JP2005104958A - Method for synthesizing fluorine-containing metal complex - Google Patents

Method for synthesizing fluorine-containing metal complex Download PDF

Info

Publication number
JP2005104958A
JP2005104958A JP2004005840A JP2004005840A JP2005104958A JP 2005104958 A JP2005104958 A JP 2005104958A JP 2004005840 A JP2004005840 A JP 2004005840A JP 2004005840 A JP2004005840 A JP 2004005840A JP 2005104958 A JP2005104958 A JP 2005104958A
Authority
JP
Japan
Prior art keywords
fluorine
diketone
synthesizing
aprotic solvent
containing metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004005840A
Other languages
Japanese (ja)
Inventor
Toshiaki Sugimoto
敏明 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004005840A priority Critical patent/JP2005104958A/en
Publication of JP2005104958A publication Critical patent/JP2005104958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing a fluorine-containing metal complex which is excellent in volatility and stability and is useful as a raw material for forming a thin film by chemical vapor deposition (CVD). <P>SOLUTION: The method for synthesizing the fluorine-containing metal complex is for synthesizing a β-diketone complex of Zr or Hf and comprises suspending anhydrous chloride of Zr or Hf in an anhydrous aprotic solvent, adding a fluorine-containing β-diketone and reacting, refluxing the mixture at 60-120°C while reacting it under a pressure of 100-700 Pa, removing generated hydrogen chloride gas, removing the solvent composing the upper layer of a solution separated into two layers, adding the aprotic solvent again, refluxing the mixture at 60-120°C, cooling it to from -20 to 5°C to separate out a crystal, collecting the crystal through filtering, adding the aprotic solvent again, refluxing the mixture at 60-120°C and cooling it to from -20 to 5°C to separate out a crystal in the lower layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気相化学反応(CVD)により薄膜を形成させるための原料として有用な、気化性、安定性に優れた含フッ素金属錯体の合成方法に関する。   The present invention relates to a method for synthesizing a fluorine-containing metal complex which is useful as a raw material for forming a thin film by vapor phase chemical reaction (CVD) and has excellent vaporization and stability.

近年、各種の材料を大面積の基盤上に高速度で堆積させる手段のひとつとして、CVD法が用いられているが、CVD法に用いられるには、気化性、気化安定性、反応性に優れた化合物材料が必要とされている。 In recent years, the CVD method has been used as one of the means for depositing various materials on a large-area substrate at a high speed, but in order to be used in the CVD method, it has excellent vaporization, vaporization stability, and reactivity. Compound materials are needed.

例えば、光ファイバや薄膜のCVD原料として、ZrやHfを用いたβ−ジケトン錯体がある。該錯体は、種々の方法で合成されるが、そのひとつとして水溶性無機塩を用い水溶液中でアセチルアセトンと反応させ錯体を合成する方法(特許文献1)、Zr、Hfの無水塩化物を出発原料にして不活性ガス中で、無水溶媒下でアセチルアセトンと反応させ錯体を合成する方法(特許文献2、特許文献3)等がある。しかし、これらの合成方法では、結晶の水分除去が困難であり良好な気化特性を示す結晶が得られない。   For example, there is a β-diketone complex using Zr or Hf as a CVD raw material for optical fibers or thin films. The complex is synthesized by various methods, one of which is a method of synthesizing a complex by reacting with acetylacetone in an aqueous solution using a water-soluble inorganic salt (Patent Document 1), and starting from anhydrous chlorides of Zr and Hf. And a method of synthesizing a complex by reacting with acetylacetone in an inert gas under an anhydrous solvent (Patent Documents 2 and 3). However, with these synthesis methods, it is difficult to remove moisture from the crystals, and crystals exhibiting good vaporization characteristics cannot be obtained.

また、E.M.Larsenは、ZrやHfのトリフルオロアセチルアセトンの合成方法として、原料をオキシ塩化物を出発原料に用いて製造しているが、結晶水が入り高真空で処理しても脱水乾燥が困難であり、良好な気化特性を示さない(非特許文献1)。
従来の方法で合成した錯体は、含フッ素β−ジケトンを添加して反応させ溶媒抽出やエーテル中での再結晶化法を経て高真空下で長時間乾燥後、高真空下で昇華生成する方法が記載されている。かかる方法では収率50〜60%と低くくまた高真空で非効率的であるばかりか、水分除去が困難で本来の優れた気化特性が得られないという問題があった。
特開平3−141118号公報 特開平6−9660号公報 特開平6−87868号公報 J.Amer.Chem.Soc.,75,5107(1953)
In addition, E.I. M.M. Larsen is a method for synthesizing trifluoroacetylacetone of Zr and Hf using oxychloride as a starting material, but it is difficult to dehydrate and dry even if it contains crystallization water and is processed in high vacuum. It does not show good vaporization characteristics (Non-Patent Document 1).
A complex synthesized by a conventional method is a method in which fluorine-containing β-diketone is added and reacted, followed by solvent extraction and recrystallization in ether, followed by drying under high vacuum for a long time and then sublimation under high vacuum. Is described. This method has a low yield of 50 to 60% and is not only inefficient under high vacuum, but also has a problem that it is difficult to remove moisture and the original excellent vaporization characteristics cannot be obtained.
Japanese Patent Laid-Open No. 3-141118 JP-A-6-9660 Japanese Patent Laid-Open No. 6-87868 J. et al. Amer. Chem. Soc. , 75, 5107 (1953)

本発明者は、上記の欠点を鑑み鋭意検討した結果、非プロトン性無水溶媒中に無水金属塩化物を懸濁させ、含フッ素β−ジケトンを徐々に滴下し、密封加圧下で反応させ、分液操作と冷却して再結晶化を2回繰り返すことによる高純度化工程を経て気化特性の優れた含フッ素金属錯体を効率よく合成することを見出し本発明に到達したものである。   As a result of intensive investigations in view of the above-mentioned drawbacks, the present inventors have suspended anhydrous metal chloride in an aprotic anhydrous solvent, gradually dropped fluorine-containing β-diketone, allowed to react under sealed pressure, The present inventors have found that a fluorine-containing metal complex having excellent vaporization characteristics can be efficiently synthesized through a purification step by repeating liquid crystal treatment and cooling and recrystallization twice.

すなわち本発明は、ZrまたはHfの含フッ素β−ジケトン錯体を合成するに際し、ZrまたはHfの無水塩化物を無水の非プロトン性溶媒中に懸濁させ、含フッ素β−ジケトンを添加し反応させた後、60〜120℃の温度範囲で還流しながら、100〜700Paの加圧下で反応させ、発生する塩化水素ガスを除去した後、二層分離した溶液から上層溶媒を除去したのち、再度非プロトン性溶媒を添加し、60〜120℃の温度範囲て還流した後、−20〜5℃の温度範囲で冷却して結晶を析出させ、結晶を濾別後、再度非プロトン性溶媒を添加して60〜120℃の温度範囲て還流した後、−20〜5℃の温度範囲で冷却して下層に結晶を析出させることを特徴とする含フッ素金属錯体の合成方法であり、その含フッ素β−ジケトンが、R1COCH2COR2で表されるβ−ジケトン化合物であり(ただし、R1、R2は、炭素数1〜8のアルキル基またはフッ素化アルキル基をそれぞれ表す。)、また、含フッ素β−ジケトンが、トリフルオロアセチルアセトン、またはヘキサフルオロアセチルアセトンであり、さらには、その非プロトン性溶媒が、トルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、n−ヘキサン、n−ヘプタン、またはシクロヘキサンのいずれかであることを特徴とする含フッ素金属錯体の合成方法を提供するものである。 That is, when synthesizing a fluorine-containing β-diketone complex of Zr or Hf, the present invention suspends an anhydrous chloride of Zr or Hf in an anhydrous aprotic solvent and adds the fluorine-containing β-diketone to the reaction. Then, the reaction is carried out under a pressure of 100 to 700 Pa while refluxing in a temperature range of 60 to 120 ° C., and the generated hydrogen chloride gas is removed. After adding a protic solvent and refluxing in a temperature range of 60 to 120 ° C., cooling in a temperature range of −20 to 5 ° C. to precipitate crystals, filtering the crystals, adding an aprotic solvent again. And then refluxing in a temperature range of 60 to 120 ° C., and then cooling in a temperature range of −20 to 5 ° C. to precipitate crystals in the lower layer. The diketone is A β- diketone compound represented by the 1 COCH 2 COR 2 (provided that, R 1, R 2 each represent an alkyl group or fluorinated alkyl group of 1 to 8 carbon atoms.), The fluorine-containing β- The diketone is trifluoroacetylacetone or hexafluoroacetylacetone, and the aprotic solvent is any one of toluene, benzene, xylene, dichloromethane, chloroform, n-hexane, n-heptane, or cyclohexane. The present invention provides a method for synthesizing a fluorine-containing metal complex characterized by the following.

以下、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明において、用いる原料のZrまたはHfの無水塩化物としては、ZrCl4、HfCl4等が挙げられる。なお、合成した化合物は、水分を極端に抑えることが必要であるため、原料である無水塩は、吸湿しやすくグローボックス内で取り扱い、含フッ素β−ジケトンはあらかじめ脱水処理したものを、非プロトン性溶媒は、モレキュラーシーブ等で完全に脱水処理して用いること等に留意しなければならない。 In the present invention, ZrCl 4 , HfCl 4, etc. may be mentioned as the raw material Zr or Hf anhydrous chloride. In addition, since the synthesized compound needs to extremely suppress moisture, the anhydrous salt as a raw material is easy to absorb moisture and is handled in a glow box, and the fluorine-containing β-diketone is dehydrated in advance. It should be noted that the organic solvent should be completely dehydrated with molecular sieves.

次に、本発明で用いる含フッ素β−ジケトンは、R1COCH2COR2で表されるβ−ジケトン化合物である(ただし、R1、R2は、炭素数1〜8のアルキル基またはフッ素化アルキル基をそれぞれ表す。)。特に好ましい含フッ素β−ジケトンとしては、トリフルオロアセチルアセトン(CF3COCH2COCH3)、ヘキサフルオロアセチルアセトン(CF3COCH2COCF3)等が挙げられる。 Next, the fluorine-containing β-diketone used in the present invention is a β-diketone compound represented by R 1 COCH 2 COR 2 (however, R 1 and R 2 are an alkyl group having 1 to 8 carbon atoms or fluorine. Each represents an alkyl group. Particularly preferred fluorine-containing β-diketones include trifluoroacetylacetone (CF 3 COCH 2 COCH 3 ), hexafluoroacetylacetone (CF 3 COCH 2 COCF 3 ) and the like.

本発明において、まず、ZrまたはHfの無水塩化物を無水の非プロトン性溶媒中に懸濁させる。溶媒としてトルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、ヘキサンまたはその異性体、ヘプタンまたはその異性体、シクロヘキサン、メチルシクロヘキサン、メチルシクロペンタン、アセトニトリル等があげられ、特に、トルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、n−ヘキサン、n−ヘプタン、またはシクロヘキサンが好ましい。ここで非プロトン性以外の溶媒を用いると、無水金属塩が強力なルイス酸として働き一部溶媒と反応したり、得られた錯体が分解や付加体を生成して収率が低減する問題が生じるが、溶媒としては金属塩化物や生成物の金属錯体と反応したり、付加体を生成しなければ特に限定される物ではない。次にあらかじめ脱水処理した含フッ素β−ジケトンを室温(10〜30℃)で1〜6時間徐々に添加し反応さるが、含フッ素β−ジケトンの添加量は、Zr金属またはHf金属に対し、1.0〜1.5当量過剰に添加する。この範囲以外では、1.0当量未満では未反応の塩化物原料が残り、1.5当量を超えると含フッ素β−ジケトン配位子の未反応物の除去が必要で、含フッ素β−ジケトンが高価であり好ましくない。   In the present invention, first, an anhydrous chloride of Zr or Hf is suspended in an anhydrous aprotic solvent. Solvents include toluene, benzene, xylene, dichloromethane, chloroform, hexane or its isomers, heptane or its isomers, cyclohexane, methylcyclohexane, methylcyclopentane, acetonitrile, etc. Especially, toluene, benzene, xylene, dichloromethane, chloroform , N-hexane, n-heptane, or cyclohexane are preferred. If a solvent other than aprotic is used here, the anhydrous metal salt acts as a strong Lewis acid and partially reacts with the solvent, or the resulting complex decomposes or generates adducts, resulting in a decrease in yield. However, the solvent is not particularly limited as long as it does not react with a metal chloride or a metal complex of the product or generate an adduct. Next, the fluorine-containing β-diketone that has been dehydrated in advance is gradually added and reacted at room temperature (10 to 30 ° C.) for 1 to 6 hours. The addition amount of the fluorine-containing β-diketone is based on Zr metal or Hf metal. Add 1.0-1.5 equivalent excess. Outside this range, unreacted chloride raw material remains if it is less than 1.0 equivalent, and if it exceeds 1.5 equivalent, it is necessary to remove the unreacted fluorine-containing β-diketone ligand. Is expensive and not preferred.

次に、含フッ素β−ジケトンを添加後、溶液を60〜120℃の温度範囲で加熱還流しながら密閉系で反応をさせる。すなわち加熱すれば溶媒中に溶解する塩化水素ガスの濃度は、液温に反比例して溶存量が極めて小さくなるからである。   Next, after adding the fluorine-containing β-diketone, the solution is reacted in a closed system while heating and refluxing in a temperature range of 60 to 120 ° C. That is, when heated, the concentration of hydrogen chloride gas dissolved in the solvent becomes extremely small in inverse proportion to the liquid temperature.

反応は、以下のように進む。
MCl4+4R1COCH2COR2 → M(R1COCHCOR24+4HCl
(ここでMは、4族金属Zr、Hfを示し、R1COCH2COR2は、含フッ素配位子を示し、R1、R2は、炭素数1〜8のアルキル基またはフッ素化アルキル基をそれぞれ示す。)
ここで反応を進めるには発生する塩化水素ガスを速やかに排気させる必要がある。加熱還流時間は、合成量によるが、1〜5日間が適当である。
The reaction proceeds as follows.
MCl 4 + 4R 1 COCH 2 COR 2 → M (R 1 COCHCOR 2 ) 4 + 4HCl
(Here, M represents a group 4 metal Zr or Hf, R 1 COCH 2 COR 2 represents a fluorine-containing ligand, and R 1 and R 2 represent an alkyl group having 1 to 8 carbon atoms or a fluorinated alkyl. Each group is shown.)
Here, in order to proceed the reaction, it is necessary to quickly exhaust the generated hydrogen chloride gas. The heating reflux time depends on the amount of synthesis, but 1 to 5 days is appropriate.

水分を極端に嫌うため、系内をプラス圧(100〜700Pa)に保ち、乾燥処理したガスを封止する。ガスはAr、He等の原料や生成物と反応しない不活性ガスを用いる必要がある。発生した塩化水素ガスは、外気遮断方法として排気側に逆止弁を設けたり、もしくは冷却トラップを通し完全に外気と遮断することによって無水塩化物と含フッ素配位子との反応が一定の速度で進み水和物や副反応が抑制され高純度錯体が得られる。
もし外気遮断処置が不十分であると水分の影響で原料が水和物を生成したり、含フッ素配位子自身が水和物を生成したり、一部多量体が生成したりして気化特性や収率が極端に劣る問題が生じる。
In order to dislike moisture extremely, the inside of the system is kept at a positive pressure (100 to 700 Pa), and the dried gas is sealed. As the gas, it is necessary to use an inert gas that does not react with raw materials and products such as Ar and He. The generated hydrogen chloride gas has a constant rate of reaction between anhydrous chloride and fluorine-containing ligand by providing a check valve on the exhaust side as a method for shutting off the outside air or completely shutting it off from the outside air through a cooling trap. In this way, hydrates and side reactions are suppressed, and a high-purity complex is obtained.
If the outside air blocking treatment is insufficient, the raw material generates hydrates due to the influence of moisture, the fluorine-containing ligand itself generates hydrates, or some multimers are vaporized. Problems with extremely inferior properties and yields arise.

外気遮断は、系内をややプラス圧(100〜700Pa)に保つことが好ましく、ここで系内の圧力が、100Pa未満や減圧側だと溶媒や錯体含フッ素配位子が塩化水素や不活性ガスに同伴して飛散して損失となり、また塩化水素が水分に溶解して好ましくない。   It is preferable to keep the inside of the system at a slightly positive pressure (100 to 700 Pa) for shutting off the outside air. When the pressure in the system is less than 100 Pa or on the reduced pressure side, the solvent or the complex fluorine-containing ligand is hydrogen chloride or inert. It is not preferable because it is scattered with gas and lost, and hydrogen chloride dissolves in moisture.

逆に系内の圧力が、700Paを超えると塩化水素ガスの発生が抑制され、溶液中の塩化水素ガス濃度が上昇してスムースに反応が進まず、さらに系内が高圧になり、突沸や噴出等が懸念され安全上好ましくない。  Conversely, when the pressure in the system exceeds 700 Pa, the generation of hydrogen chloride gas is suppressed, the concentration of hydrogen chloride gas in the solution rises and the reaction does not proceed smoothly, and the system pressure increases further, causing bumping and ejection. This is not preferable for safety.

次に、ややプラス圧下で塩化水素ガスを排気させながら1〜5日間徐々に還流させる。すなはち圧力調節をしない場合は初期の段階で塩化水素ガスが急激に発生して外気遮断が困難であり、冷却トラップ等の遮断では塩化水素の水との反応が速く水和物の発生を抑制することが困難になる。またやや加圧下では初期の塩化水素ガスの発生が抑制され、一定の速度で錯体の生成反応が進む。1〜5日間還流すると塩化水素ガスが系内から検出されなくなり反応が完結する。反応中か終了近くで塩化水素ガスを除去するために適宜乾燥不活性ガスを吹き込んでもよい。塩化水素ガスの検出は、排気ガスをアンモニアガスに晒すと白煙が生成しなくなることによる簡易方法で判別ができる。   Next, it is gradually refluxed for 1 to 5 days while exhausting hydrogen chloride gas under a slightly positive pressure. In other words, if the pressure is not adjusted, hydrogen chloride gas is generated abruptly at the initial stage, and it is difficult to shut off the outside air. Shutting off a cooling trap or the like causes the reaction of hydrogen chloride with water to generate hydrates quickly. It becomes difficult to suppress. Under slightly increased pressure, the initial generation of hydrogen chloride gas is suppressed, and the complex formation reaction proceeds at a constant rate. When refluxed for 1 to 5 days, hydrogen chloride gas is not detected from the system and the reaction is completed. In order to remove hydrogen chloride gas during or near the end of the reaction, a dry inert gas may be appropriately blown. Hydrogen chloride gas can be detected by a simple method by which white smoke is not generated when the exhaust gas is exposed to ammonia gas.

還流を止めて室温まで下げると溶液はやがて二層分離してくる。上層は黒褐色の溶液で、下層は油状の茶褐色溶液に分離する。その溶液をいったんエバポレーターで上層を除去する。この場合水浴温度は30〜45℃で行う。それ以上に水浴温度を上げると下層の油状金属錯体が飛散して損失となる。上層の非プロトン性溶媒や過剰の含フッ素配位子が除去されると下層部の茶褐色の油状スラリーが残る。   When the reflux is stopped and the temperature is lowered to room temperature, the solution eventually separates into two layers. The upper layer is a black-brown solution, and the lower layer is separated into an oily brown solution. The upper layer of the solution is removed once with an evaporator. In this case, the water bath temperature is 30 to 45 ° C. If the water bath temperature is further increased, the lower oily metal complex is scattered and lost. When the aprotic solvent in the upper layer and the excess fluorine-containing ligand are removed, a brown oily slurry in the lower layer remains.

(1回目の結晶化)
下層部の高粘度油状スラリーに対して2〜5倍体積の非プロトン性溶媒を添加して再度60〜120℃の温度範囲で還流すると不純物が上層の溶媒側に移行して茶色に呈色し、下層に高粘液の淡黄色油状スラリーに分離する。−20〜5℃に冷却して12〜24時間静置すると下層部の油状スラリーは結晶化する。この結晶を濾別して少量の冷非プロトン性溶媒で洗浄乾燥後淡黄色の結晶を得る。
(First crystallization)
When 2-5 times the volume of aprotic solvent is added to the high viscosity oily slurry in the lower layer and refluxed again in the temperature range of 60-120 ° C., the impurities migrate to the upper solvent and turn brown. In the lower layer, it is separated into a pale yellow oily slurry of high viscosity. When cooled to -20 to 5 ° C and allowed to stand for 12 to 24 hours, the lower layer oily slurry crystallizes. The crystals are separated by filtration, washed with a small amount of cold aprotic solvent and dried to obtain pale yellow crystals.

(2回目の結晶化)
1回目の結晶化で得られた結晶に対して2〜5倍体積の非プロトン性溶媒を添加して再度60〜120℃の温度範囲で還流すると上層の溶媒が淡黄色に呈色し、下層に高粘液の白色油状スラリーに分離する。−20〜5℃に冷却して24時間静置すると下層部の油状スラリーは結晶化する。この結晶を濾別して少量の冷非プロトン性溶媒で洗浄乾燥後白色の結晶を得る。
(Second crystallization)
When a 2-5 times volume aprotic solvent is added to the crystals obtained in the first crystallization and refluxed again in the temperature range of 60-120 ° C., the upper solvent turns pale yellow, Into a highly viscous white oily slurry. When cooled to -20 to 5 ° C and allowed to stand for 24 hours, the lower layer oily slurry crystallizes. The crystals are separated by filtration, washed with a small amount of cold aprotic solvent and dried to obtain white crystals.

この2回の結晶化操作により、未反応物、有機物、タール分等は、上層に移行させ、下層に白色結晶に分離させることで高純度かつ高収率で含フッ素金属錯体を得ることができる。   By these two crystallization operations, unreacted substances, organic substances, tars, etc. are transferred to the upper layer and separated into white crystals in the lower layer, whereby a fluorine-containing metal complex can be obtained with high purity and high yield. .

本発明の方法は、昇華精製法のような煩雑な工程をとらず2回の再結晶によって高純度の含フッ素金属錯体を高収率で得ることができ水分にも極めて安定で高い蒸気圧を有し、CVD法による被膜形成に好適な錯体を安価に大量に提供することができる。   The method of the present invention can obtain a high-purity fluorine-containing metal complex in a high yield by two recrystallizations without taking a complicated process like the sublimation purification method, and is extremely stable against moisture and has a high vapor pressure. And a complex suitable for film formation by CVD can be provided in large quantities at low cost.

以下、実施例において本発明を具体的に説明するが、本発明はかかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this Example.

実施例1
Hf(C56HO2)4の合成
500mlの3口フラスコに原料HfCl4を11.6g(36.2mmol)グローブボックス内で分取して、脱水処理したトルエン300ml添加して懸濁させる。容器は密閉してあらかじめ乾燥窒素を封じておく、あらかじめ脱水蒸留したヘキサフルオロアセチルアセトン34.35g(1.14当量)を室温で攪拌しながら室温でゆっくり滴下する。白色懸濁液は黄色から茶褐色へと変化して塩化水素ガスが発生し始める。系内の圧力をプラス圧(100〜700Pa)に保持するよう圧力調整をして適宜塩化水素ガスを逆止弁から排気する。排気は2段にトラップを設けて水分には充分留意する。約3時間でヘキサフルオロアセチルアセトンを滴下完了後、5日間110℃で還流すると排気ガス中に塩化水素ガスが全く検出されない状態(pH>3)で還流を止めた(確認として排気ガスをアンモニアガスに晒して全く白煙(NH4Cl)が発生しなくなってから還流をやめる。)。密閉のまま室温まで冷却させると、黒褐色の上層と茶褐色の下層に2層分離する。カールフィシャーによる溶液の含水率は430ppmであった。この溶液をエバポレーターで40℃水浴上でトルエン溶媒や過剰のβ−ジケトンを溜去する。残留物は茶色の高粘度油状スラリーが得られた。
Example 1
Synthesis of Hf (C 5 F 6 HO 2 ) 4 In a 500 ml three-necked flask, 11.6 g (36.2 mmol) of raw material HfCl 4 is collected in a glove box, and 300 ml of dehydrated toluene is added and suspended. . The container is sealed and previously sealed with dry nitrogen, and 34.35 g (1.14 equivalents) of hexafluoroacetylacetone previously dehydrated and distilled is slowly added dropwise at room temperature while stirring at room temperature. The white suspension changes from yellow to brown and begins to generate hydrogen chloride gas. The pressure is adjusted so that the pressure in the system is maintained at a positive pressure (100 to 700 Pa), and hydrogen chloride gas is appropriately discharged from the check valve. Exhaust is provided with a trap in two stages, paying sufficient attention to moisture. After the completion of the dropwise addition of hexafluoroacetylacetone in about 3 hours, when refluxing at 110 ° C. for 5 days, the reflux was stopped when no hydrogen chloride gas was detected in the exhaust gas (pH> 3). (After the exposure, no white smoke (NH 4 Cl) is generated and the reflux is stopped.) When cooled to room temperature in a sealed state, two layers are separated into a blackish brown upper layer and a brownish brown lower layer. The water content of the solution by Karl Fischer was 430 ppm. Toluene solvent and excess β-diketone are distilled off from this solution in an evaporator on a 40 ° C. water bath. The residue was a brown high-viscosity oily slurry.

(1回目結晶化)
これを少量のトルエン80mlを加え110℃で4時間還流すると、2層に分離して上層は黄色透明溶液と、下層は高粘度黄色油状スラリーに分離する。これを0℃で15時間静置すると上層に茶透明溶液と下層に黄色結晶が析出した。
(First crystallization)
When a small amount of 80 ml of toluene is added and refluxed at 110 ° C. for 4 hours, it is separated into two layers, the upper layer is separated into a yellow transparent solution, and the lower layer is separated into a highly viscous yellow oily slurry. When this was allowed to stand at 0 ° C. for 15 hours, a brown transparent solution was deposited on the upper layer and yellow crystals were deposited on the lower layer.

(2回目の結晶化)
下層部の結晶を濾別して50mlのトルエンを加え110℃で2時間還流すると2層分離したスラリーを得た。このスラリー溶液を再度0℃で12時間冷却静置すると、下層に白色の結晶が析出した。濾別洗浄後33.31g(収率91.4%)の白色結晶が得られた。分析結果は、以下に示す。かっこ内は、理論値である。
(Second crystallization)
The lower layer crystal was separated by filtration, 50 ml of toluene was added, and the mixture was refluxed at 110 ° C. for 2 hours to obtain a slurry having two layers separated. When this slurry solution was cooled and allowed to stand again at 0 ° C. for 12 hours, white crystals were deposited in the lower layer. After washing by filtration, 33.31 g (yield 91.4%) of white crystals was obtained. The analysis results are shown below. The values in parentheses are theoretical values.

Hf金属:ICP分析 17.39%(17.7%)
元素分析:C:23.94%(23.85%)
H:0.45%(0.40%)
F:45.6%(45.3%)
これらの結果からテトラキスヘキサフルオロアセチルアセトナトハフニウム(Hf(C56HO2)4)と同定された。また、TG−DTAによる気化率は、100.2%(昇温10℃/min、N2ガス流量300ml/min)の良好な気化特性を示した。
Hf metal: ICP analysis 17.39% (17.7%)
Elemental analysis: C: 23.94% (23.85%)
H: 0.45% (0.40%)
F: 45.6% (45.3%)
From these results, tetrakishexafluoroacetylacetonatohafnium (Hf (C 5 F 6 HO 2 ) 4 ) was identified. Moreover, the vaporization rate by TG-DTA showed a favorable vaporization characteristic of 100.2% (temperature increase 10 ° C./min, N 2 gas flow rate 300 ml / min).

実施例2
Zr(C56HO2)4の合成
500mlの3口フラスコに原料ZrCl4を9.57g(41.07mmol)グローブボックス内で分取して、脱水処理したn−ヘキサン250ml添加して懸濁させる。容器は密閉してあらかじめ乾燥窒素を封じておく、あらかじめ脱水蒸留したヘキサフルオロアセチルアセトン35.88g(1.05当量)を室温で攪拌しながら室温でゆっくり滴下する。白色懸濁液は黄色から茶褐色へと変化して塩化水素ガスが発生し始める。系内がプラス圧(100〜700Pa)を保持するよう圧力調整をして適宜塩化水素ガスを逆止弁から排気する。排気は2段にトラップを設けて水分には充分留意する。約4時間でヘキサフルオロアセチルアセトンを滴下完了後、4日間69℃で還流すると排気ガス中に塩化水素ガスが全く検出されない状態で還流を止めた(確認として排気ガスをアンモニアガスに晒して全く白煙(NH4Cl)が発生しなくなってから還流をやめる。)。密閉のまま室温まで冷却させると、茶褐色の上層と褐色の下層に2層分離した溶液が得られた。カールフィシャーによる溶液の含水率は210ppmであった。この溶液をとりエバポレーターで43℃水浴上でn−ヘキサン溶媒と過剰のヘキサフルオロアセチルアセトンを溜去した。残留物は黄茶色の油状スラリーが得られた。
Example 2
Synthesis of Zr (C 5 F 6 HO 2 ) 4 In a 500 ml three-necked flask, 9.57 g (41.07 mmol) of raw material ZrCl 4 was fractionated in a glove box, and 250 ml of dehydrated n-hexane was added and suspended. Make it cloudy. The container is sealed and previously sealed with dry nitrogen, and 35.88 g (1.05 equivalents) of hexafluoroacetylacetone previously dehydrated and distilled is slowly added dropwise at room temperature while stirring at room temperature. The white suspension changes from yellow to brown and begins to generate hydrogen chloride gas. The pressure is adjusted so that the system maintains a positive pressure (100 to 700 Pa), and hydrogen chloride gas is appropriately discharged from the check valve. Exhaust is provided with a trap in two stages, paying sufficient attention to moisture. After completion of the dropwise addition of hexafluoroacetylacetone in about 4 hours, when refluxing at 69 ° C. for 4 days, the refluxing was stopped in a state where no hydrogen chloride gas was detected in the exhaust gas. Reflux is stopped after (NH 4 Cl) is no longer generated. When cooled to room temperature while sealed, a solution having two layers separated into a brown upper layer and a brown lower layer was obtained. The water content of the solution by Karl Fischer was 210 ppm. This solution was taken out and the n-hexane solvent and excess hexafluoroacetylacetone were distilled off on a 43 ° C. water bath with an evaporator. The residue was a yellow-brown oily slurry.

(1回目結晶化)
これを少量のn−ヘキサン60mlを加え69℃で6時間加熱還流すると、2層に分離して上層は淡黄色透明溶液と、下層は高粘度淡黄色スラリーに分離した。このスラリー溶液を0℃で15時間冷却静置すると下層に結晶が析出した。
(First crystallization)
When a small amount of n-hexane (60 ml) was added and the mixture was heated to reflux at 69 ° C. for 6 hours, it was separated into two layers, the upper layer was separated into a pale yellow transparent solution, and the lower layer was separated into a highly viscous pale yellow slurry. When this slurry solution was cooled and allowed to stand at 0 ° C. for 15 hours, crystals were deposited in the lower layer.

(2回目結晶化)
この結晶を濾別後n−ヘキサンを80ml加え69℃で3時間加熱還流して、2層分離したスラリー溶液を得た。再度スラリー溶液を0℃12時間で冷却静置すると、下層に白色の結晶が析出した。濾別洗浄後33.86g(収率89.7%)の白色結晶が得られた。分析結果は、以下に示す。かっこ内は、理論値である。
(Second crystallization)
The crystals were separated by filtration, 80 ml of n-hexane was added, and the mixture was heated to reflux at 69 ° C. for 3 hours to obtain a slurry solution separated into two layers. When the slurry solution was cooled and allowed to stand again at 0 ° C. for 12 hours, white crystals were deposited in the lower layer. After washing by filtration, 33.86 g (yield 89.7%) of white crystals was obtained. The analysis results are shown below. The values in parentheses are theoretical values.

Zr金属:ICP分析 9.86%(9.92%)
元素分析:C:26.42%(26.11%)
H:0.43%(0.44%)
F:49.2%(49.6%)
これらの結果からテトラキスヘキサフルオロアセチルアセトナトジルコニウム(Zr(C56HO2)4)と同定された。また、TG−DTAによる気化率は、99.8%(昇温10℃/min、N2ガス流量300ml/min)の良好な気化特性を示した。
Zr metal: ICP analysis 9.86% (9.92%)
Elemental analysis: C: 26.42% (26.11%)
H: 0.43% (0.44%)
F: 49.2% (49.6%)
From these results, it was identified as tetrakishexafluoroacetylacetonatozirconium (Zr (C 5 F 6 HO 2 ) 4 ). Moreover, the vaporization rate by TG-DTA showed a favorable vaporization characteristic of 99.8% (temperature increase 10 ° C./min, N 2 gas flow rate 300 ml / min).

比較例1
原料HfCl4を7.52g(23.48mmol)グローブボックス内で分取して、脱水処理したトルエン200ml添加して懸濁させる。あらかじめ脱水蒸留したヘキサフルオロアセチルアセトン20.12g(1.03当量)を室温で2時間攪拌しながら室温でゆっくり滴下する。白色懸濁液は黄色から黄土色へと変化して塩化水素ガスが発生し始める。約2時間でヘキサフルオロアセチルアセトンを滴下完了後、実施例1と同様に系内の圧力調整をしつつ5日間加熱還流を行った。
Comparative Example 1
The raw material HfCl 4 is collected in a 7.52 g (23.48 mmol) glove box, and 200 ml of dehydrated toluene is added and suspended. 20.12 g (1.03 equivalents) of hexafluoroacetylacetone previously dehydrated and distilled is slowly added dropwise at room temperature while stirring at room temperature for 2 hours. The white suspension changes from yellow to ocher and begins to generate hydrogen chloride gas. After completion of the dropwise addition of hexafluoroacetylacetone in about 2 hours, the system was heated to reflux for 5 days while adjusting the pressure in the system in the same manner as in Example 1.

5日間還流すると排気ガス中に塩化水素ガスが全く検出されない状態(pH=3)で還流を止めた(確認として排気ガスをアンモニアガスに晒して全く白煙(NH4Cl)が発生しなくなってから還流をやめる。)。密閉で室温まで冷却させると、褐色の上層と淡黄色の下層に2層分離した。分液ロートで下層部を分取してエバポレーターで40℃水浴上で濃縮させると含有しているトルエン溶媒、過剰のβ−ジケトン(ヘキサフルオロアセチルアセトン)が溜去される。残留物は淡黄色の油状スラリーが得られる。 When refluxed for 5 days, the reflux was stopped when no hydrogen chloride gas was detected in the exhaust gas (pH = 3). (For confirmation, the exhaust gas was exposed to ammonia gas and no white smoke (NH 4 Cl) was generated. Refrain from reflux.) Upon cooling to room temperature with sealing, two layers were separated into a brown upper layer and a pale yellow lower layer. When the lower layer portion is collected with a separatory funnel and concentrated on a 40 ° C. water bath with an evaporator, the contained toluene solvent and excess β-diketone (hexafluoroacetylacetone) are distilled off. The residue gives a pale yellow oily slurry.

(1回目結晶化)
これを少量のトルエン70mlを加え110℃で4時間加熱還流すると、2層に分離して上層は黄色透明溶液と、下層は高粘度黄色油状スラリーに分離する。これを室温(24℃で)16時間静置すると上層に茶透明溶液と下層に黄色油状透明溶液に分離した。
(First crystallization)
When a small amount of 70 ml of toluene is added and heated to reflux at 110 ° C. for 4 hours, it is separated into two layers, the upper layer is separated into a yellow transparent solution and the lower layer is separated into a highly viscous yellow oily slurry. When this was allowed to stand at room temperature (at 24 ° C.) for 16 hours, it was separated into a brown transparent solution in the upper layer and a yellow oily transparent solution in the lower layer.

(2回目の結晶化)
下層部の油状溶液を分液ロートで分離して50mlのトルエンを加え110℃3時間加熱還流すると2層分離した溶液を得た。この溶液を分液して下層部の油状溶液を室温(24℃)で静置したが高粘度油状のままで結晶は得られなかった。これを0℃に冷却し16時間静置すると白色の針状結晶が析出した。これを濾別洗浄後16.19g(収率68.5%)の白色結晶が得られたが実施例と比較して収率が劣った。
(Second crystallization)
The oil solution in the lower layer was separated with a separatory funnel, 50 ml of toluene was added, and the mixture was heated to reflux at 110 ° C. for 3 hours to obtain a solution separated into two layers. This solution was separated, and the lower layer oily solution was allowed to stand at room temperature (24 ° C.). However, crystals remained as a highly viscous oil. When this was cooled to 0 ° C. and allowed to stand for 16 hours, white needle crystals precipitated. After filtering and washing, 16.19 g (yield 68.5%) of white crystals was obtained, but the yield was inferior to that of the Example.

Claims (4)

ZrまたはHfの含フッ素β−ジケトン錯体を合成するに際し、ZrまたはHfの無水塩化物を無水の非プロトン性溶媒中に懸濁させ、含フッ素β−ジケトンを添加し反応させた後、60〜120℃の温度範囲で還流しながら、100〜700Paの加圧下で反応させ、発生する塩化水素ガスを除去した後、二層分離した溶液から上層溶媒を除去したのち、再度非プロトン性溶媒を添加し、60〜120℃の温度範囲て還流した後、−20〜5℃の温度範囲で冷却して結晶を析出させ、結晶を濾別後、再度非プロトン性溶媒を添加して60〜120℃の温度範囲て還流した後、−20〜5℃の温度範囲で冷却して下層に結晶を析出させることを特徴とする含フッ素金属錯体の合成方法。 In synthesizing a fluorine-containing β-diketone complex of Zr or Hf, after suspending an anhydrous chloride of Zr or Hf in an anhydrous aprotic solvent, adding a fluorine-containing β-diketone and reacting, While reacting under a temperature of 120 ° C. under a pressure of 100 to 700 Pa, the generated hydrogen chloride gas is removed, the upper layer solvent is removed from the solution separated into two layers, and an aprotic solvent is added again. Then, after refluxing in a temperature range of 60 to 120 ° C., cooling is performed in a temperature range of −20 to 5 ° C. to precipitate crystals, and after filtering the crystals, an aprotic solvent is added again to 60 to 120 ° C. The method for synthesizing a fluorine-containing metal complex is characterized in that after refluxing in a temperature range of ˜20 to 5 ° C., the crystal is precipitated in a lower layer by cooling in a temperature range of −20 to 5 ° C. 含フッ素β−ジケトンが、R1COCH2COR2で表されるβ−ジケトン化合物であることを特徴とする請求項1に記載の含フッ素金属錯体の合成方法。
ただし、R1、R2は、炭素数1〜8のアルキル基またはフッ素化アルキル基をそれぞれ表す。
The method for synthesizing a fluorine-containing metal complex according to claim 1, wherein the fluorine-containing β-diketone is a β-diketone compound represented by R 1 COCH 2 COR 2 .
However, R 1, R 2 each represent an alkyl group or fluorinated alkyl group of 1 to 8 carbon atoms.
含フッ素β−ジケトンが、トリフルオロアセチルアセトン、またはヘキサフルオロアセチルアセトンであることを特徴とする請求項2に記載の含フッ素金属錯体の合成方法。 The method for synthesizing a fluorine-containing metal complex according to claim 2, wherein the fluorine-containing β-diketone is trifluoroacetylacetone or hexafluoroacetylacetone. 非プロトン性溶媒が、トルエン、ベンゼン、キシレン、ジクロロメタン、クロロホルム、n−ヘキサン、n−ヘプタン、またはシクロヘキサンのいずれかであることを特徴とする請求項1〜3のいずれかに記載の含フッ素金属錯体の合成方法。 4. The fluorine-containing metal according to claim 1, wherein the aprotic solvent is one of toluene, benzene, xylene, dichloromethane, chloroform, n-hexane, n-heptane, or cyclohexane. Complex synthesis method.
JP2004005840A 2003-09-10 2004-01-13 Method for synthesizing fluorine-containing metal complex Pending JP2005104958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005840A JP2005104958A (en) 2003-09-10 2004-01-13 Method for synthesizing fluorine-containing metal complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003318358 2003-09-10
JP2004005840A JP2005104958A (en) 2003-09-10 2004-01-13 Method for synthesizing fluorine-containing metal complex

Publications (1)

Publication Number Publication Date
JP2005104958A true JP2005104958A (en) 2005-04-21

Family

ID=34554269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005840A Pending JP2005104958A (en) 2003-09-10 2004-01-13 Method for synthesizing fluorine-containing metal complex

Country Status (1)

Country Link
JP (1) JP2005104958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292731A (en) * 2007-06-26 2009-12-17 Central Glass Co Ltd Method for producing hafnium complex
JP2010090046A (en) * 2008-10-07 2010-04-22 Toray Fine Chemicals Co Ltd Isolation method of palladium hexafluoroacetylacetonate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292731A (en) * 2007-06-26 2009-12-17 Central Glass Co Ltd Method for producing hafnium complex
JP2010090046A (en) * 2008-10-07 2010-04-22 Toray Fine Chemicals Co Ltd Isolation method of palladium hexafluoroacetylacetonate

Similar Documents

Publication Publication Date Title
US6620956B2 (en) Nitrogen analogs of copper II β-diketonates as source reagents for semiconductor processing
JP3963078B2 (en) Tertiary amylimidotris (dimethylamido) tantalum, method for producing the same, raw material solution for MOCVD using the same, and method for forming a tantalum nitride film using the same
Haaf et al. Synthesis and reactivity of the stable silylene N, N'-di-tert-butyl-1, 3-diaza-2-sila-2-ylidene
EP3384065B1 (en) Process for the generation of metallic films
JP2008094728A (en) Organic ruthenium compound for chemical vapor deposition and chemical vapor deposition method using the organic ruthenium compound
US10570514B2 (en) Process for the generation of metallic films
JP2005531619A (en) Novel alkaline earth metal complexes and their use
KR101126020B1 (en) Large Scale Production of Organometallic Compounds
JP2005104958A (en) Method for synthesizing fluorine-containing metal complex
JP4002956B2 (en) Method for producing tantalum alcoholate and niobium alcoholate
JP5067772B2 (en) Hafnium compound purification method, hafnium compound production method, hafnium-based material formation method, and hafnium-based film formation method
JP2001151782A (en) Zirconium alkoxytris(beta-diketonate), method for its production and liquid composition for forming pzt film
Higashiya et al. Synthesis of fluorinated α-sila-β-diketones and their copper (II) complexes
Ranaivonjatovo et al. A new stable germaphosphene and some of its chemical properties
Eaborn et al. The preparation and reactions of an optically-active silyl-mercurial
JP2003292495A (en) Copper complex and method for producing copper- containing thin film using the same
JP2005194226A (en) Method for synthesizing fluorine-containing metal complex
JP2004307466A (en) Method for synthesizing fluorine-containing metal complex
KR100830529B1 (en) Process for producing high-purity hafnium amide
JP2006117619A (en) Method for synthesizing fluorine-containing metal complex
JP5489155B2 (en) Method for purifying trialkylaluminum
EP0267066B1 (en) Organomagnesium compounds in solid form, process for their preparation and their use
JP2006137732A (en) Method for synthesis of fluorine-containing nickel complex
JP3379315B2 (en) Raw materials for forming platinum thin films by metal organic chemical vapor deposition
RU2782752C2 (en) Production of trialkylindium compounds in presence of carboxylates