JP2005104903A - Material for removing chlorine, bathing agent and artificial hot spring using the agent - Google Patents

Material for removing chlorine, bathing agent and artificial hot spring using the agent Download PDF

Info

Publication number
JP2005104903A
JP2005104903A JP2003340385A JP2003340385A JP2005104903A JP 2005104903 A JP2005104903 A JP 2005104903A JP 2003340385 A JP2003340385 A JP 2003340385A JP 2003340385 A JP2003340385 A JP 2003340385A JP 2005104903 A JP2005104903 A JP 2005104903A
Authority
JP
Japan
Prior art keywords
chlorine
sulfur
water
hot spring
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003340385A
Other languages
Japanese (ja)
Other versions
JP4868701B2 (en
Inventor
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003340385A priority Critical patent/JP4868701B2/en
Publication of JP2005104903A publication Critical patent/JP2005104903A/en
Application granted granted Critical
Publication of JP4868701B2 publication Critical patent/JP4868701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for removing chlorine with which the content of the chlorine in water used for ordinary homes, industry, commerce, or the like, is reduced, and an artificial hot spring having good alkaline sulfate spring quality is provided; and to obtain a bathing agent. <P>SOLUTION: The material for removing the chlorine and the bathing agent contain yellow water obtained by extracting slug containing sulfur. The tap water containing the chlorine can be modified to preferable water from the view point of beauty and health by using the material for removing the chlorine. The artificial hot spring corresponding to a hot spring having alkaline sulfate spring quality or a hot spring having alkaline sulfur spring quality is obtained by using the bathing agent containing the material for removing the chlorine, and a smooth feeling of skin, a peripheral vascular dilation activity, warm-keeping effect, or the like, known as effects of the alkaline sulfate hot spring and alkaline sulfur hot spring are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一般家庭や工業用、商業用等に用いられる水質中のカルキを中和するカルキ抜き材又は浴用材、及びそれを用いた人工温泉に関する。本発明における部や%は特に規定しない限り質量基準で示す。   The present invention relates to a desiccant or bathing material that neutralizes the desalin in water used for general households, industrial use, commercial use, and the like, and an artificial hot spring using the same. Unless otherwise specified, parts and% in the present invention are shown on a mass basis.

産業副産物の有効利用が益々求められている。産業副産物の代表として鉄鋼スラグが知られている。ガラス化した高炉水砕スラグは潜在水硬性を有し、セメントに多量に混和しても長期強度は低下しないこと等から、セメント・コンクリート分野で広範に利用されている。   The effective use of industrial byproducts is increasingly required. Steel slag is known as a representative industrial by-product. Vitrified granulated blast furnace slag has latent hydraulic properties, and it is widely used in the cement and concrete fields because long-term strength does not decrease even when mixed with a large amount of cement.

溶解炉スラグや電気炉スラグ等の製鋼スラグや高炉徐冷スラグは水硬性や潜在水硬性を示さない。溶解炉スラグ、電気炉スラグ等の鉄鋼スラグや高炉徐冷スラグは、主に路盤材、コンクリート用の粗骨材、及びセメントクリンカー原料として利用されている。鉄鋼スラグや高炉徐冷スラグにはイオウ分が含まれており、各種の用途でイオウ分の除去が必要とされている。 Steelmaking slag such as melting furnace slag and electric furnace slag and blast furnace slow-cooled slag do not exhibit hydraulic properties or latent hydraulic properties. Steel slag such as melting furnace slag and electric furnace slag and blast furnace slow-cooled slag are mainly used as roadbed materials, coarse aggregates for concrete, and cement clinker raw materials. Steel slag and blast furnace slow-cooled slag contain sulfur, and it is necessary to remove sulfur in various applications.

溶解炉スラグ、電気炉スラグ等の鉄鋼スラグや高炉徐冷スラグを路盤材として利用する際には、スラグを主体とする路盤材が雨水等の水分と接触する際に高濃度のイオウを含有する黄色い水が溶出するのを防止するため、路盤材製造時には、スラグと水分を接触させて脱硫するエージング処理を行い、スラグ中のイオウ分を低減させてから出荷する。 When using steel slag such as melting furnace slag, electric furnace slag, etc. and blast furnace chilled slag as roadbed material, the roadbed material mainly composed of slag contains high concentration of sulfur when it comes into contact with moisture such as rain water. In order to prevent the yellow water from leaching, when the roadbed material is manufactured, the slag and moisture are brought into contact with each other to desulfurize, and the sulfur content in the slag is reduced before shipment.

セメントクリンカー原料用途では、イオウ分はセメントクリンカー焼成時にコーチングの原因となることがあり、セメントクリンカー用途に用いるスラグは、必ずエージング処理を行う必要がある。   In cement clinker raw material applications, the sulfur content may cause coating during cement clinker firing, and slag used for cement clinker applications must be subjected to an aging treatment.

このように、高炉水砕スラグや溶解炉スラグや電気炉スラグ等の製鋼スラグや高炉徐冷スラグ等のイオウ含有スラグを路盤材やセメントクリンカー用途等に使用する場合は、エージング処理してイオウ分を低減する必要があり、各種スラグのエージング処理によりイオウ分を高濃度に含む溶液(以下、黄水という)が大量に副生するため、黄水の用途を見出すことは重要である。   Thus, when sulfur-containing slag such as steelmaking slag such as granulated blast furnace slag, melting furnace slag, electric furnace slag, and blast furnace slow-cooled slag is used for roadbed materials and cement clinker, etc. It is important to find a use for yellow water because a large amount of a solution containing sulfur at a high concentration (hereinafter referred to as yellow water) is by-produced by aging treatment of various slags.

水道水には消毒を目的として塩素分が添加されている。水道水には次亜塩素酸(HClO)が添加されているためである。次亜塩素酸は、一部が次亜塩素酸イオン(ClO-)や塩素イオン(Cl-)として水道水中に存在し、モノクロラミン(NH2Cl)、ジクロラミン(NHCl2)、トリクロラミン(NCl3)等の窒素と結合した塩素としても水道水中に存在している。これらのイオンや化合物は総称してカルキと呼ばれている。カルキは大腸菌等の殺菌に利用されるが、人間の肌に与える影響も指摘されている。次亜塩素酸(HClO)や次亜塩素酸イオン(ClO-)は酸化剤であり、人間の肌の老化現象との関連が指摘されている(特許文献1等参照)。 Tap water is added with chlorine for the purpose of disinfection. This is because hypochlorous acid (HClO) is added to tap water. Hypochlorite is partially hypochlorite ions (ClO -) and chlorine ions (Cl -) as present in tap water, monochloramine (NH 2 Cl), dichloramine (NHCl 2), trichloramine (NCl 3 ) It is also present in tap water as chlorine combined with nitrogen. These ions and compounds are collectively referred to as “carki”. Chalky is used for sterilization of Escherichia coli and the like, but it has been pointed out that it affects human skin. Hypochlorous acid (HClO) and hypochlorite ion (ClO ) are oxidizing agents and have been pointed out to be related to the aging phenomenon of human skin (see Patent Document 1, etc.).

水質が悪い大都市では、殺菌目的で多くの次亜塩素酸を水道水に添加しているために水道水中のカルキ濃度が高く、水道水中のカルキ量は1.0mg/リットルを超えることがある。   In large cities with poor water quality, a large amount of hypochlorous acid is added to tap water for sterilization purposes, so the concentration of chlorin in tap water is high, and the amount of chlorin in tap water may exceed 1.0 mg / liter.

女性を中心として美容・健康への意識が高まっている。水道水の水質を改善する方法としては、トルマリンのマイナスイオン効果によって酸化力の弱い水に改質する方法が知られており(特許文献2等参照)、様々なカルキ抜き材やそれを含む浴用材が多く知られている(特許文献3〜6等参照)。   Awareness of beauty and health is increasing, especially among women. As a method of improving the quality of tap water, there is known a method of modifying water with weak oxidizing power by the negative ion effect of tourmaline (see Patent Document 2, etc.), various bathing materials and baths containing the same. Many materials are known (see Patent Documents 3 to 6).

特開平12-119161号公報JP-A-12-119161 特開平07-132284号公報Japanese Unexamined Patent Publication No. 07-132284 特開平02-115117号公報Japanese Patent Laid-Open No. 02-115117 特開平05-317865号公報Japanese Patent Laid-Open No. 05-317865 特開平06-211643号公報Japanese Patent Laid-Open No. 06-211643 特開平08-225442号公報Japanese Unexamined Patent Publication No. 08-225442

カルキ抜き材、浴用材、及び該浴用材を用いてなる人工温泉を提供する。   The present invention provides a desiccant material, a bath material, and an artificial hot spring using the bath material.

本発明は、イオウ含有スラグから抽出した黄水を含有するカルキ抜き材であり、該カルキ抜き材を含有する浴用材であり、該浴用材を用いることを特徴とする人工温泉である。   The present invention is a desiccant material containing yellow water extracted from sulfur-containing slag, a bath material containing the desiccant material, and an artificial hot spring characterized by using the bath material.

本発明のカルキ抜き材を使用することにより、カルキを含む水道水を美容と健康の観点から好ましい水に改質できる。該カルキ抜き材を含有する浴用材を用いることにより、アルカリ硫酸泉質又はアルカリイオウ泉質に相当する人工温泉が得られ、アルカリ硫酸泉やアルカリイオウ泉の効能として知られている肌のすべすべ感、末梢血管拡張作用、及び保温効果等の薬理効果が得られる。  By using the desiccant of the present invention, tap water containing the desalination can be modified into water that is preferable from the viewpoint of beauty and health. By using a bathing material containing this chalking material, an artificial hot spring equivalent to alkaline sulfate spring quality or alkaline sulfur spring quality is obtained, and the smooth feeling of skin known as the efficacy of alkaline sulfate spring or alkaline sulfur spring is obtained. Further, pharmacological effects such as peripheral vasodilatory action and heat retention effect can be obtained.

黄水は、高炉スラグ、溶解炉スラグ、電気炉スラグ等のイオウ含有スラグをスチームや水等で処理して脱硫して安定化させるエージング処理を行った際に副生する黄色い液体を総称するものである。黄水は、スラグ中のイオウが水と反応して生じる各種の形態を持つイオウイオンを含有する。その形態は、硫化物イオン(S2-)、チオ硫酸イオン(S2O3 2-)、亜硫酸イオン(SO3 2-)、硫酸イオン(SO4 2-)等が挙げられる。 Yellow water is a generic term for the yellow liquid that is produced as a by-product when aging treatment is performed to desulfurize and stabilize sulfur-containing slag such as blast furnace slag, melting furnace slag, and electric furnace slag with steam or water. It is. Yellow water contains sulfur ions having various forms produced by reacting sulfur in slag with water. Examples of the form include sulfide ions (S 2− ), thiosulfate ions (S 2 O 3 2− ), sulfite ions (SO 3 2− ), sulfate ions (SO 4 2− ), and the like.

黄水を抽出する目的で使用されるイオウ含有スラグは特に限定されないが、例えば、高炉水砕スラグ、高炉徐冷スラグ、脱硫スラグ、溶解炉スラグ、及び電気炉スラグ等が挙げられる。カルキ抜き材又は浴用材としての効果が顕著であり、品質が安定することから、高炉水砕スラグ又は高炉徐冷スラグが好ましく、高炉徐冷スラグがより好ましい。   The sulfur-containing slag used for the purpose of extracting yellow water is not particularly limited, and examples thereof include blast furnace granulated slag, blast furnace slow-cooled slag, desulfurization slag, melting furnace slag, and electric furnace slag. Blast furnace granulated slag or blast furnace slow-cooled slag is preferable, and blast furnace slow-cooled slag is more preferable because the effect as a descaling material or bathing material is remarkable and the quality is stable.

黄水には、これらのイオウイオンのうち、非硫酸態イオン、例えば、硫化物イオン(S2-)、チオ硫酸イオン(S2O3 2-)及び亜硫酸イオン(SO3 2-)等が含まれており、特に、チオ硫酸イオンの含有量が多いほど好ましい。 Yellow water contains non-sulfate ions, such as sulfide ions (S 2- ), thiosulfate ions (S 2 O 3 2- ), and sulfites (SO 3 2- ) among these sulfur ions. In particular, the higher the thiosulfate ion content, the better.

非硫酸態イオウの濃度は特に限定されないが、通常、イオウ分換算で、100ppm以上が好ましく、200ppm以上がより好ましく、300ppm以上が最も好ましい。イオウ分含有量が多いと少量で顕著な効果が得られるため、経済的で、使い勝手が良く、好ましい。   The concentration of non-sulfate sulfur is not particularly limited, but is usually preferably 100 ppm or more, more preferably 200 ppm or more, and most preferably 300 ppm or more in terms of sulfur content. When the sulfur content is high, a remarkable effect can be obtained with a small amount, which is economical, convenient and preferable.

非硫酸態イオウ量は、全イオウ量と硫酸態イオウ量をイオンクロマトグラフィーやICP等を用いて定量することができる。   The amount of non-sulfuric sulfur can be quantified by using ion chromatography, ICP, or the like based on the total sulfur content and the sulfate sulfur content.

黄水を抽出する場合に用いられる、イオウ含有スラグの粒度は特に限定されない。砂利のように粒径5mmを超えるような粗粒から、5mm下の砂状、微粉まで、あらゆる粒径のイオウ含有スラグが利用できる。   The particle size of the sulfur-containing slag used when extracting yellow water is not particularly limited. Sulfur-containing slag of any particle size can be used, from coarse particles with a particle size exceeding 5 mm, such as gravel, to sandy particles and fine powder below 5 mm.

カルキ抜き材又は浴用材の使用量は特に限定されないが、水100部に対して、0.01〜100部の範囲で使用することができ、0.1〜50部がより好ましい。使用量が少ないと本発明の効果が十分に得られない場合があり、過剰に使用すると、アルカリ硫酸泉やアルカリイオウ泉の効能として知られている肌のすべすべ感、末梢血管拡張作用、及び保温効果等の薬理効果が充分に得られない場合がある。   Although the usage-amount of a desiccation material or a bath material is not specifically limited, It can be used in 0.01-100 parts with respect to 100 parts of water, and 0.1-50 parts is more preferable. If the amount used is small, the effect of the present invention may not be sufficiently obtained. If it is used excessively, the skin smoothness, peripheral vasodilatory effect, and heat retention known as the effects of alkaline sulfate spring and alkaline sulfur spring Pharmacological effects such as effects may not be sufficiently obtained.

本発明のカルキ抜き材及び浴用材は、公知のカルキ抜き材や浴用材を併用できる。   A known descaling material or bathing material can be used in combination with the descaling material and bathing material of the present invention.

カルキ抜きの効果は水質中の次亜塩素酸や次亜塩素酸イオンの濃度を定量することや、酸化還元電位を測定することによって評価できる。次亜塩素酸や次亜塩素酸イオンの濃度は、DPD法(ジフェニル-p-フェニレンジアミン法)、電流法、吸光光度法、シリンガルダジン法(Syringaldazine)等によって測定できる。   The effect of removing chlorine can be evaluated by quantifying the concentration of hypochlorous acid or hypochlorite ion in the water quality or measuring the oxidation-reduction potential. The concentration of hypochlorous acid or hypochlorite ion can be measured by DPD method (diphenyl-p-phenylenediamine method), current method, absorptiometric method, syringaldazine method (Syringaldazine) or the like.

シリンガルダジン法は鉄、マンガン、亜硝酸イオンの影響が極めて少なく、モノクロラミンやジクロロアミンとの反応性が低いという特徴があり、測定範囲も0.1〜10mg/リットルと幅広く有益な測定法である。最近では、この方法を原理とする試験紙が開発されており簡便である。   The syringaldazin method has a very low influence of iron, manganese and nitrite ions, and is characterized by low reactivity with monochloramine and dichloroamine, and is a useful measurement method with a wide measurement range of 0.1 to 10 mg / liter. . Recently, a test paper based on this method has been developed and is convenient.

次亜塩素酸や次亜塩素酸イオン等のカルキ成分の濃度は、酸化還元電位と強く関係しているため、カルキ抜き処理の効果は酸化還元電位を用いて評価できる。酸化還元電位は酸化還元電位計で簡便に測定できる。酸化還元電位はpHと連動して変化する。カルキ抜き処理前後で酸化還元電位を比較する場合には、カルキ抜き処理前後で同じpHとなるように調整した時の酸化還元電位で比較する必要がある。水道水のpHは中性領域(7前後)、酸化還元電位は+300〜800mVとされている。カルキ抜きの効果は、カルキ抜き処理前後で同一pHとなるようpHを調整し、カルキ抜き処理前後の酸化還元電位Vの変化量△Vを測定することにより、カルキ成分の濃度を相対評価できる。   Since the concentration of the chlorine component such as hypochlorous acid and hypochlorite ion is strongly related to the oxidation-reduction potential, the effect of the removal treatment can be evaluated using the oxidation-reduction potential. The oxidation-reduction potential can be easily measured with an oxidation-reduction potentiometer. The redox potential changes in conjunction with pH. When comparing the oxidation-reduction potential before and after the descaling process, it is necessary to compare the oxidation-reduction potential when adjusted to the same pH before and after the descaling process. The pH of tap water is neutral (around 7), and the oxidation-reduction potential is +300 to 800 mV. The effect of removing the chlorine can be evaluated relative to the concentration of the chlorine component by adjusting the pH so that the pH is the same before and after the removal treatment and measuring the change ΔV of the oxidation-reduction potential V before and after the removal treatment.

東京や大阪等の大都市では、酸化還元電位は高い値となっており、例えば、大阪では、+700mV程度、東京でも+500mV程度が多い。これは大都市の水道水はカルキが多く、酸化性が強いことを意味しており、大都市の水道水に本発明のカルキ抜き材及び浴用材を用いると、特に顕著な薬理効果が認められる。   In large cities such as Tokyo and Osaka, the oxidation-reduction potential has a high value. For example, Osaka has about +700 mV, and Tokyo has about +500 mV. This means that tap water in large cities has a lot of chalk and is highly oxidative, and when the descaling material and bathing material of the present invention are used for tap water in large cities, particularly remarkable pharmacological effects are observed. .

大阪の水道水を使って、黄水のカルキ抜き効果を確認した。表1に示す黄水A〜Gを水100部に対して表1に示す割合で使用し、攪拌しながら30分間放置した。カルキ抜き処理前後の次亜塩素酸及び次亜塩素酸イオンの総量と酸化還元電位を測定した。その結果を表1に示す。   Using the tap water of Osaka, the effect of removing yellow water was confirmed. Yellow water A to G shown in Table 1 was used at a ratio shown in Table 1 with respect to 100 parts of water, and left for 30 minutes with stirring. The total amount of hypochlorous acid and hypochlorite ions and the redox potential were measured before and after the descaling process. The results are shown in Table 1.

<使用材料>
黄水A:全イオウ量3.5%の溶解炉スラグ100kgを水1m3に入れて1時間攪拌して抽出した。非硫酸態イオウ濃度800ppm
黄水B:全イオウ量0.8%の高炉徐冷スラグ1,000kgを堆積し、高炉徐冷スラグ堆積層に水蒸気を吹き付けて黄水100kgを回収した。非硫酸態イオウ濃度3,000ppm
黄水C:全イオウ量0.2%の電気炉スラグ1,000kgを堆積し、電気炉スラグ堆積層に水蒸気を吹き付けて黄水100kgを回収した。非硫酸態イオウ濃度1,000ppm
黄水D:黄水Bを希釈して非硫酸態イオウ濃度100ppmに調製
黄水E:黄水Bを希釈して非硫酸態イオウ濃度200ppmに調製
黄水F:黄水Bを希釈して非硫酸態イオウ濃度300ppmに調製
黄水G:黄水Bを希釈して非硫酸態イオウ濃度500ppmに調製
水道水:大阪の水道水、次亜塩素酸と次亜塩素酸イオンの総量が2.1mg/リットル、酸化還元電位が+700mV
<Materials used>
Yellow water A: 100 kg of melting furnace slag having a total sulfur content of 3.5% was placed in 1 m 3 of water and extracted by stirring for 1 hour. Non-sulfate sulfur concentration 800ppm
Yellow water B: 1,000 kg of blast furnace slow-cooled slag having a total sulfur content of 0.8% was deposited, and steam was blown onto the blast furnace slow-cooled slag deposit layer to recover 100 kg of yellow water. Non-sulfuric sulfur concentration 3,000ppm
Yellow water C: 1,000 kg of electric furnace slag having a total sulfur content of 0.2% was deposited, and steam was sprayed on the electric furnace slag deposited layer to recover 100 kg of yellow water. Non-sulfate sulfur concentration 1,000ppm
Yellow water D: Yellow water B is diluted to a non-sulfate sulfur concentration of 100 ppm Yellow water E: Yellow water B is diluted to a non-sulfate sulfur concentration of 200 ppm Yellow water F: Yellow water B is diluted to a non-sulfate concentration Prepared to sulfate sulfur concentration 300ppm Yellow water G: Prepared to dilute yellow water B to nonsulfate sulfur concentration 500ppm Tap water: Osaka tap water, total amount of hypochlorous acid and hypochlorite ion 2.1mg / Liter, redox potential + 700mV

<測定方法>
次亜塩素酸と次亜塩素酸イオンの総量:シリンガルダジン法によって測定。
酸化還元電位:カルキ抜き前後の酸化還元電位を市販の酸化還元電位計により測定。ただし、カルキ抜き処理前の水道水の酸化還元電位は水酸化ナトリウムによってpHを調整し、黄水を添加してカルキ抜き処理後の水道水と同じpHにした時の酸化還元電位としてから測定した。
pH:市販のpHメータにより測定。
<Measurement method>
Total amount of hypochlorous acid and hypochlorite ion: Measured by the syringaldazine method.
Redox potential: The redox potential before and after removal of the chalk was measured with a commercially available redox potential meter. However, the redox potential of tap water before the descaling treatment was measured after adjusting the pH with sodium hydroxide and adding the yellow water to the same pH as the tap water after descaling treatment. .
pH: Measured with a commercially available pH meter.

Figure 2005104903
注:N.D.は検出限界以下。
Figure 2005104903
Note: ND is below the detection limit.

黄水Bを使用し、新潟県西頸城郡青海町の水道水200リットルに黄水B2kgを入れ、風呂を沸かした。この風呂のpHや成分を調べるとともに、男女5人づつの10人に入浴してもらい、その湯質を評価してもらった。結果を表2に示す。   Using yellow water B, 2 kg of yellow water B was added to 200 liters of tap water in Aomi-cho, Nishikaku-jo, Niigata, and the bath was boiled. In addition to examining the pH and ingredients of this bath, 10 men and 5 men took baths to evaluate the quality of the bath. The results are shown in Table 2.

<測定方法>
各イオウイオンの濃度:硫化物イオン、チオ硫酸イオン、硫酸イオンの濃度をイオンクロマトグラフィーにより測定した。
<Measurement method>
Concentration of each sulfur ion: The concentration of sulfide ion, thiosulfate ion and sulfate ion was measured by ion chromatography.

Figure 2005104903
注:N.D.は検出限界以下。
Figure 2005104903
Note: ND is below the detection limit.

<モニター評価結果>
*モニター評価は湯質の好みで判定。黄水Bを浴用材として用いた湯では、ほのかにイオウ臭があり、この湯質を好んだ9人のモニター全員が「肌がすべすべになった。」と証言した。
<Monitor evaluation results>
* Monitor evaluation is judged by the taste of hot water. The hot water using yellow water B as a bathing material has a faint sulfur odor, and all nine monitors who liked this hot water testified that the skin was smooth.

黄水B中に含まれる、環境基準が定められている元素を定量した。結果を表3に示す。   Elements contained in yellow water B, for which environmental standards are defined, were quantified. The results are shown in Table 3.

<測定方法>
環境基準が定められている元素の定量:環境庁告示第46号法に準じて測定。第三者機関(社団法人上越環境科学センター)による。
<Measurement method>
Quantification of elements for which environmental standards are established: Measured according to the Environmental Agency Notification No. 46. From a third-party organization (Joetsu Environmental Science Center).

Figure 2005104903
注:(1)N.D.は検出限界未満。
(2)黄水中には環境基準を上回る有害物質が含まれないことが確認された。
Figure 2005104903
Note: (1) ND is below detection limit.
(2) It was confirmed that yellow water does not contain harmful substances that exceed environmental standards.

本発明のカルキ抜き材を使用することにより、カルキを含む水道水を美容と健康の観点から好ましい水に改質できる。該カルキ抜き材を含有する浴用材を用いることにより、アルカリ硫酸泉質又はアルカリイオウ泉質に相当する人工温泉が得られ、アルカリ硫酸泉やアルカリイオウ泉の効能として知られている肌のすべすべ感、末梢血管拡張作用、及び保温効果等の薬理効果が得られる。
By using the desiccant of the present invention, tap water containing the desalination can be modified into water that is preferable from the viewpoint of beauty and health. By using a bathing material containing this chalking material, an artificial hot spring equivalent to alkaline sulfate spring quality or alkaline sulfur spring quality is obtained, and the smooth feeling of skin known as the efficacy of alkaline sulfate spring or alkaline sulfur spring is obtained. Further, pharmacological effects such as peripheral vasodilatory action and heat retention effect can be obtained.

Claims (5)

黄水を含有するカルキ抜き材。 A descaling material containing yellow water. 非硫酸態イオウを含むことを特徴とする請求項1記載のカルキ抜き材。 The descaling material according to claim 1, comprising non-sulfuric sulfur. 非硫酸態イオウ濃度が100ppm以上であることを特徴とする請求項1又は請求項2記載のカルキ抜き材。 The decoloring material according to claim 1 or 2, wherein the non-sulfuric sulfur concentration is 100 ppm or more. 請求項1〜3のうちの1項に記載のカルキ抜き材を含有する浴用材。 A bath material containing the chalk-removing material according to claim 1. 請求項4記載の浴用材を用いることを特徴とする人工温泉。
An artificial hot spring characterized by using the bath material according to claim 4.
JP2003340385A 2003-09-30 2003-09-30 Chalk removal material, bath material, and bath water using the same Expired - Fee Related JP4868701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340385A JP4868701B2 (en) 2003-09-30 2003-09-30 Chalk removal material, bath material, and bath water using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340385A JP4868701B2 (en) 2003-09-30 2003-09-30 Chalk removal material, bath material, and bath water using the same

Publications (2)

Publication Number Publication Date
JP2005104903A true JP2005104903A (en) 2005-04-21
JP4868701B2 JP4868701B2 (en) 2012-02-01

Family

ID=34535298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340385A Expired - Fee Related JP4868701B2 (en) 2003-09-30 2003-09-30 Chalk removal material, bath material, and bath water using the same

Country Status (1)

Country Link
JP (1) JP4868701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061610A1 (en) * 2015-10-07 2017-04-13 国立研究開発法人理化学研究所 Hair growth composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442848A (en) * 1977-09-12 1979-04-05 Kawasaki Steel Corp Method of treating blast furnace slag leached water
JPS54105844A (en) * 1978-02-06 1979-08-20 Daiichi Seiyaku Co Method of decomposing very small amount of chlorine
JPS63130526A (en) * 1986-11-18 1988-06-02 Lion Corp Bathing agent
JPH02255610A (en) * 1989-03-29 1990-10-16 Takasugi Seiyaku Kk Dechlorinating type foamable bathing agent
JPH05317865A (en) * 1992-05-14 1993-12-03 Tateho Chem Ind Co Ltd Dechlorinating agent and its production
JPH06211643A (en) * 1992-11-24 1994-08-02 Towa Seiyaku Kk Bathing agent incorporated with dechlorination agent
JPH06279817A (en) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd Sulfur-containing aqueous solution for reduction and neutralization extracted from sulfur-containing slag
JP2000119161A (en) * 1998-10-07 2000-04-25 Shoichi Okochi Method for providing skin care preparation or daily life water with skin aging controlling or preventing effect
JP2002263026A (en) * 2001-03-09 2002-09-17 Com Institute:Kk Shower head and cosmetic composition
JP2003137628A (en) * 2001-11-05 2003-05-14 Denki Kagaku Kogyo Kk Cement admixture

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442848A (en) * 1977-09-12 1979-04-05 Kawasaki Steel Corp Method of treating blast furnace slag leached water
JPS54105844A (en) * 1978-02-06 1979-08-20 Daiichi Seiyaku Co Method of decomposing very small amount of chlorine
JPS63130526A (en) * 1986-11-18 1988-06-02 Lion Corp Bathing agent
JPH02255610A (en) * 1989-03-29 1990-10-16 Takasugi Seiyaku Kk Dechlorinating type foamable bathing agent
JPH05317865A (en) * 1992-05-14 1993-12-03 Tateho Chem Ind Co Ltd Dechlorinating agent and its production
JPH06211643A (en) * 1992-11-24 1994-08-02 Towa Seiyaku Kk Bathing agent incorporated with dechlorination agent
JPH06279817A (en) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd Sulfur-containing aqueous solution for reduction and neutralization extracted from sulfur-containing slag
JP2000119161A (en) * 1998-10-07 2000-04-25 Shoichi Okochi Method for providing skin care preparation or daily life water with skin aging controlling or preventing effect
JP2002263026A (en) * 2001-03-09 2002-09-17 Com Institute:Kk Shower head and cosmetic composition
JP2003137628A (en) * 2001-11-05 2003-05-14 Denki Kagaku Kogyo Kk Cement admixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061610A1 (en) * 2015-10-07 2017-04-13 国立研究開発法人理化学研究所 Hair growth composition
JPWO2017061610A1 (en) * 2015-10-07 2018-08-02 国立研究開発法人理化学研究所 Hair growth composition

Also Published As

Publication number Publication date
JP4868701B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
Yang et al. DBP formation in breakpoint chlorination of wastewater
Nissinen et al. Disinfection by-products in Finnish drinking waters
Sharma et al. Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: a review
Liu et al. Formation of iodinated trihalomethanes during breakpoint chlorination of iodide-containing water
Hansen et al. Effect of ozonation of swimming pool water on formation of volatile disinfection by-products–A laboratory study
CA2179318C (en) Composition for treating water and sanitising soils
JP4868701B2 (en) Chalk removal material, bath material, and bath water using the same
Henderson et al. The impact of ferrous ion reduction of chlorite ion on drinking water process performance
Liu et al. Effects of organic matter removal from a wastewater secondary effluent by aluminum sulfate coagulation on haloacetic acids formation
Darko et al. Advances made in understanding the interaction of ferrate (VI) with natural organic matter in water
Raveendran et al. Manganese removal in drinking water systems
Uzun et al. Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide
JP4108536B2 (en) Chalk removal material, bath material, and artificial hot spring using the same
Tawabini et al. Formation potential of trihalomethanes (THMs) in blended water treated with chlorine
McDonald et al. Drinking water: the problem of chlorinous odours
Achour et al. Drinking water chlorination and adverse public health outcomes in Algeria
Lalchhingpuii et al. Assessment of the water quality of Tlawng river in Aizawl, Mizoram
Vaezi et al. Improvement of NOM removal from water resources by modifying the coagulation process
JP4910734B2 (en) Method and material for purifying contaminated soil or water
JP4185482B2 (en) Bathing materials and artificial hot springs
Rice Chemistries of ozone for municipal pool and spa water treatment
JP2007319755A (en) Method for fixing arsenic compound in contaminant
Patroescu et al. Treatability studies of groundwater containing high ammonium concentrations using chlorine based compounds
JP5046438B2 (en) Hydraulic composition with suppressed elution of hexavalent chromium and its use
Atkinson et al. Chemical oxidation methods in water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090123

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4868701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees