JP2005105152A - Fullerene-containing prepreg - Google Patents

Fullerene-containing prepreg Download PDF

Info

Publication number
JP2005105152A
JP2005105152A JP2003340996A JP2003340996A JP2005105152A JP 2005105152 A JP2005105152 A JP 2005105152A JP 2003340996 A JP2003340996 A JP 2003340996A JP 2003340996 A JP2003340996 A JP 2003340996A JP 2005105152 A JP2005105152 A JP 2005105152A
Authority
JP
Japan
Prior art keywords
resin
fullerene
prepreg
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003340996A
Other languages
Japanese (ja)
Other versions
JP4257181B2 (en
Inventor
Atsushi Kawakami
敦 河上
Hideaki Tominaga
秀明 富永
Hiroyuki Tatsuta
浩之 龍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2003340996A priority Critical patent/JP4257181B2/en
Publication of JP2005105152A publication Critical patent/JP2005105152A/en
Application granted granted Critical
Publication of JP4257181B2 publication Critical patent/JP4257181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg enabling improvement of flexural properties such as three-point flexural strength of a flat plate, three-point flexural modulus of the flat plate and three-point flexural strength of a pipe as well as compressive properties while keeping impact resistance such as Charpy impact strength of a fiber-reinforced plastic (FRP) after curing. <P>SOLUTION: The fullerene-containing prepreg is obtained by impregnating a resin composition into a carbon fiber reinforcing material, and the resin composition comprises a thermosetting resin and fullerene in an amount of 0.05-8 pts mass based on 100 pts mass of the thermosetting resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フラーレンを含むプリプレグに関し、更に詳述すれば、硬化後の繊維強化プラスチック(FRP)製品の耐衝撃性、圧縮特性、曲げ特性等の物性が優れたFRPを製造することのできるプリプレグに関する。   The present invention relates to a prepreg containing fullerene, and more specifically, a prepreg capable of producing an FRP having excellent physical properties such as impact resistance, compression characteristics and bending characteristics of a fiber reinforced plastic (FRP) product after curing. About.

繊維強化材に熱硬化性樹脂等の樹脂組成物(マトリックス樹脂)を含浸してシート状、ロービング状、又は織物状等に形成したプリプレグは、FRP製品の材料として、航空機、ゴルフシャフト、釣竿などの製造に用いられ、更には、コンクリート橋梁、建築物の補強用に用いられている。   A prepreg formed by impregnating a fiber reinforced material with a resin composition (matrix resin) such as a thermosetting resin into a sheet, roving, or woven fabric is used as a material for FRP products such as aircraft, golf shafts, fishing rods, etc. It is used for the reinforcement of concrete bridges and buildings.

これらの用途に用いられるプリプレグを硬化させて得られるFRP製品は、従来それらの圧縮系の機械特性を向上させるために、硬化後のマトリックス樹脂の剛性を高める方向、すなわち硬化後のマトリックス樹脂の強度及び弾性率を上げることが検討されてきた。   FRP products obtained by curing the prepregs used for these applications have conventionally improved the rigidity of the matrix resin after curing in order to improve the mechanical properties of those compression systems, that is, the strength of the matrix resin after curing. And increasing the elastic modulus has been studied.

その一方、安全性、耐久性を付与するために、優れた耐衝撃性(靭性)及び伸度(柔軟性)が不可欠であり、互いに相反する特性である硬化後のマトリックス樹脂の剛性と、靭性と、柔軟性とのバランスをとりながら、樹脂の改良が検討されてきた。   On the other hand, in order to give safety and durability, excellent impact resistance (toughness) and elongation (flexibility) are indispensable, and the stiffness and toughness of the matrix resin after curing, which are mutually contradictory properties Improvement of the resin has been studied while balancing with the flexibility.

しかし、硬化後のマトリックス樹脂の剛性、靭性、及び柔軟性の何れをも優れたものにすることは困難であった。   However, it has been difficult to make the cured matrix resin excellent in rigidity, toughness, and flexibility.

これらの問題に対する一解決法として、気相法等により製造したカーボンナノチューブをエポキシ樹脂に配合した樹脂組成物が提案されている(特許文献1)。   As a solution to these problems, a resin composition in which carbon nanotubes produced by a vapor phase method or the like are blended with an epoxy resin has been proposed (Patent Document 1).

このものは確かにある程度の物性値を示している。しかし、それらのカーボンナノチューブは現状では高価である上に絡み合い等による分散不良が問題となっており、それらの分散性向上、また更なる物性値の向上が求められている。
特開2003−12939号公報 (特許請求の範囲)
This thing certainly shows a certain physical property value. However, these carbon nanotubes are currently expensive and have a problem of poor dispersion due to entanglement and the like, and improvement of their dispersibility and further improvement of physical properties are required.
JP 2003-12939 A (Claims)

本発明者は、硬化後のFRP物性のうちでも特に平板3点曲げ強度、平板3点曲げ弾性率、パイプ3点曲げ強度等の剛性の向上を目的に、マトリックス樹脂の架橋度を上げる等、硬化後のマトリックス樹脂の剛性を上げ、耐衝撃性(靭性)及び伸度(柔軟性)を付与させるために、樹脂組成物の改良検討を進めた。   Among the FRP physical properties after curing, the inventor increases the degree of cross-linking of the matrix resin for the purpose of improving rigidity such as flat plate three-point bending strength, flat plate three-point bending elastic modulus, pipe three-point bending strength, etc. In order to increase the rigidity of the matrix resin after curing and to impart impact resistance (toughness) and elongation (flexibility), studies were made on improving the resin composition.

そして、炭素繊維強化材に樹脂組成物を含浸させたプリプレグに、特定量のフラーレンを配合することに想到した。このプリプレグを硬化させて得られるFRPは、耐衝撃性を維持しつつ、剛性の高いものであることを知得し本発明を完成するに到った。   Then, the inventors have conceived of blending a specific amount of fullerene into a prepreg obtained by impregnating a carbon fiber reinforcing material with a resin composition. It was found that the FRP obtained by curing this prepreg has high rigidity while maintaining impact resistance, and the present invention has been completed.

よって、本発明の目的とするところは、上記問題を解決した、硬化後のFRP物性が優れたプリプレグを提供することを目的とする。   Accordingly, an object of the present invention is to provide a prepreg having excellent FRP physical properties after curing, which solves the above problems.

上記目的を達成する本発明は、以下に記載のものである。   The present invention for achieving the above object is as follows.

〔1〕 炭素繊維強化材に樹脂組成物が含浸されてなるプリプレグであって、樹脂組成物が、熱硬化性樹脂と、熱硬化性樹脂100質量部に対する含有量0.05〜8質量部のフラーレンとを含有してなることを特徴とするフラーレン含有プリプレグ。   [1] A prepreg formed by impregnating a carbon fiber reinforcing material with a resin composition, the resin composition having a content of 0.05 to 8 parts by mass with respect to 100 parts by mass of the thermosetting resin and the thermosetting resin. A fullerene-containing prepreg comprising fullerene.

〔2〕 フラーレンの含有量が熱硬化性樹脂100質量部に対し0.05〜6質量部である〔1〕に記載のフラーレン含有プリプレグ。   [2] The fullerene-containing prepreg according to [1], wherein the fullerene content is 0.05 to 6 parts by mass with respect to 100 parts by mass of the thermosetting resin.

〔3〕 熱硬化性樹脂が、二官能エポキシ樹脂及び多官能エポキシ樹脂で構成されたエポキシ樹脂である〔1〕に記載のフラーレン含有プリプレグ。   [3] The fullerene-containing prepreg according to [1], wherein the thermosetting resin is an epoxy resin composed of a bifunctional epoxy resin and a polyfunctional epoxy resin.

〔4〕 樹脂組成物が、熱可塑性樹脂と、官能基を有する架橋ゴム粒子とを含有する〔1〕に記載のフラーレン含有プリプレグ。   [4] The fullerene-containing prepreg according to [1], wherein the resin composition contains a thermoplastic resin and crosslinked rubber particles having a functional group.

〔5〕 炭素繊維強化材が、当該繊維強化材を構成する炭素繊維束を一方向に配列させた成形体、又は炭素繊維織物である〔1〕に記載のフラーレン含有プリプレグ。   [5] The fullerene-containing prepreg according to [1], wherein the carbon fiber reinforcing material is a molded body in which carbon fiber bundles constituting the fiber reinforcing material are arranged in one direction, or a carbon fiber woven fabric.

本発明のフラーレン含有プリプレグは、炭素繊維強化材に、熱硬化性樹脂とフラーレンとを含有した樹脂組成物が含浸されて構成されていることにより、プリプレグ硬化後のFRPのシャルピー衝撃強度を維持しつつ、平板3点曲げ強度、平板3点曲げ弾性率、及びパイプ3点曲げ強度等の曲げ特性、並びに、圧縮特性の向上を可能とする。   The fullerene-containing prepreg of the present invention is formed by impregnating a carbon fiber reinforcing material with a resin composition containing a thermosetting resin and fullerene, thereby maintaining the Charpy impact strength of FRP after prepreg curing. On the other hand, it is possible to improve bending characteristics such as flat plate three-point bending strength, flat plate three-point bending elastic modulus, and pipe three-point bending strength, and compression characteristics.

本発明のフラーレン含有プリプレグは、炭素繊維強化材に樹脂組成物が含浸されてなる。   The fullerene-containing prepreg of the present invention is formed by impregnating a carbon fiber reinforcing material with a resin composition.

〔炭素繊維強化材〕
本発明に用いる炭素繊維強化材の素材は炭素繊維であり、引張強度3000MPa以上、弾性率200GPa以上の炭素繊維が好ましい。
[Carbon fiber reinforcement]
The material of the carbon fiber reinforcing material used in the present invention is carbon fiber, and carbon fiber having a tensile strength of 3000 MPa or more and an elastic modulus of 200 GPa or more is preferable.

炭素繊維強化材の形態や配列は特に限定されず、例えば一方向に引揃えた長繊維、単一のトウ、ロービング、織物、マット、ニット、組紐等を挙げることができる。中でも、一方向に引揃えた長繊維や、単一のトウ、ロービング等の一方向性の炭素繊維束からなる炭素繊維強化材を用いたプリプレグを用いる場合は、筒状又は棒状のFRPの製造に好ましい。   The form and arrangement of the carbon fiber reinforcement are not particularly limited, and examples thereof include long fibers arranged in one direction, a single tow, roving, woven fabric, mat, knit, braid and the like. Above all, when using prepregs made of carbon fiber reinforcing material consisting of unidirectional carbon fiber bundles such as long fibers aligned in one direction, single tow, roving, etc., manufacture of tubular or rod-shaped FRP Is preferable.

前記炭素繊維強化材を構成する炭素繊維は、原料としては特に限定するものではないが、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維等が例示できる。これらの炭素繊維のうち、取扱性能、製造工程通過性能に適したPAN系炭素繊維が特に好ましい。ここで、PAN系炭素繊維は、アクリロニトリル構造単位を主成分とし、イタコン酸、アクリル酸、アクリルエステル等のビニル単量体単位を10モル%以内で含有する共重合体を炭素繊維化したものである。   The carbon fiber constituting the carbon fiber reinforcing material is not particularly limited as a raw material, but examples thereof include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, and rayon-based carbon fiber. Of these carbon fibers, PAN-based carbon fibers suitable for handling performance and production process passing performance are particularly preferred. Here, the PAN-based carbon fiber is obtained by carbonizing a copolymer containing acrylonitrile structural unit as a main component and containing vinyl monomer units such as itaconic acid, acrylic acid, and acrylic ester within 10 mol%. is there.

〔樹脂組成物〕
上述した繊維強化材に含浸させる樹脂組成物は、少なくとも熱硬化性樹脂とフラーレンとを含む。更に熱可塑性樹脂と官能基を有する架橋ゴム粒子を含んでも良い。
(Resin composition)
The resin composition impregnated in the above-mentioned fiber reinforcement contains at least a thermosetting resin and fullerene. Furthermore, a crosslinked rubber particle having a thermoplastic resin and a functional group may be included.

〔熱硬化性樹脂〕
樹脂組成物に配合する熱硬化性樹脂としては、例えばエポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等が挙げられるが、これらのうちでも特にエポキシ樹脂は耐熱性、物性等バランスの良い複合材料を与えるので好ましい。
[Thermosetting resin]
Examples of the thermosetting resin to be blended in the resin composition include an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, and the like. Among these, an epoxy resin has a particularly good balance of heat resistance and physical properties. This is preferred because it provides a composite material.

エポキシ樹脂としては、公知のものであれば特に制限されないが、多官能エポキシ樹脂と二官能エポキシ樹脂とを組合わせたものを用いることが好ましい。   Although it will not restrict | limit especially if it is a well-known thing as an epoxy resin, It is preferable to use what combined the polyfunctional epoxy resin and the bifunctional epoxy resin.

本発明において多官能エポキシ樹脂とは、1分子中にエポキシ基を3以上有するエポキシ樹脂をいう。   In the present invention, the polyfunctional epoxy resin refers to an epoxy resin having 3 or more epoxy groups in one molecule.

多官能エポキシ樹脂としては、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリグリシジルパラアミノフェニル、テトラグリシジルジアミノフェニルメタン、クレゾールノボラック型エポキシ樹脂等を挙げることができる。   Examples of the polyfunctional epoxy resin include glycidylamine type epoxy resin, phenol novolac type epoxy resin, triglycidyl paraaminophenyl, tetraglycidyl diaminophenylmethane, cresol novolac type epoxy resin and the like.

樹脂組成物中の多官能エポキシ樹脂を配合することにより、プリプレグを硬化させたときに耐熱性の高いFRPを得ることができる。この耐熱性付与機能から、要求される耐熱性に応じてノボラック型、3官能、4官能といった多官能エポキシ樹脂を選択し配合することが好ましい。   By blending the polyfunctional epoxy resin in the resin composition, FRP having high heat resistance can be obtained when the prepreg is cured. From this heat resistance imparting function, it is preferable to select and blend a polyfunctional epoxy resin such as a novolak type, a trifunctional type or a tetrafunctional type according to the required heat resistance.

樹脂組成物中の多官能エポキシ樹脂の配合量は、熱硬化性樹脂の全配合量100質量部に対し10〜80質量部が好ましく、20〜80質量部がより好ましく、30〜70質量部が更に好ましい。   The blending amount of the polyfunctional epoxy resin in the resin composition is preferably 10 to 80 parts by weight, more preferably 20 to 80 parts by weight, and more preferably 30 to 70 parts by weight with respect to 100 parts by weight of the total blending amount of the thermosetting resin. Further preferred.

熱硬化性樹脂の全配合量100質量部に対する多官能エポキシ樹脂の配合量が10質量部未満の場合は、得られるFRPの耐熱性が低下するので好ましくない。   When the blending amount of the polyfunctional epoxy resin with respect to 100 parts by weight of the total thermosetting resin is less than 10 parts by weight, the heat resistance of the obtained FRP is lowered, which is not preferable.

熱硬化性樹脂の全配合量100質量部に対する多官能エポキシ樹脂の配合量が80質量部を超える場合は、得られるFRPの耐熱性は高くなるが、脆くなり、耐衝撃性が低下するので好ましくない。また、多官能エポキシ樹脂は一般に高価であり配合量が多くなると、得られるプリプレグのコストが上がるので好ましくない。   When the compounding amount of the polyfunctional epoxy resin with respect to 100 parts by mass of the total amount of the thermosetting resin exceeds 80 parts by mass, the resulting FRP has high heat resistance, but is preferable because it becomes brittle and impact resistance decreases. Absent. In addition, the polyfunctional epoxy resin is generally expensive, and an increase in the blending amount is not preferable because the cost of the prepreg obtained is increased.

一方、二官能エポキシ樹脂が配合されたプリプレグを硬化した後のFRPは、比較的伸度が高く、耐衝撃性に優れているが、耐熱性がやや低い。   On the other hand, FRP after curing a prepreg blended with a bifunctional epoxy resin has relatively high elongation and excellent impact resistance, but has slightly low heat resistance.

二官能エポキシ樹脂としては、ビスフェノール型が好ましい。例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等を挙げることができる。   The bifunctional epoxy resin is preferably a bisphenol type. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin and the like can be mentioned.

二官能エポキシ樹脂は、分子量の違いにより液状から固形まで種々のグレードがあり、プリプレグ用樹脂組成物に配合する場合、適宜これら種々のグレードの樹脂を混合して粘度調整を行うことが可能である。   There are various grades of bifunctional epoxy resins from liquid to solid depending on the difference in molecular weight, and when blended in a resin composition for prepreg, it is possible to adjust the viscosity by appropriately mixing these various grades of resin. .

樹脂組成物中の二官能エポキシ樹脂の配合量は、熱硬化性樹脂の全配合量100質量部に対し20〜90質量部が好ましく、20〜80質量部がより好ましく、30〜70質量部が更に好ましい。   The blending amount of the bifunctional epoxy resin in the resin composition is preferably 20 to 90 parts by weight, more preferably 20 to 80 parts by weight, and preferably 30 to 70 parts by weight with respect to 100 parts by weight of the total blending amount of the thermosetting resin. Further preferred.

〔フラーレン〕
樹脂組成物に配合するフラーレンは、市販品として入手できる。フラーレンの製法としては、米国特許07/930818に記載されているような周知の製造方法以外に、この米国特許07/930818に記載されているHuffman/Kratchnerプロセス及び前記米国特許07/930818において引用されている論文[Kratchner, W., Lamb. L. D., Fostiropoulos, K. & Huffman, Dr., Nature 347, 354-358 (1990)]に記載されている製造方法によって製造することができる。
[Fullerene]
Fullerene blended in the resin composition can be obtained as a commercial product. As a method for producing fullerene, in addition to the well-known production method as described in US Patent 07/930818, the Huffman / Kratchner process described in US Patent 07/930818 and the above-mentioned US Patent 07/930818 are cited. Can be produced by the production method described in [Kratchner, W., Lamb. LD, Fostiropoulos, K. & Huffman, Dr., Nature 347, 354-358 (1990)].

本発明で樹脂組成物に含有させるフラーレンは、炭素数が60であるC60、炭素数が70であるC70が使用できる。また、C60、C70及び炭素数76以上の高次フラーレンから成る混合物も利用することができる。 As the fullerene to be contained in the resin composition in the present invention, C 60 having 60 carbon atoms and C 70 having 70 carbon atoms can be used. Further, a mixture composed of C 60 , C 70 and higher order fullerene having 76 or more carbon atoms can also be used.

樹脂組成物中のフラーレンの配合量は、熱硬化性樹脂の合計配合量100質量部に対し0.05〜8質量部、好ましくは0.05〜6質量部である。   The compounding amount of fullerene in the resin composition is 0.05 to 8 parts by mass, preferably 0.05 to 6 parts by mass with respect to 100 parts by mass of the total compounding amount of the thermosetting resin.

熱硬化性樹脂にフラーレンを添加するに当り、配合量を増やすことによる増粘に関する問題点は特に無い。しかし、フラーレンの配合量が8質量部より多くなると、樹脂組成物は、強度、弾性率などの剛性に関する機械物性、及び耐衝撃性に代表される靭性に関する機械物性が高くなる反面、脆くなるなど柔軟性に関する機械物性を損なう虞があり、また、フラーレン自体が高価であるため好ましくない。フラーレンの配合量が0.05質量部より少ない場合は、機械物性の向上効果が発揮されないので好ましくない。   When adding fullerene to the thermosetting resin, there is no particular problem regarding thickening by increasing the blending amount. However, when the blending amount of fullerene is more than 8 parts by mass, the resin composition becomes brittle while mechanical properties relating to rigidity such as strength and elastic modulus and mechanical properties relating to toughness represented by impact resistance are increased. There is a risk of impairing mechanical properties relating to flexibility, and fullerene itself is expensive, which is not preferable. When the amount of fullerene is less than 0.05 parts by mass, the effect of improving the mechanical properties is not exhibited, which is not preferable.

〔熱可塑性樹脂〕
上記樹脂組成物は、熱可塑性樹脂及び官能基を有する架橋ゴム粒子を配合することが好ましい。
〔Thermoplastic resin〕
The resin composition preferably contains a thermoplastic resin and crosslinked rubber particles having a functional group.

熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルフォルマール、ポリエーテルスルホン、ポリエーテルイミド、ポリアミド等を挙げることができるが、フェノキシ樹脂を用いることが好ましい。フェノキシ樹脂を配合した場合には、樹脂組成物の粘度の温度依存性が小さくなり、温度(特に室温近傍)による粘着力の変化を低減できる。フェノキシ樹脂は線状高分子であり、熱硬化性樹脂との相溶性にも優れている。   Examples of the thermoplastic resin include phenoxy resin, polyvinyl formal, polyethersulfone, polyetherimide, polyamide, and the like, but it is preferable to use a phenoxy resin. When a phenoxy resin is blended, the temperature dependency of the viscosity of the resin composition is reduced, and the change in adhesive strength due to temperature (particularly around room temperature) can be reduced. The phenoxy resin is a linear polymer and has excellent compatibility with the thermosetting resin.

フェノキシ樹脂の分子量は10000〜50000とすることが好ましい。フェノキシ樹脂の形状としては固形のペレット状、粉体等様々あるが、熱硬化性樹脂への溶解性を考慮すると粉体がより好ましい。   The molecular weight of the phenoxy resin is preferably 10,000 to 50,000. The phenoxy resin has various shapes such as a solid pellet and a powder, but a powder is more preferable in consideration of solubility in a thermosetting resin.

熱可塑性樹脂の配合量は、熱硬化性樹脂の全配合量100質量部に対して1〜20質量部が好ましく、5〜15質量部がより好ましい。   1-20 mass parts is preferable with respect to 100 mass parts of total compounding quantities of a thermosetting resin, and, as for the compounding quantity of a thermoplastic resin, 5-15 mass parts is more preferable.

〔官能基を有する架橋ゴム粒子〕
樹脂組成物に配合する官能基を有する架橋ゴム粒子は、表面に官能基を有する架橋済ゴムの微粒子である。この架橋ゴム粒子は、通常熱硬化性樹脂に均一分散若しくは部分的に熱硬化性樹脂と架橋した状態で用いられる。
[Crosslinked rubber particles having functional groups]
The crosslinked rubber particles having a functional group to be blended in the resin composition are fine particles of a crosslinked rubber having a functional group on the surface. The crosslinked rubber particles are usually used in a state of being uniformly dispersed in a thermosetting resin or partially crosslinked with the thermosetting resin.

架橋ゴム粒子の官能基は種々のものがあるが、熱硬化性樹脂との相性、反応の容易さ、安定性の面からカルボキシル基、エポキシ基、水酸基、アミノ基、アミド基等が好ましい。また、架橋ゴム粒子の粒子径は小さいほど好ましい。繊維強化材内部への含浸性から直径10μm以下のものが特に好ましく、更には5μm以下のものが好ましい。   Although there are various functional groups of the crosslinked rubber particles, a carboxyl group, an epoxy group, a hydroxyl group, an amino group, an amide group, and the like are preferable from the viewpoints of compatibility with the thermosetting resin, ease of reaction, and stability. Moreover, the smaller the particle diameter of the crosslinked rubber particles, the better. From the viewpoint of impregnation into the fiber reinforcement, those having a diameter of 10 μm or less are particularly preferred, and those having a diameter of 5 μm or less are more preferred.

このような架橋ゴム粒子は、例えば上記の官能基を有する不飽和化合物と、架橋性モノマーと、ジエン系モノマー等とを公知の方法を用いて共重合を行うことにより得ることができる。官能基を有する不飽和化合物としては、アクリル酸、グリシジルメタクリレート、ビニルフェノール、ビニルアニリン、アクリルアミド等を挙げることができる。架橋性モノマーとしては、ジビニルベンゼン、ジアリルフタレート、エチレングリコールジメタアクリレート等の分子内に重合性二重結合を複数有する化合物を使用することができる。   Such crosslinked rubber particles can be obtained, for example, by copolymerizing an unsaturated compound having the above functional group, a crosslinking monomer, a diene monomer, and the like using a known method. Examples of the unsaturated compound having a functional group include acrylic acid, glycidyl methacrylate, vinyl phenol, vinyl aniline, and acrylamide. As the crosslinkable monomer, a compound having a plurality of polymerizable double bonds in the molecule, such as divinylbenzene, diallyl phthalate, and ethylene glycol dimethacrylate can be used.

また、架橋ゴム粒子としては、市販品も使用することができる。例えば、カルボキシル変性のブタジエン−アクリロニトリル共重合体の架橋物からなるFX602(JSR社製)を挙げることができる。また、架橋ゴム粒子をエポキシ樹脂に分散した製品を使用することもできる。このような製品として、例えば、エポセットBPA−323、同BPA−307、同BPA−601、同BPA−604、同BPA−607、同HDG−31(以上日本触媒社製)、YR−528、YR−570、YR−516(以上京都化成社製)等を挙げることができる。   Moreover, a commercial item can also be used as a crosslinked rubber particle. For example, FX602 (manufactured by JSR) made of a crosslinked product of carboxyl-modified butadiene-acrylonitrile copolymer can be mentioned. A product in which crosslinked rubber particles are dispersed in an epoxy resin can also be used. Examples of such products include Eposet BPA-323, BPA-307, BPA-601, BPA-604, BPA-607, HDG-31 (manufactured by Nippon Shokubai Co., Ltd.), YR-528, YR. -570, YR-516 (manufactured by Kyoto Chemical Industry Co., Ltd.) and the like.

架橋ゴム粒子の配合量は、熱硬化性樹脂の全配合量100質量部に対して1〜25質量部が好ましく、2〜15質量部がより好ましい。架橋ゴム粒子の配合量が1質量部より少ない場合、良好な表面樹脂保持性並びに粘着性が得にくく、逆に配合量が25質量部を超えると樹脂粘度が上昇しプリプレグ化が困難となるばかりか、耐熱性や層間剪断強度、曲げ強度等の大幅な低下に繋がりやすい。   The amount of the crosslinked rubber particles is preferably 1 to 25 parts by mass, more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin. When the blending amount of the crosslinked rubber particles is less than 1 part by mass, it is difficult to obtain good surface resin retention and adhesiveness. Conversely, when the blending amount exceeds 25 parts by mass, the resin viscosity increases and it becomes difficult to make a prepreg. However, it tends to lead to a significant decrease in heat resistance, interlaminar shear strength, bending strength, and the like.

〔硬化剤〕
樹脂組成物は硬化剤を配合する。硬化剤としては、熱硬化性樹脂と反応し得る活性基を有する公知の化合物であれば何れも用いることができる。特に、アミノ基、酸無水物基、アジド基を有する化合物が好ましい。
[Curing agent]
The resin composition contains a curing agent. As the curing agent, any known compound having an active group capable of reacting with a thermosetting resin can be used. In particular, a compound having an amino group, an acid anhydride group, or an azide group is preferable.

硬化剤としては、ジシアンジアミド(DICY)、ジアミノジフェニルスルホン、ジアミノジメチルメタン及びそれらの各種異性体、アミノ安息香酸エステル類、酸無水物等を挙げることができる。中でも、貯蔵安定性、物性面からジシアンジアミドが好ましい。   Examples of the curing agent include dicyandiamide (DICY), diaminodiphenylsulfone, diaminodimethylmethane and various isomers thereof, aminobenzoic acid esters, acid anhydrides and the like. Among these, dicyandiamide is preferable from the viewpoint of storage stability and physical properties.

樹脂組成物中の硬化剤の配合量は、熱硬化性樹脂の合計配合量100質量部に対し0.5〜10質量部が好ましい。   As for the compounding quantity of the hardening | curing agent in a resin composition, 0.5-10 mass parts is preferable with respect to 100 mass parts of total compounding quantities of a thermosetting resin.

また硬化促進剤を配合することが好ましい。硬化促進剤としては、尿素誘導体やイミダゾール化合物、3級アミン化合物等を使用することもできる。特に尿素誘導体が好ましく、中でも保存安定性、硬化促進性が優れる3−(3,4ジクロロフェニル)−1,1−ジメチルウレア(DCMU)が好ましい。   Moreover, it is preferable to mix | blend a hardening accelerator. As the curing accelerator, urea derivatives, imidazole compounds, tertiary amine compounds and the like can also be used. In particular, a urea derivative is preferable, and 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), which is excellent in storage stability and curing acceleration, is particularly preferable.

更に、本発明のエポキシ樹脂組成物には、必要により他の成分、例えばシリカ等の無機充填剤、揺変剤、顔料等を添加することができる。   Furthermore, other components, for example, inorganic fillers such as silica, thixotropic agents, pigments, and the like can be added to the epoxy resin composition of the present invention.

〔含浸方法〕
以上の配合条件により得られる樹脂組成物を、繊維強化材に含浸させる方法としては、メチルエチルケトン、メタノールなどの溶媒に樹脂組成物を溶解して低粘度化することにより繊維強化材に含浸させるウエット法と、樹脂組成物を加熱して低粘度化することにより繊維強化材に含浸させるホットメルト法等の公知の方法を用いることができる。
[Impregnation method]
As a method of impregnating the fiber composition with the resin composition obtained by the above blending conditions, a wet method in which the fiber composition is impregnated by dissolving the resin composition in a solvent such as methyl ethyl ketone and methanol to lower the viscosity. In addition, a known method such as a hot melt method in which a fiber reinforcing material is impregnated by heating the resin composition to lower the viscosity can be used.

ウエット法では、繊維強化材を、樹脂組成物を溶解させた液に浸漬した後引き上げ、オーブンなどを用いて溶媒を蒸発させてプリプレグを得ることができる。   In the wet method, the fiber reinforcing material is dipped in a solution in which the resin composition is dissolved and then pulled up, and the solvent is evaporated using an oven or the like to obtain a prepreg.

ホットメルト法では、加熱により低粘度化した樹脂組成物を直接繊維強化材に含浸させるか、又は樹脂組成物を離型紙などの上にコーティングしたフィルムを作製した後、繊維強化材の両側又は片側から前記フィルムを重ね、加熱加圧することにより樹脂を含浸させプリプレグを得ることができる。ホットメルト法は、プリプレグ中に溶媒が残留することがないため好ましい。   In the hot melt method, a fiber reinforcement is impregnated directly with a resin composition whose viscosity has been reduced by heating, or a film in which the resin composition is coated on release paper or the like is prepared, and then both sides or one side of the fiber reinforcement. From the above, the above-mentioned films are stacked and heated and pressed to impregnate the resin to obtain a prepreg. The hot melt method is preferable because no solvent remains in the prepreg.

ホットメルト法でプリプレグを作製する場合、樹脂組成物の粘度としては、後述する方法で測定される最低粘度で0.1〜10Pa・s(1〜100ポアズ)とすることが好ましい。   When producing a prepreg by the hot melt method, the viscosity of the resin composition is preferably 0.1 to 10 Pa · s (1 to 100 poise) as the minimum viscosity measured by the method described later.

本発明のプリプレグを用いてFRPを製造する方法としては、公知の方法が利用できる。例えば、プリプレグを積層後、積層物に圧力を付与しながら樹脂を加熱し、硬化させて成形する方法等により製造することができる。   As a method for producing FRP using the prepreg of the present invention, a known method can be used. For example, after a prepreg is laminated, the resin can be heated and cured while applying pressure to the laminate, and then can be produced by a method of molding.

圧力を付与しながら加熱する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等を挙げることができる。中でも、ゴルフシャフト、釣竿、ラケット等の棒状のスポーツ用部材の製造には、ラッピングテープ法、内圧成形法を用いることが好ましい。   Examples of the heating method while applying pressure include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method. Among them, it is preferable to use a wrapping tape method or an internal pressure molding method for manufacturing rod-shaped sports members such as golf shafts, fishing rods, and rackets.

ゴルフシャフト等の円筒状FRP(成形体)を製造するには、ラッピングテープ法が好ましく適用できる。ラッピングテープ法は、マンドレルなどの芯金にプリプレグを巻いて、円筒状物を成形する方法である。具体的には、マンドレルにプリプレグを巻き付け、プリプレグの固定及び圧力付与のために、プリプレグの外側に熱可塑性樹脂フィルムからなるラッピングテープを巻き付け、オーブン中で樹脂を加熱し、硬化させた後、マンドレルを抜き取って円筒状繊維強化複合材料とする。   The wrapping tape method can be preferably applied to produce a cylindrical FRP (molded product) such as a golf shaft. The wrapping tape method is a method of forming a cylindrical object by winding a prepreg around a mandrel or the like. Specifically, a prepreg is wound around a mandrel, a wrapping tape made of a thermoplastic resin film is wound around the outside of the prepreg for fixing and applying pressure, the resin is heated and cured in an oven, and then the mandrel Is extracted into a cylindrical fiber-reinforced composite material.

また、ゴルフシャフト等の円筒状FRP(成形体)を製造するにあたっては、内圧成形法も好ましく適用できる。内圧成形法は、熱可塑性樹脂のチューブなどの内圧付与体にプリプレグを巻きつけたプリフォームを金型中にセットし、次いで内圧付与体に高圧の気体を導入して圧力をかけると同時に金型を加熱し成形する方法である。本方法は、特にゴルフシャフト、バット、テニスやバトミントンなどのラケットのような複雑な形状のものを成形する際に好ましく適用される。   Further, in producing a cylindrical FRP (molded product) such as a golf shaft, an internal pressure molding method can also be preferably applied. In the internal pressure molding method, a preform in which a prepreg is wound around an internal pressure applying body such as a thermoplastic resin tube is set in a mold, and then a high pressure gas is introduced into the internal pressure applying body and pressure is applied at the same time. Is a method of heating and molding. This method is preferably applied particularly when molding a complicated shape such as a golf shaft, a bat, a racket such as tennis or badminton.

以下、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

実施例1〜4及び比較例1〜2
表1に示す各樹脂組成物をリバースロールコーターを用いて離型紙上に塗布し、樹脂フィルムを作製した。次に、繊維を一方向に引揃えたシート状炭素繊維ベスファイトUT500(東邦テナックス社製)に、この樹脂フィルム2枚を、樹脂塗布面を炭素繊維面に向けて、炭素繊維の両面から重ね、加熱加圧して樹脂を含浸させ、炭素繊維目付け125g/m2、樹脂質量分率25質量部の一方向プリプレグを得た。
Examples 1-4 and Comparative Examples 1-2
Each resin composition shown in Table 1 was applied onto release paper using a reverse roll coater to prepare a resin film. Next, two resin films are stacked on both sides of the carbon fiber with the resin-coated surface facing the carbon fiber surface on a sheet-like carbon fiber Beth Fight UT500 (manufactured by Toho Tenax Co., Ltd.) with the fibers aligned in one direction. The resin was impregnated by heating and pressing to obtain a unidirectional prepreg having a carbon fiber basis weight of 125 g / m 2 and a resin mass fraction of 25 parts by mass.

各プリプレグを用いて得られるFRPの諸物性値を下記の方法により測定した。結果を併せて表1に示す。なお、物性測定はすべて温度23℃、相対湿度50%の環境で行った。   Various physical property values of FRP obtained using each prepreg were measured by the following methods. The results are also shown in Table 1. All physical properties were measured in an environment at a temperature of 23 ° C. and a relative humidity of 50%.

〔平板3点曲げ特性〕
長さ100mm、幅15mm、厚み2mmのプリプレグを130℃、2時間にてオートクレーブ成形し、FRP試験片とした。JIS K 7074に基づき、得られた試験片の平板3点曲げ強度、平板3点曲げ弾性率について測定した。
[Three-point bending characteristics of flat plate]
A prepreg having a length of 100 mm, a width of 15 mm, and a thickness of 2 mm was autoclaved at 130 ° C. for 2 hours to obtain an FRP test piece. Based on JIS K7074, the flat plate 3 point bending strength and the flat plate 3 point bending elastic modulus of the obtained test piece were measured.

〔平板層間剪断強度特性(ILSS)〕
長さ14mm、幅10mm、厚み2mmのプリプレグを130℃、2時間にてオートクレーブ成形し、FRP試験片とした。JIS K 7078に基づき、得られた試験片のILSSについて測定した。
[Flat plate interlaminar shear strength characteristics (ILSS)]
A prepreg having a length of 14 mm, a width of 10 mm, and a thickness of 2 mm was autoclaved at 130 ° C. for 2 hours to obtain an FRP test piece. Based on JIS K7078, it measured about ILSS of the obtained test piece.

〔平板圧縮特性〕
長さ78mm、幅12.5mm、厚み2mmのプリプレグを130℃、2時間にてオートクレーブ成形し、FRP試験片とした。JIS K 7076に基づき、得られた試験片の圧縮強度、圧縮弾性率について測定した。
[Plate compression properties]
A prepreg having a length of 78 mm, a width of 12.5 mm, and a thickness of 2 mm was autoclaved at 130 ° C. for 2 hours to obtain an FRP test piece. Based on JIS K7076, it measured about the compressive strength and compression elastic modulus of the obtained test piece.

〔シャルピー衝撃強度〕
長さ80mm、幅10mm、厚み2mmのプリプレグを130℃、2時間にてオートクレーブ成形し、FRP試験片とした。JIS K 7077に基づき、得られた試験片のシャルピー衝撃強度について測定した。
[Charpy impact strength]
A prepreg having a length of 80 mm, a width of 10 mm, and a thickness of 2 mm was autoclaved at 130 ° C. for 2 hours to obtain an FRP test piece. Based on JIS K 7077, the Charpy impact strength of the obtained test piece was measured.

〔円筒状FRP(パイプ)の曲げ試験片の作製方法〕
下記の手順(a)〜(e)により、円筒状FRPの軸方向に対して〔0°11(±45°)3〕の積層構成を有し、内径が6.3mm、外径が9.9mm、17層からなる円筒状FRP(試験片)を作製した。マンドレルは直径6.3mm、長さ1000mmのステンレス製丸棒を使用した。
[Method of manufacturing cylindrical FRP (pipe) bending test piece]
According to the following procedures (a) to (e), it has a laminated configuration of [0 ° 11 (± 45 °) 3 ] with respect to the axial direction of the cylindrical FRP, the inner diameter is 6.3 mm, and the outer diameter is 9. A cylindrical FRP (test piece) consisting of 9 mm and 17 layers was produced. The mandrel was a stainless steel round bar with a diameter of 6.3 mm and a length of 1000 mm.

(a) 縦700mm×横65mmの長方形であって繊維方向が縦辺に対して+45°の一方向プリプレグと、縦700mm×横65mmの長方形であって繊維方向が縦辺に対して−45°の一方向プリプレグとを、横方向に10mm(マンドレル半周分に対応)ずらして貼合わせた。   (a) A unidirectional prepreg having a length of 700 mm × width of 65 mm and a fiber direction of + 45 ° with respect to the vertical side, and a rectangle of 700 mm × width of 65 mm and a fiber direction of −45 ° with respect to the vertical side The unidirectional prepreg was laminated by shifting 10 mm in the horizontal direction (corresponding to the half circumference of the mandrel).

(b) 貼合わせたプリプレグを離型処理したマンドレルに、プリプレグの縦方向とマンドレルの軸方向とが一致するように、即ちプリプレグの繊維方向とマンドレルの軸方向とでなす角度が±45°になるように巻きつけた。   (b) The mandrel obtained by releasing the bonded prepreg so that the longitudinal direction of the prepreg and the axial direction of the mandrel coincide, that is, the angle formed by the fiber direction of the prepreg and the axial direction of the mandrel is ± 45 °. It was wrapped so that

(c) その上に、プリプレグを繊維の方向が縦方向になるように、縦700×横298mmの長方形に切り出したものをプリプレグの縦方向とマンドレルの軸方向が一致するように巻きつけた。   (c) A prepreg cut into a rectangle of length 700 × width 298 mm was wound on the prepreg so that the longitudinal direction of the prepreg and the axial direction of the mandrel coincided with each other so that the fiber direction was the longitudinal direction.

(d) ラッピングテープ(耐熱性フィルムテープ)を巻きつけ、硬化用の炉の中で130℃、2時間加熱し成形した。   (d) Wrapping tape (heat-resistant film tape) was wound and molded by heating at 130 ° C. for 2 hours in a curing furnace.

(e) 成形後、マンドレルを抜き取り、ラッピングテープを除去して円筒状FRPを得た。   (e) After molding, the mandrel was extracted and the wrapping tape was removed to obtain a cylindrical FRP.

〔円筒状FRP(パイプ)の曲げ強度の測定〕
上記で成形した円筒状FRPを用い、「ゴルフクラブ用シャフトの認定基準及び基準確認方法」(製品安全協会編、通商産業大臣承認5産第2087号、1993年)に記載の3点曲げ試験方法に基づき、曲げ強度を測定した。ここで、支点間距離を300mm、試験速度を35mm/分とした。
[Measurement of bending strength of cylindrical FRP (pipe)]
The three-point bending test method described in “Accreditation Standards and Standard Confirmation Method for Golf Club Shafts” (Edited by Product Safety Association, Minister of International Trade and Industry No. 5 No. 2087, 1993) using the cylindrical FRP molded as described above Based on this, the bending strength was measured. Here, the distance between fulcrums was 300 mm, and the test speed was 35 mm / min.

Figure 2005105152
*1 フラーレン:混合物組成中60質量%がC60、25質量%がC70、その他15質量%が炭素数76以上の高次フラーレンから成る混合物
*2 Ep.828:ビスフェノールA型エポキシ樹脂〔ジャパンエポキシレジン(株)製〕[2官能]
*3 Ep.834:ビスフェノールA型エポキシ樹脂〔ジャパンエポキシレジン(株)製〕[2官能]
*4 Ep.154:フェノールノボラック型エポキシ樹脂〔ジャパンエポキシレジン(株)製〕[多官能]
*5 ELM−120:グリシジルアミン型エポキシ樹脂〔住友化学工業(株)製〕[3官能]
*6 PKHP−200:フェノキシ樹脂〔フェノキシスペシャリティーズ(株)製〕
*7 FX602:架橋ゴム粒子〔JSR(株)製〕
*8 DICY:ジシアンジアミド[エピキュアDICY−7]〔ジャパンエポキシレジン(株)製〕
*9 DCMU−99:硬化促進剤〔保土ヶ谷化学(株)製〕
*10 このプリプレグから得られたFRPは、ILSS、圧縮強度、圧縮弾性率は高いが、平板3点曲げ強度、平板3点曲げ弾性率、シャルピー衝撃強度、パイプ曲げ3点強度は低い。
Figure 2005105152
* 1 fullerene: Mixture 60 mass% in the composition is C 60, 25% by weight C 70, other 15 wt% is a mixture consisting of several 76 or more higher fullerenes carbon * 2 Ep.828: bisphenol A type epoxy resin [Japan Epoxy Resin Co., Ltd.] [Bifunctional]
* 3 Ep.834: Bisphenol A type epoxy resin [Japan Epoxy Resin Co., Ltd.] [bifunctional]
* 4 Ep.154: Phenol novolac type epoxy resin [Japan Epoxy Resin Co., Ltd.] [Multifunctional]
* 5 ELM-120: Glycidylamine type epoxy resin [manufactured by Sumitomo Chemical Co., Ltd.] [Trifunctional]
* 6 PKHP-200: Phenoxy resin (Phenoxy Specialties Co., Ltd.)
* 7 FX602: Cross-linked rubber particles [manufactured by JSR Corporation]
* 8 DICY: Dicyandiamide [Epicure DICY-7] [Japan Epoxy Resin Co., Ltd.]
* 9 DCMU-99: Curing accelerator (Hodogaya Chemical Co., Ltd.)
* 10 FRP obtained from this prepreg has high ILSS, compressive strength, and compressive elastic modulus, but low flat plate 3-point bending strength, flat plate 3-point bending elastic modulus, Charpy impact strength, and pipe bending 3-point strength.

表1によれば、本発明は以下の効果を有することが理解される。   According to Table 1, it is understood that the present invention has the following effects.

実施例1、実施例2、実施例3及び実施例4のプリプレグは、これを硬化して得られたFRPの物性について特に平板3点曲げ強度、平板3点曲げ弾性率、シャルピー衝撃強度、パイプ曲げ3点強度が高く、FRP原料として良好なプリプレグである。   The prepregs of Example 1, Example 2, Example 3 and Example 4 are the three-point bending strength, the three-point bending elastic modulus, the Charpy impact strength, the pipe of the FRP obtained by curing the prepreg. It has a high bending 3-point strength and is a good prepreg as an FRP raw material.

比較例1のプリプレグは、これを硬化して得られたFRPについて、特に平板3点曲げ強度、平板3点曲げ弾性率、シャルピー衝撃強度、パイプ曲げ3点強度が低く、FRP原料として良好なプリプレグではなかった。   The prepreg of Comparative Example 1 is an excellent prepreg as an FRP raw material, especially for FRP obtained by curing this, having a low flat plate three-point bending strength, flat plate three-point bending elastic modulus, Charpy impact strength, and pipe bending three-point strength. It wasn't.

比較例2のプリプレグは、これを硬化して得られたFRPについて、平板3点曲げ強度、平板3点曲げ弾性率、シャルピー衝撃強度、パイプ曲げ3点強度が低く、FRP原料として良好なプリプレグではなかった。   The FRP obtained by curing the prepreg of Comparative Example 2 has low flat plate three-point bending strength, flat plate three-point bending elastic modulus, Charpy impact strength, and pipe bending three-point strength, and is a good prepreg as an FRP raw material. There wasn't.

Claims (5)

炭素繊維強化材に樹脂組成物が含浸されてなるプリプレグであって、樹脂組成物が、熱硬化性樹脂と、熱硬化性樹脂100質量部に対する含有量0.05〜8質量部のフラーレンとを含有してなることを特徴とするフラーレン含有プリプレグ。 A prepreg obtained by impregnating a carbon fiber reinforcing material with a resin composition, the resin composition comprising a thermosetting resin and a fullerene having a content of 0.05 to 8 parts by mass with respect to 100 parts by mass of the thermosetting resin. A fullerene-containing prepreg characterized by comprising. フラーレンの含有量が熱硬化性樹脂100質量部に対し0.05〜6質量部である請求項1に記載のフラーレン含有プリプレグ。 The fullerene-containing prepreg according to claim 1, wherein the fullerene content is 0.05 to 6 parts by mass with respect to 100 parts by mass of the thermosetting resin. 熱硬化性樹脂が、二官能エポキシ樹脂及び多官能エポキシ樹脂で構成されたエポキシ樹脂である請求項1に記載のフラーレン含有プリプレグ。 The fullerene-containing prepreg according to claim 1, wherein the thermosetting resin is an epoxy resin composed of a bifunctional epoxy resin and a polyfunctional epoxy resin. 樹脂組成物が、熱可塑性樹脂と、官能基を有する架橋ゴム粒子とを含有する請求項1に記載のフラーレン含有プリプレグ。 The fullerene-containing prepreg according to claim 1, wherein the resin composition contains a thermoplastic resin and crosslinked rubber particles having a functional group. 炭素繊維強化材が、当該繊維強化材を構成する炭素繊維束を一方向に配列させた成形体、又は炭素繊維織物である請求項1に記載のフラーレン含有プリプレグ。 The fullerene-containing prepreg according to claim 1, wherein the carbon fiber reinforcing material is a molded body in which carbon fiber bundles constituting the fiber reinforcing material are arranged in one direction, or a carbon fiber woven fabric.
JP2003340996A 2003-09-30 2003-09-30 Fullerene-containing prepreg Expired - Fee Related JP4257181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340996A JP4257181B2 (en) 2003-09-30 2003-09-30 Fullerene-containing prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340996A JP4257181B2 (en) 2003-09-30 2003-09-30 Fullerene-containing prepreg

Publications (2)

Publication Number Publication Date
JP2005105152A true JP2005105152A (en) 2005-04-21
JP4257181B2 JP4257181B2 (en) 2009-04-22

Family

ID=34535732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340996A Expired - Fee Related JP4257181B2 (en) 2003-09-30 2003-09-30 Fullerene-containing prepreg

Country Status (1)

Country Link
JP (1) JP4257181B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124555A (en) * 2004-10-29 2006-05-18 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2007037684A (en) * 2005-08-02 2007-02-15 Sri Sports Ltd Golf club shaft
JP2007130041A (en) * 2005-11-08 2007-05-31 Sri Sports Ltd Golf club shaft
US7790234B2 (en) 2006-05-31 2010-09-07 Michael Raymond Ayers Low dielectric constant materials prepared from soluble fullerene clusters
US7875315B2 (en) 2006-05-31 2011-01-25 Roskilde Semiconductor Llc Porous inorganic solids for use as low dielectric constant materials
US7883742B2 (en) 2006-05-31 2011-02-08 Roskilde Semiconductor Llc Porous materials derived from polymer composites
US7919188B2 (en) 2006-05-31 2011-04-05 Roskilde Semiconductor Llc Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials
US8034890B2 (en) 2005-02-24 2011-10-11 Roskilde Semiconductor Llc Porous films and bodies with enhanced mechanical strength
JP2012147846A (en) * 2011-01-17 2012-08-09 Yonex Co Ltd Badminton racket
US8394491B2 (en) 2006-08-07 2013-03-12 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
JP2014505133A (en) * 2010-12-21 2014-02-27 ヘクセル コンポジット、リミテッド Improvement of composite materials
JP2018087274A (en) * 2016-11-28 2018-06-07 パナソニックIpマネジメント株式会社 Resin molding material and molding thereof
CN111225954A (en) * 2017-10-31 2020-06-02 住友化学株式会社 Liquid crystal polyester resin composition and injection molded article
CN111349316A (en) * 2020-04-03 2020-06-30 广西大学 Preparation method of inorganic fullerene resin-based composite material for containing case

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127274A (en) * 2001-10-22 2003-05-08 Kyocera Chemical Corp Glass epoxy copper-clad laminated plate
JP2003201388A (en) * 2002-01-08 2003-07-18 Toray Ind Inc Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP2006527786A (en) * 2003-06-16 2006-12-07 ウィリアム・マーシュ・ライス・ユニバーシティ Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127274A (en) * 2001-10-22 2003-05-08 Kyocera Chemical Corp Glass epoxy copper-clad laminated plate
JP2003201388A (en) * 2002-01-08 2003-07-18 Toray Ind Inc Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP2006527786A (en) * 2003-06-16 2006-12-07 ウィリアム・マーシュ・ライス・ユニバーシティ Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124555A (en) * 2004-10-29 2006-05-18 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
US8034890B2 (en) 2005-02-24 2011-10-11 Roskilde Semiconductor Llc Porous films and bodies with enhanced mechanical strength
JP2007037684A (en) * 2005-08-02 2007-02-15 Sri Sports Ltd Golf club shaft
US7517288B2 (en) * 2005-08-02 2009-04-14 Sri Sports Limited Golf club shaft
JP2007130041A (en) * 2005-11-08 2007-05-31 Sri Sports Ltd Golf club shaft
US7628710B2 (en) * 2005-11-08 2009-12-08 Sri Sports Limited Golf club shaft
JP4585956B2 (en) * 2005-11-08 2010-11-24 Sriスポーツ株式会社 Golf club shaft
US7790234B2 (en) 2006-05-31 2010-09-07 Michael Raymond Ayers Low dielectric constant materials prepared from soluble fullerene clusters
US7883742B2 (en) 2006-05-31 2011-02-08 Roskilde Semiconductor Llc Porous materials derived from polymer composites
US7919188B2 (en) 2006-05-31 2011-04-05 Roskilde Semiconductor Llc Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials
US7875315B2 (en) 2006-05-31 2011-01-25 Roskilde Semiconductor Llc Porous inorganic solids for use as low dielectric constant materials
US9828477B2 (en) 2006-08-07 2017-11-28 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8394491B2 (en) 2006-08-07 2013-03-12 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9221955B2 (en) 2006-08-07 2015-12-29 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
EP2666807B1 (en) 2006-08-07 2017-06-14 Toray Industries, Inc. A prepreg and carbon fiber reinforced composite materials
US9822228B2 (en) 2006-08-07 2017-11-21 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
JP2014505133A (en) * 2010-12-21 2014-02-27 ヘクセル コンポジット、リミテッド Improvement of composite materials
JP2012147846A (en) * 2011-01-17 2012-08-09 Yonex Co Ltd Badminton racket
JP2018087274A (en) * 2016-11-28 2018-06-07 パナソニックIpマネジメント株式会社 Resin molding material and molding thereof
CN111225954A (en) * 2017-10-31 2020-06-02 住友化学株式会社 Liquid crystal polyester resin composition and injection molded article
US11306252B2 (en) 2017-10-31 2022-04-19 Sumitomo Chemical Company, Limited Liquid crystal polyester resin composition and injection molded body
CN111225954B (en) * 2017-10-31 2022-06-07 住友化学株式会社 Liquid crystal polyester resin composition and injection molded article
CN111349316A (en) * 2020-04-03 2020-06-30 广西大学 Preparation method of inorganic fullerene resin-based composite material for containing case

Also Published As

Publication number Publication date
JP4257181B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
TWI595030B (en) High modulus fiber reinforced polymer composite and method for manufacturing the same
JP5061813B2 (en) Prepreg and golf club shaft
JP5293629B2 (en) Epoxy resin composition for tow prepreg and tow prepreg
JP4257181B2 (en) Fullerene-containing prepreg
TWI601771B (en) Conductive fiber reinforced polymer composite and multifunctional composite
JP5768893B2 (en) Epoxy resin composition and film, prepreg, fiber reinforced plastic using the same
JP5761366B2 (en) Epoxy resin composition, and film, prepreg, and fiber reinforced plastic using the same
JP5354095B2 (en) Prepreg, fiber reinforced composite material, and method for producing prepreg
KR20150070103A (en) Fiber reinforced high modulus polymer composite with a reinforced interphase
JP6131593B2 (en) Prepreg and fiber reinforced composites
JP6156569B2 (en) Epoxy resin composition for carbon fiber reinforced plastic, and film, prepreg and carbon fiber reinforced plastic using the same
JP2011162619A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR20150102939A (en) Fiber reinforced polymer composite with a hard interphase
JPWO2019181402A1 (en) Prepreg and fiber reinforced composites
JP2003201388A (en) Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP2004075914A (en) Epoxy resin composition and prepreg
JP4428978B2 (en) Epoxy resin composition
JP4346936B2 (en) Vapor grown carbon fiber-containing prepreg and method for producing the same
JP2010174073A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
TWI793219B (en) Manufacturing method of carbon fiber
JP2003253094A (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP2004300221A (en) Vapor grown carbon fiber-containing prepreg
JP2020050833A (en) Prepreg and molded article thereof
JP2003012837A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composition material
JP2006124555A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4257181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees