向上でき、さらに密度を向上して摺動用耐面圧を向上することができる。   According to the invention of claim 3, the accuracy of the sliding pressure-resistant surface can be improved, and the density can be improved to improve the sliding surface pressure.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。例えば、潤滑層としては、晶出層により形成するものではなく、成形部に高級脂肪酸系潤滑剤を塗布して潤滑層を形成したり、或いは高級脂肪酸系潤滑剤を水に分散したものを、成形部に吹き付け等により塗布し、そして加熱された成形型本体により水を蒸発させて潤滑層を形成してもよい。また、前記実施例において潤滑剤を溶媒に溶解した溶液とは、潤滑剤を溶媒に一部でも溶解したものを含んでいるものでもよい。また、前記原料粉末を充填する前に、前記溶液を前記成形部に付着させ、該溶液を蒸発させて前記成形部に晶出層を形成した後にパンチを前記成形部に嵌合して粉末成形体を成形するものであるが、前記原料粉末を充填する前に必ず溶液を前記成形部に付着させ、該溶液を蒸発させて前記成形部に晶出層を形成する必要はなく、例えば始めの粉末成形体の成形後に、溶液を前記成形部に付着させずに始めの晶出層を利用してそのまま原料粉末を充填して次の成形を行い、次に3回目の原料粉末を充填する前に溶液を前記成形部に付着させ、該溶液を蒸発させて前記成形部に2回目の晶出層を形成するように断続的な連続により溶液を前記成形部に付着させるようにしてもよい。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention. For example, the lubricating layer is not formed by a crystallization layer, but a higher fatty acid-based lubricant is applied to the molded part to form a lubricating layer, or a higher fatty acid-based lubricant dispersed in water, The lubricating layer may be formed by coating the molding part by spraying or the like and evaporating water with a heated mold body. In addition, the solution in which the lubricant is dissolved in the solvent in the embodiment may include a solution in which the lubricant is partially dissolved in the solvent. Further, before filling the raw material powder, the solution is attached to the molding part, and the solution is evaporated to form a crystallization layer in the molding part, and then a punch is fitted into the molding part to form a powder. It is not necessary to form a crystallized layer in the molded part by always attaching the solution to the molded part before filling the raw material powder and evaporating the solution. After forming the powder compact, before the third raw material powder is filled, the raw material powder is filled as it is using the first crystallization layer without adhering the solution to the molded part. Alternatively, the solution may be attached to the molding part in an intermittent manner so that the solution is adhered to the molding part and the solution is evaporated to form a second crystallization layer in the molding part.

以下、本発明の実施例1を添付図を参照して説明する。実施例は図6に示すような円盤状本体Bの外周面に沿って摺動用耐圧面たる歯Tを並設した回転体としてのギアGの場合を示している。尚、歯Tにおける具体的な摺動用耐圧面はチェーンのローラが接触する歯面である。   Embodiment 1 of the present invention will be described below with reference to the accompanying drawings. The embodiment shows the case of a gear G as a rotating body in which teeth T, which are pressure-resistant surfaces for sliding, are arranged along the outer peripheral surface of the disc-shaped main body B as shown in FIG. In addition, the concrete pressure | voltage resistant surface for sliding in the tooth | gear T is a tooth surface which the roller of a chain contacts.

次に製造工程について説明する。図1は第1工程を示しており、同図において、1は後述する圧粉体たる粉末成形体Aを成形する成形型本体たるダイ2に形成した貫通孔であり、該貫通孔2の下方より下パンチ3が嵌合され、一方貫通孔2の上方より上パンチ4が嵌合されるようになっている。そして、貫通孔1の内周面により前記歯Tが成形されるように成形部1Aが内周面により形成されている。成形部1Aは歯Tを成形するため、貫通孔2の軸芯Zを中心として凹凸が環状に形成されている。さらに、ダイ2の上面に原料粉末Mを供給する原料供給体たるフィーダー5が摺動自在に設けられている。さらに、貫通孔2の上方に潤滑剤の溶液Lを噴霧して溶液Lを成形部1Aに付着する付着手段たる噴霧部6が設けられており、該噴霧部6は貫通孔2に臨むように設けられると共に、溶液Lのタンク(図示せず)に自動開閉弁(図示せず)を介して接続されている。また、貫通孔1と該貫通孔1に嵌合した下パンチ3とで形成される粉末成形体Aの成形部1Aの周囲にヒータ7と温度検出部8が設けられ、そして、これらヒータ7と温度検出部8は温度制御手段たる温度制御装置9に接続され、該温度制御装置9により貫通孔2の温度を溶液Lの蒸発温度より高く、かつ潤滑剤の溶融温度よりも低く制御するようになっている。   Next, the manufacturing process will be described. FIG. 1 shows a first step. In FIG. 1, reference numeral 1 denotes a through hole formed in a die 2 which is a mold body for forming a powder compact A which is a green compact, which will be described later, below the through hole 2. The lower punch 3 is fitted, and the upper punch 4 is fitted from above the one through-hole 2. And the molding part 1A is formed by the inner peripheral surface so that the tooth T is formed by the inner peripheral surface of the through hole 1. In order to form the teeth T, the forming portion 1 </ b> A is formed with irregularities in an annular shape around the axis Z of the through hole 2. Further, a feeder 5 as a raw material supply body for supplying the raw material powder M is slidably provided on the upper surface of the die 2. Further, a spray part 6 is provided above the through-hole 2 as an attaching means for spraying the lubricant solution L and depositing the solution L on the molding part 1A. The spray part 6 faces the through-hole 2. It is provided and connected to a tank (not shown) of the solution L via an automatic opening / closing valve (not shown). In addition, a heater 7 and a temperature detection unit 8 are provided around a molded part 1A of the powder molded body A formed by the through hole 1 and the lower punch 3 fitted in the through hole 1. The temperature detection unit 8 is connected to a temperature control device 9 as temperature control means, and the temperature control device 9 controls the temperature of the through hole 2 to be higher than the evaporation temperature of the solution L and lower than the melting temperature of the lubricant. It has become.

そして、第1工程においては、予め温度制御装置9により制御されたヒータ7の熱により成形部1Aの周面は溶液Lの蒸発温度より高く、かつ潤滑剤の溶融温度よりも低く設定されている。そして、貫通孔1に下パンチ3が嵌合して有底な成形用空間部が形成されている状態で、自動開閉弁を開いて噴霧部6より潤滑剤の溶液Lを、ヒータ7により加熱されたダイ2の成形部1Aに吹き付けて付着させる。この結果、溶液Lは蒸発、乾燥して成形部1Aには結晶が成長して前記潤滑剤の晶出層Bが潤滑層として均一に形成される。   In the first step, the peripheral surface of the molding part 1A is set higher than the evaporation temperature of the solution L and lower than the melting temperature of the lubricant by the heat of the heater 7 controlled in advance by the temperature control device 9. . Then, with the lower punch 3 fitted into the through hole 1 to form a bottomed molding space, the automatic open / close valve is opened and the lubricant solution L is heated by the heater 7 from the spray section 6. The molded part 1A of the die 2 is sprayed and attached. As a result, the solution L evaporates and dries, and crystals grow in the molded part 1A, so that the crystallization layer B of the lubricant is uniformly formed as a lubricating layer.

次に図2の第2工程に示すように、フィーダー5が前進して原料粉末Mを有底状態の貫通孔1に落下させて充填する。前記原料粉末Mとしては、符号M1で示した炭素C:0.1〜1.0重量%と残部がM2で示したFe及び不可避不純物のみからなる粉末冶金用鉄粉である。尚、粉末冶金用鉄粉には必要に応じて潤滑剤、例えばステアリン酸リチウムを混合するようにしてもよい。   Next, as shown in the second step of FIG. 2, the feeder 5 moves forward to drop the raw material powder M into the bottomed through-hole 1 and fill it. The raw material powder M is iron powder for powder metallurgy consisting of carbon C: 0.1 to 1.0% by weight indicated by reference numeral M1 and the balance of Fe and inevitable impurities indicated by M2. In addition, you may make it mix | blend a lubricant, for example, a lithium stearate, with the iron powder for powder metallurgy as needed.

次に図3の第3工程にに示すように、ダイ2を下方に移動させると共に、貫通孔1に上方から上パンチ4を挿入し、上パンチ4と下パンチ3とで挟むようにして原料粉末Mを圧縮する。この時、下パンチ3は、下端が固定されており動かないようになっている。そして、この第3工程において、ギアGの歯Tを形成する成形部1Aに接する或いはその近傍の原料粉末Mは、潤滑剤により形成されている晶出層Bに潤滑状態で圧縮される。   Next, as shown in the third step of FIG. 3, the die 2 is moved downward, the upper punch 4 is inserted into the through hole 1 from above, and the raw material powder M is sandwiched between the upper punch 4 and the lower punch 3. Compress. At this time, the lower punch 3 is fixed at the lower end so as not to move. And in this 3rd process, the raw material powder M which contact | connects the shaping | molding part 1A which forms the tooth | gear T of the gear G, or its vicinity is compressed by the crystallization layer B currently formed with the lubricant in the lubrication state.

このように加圧成形された粉末成形体Aは、ダイ2がさらに下方に下がり、図4の第4工程で示すように下パンチ3の上面がダイ2の上面と略同じ高さになったとき取出し可能となる。この取り出しの際においても、潤滑剤により形成されている晶出層Bに粉末成形体AにおけるギアGの歯Tを形成する部位は潤滑状態で接触する。このようにして、粉末成形体Aが取出された後、再び第1工程に戻って再び成形部1Aに溶液Lが噴霧されて晶出層Bが形成された後に、原料粉末Mが成形部1Aに充填されるものである。   In the powder compact A thus press-molded, the die 2 is further lowered, and the upper surface of the lower punch 3 becomes substantially the same height as the upper surface of the die 2 as shown in the fourth step of FIG. Sometimes it can be taken out. Also at the time of taking out, the site | part which forms the tooth | gear T of the gear G in the powder molded object A contacts the crystallization layer B formed with the lubricant in a lubrication state. In this way, after the powder compact A is taken out, the process returns to the first step again, and after the solution L is sprayed again on the molding part 1A to form the crystallization layer B, the raw material powder M is transformed into the molding part 1A. Is to be filled.

このようにして粉末成形体Aを成形した後に、第5工程として粉末成形体Aを図示しない焼結炉に収容して雰囲気ガス中で焼結を行うものである。   After forming the powder compact A in this manner, as a fifth step, the powder compact A is accommodated in a sintering furnace (not shown) and sintered in an atmospheric gas.

この後、焼結して得られたものを研磨などの後処理を行ってギアGの製造を行うものである。   Thereafter, the gear G is manufactured by performing post-processing such as polishing on the product obtained by sintering.

尚、焼結して得られたものを必要に応じて図5で示した転造による第6工程による転造及び熱処理を行う。これは粉末成形体Aを第5工程で焼結した焼結体の外周面を、歯Tの歯形を型取った凹状の転造用工具11に押接して、前記転造用工具11の歯形を転写して前記ギアGにおける歯Tの歯面の密度を向上し、さらに熱処理を行うことで歯Tの硬度などを向上するものである。   In addition, the thing obtained by sintering is subjected to rolling and heat treatment in the sixth step by rolling shown in FIG. 5 as necessary. This is because the outer peripheral surface of the sintered body obtained by sintering the powder compact A in the fifth step is pressed against the concave rolling tool 11 shaped with the tooth profile of the tooth T, and the tooth profile of the rolling tool 11 is pressed. Is transferred, the density of the tooth surface of the tooth T in the gear G is improved, and the hardness of the tooth T is improved by performing heat treatment.

尚、晶出層を形成するための前記潤滑剤は、水溶性のりん酸系金属塩として、りん酸水素2カリウム、りん酸水素2ナトリウム、りん酸3カリウム、りん酸3ナトリウム、ポリりん酸カリウム、ポリりん酸ナトリウム、りん酸リボフラビンカリウム、りん酸リボフラビンナトリウム等の様に構造中にりん酸系の基を含むものが好適である。   The lubricant for forming the crystallization layer is a water-soluble phosphate metal salt such as dipotassium hydrogen phosphate, disodium hydrogen phosphate, tripotassium phosphate, trisodium phosphate, polyphosphoric acid. Those containing a phosphate group in the structure such as potassium, sodium polyphosphate, potassium riboflavin phosphate, sodium riboflavin phosphate and the like are preferred.

水溶性の硫黄酸塩系金属塩として、硫酸カリウム、硫酸ナトリウム、亜硫酸カリウム、亜硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸ナトリウム、ドデシル硫酸カリウム、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸カリウム、ドデシルベンゼン硫酸ナトリウム、食用青色1号(C37H34N2Na2O9S3)、食用黄色5号(C16HlON2Na2O7S2)、アスコルビン酸硫酸エステルカリウム、アスコルビン酸硫酸エステルナトリウム等の様に構造中に硫酸系の基を含むものが好適である。 As water-soluble sulphate metal salts, potassium sulfate, sodium sulfate, potassium sulfite, sodium sulfite, potassium thiosulfate, sodium thiosulfate, potassium dodecyl sulfate, sodium dodecyl sulfate, potassium dodecylbenzene sulfate, sodium dodecylbenzene sulfate, edible Blue No. 1 (C 37 H 34 N 2 Na 2 O 9 S 3 ), Edible Yellow No. 5 (C 16 H lO N 2 Na 2 O 7 S 2 ), potassium ascorbate sulfate, sodium ascorbate sulfate, etc. Thus, those containing a sulfuric acid group in the structure are preferred.

水溶性のほう酸系金属塩として、四ほう酸カリウム、四ほう酸ナトリウム等の様に構造中にほう酸系の基を含むものが好適である事が表1〜3からわかる。   As shown in Tables 1 to 3, it is preferable that the water-soluble boric acid metal salt includes a boric acid group in the structure, such as potassium tetraborate and sodium tetraborate.

水溶性のけい酸系金属塩として、けい酸カリウム、けい酸ナトリウム等の様に構造中にけい酸系の基を含むものが好適である。   As the water-soluble silicate metal salt, those containing a silicate group in the structure, such as potassium silicate and sodium silicate, are preferable.

水溶性のタングステン酸系金属塩として、タングステン酸カリウム、タングステン酸ナトリウムの様に構造中にタングステン酸系の基を含むものが好適である。   As the water-soluble tungstic acid metal salt, those containing a tungstic acid group in the structure, such as potassium tungstate and sodium tungstate, are preferable.

水溶性の有機酸系金属塩として、酢酸カリウム、酢酸ナトリウム、安息香酸カリウム、安息香酸ナトリウム、アスコルビン酸カリウム、アスコルビン酸ナトリウム、ステアリン酸カリウム、ステアリン酸ナトリウム等の様に構造中に有機酸系の基を含むものが好適である。   As water-soluble organic acid metal salts, organic acid-based metal salts such as potassium acetate, sodium acetate, potassium benzoate, sodium benzoate, potassium ascorbate, sodium ascorbate, potassium stearate, sodium stearate, etc. Those containing groups are preferred.

水溶性の窒素酸系金属塩として、硝酸カリウム、硝酸ナトリウム等の様に構造中に窒素酸系の基を含むものが好適である事が表1〜3からわかる。   As shown in Tables 1 to 3, it is preferable that the water-soluble nitrogen acid metal salt includes a nitrogen acid group in the structure, such as potassium nitrate and sodium nitrate.

水溶性の炭酸系金属塩として、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の様に構造中に炭酸系の基を含むものが好適である。   As the water-soluble carbonate metal salt, those containing a carbonate group in the structure such as potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate and the like are preferable.

これらの挙げられた様な潤滑剤の1種又は2種以上を用いることができる。   One or more of these listed lubricants can be used.

そして、水溶性潤滑剤の濃度は、前記晶出層Bの厚みが前記潤滑剤の1分子により形成される濃度以上で飽和濃度未満とする。具体的には1PPM〜飽和濃度とする。これは、1PPM未満では、成形型に付着する潤滑剤が多量でなければ安定して潤滑性が得られる晶出相の被膜が得難いためであり、飽和濃度以上では、潤滑剤が溶解しきれず固体となって沈殿し、噴霧部6による付着を行なう場合、噴務部6が詰まる等の不具合が発生するためである。   And the density | concentration of a water-soluble lubricant shall be the density | concentration more than the density | concentration formed with one molecule | numerator of the said lubricant, and less than a saturated density | concentration. Specifically, it is set to 1 PPM to a saturated concentration. This is because if the amount of lubricant adhering to the mold is less than 1 PPM, it is difficult to obtain a crystallized phase coating that can stably obtain lubricity. Above the saturation concentration, the lubricant cannot be completely dissolved and is solid. This is because when the particles are deposited and adhered by the spraying part 6, problems such as clogging of the spraying part 6 occur.

また、溶解する水は、蒸留水やイオン交換水といった金属成分やハロゲン元素成分を取り除いた水が好ましい。潤滑剤の種類によっては、容易に水中の金属成分と置換して沈殿物を生成して不具合を起こす場合があり、また、ハロゲン成分が多量に含まれていた場合、圧粉体が結びやすくなったり、焼結時にダイオキシン等の有害物質が生成したりする不具合を起こす場合があるためである。   The water to be dissolved is preferably water from which metal components such as distilled water and ion exchange water and halogen element components have been removed. Depending on the type of lubricant, it may be easily replaced with metal components in water to cause precipitation, and if a large amount of halogen components are contained, the green compact is likely to bind. This is because there may be a problem that harmful substances such as dioxin are generated during sintering.

さらに、潤滑剤の種類によっては、微生物が繁殖して腐りやすいという問題があり、成分が変化したり悪臭が発生する場合があるが、防腐剤を添加することで微生物の発生を防止することができる。防腐剤には、安息香酸ナトリウム等の潤滑性を損なわず、人体に対する有害性が低く、ハロゲン元素成分を含まないものが好ましい。   In addition, depending on the type of lubricant, there is a problem that microorganisms propagate and are likely to rot, and the ingredients may change or a bad odor may be generated, but the addition of a preservative can prevent the generation of microorganisms. it can. Preservatives that do not impair the lubricity such as sodium benzoate, are less harmful to the human body, and do not contain a halogen element component are preferable.

また、潤滑剤の種類によっては、泡が発生しやすいという問題があり、溶液Lを成形部1Aに付着させたときに、泡が発生して原料粉末が固まるおそれがあるが、アルコールやケトンといった水溶性の溶媒や消泡剤を添加することで泡の発生を防止することができる。アルコールやケトンには、エタノールやアセトン等の潤滑性を損なわず、人体に対する有害性が低く、ハロゲン元素成分を含まないものが好ましい。   Further, depending on the type of lubricant, there is a problem that bubbles are likely to be generated, and when the solution L is adhered to the molding part 1A, there is a possibility that bubbles are generated and the raw material powder is hardened. Generation of foam can be prevented by adding a water-soluble solvent or an antifoaming agent. Alcohols and ketones are preferably those that do not impair the lubricity of ethanol, acetone, etc., have low toxicity to the human body, and do not contain a halogen element component.

アルコールやケトンといった水溶性の溶媒には、水よりも沸点や蒸発潜熱の低いものを使用することで、蒸発、乾燥時間を短くしたり、成形型本体2を高温にする必要がなくなる場合もある。   By using a water-soluble solvent such as alcohol or ketone having a boiling point or a latent heat of evaporation lower than that of water, there is a case where it is not necessary to shorten the evaporation and drying time or to make the mold body 2 high temperature. .

これらの潤滑剤及び添加物、溶解する水にはハロゲン元素が含まれていると、炭素成分の共存中で焼結するという鉄系の粉末冶金でよく使用される条件ではダイオキシン等の微量で毒性の高い成分の生成が懸念されるため、ハロゲン元素を含ませないことが好ましい。   These lubricants, additives, and dissolved water contain toxic elements in trace amounts of dioxins and the like under the conditions often used in iron-based powder metallurgy that sinters in the presence of carbon components when halogen elements are included. Therefore, it is preferable not to include a halogen element.

成形型本体2の温度や混合した原料粉末Mは、高温にした方が乾燥時間の短縮や温間成形の効果等があるため好ましいが、不具合がなければ常温でもよい。高温にする場合は、原料粉末が固まったり潤滑剤が金型(成形部1A)の底へ流れ落ちるため安定して温間成形することが困難であるため設定温度で溶融しない潤滑剤の選定が好ましいが、不具合がなければ半溶融状態や高粘性状態、2種以上の潤滑剤配合の1種以上が溶融状態でもよい。従来使用されていたステアリン酸亜鉛は約120°C、ステアリン酸リチウムは約220°Cで溶融するためそれ以上の温度で安定して温間成形することが困難であったが、本発明の潤滑剤の中には220°C以上で溶融しないものは多数存在し、中には1000°Cを超えても溶融しないものも含まれているため、金型(成形部1A)の耐熱温度や原料粉末の酸化温度ぎりぎりまで高温にして容易に安定して温間成形することが可能である。   The temperature of the mold body 2 and the mixed raw material powder M are preferably set to a high temperature because of the effect of shortening the drying time and the effect of warm forming, but may be room temperature if there is no problem. In the case of a high temperature, it is difficult to perform stable warm molding because the raw material powder is hardened or the lubricant flows down to the bottom of the mold (molded part 1A). Therefore, it is preferable to select a lubricant that does not melt at the set temperature. However, if there is no problem, one or more of a semi-molten state, a highly viscous state, and two or more lubricant blends may be in a molten state. Conventionally used zinc stearate melts at about 120 ° C and lithium stearate melts at about 220 ° C, so it was difficult to perform stable warm molding at higher temperatures. There are many agents that do not melt at 220 ° C or higher, and some of them do not melt even when they exceed 1000 ° C, so the heat resistance temperature and raw material of the mold (molded part 1A) It is possible to perform warm molding easily and stably at a temperature as high as the oxidation temperature of the powder.

以上のように、前記実施例では内周面に歯Tの成形部1Aを形成した貫通孔1に予め潤滑層Bを形成した後に、粉末冶金用鉄粉を収容して粉末成形体を加圧成形する際、成形部1Aと原料粉末との潤滑性を向上して、粉末成形体における歯Tに相当する部位の密度を高めて摺動用耐面圧の向上を図ることができると共に、原料粉末Mとして炭素粉とFe粉及び不可避不純物からなる鉄粉とすることにより、焼結合金を各種の単元素の金属として取り出し易くリサイクル性を向上することができる。   As described above, in the embodiment, after the lubricating layer B is formed in advance in the through hole 1 in which the molded portion 1A of the tooth T is formed on the inner peripheral surface, the powder metallurgy iron powder is accommodated and the powder compact is pressed. When molding, the lubricity between the molded part 1A and the raw material powder can be improved, the density of the portion corresponding to the tooth T in the powder molded body can be increased, and the sliding surface pressure can be improved. By making the iron powder consisting of carbon powder, Fe powder and inevitable impurities as M, the sintered alloy can be easily taken out as various single element metals, and the recyclability can be improved.

また、前記潤滑層を、潤滑剤を溶媒に溶解した溶液を前記成形部1Aに付着させ、該溶液を蒸発させた晶出層Bにより形成することにより、歯Tを成形する成形部1Aの潤滑層を均一な層に形成することができ、粉末成形体A、ひいては歯Tの表面の密度を均一にすることで、摺動用耐面圧をいっそう大きくすることができる。   Further, the lubricating layer is formed by a crystallization layer B obtained by adhering a solution obtained by dissolving a lubricant in a solvent to the forming portion 1A and evaporating the solution, thereby lubricating the forming portion 1A for forming the teeth T. The layer can be formed into a uniform layer, and the surface pressure for sliding can be further increased by making the density of the surface of the powder compact A, and thus the tooth T uniform.

さらに、前記粉末成形体Aを焼結した焼結体を転造した後、さらに熱処理することで、歯Tの金属組織を緻密にして摺動用耐面圧をいっそう向上することができる。   Furthermore, after rolling the sintered body obtained by sintering the powder compact A, the metal structure of the tooth T can be made dense by further heat treatment, and the sliding surface pressure can be further improved.

以上のように本発明にかかる回転体としては、高面圧が負荷されるスプロケット、カム等にも適用できる。この場合には歯、カム面が摺動用耐圧面となる。   As described above, the rotating body according to the present invention can also be applied to sprockets, cams and the like to which high surface pressure is applied. In this case, the teeth and the cam surface are the pressure-resistant surfaces for sliding.

本発明の第1実施例を示す第1工程の断面図である。It is sectional drawing of the 1st process which shows 1st Example of this invention. 本発明の第1実施例を示す第2工程の断面図である。It is sectional drawing of the 2nd process which shows 1st Example of this invention. 本発明の第1実施例を示す第3工程の断面図である。It is sectional drawing of the 3rd process which shows 1st Example of this invention. 本発明の第1実施例を示す第4工程の断面図である。It is sectional drawing of the 4th process which shows 1st Example of this invention. 本発明の第1実施例を示す第6工程の平面図である。It is a top view of the 6th process showing the 1st example of the present invention. 本発明の第1実施例を示すギアの平面図である。It is a top view of the gear which shows 1st Example of this invention.

符号の説明Explanation of symbols

1A 成形部
2 成形型本体
11 転造用工具
A 粉末成形体
B 晶出層(潤滑層)
M 原料粉末
G ギア(回転体)
T 歯(摺動用耐圧面)

1A Molding part 2 Mold body
11 Rolling tool A Powder compact B Crystallized layer (lubricant layer)
M Raw material powder G Gear (Rotating body)
T teeth (sliding pressure-resistant surface)

Claims (3)

粉末冶金用の原料粉末を成形型本体に収容して粉末成形体を加圧成形した後、該粉末成形体を焼結して形成するギア等周面に摺動用耐圧面を備えた回転体の製造方法において、内周面に前記摺動用耐圧面の成形部を形成した前記成形型本体に予め潤滑層を形成した後に、前記原料粉末としてC:0.1〜1.0重量%とFe及び不可避不純物のみからなる鉄粉を収容して前記粉末成形体を加圧成形することを特徴とするギア等周面に摺動用耐圧面を備えた回転体の製造方法。   A rotating body having a pressure-resistant surface for sliding on a circumferential surface of a gear or the like formed by sintering a powder compact after the powder powder for metallurgy is contained in a molding die body and press-molding the powder compact. In the manufacturing method, after forming a lubrication layer in advance on the mold main body in which the molded part of the pressure-resistant surface for sliding is formed on the inner peripheral surface, C: 0.1 to 1.0 wt%, Fe and A method for producing a rotating body comprising a sliding pressure-resistant surface on a circumferential surface of a gear or the like, wherein iron powder comprising only inevitable impurities is accommodated and the powder compact is pressure-molded. 前記潤滑層を、潤滑剤を溶媒に溶解した溶液を前記成形部に付着させ、該溶液を蒸発させた晶出層により形成することを特徴とする請求項1記載のギア等周面に摺動用耐圧面を備えた回転体の製造方法。   The sliding surface on the circumferential surface of the gear according to claim 1, wherein the lubricating layer is formed by a crystallization layer obtained by adhering a solution obtained by dissolving a lubricant in a solvent to the molding portion and evaporating the solution. A method of manufacturing a rotating body having a pressure-resistant surface. 前記粉末成形体を焼結した焼結体を転造した後、さらに熱処理することを特徴とする前記請求項1又は2記載のギア等周面に摺動用耐圧面を備えた回転体の製造方法。

3. The method of manufacturing a rotating body having a sliding surface with a pressure-resistant surface on a gear or the like according to claim 1, wherein the sintered body obtained by sintering the powder compact is rolled and then further heat-treated. .

JP2003341884A 2003-09-30 2003-09-30 Method of producing rotary body provided with pressure resistant face for sliding on circumferential face, such as gear Withdrawn JP2005105370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341884A JP2005105370A (en) 2003-09-30 2003-09-30 Method of producing rotary body provided with pressure resistant face for sliding on circumferential face, such as gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341884A JP2005105370A (en) 2003-09-30 2003-09-30 Method of producing rotary body provided with pressure resistant face for sliding on circumferential face, such as gear

Publications (1)

Publication Number Publication Date
JP2005105370A true JP2005105370A (en) 2005-04-21

Family

ID=34536331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341884A Withdrawn JP2005105370A (en) 2003-09-30 2003-09-30 Method of producing rotary body provided with pressure resistant face for sliding on circumferential face, such as gear

Country Status (1)

Country Link
JP (1) JP2005105370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654186A (en) * 2011-03-04 2012-09-05 自贡市富源车辆部件有限公司 Method for machining transmission chain wheel of oil pump
CN102654187A (en) * 2011-03-04 2012-09-05 自贡市富源车辆部件有限公司 High-precision low-cost machining method for transmission chain wheel of oil pump
CN102734434A (en) * 2012-06-15 2012-10-17 扬州保来得科技实业有限公司 Automobile automatic gearbox camshaft timing chain wheel and preparation method thereof
WO2020009235A1 (en) * 2018-07-05 2020-01-09 日立化成株式会社 Iron-based sintered member, iron-based powder mixture, and method for manufacturing iron-based sintered member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654186A (en) * 2011-03-04 2012-09-05 自贡市富源车辆部件有限公司 Method for machining transmission chain wheel of oil pump
CN102654187A (en) * 2011-03-04 2012-09-05 自贡市富源车辆部件有限公司 High-precision low-cost machining method for transmission chain wheel of oil pump
CN102734434A (en) * 2012-06-15 2012-10-17 扬州保来得科技实业有限公司 Automobile automatic gearbox camshaft timing chain wheel and preparation method thereof
WO2020009235A1 (en) * 2018-07-05 2020-01-09 日立化成株式会社 Iron-based sintered member, iron-based powder mixture, and method for manufacturing iron-based sintered member
JPWO2020009235A1 (en) * 2018-07-05 2021-08-02 昭和電工マテリアルズ株式会社 Method for manufacturing iron-based sintered member, iron-based powder mixture, and iron-based sintered member
JP7322880B2 (en) 2018-07-05 2023-08-08 株式会社レゾナック Iron-based sintered member, iron-based powder mixture, and method for producing iron-based sintered member
JP7501713B2 (en) 2018-07-05 2024-06-18 株式会社レゾナック Iron-based sintered member, iron-based powder mixture, and method for manufacturing iron-based sintered member

Similar Documents

Publication Publication Date Title
DE4211319C2 (en) Process for the production of sintered iron molded parts with a non-porous zone
RU2005135119A (en) METHOD FOR PRODUCING METAL COMPOSITION FROM TITANIUM CONTAINING TITANIUM BORIDE PARTICLES DISPERSED IN IT
JP4178546B2 (en) Molding method of powder molded body and sintered body
CN100534672C (en) Method of forming powder compact and mold assembly for powder compaction
DE102014207622A1 (en) Method for producing a component
EP3475017A1 (en) Method for additive manufacturing by means of a porous auxiliary structure, component and device
JP2005105370A (en) Method of producing rotary body provided with pressure resistant face for sliding on circumferential face, such as gear
JP4437909B2 (en) Method of manufacturing a rotating body having a sliding pressure-resistant surface on the circumferential surface of a gear or the like for improving recyclability
KR101146957B1 (en) Iron base sintered alloy exhibiting high surface densification and high surface hardness, and method for production thereof
JP5962691B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
DE102005028435A1 (en) Production of container for melting and/or crystallizing non-ferrous metals comprises preparing container green body and applying layer made from mixture of silicon nitride powder and an inorganic binder on the inside of the container
JP2010156059A (en) Iron-based powdery mixture for warm die lubrication molding
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP6007928B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
US8153053B2 (en) Method for forming compact from powder and sintered product
JP6467535B1 (en) Cu-based powder for infiltration
JP2007031841A (en) Iron-based powder mixture for warm die lubricating compaction
CN105983705A (en) Powder metallurgy preparing method for automobile transmission gear
JP6493357B2 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
JP2008189954A (en) Fe-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR
DE102005029039A1 (en) Production of non-stick ingot mold for non-metals involves coating a container with a silicon nitride powder-containing layer which is then burned
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JP2005248304A (en) Stainless steel sintered alloy having excellent surface denseness, surface hardness and corrosion resistance and its production method
EP4015109A1 (en) Device and method for manufacturing low oxygen metal powder
JP2005200698A (en) Iron-based powder mixture for high-strength sintered component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205