JP2005103572A - Method for grooving rod, and form rolling roller - Google Patents

Method for grooving rod, and form rolling roller Download PDF

Info

Publication number
JP2005103572A
JP2005103572A JP2003337727A JP2003337727A JP2005103572A JP 2005103572 A JP2005103572 A JP 2005103572A JP 2003337727 A JP2003337727 A JP 2003337727A JP 2003337727 A JP2003337727 A JP 2003337727A JP 2005103572 A JP2005103572 A JP 2005103572A
Authority
JP
Japan
Prior art keywords
rolling
roller
rod
rolling roller
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337727A
Other languages
Japanese (ja)
Inventor
Makoto Nishimura
誠 西村
Junichi Nagasawa
潤一 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003337727A priority Critical patent/JP2005103572A/en
Publication of JP2005103572A publication Critical patent/JP2005103572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the performance of a form rolling roller from being degraded due to the cracks caused on the form rolling roller or the like by eliminating large stress concentrating parts from the form rolling roller for grooving. <P>SOLUTION: In a method for working a groove 2 by forming projecting part 20 provided on the form rolling rollers 11A, 11B on the peripheral surface of a surface-hardened rod 1, by this method, the form rolling rollers 11A, 11B are bisected in the axial direction on the boundary S between the steep inclined parts 20a of the forming projecting part 20 and the working reference plane 22 which is continued to the steep inclined part 20a, the main roller 23 and the assistant roller 24 of divided elements are integrated with bolts 26 and the stress which is liable to concentrate on the boundary S at rolling is distributed onto the main roller 23 and the assistant roller 24. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、油圧緩衝器、シリンダ装置などのロッド、特に表面硬化処理を施してなるロッドの表面に溝を転造加工するロッド溝加工方法と該方法の実施に用いられる転造ローラとに関する。   The present invention relates to a rod groove processing method for rolling a groove on the surface of a rod such as a hydraulic shock absorber and a cylinder device, particularly a rod subjected to surface hardening treatment, and a rolling roller used for carrying out the method.

例えば、油圧緩衝器におけるロッド(ピストンロッド)には、その伸長端を規制するためのストッパ部材が固着されており、従来、前記ストッパ部材の固着には溶接が一般に採用されていた。しかし、溶接によりストッパ部材をロッドに接合する方法によれば、溶接時に生じるスパッタがロッドに付着して、後の油圧緩衝器の組立に際して異物(コンタミネーション)として油室内に入り込み、これが性能を低下させる原因になる虞があった。   For example, a stopper member for restricting the extended end is fixed to a rod (piston rod) in a hydraulic shock absorber, and conventionally, welding is generally used for fixing the stopper member. However, according to the method in which the stopper member is joined to the rod by welding, spatter generated during welding adheres to the rod and enters the oil chamber as foreign matter (contamination) when assembling the hydraulic shock absorber later, which reduces performance. There was a risk of causing it.

そこで最近、ロッドの途中に溝(環状溝)を形成してこの溝内に、例えばメタルフロー接合を利用してカラーを嵌着し、このカラーを上記ストッパ部材として用いて、溶接を省略することが検討されている。しかるに、上記ロッドには、通常、高周波焼入れ焼戻し処理(表面硬化処理)が施されており、その表面はビッカース硬さ(Hv)で400以上の高硬度となっている。このため、前記溝を形成するには、切削(旋削)に頼らざるを得ず、この場合は、せっかくの表面硬化層が削除されてしまうこととなる。   Therefore, recently, a groove (annular groove) is formed in the middle of the rod, and a collar is fitted into the groove using, for example, metal flow bonding, and this collar is used as the stopper member and welding is omitted. Is being considered. However, the rod is usually subjected to induction hardening and tempering treatment (surface hardening treatment), and the surface thereof has a Vickers hardness (Hv) of 400 or higher. For this reason, in order to form the groove, it is necessary to rely on cutting (turning), and in this case, the hardened surface hardened layer is deleted.

本発明者等は、上記した溝の形成について鋭意検討した結果、表面硬化処理が施されたロッドであっても、転造を利用すれば溝加工が可能であることを見出し、既に特許文献1に明らかにした。この方法は、図4に示すように、加工対象であるロッド1を一対の転造ローラ5(片側は省略)の間で転がしながら、一対の転造ローラ5の間隔を次第に縮めることにより、(A)→(B)→(C)のごとく各転造ローラ5の外周面に設けられた成形凸部6をロッド1の周面に食込ませるもので、最終的にロッド1の周面には前記成形凸部6の断面形状が転写された溝2が創成される。このように転造を利用した溝加工によれば、表面硬化層はほぼその厚さを維持したまま、転造ローラ5の成形凸部6が溝2内に押込まれるので、表面硬化処理による強度上昇の効果が失われることはなくなる。   As a result of intensive studies on the formation of the above-mentioned grooves, the present inventors have found that even a rod subjected to a surface hardening treatment can be grooved using rolling, and has already been disclosed in Patent Document 1. Revealed. As shown in FIG. 4, this method is performed by gradually reducing the distance between the pair of rolling rollers 5 while rolling the rod 1 to be processed between the pair of rolling rollers 5 (one side is omitted) ( A) → (B) → (C) is used to bite the forming convex portion 6 provided on the outer peripheral surface of each rolling roller 5 into the peripheral surface of the rod 1, and finally to the peripheral surface of the rod 1. The groove 2 in which the cross-sectional shape of the molding convex portion 6 is transferred is created. As described above, according to the groove processing using rolling, the molding convex portion 6 of the rolling roller 5 is pushed into the groove 2 while maintaining the thickness of the surface hardened layer substantially. The effect of increasing strength will not be lost.

なお、上記転造ローラ5の成形凸部6は、環状凸座7の上面8に設定されており、この上面8は転造深さを規定する加工基準面となっている。また、ロッド1に加工される溝2は、上記油圧緩衝器におけるストッパ部材(カラー)の接合に用いられるため、片側が他側に比して急峻となる異形状をなしており、これに伴って、転造ローラ5の成形凸部6も、その片側が加工基準面8に対して急傾斜をなす急傾斜部6aとして、その他側が加工基準面8に対して緩傾斜をなす緩傾斜部6bとしてそれぞれ構成されている。   The forming convex portion 6 of the rolling roller 5 is set on the upper surface 8 of the annular convex seat 7, and this upper surface 8 is a processing reference surface that defines the rolling depth. Further, since the groove 2 processed into the rod 1 is used for joining a stopper member (collar) in the hydraulic shock absorber, the groove 2 has a different shape that is steeper than the other side. Thus, the forming convex portion 6 of the rolling roller 5 also has a steeply inclined portion 6b whose one side is steeply inclined with respect to the processing reference surface 8 and a gently inclined portion 6b whose other side is gently inclined with respect to the processing reference surface 8. As each is configured.

特開2003−254436号公報JP 2003-254436 A

ところで、上記した転造による溝加工においては、加工初期に、図4(B)に示すように、ロッド1に対する成形凸部6の押込領域の両側に材料の盛上り3が発生し、この盛上り3が、加工中期から末期にかけて転造ローラ5の加工基準面8により押し潰される現象が起こっている。そして、前記した盛上り3が加工基準面8により押し潰される結果、その反力として転造ローラ5に大きな応力が発生し、この応力が、特に成形凸部6の急傾斜部6aと加工基準面8との境界(コーナ部)Sに集中し、転造ローラ5に亀裂が生じる虞れがあり、この場合は、転造ローラ5の性能低下となるため、転造ローラ5を交換する必要が生じる。   By the way, in the groove processing by rolling described above, as shown in FIG. 4 (B), the material bulge 3 occurs on both sides of the indentation region of the molding convex portion 6 with respect to the rod 1 at the initial stage of the processing. A phenomenon occurs in which the ascending 3 is crushed by the machining reference surface 8 of the rolling roller 5 from the middle stage to the last stage of machining. As a result of the crushing 3 being crushed by the processing reference surface 8, a large stress is generated in the rolling roller 5 as a reaction force, and this stress is particularly generated by the steeply inclined portion 6a of the forming convex portion 6 and the processing reference. Concentration on the boundary (corner portion) S with the surface 8 may cause cracks in the rolling roller 5, and in this case, the performance of the rolling roller 5 is degraded, so the rolling roller 5 needs to be replaced. Occurs.

本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、転造ローラから大きな応力集中箇所を解消することにより転造ローラの性能低下を防止し、もってロッドの溝加工を長期にわたって安定して行うことができるロッド溝加工方法を提供し、併せて該方法の実施に向けて好適な転造ローラを提供することにある。   The present invention has been made in view of the above-described conventional problems, and the object of the present invention is to prevent deterioration of the performance of the rolling roller by eliminating a large stress concentration portion from the rolling roller, and thus the rod. It is an object of the present invention to provide a rod groove processing method capable of stably performing the groove processing for a long period of time, and to provide a suitable rolling roller for the implementation of the method.

上記課題を解決するため、本発明に係るロッド溝加工方法は、表面硬化処理を施してなるロッドに押圧される転造ローラを、環状の成形凸部とその両側の加工基準面との境界であって、少なくとも転造時に応力がより多く集中する側の境界で軸方向に分割し、転造時に発生する応力を前記分割要素に分散させることを特徴とする。本ロッド溝加工方法において、前記転造ローラ環状の成形凸部は、その片側が基準外周面に対して急傾斜をなす急傾斜部として、その他側が加工基準面に対して緩傾斜をなす緩傾斜部としてそれぞれ構成されており、前記転造ローラは、前記成形凸部の急傾斜部と該急傾斜部に続く加工基準面との境界で軸方向に二分割されるようにすることができる。このように行うロッド溝加工方法においては、転造ローラに発生する応力が分割要素に分散されるので、転造ローラに亀裂が生じる等して転造ローラが性能低下することを防止できる。   In order to solve the above-described problems, the rod groove processing method according to the present invention includes a rolling roller pressed against a rod formed by surface hardening treatment at a boundary between an annular forming convex portion and processing reference surfaces on both sides thereof. Then, it is divided in the axial direction at least at the boundary where stress is concentrated more at the time of rolling, and the stress generated at the time of rolling is distributed to the dividing elements. In this rod groove processing method, the rolling roller annular forming convex portion has a steep slope whose one side is steeply inclined with respect to the reference outer peripheral surface, and a gentle slope whose other side is gently inclined with respect to the reference processing surface. The rolling roller may be divided into two in the axial direction at the boundary between the steeply inclined portion of the forming convex portion and the processing reference surface following the steeply inclined portion. In the rod groove processing method performed in this way, the stress generated in the rolling roller is distributed to the dividing elements, so that it is possible to prevent the rolling roller from degrading in performance due to cracks in the rolling roller.

本発明に係る転造ローラは、上記したロッド溝加工方法に用いられる転造ローラにおいて、環状の成形凸部とその両側の加工基準面との境界であって、少なくとも転造時に応力がより多く集中する側の境界で軸方向に分割されていることを特徴とする。この転造ローラにおいて、前記環状の成形凸部の片側が加工基準面に対して急傾斜をなす急傾斜部として、その他側が加工基準面に対して緩傾斜をなす緩傾斜部としてそれぞれ構成されており、前記成形凸部の急傾斜部と該急傾斜部に続く加工基準面との境界で軸方向に二分割されている構成とすることができる。   The rolling roller according to the present invention is a rolling roller used in the above-described rod groove processing method, and is a boundary between the annular forming convex portion and the processing reference surfaces on both sides thereof, and at least more stress is generated during rolling. It is characterized by being divided in the axial direction at the boundary on the concentrated side. In this rolling roller, one side of the annular forming convex portion is configured as a steeply inclined portion that is steeply inclined with respect to the processing reference surface, and the other side is configured as a gently inclined portion that is gently inclined with respect to the processing reference surface. And it can be set as the structure divided into two in the axial direction at the boundary between the steeply inclined portion of the forming convex portion and the processing reference surface following the steeply inclined portion.

本発明に係るロッド溝加工方法および転造ローラによれば、転造ローラを分割構造として該転造ローラから大きな応力集中箇所を無くしたので、転造ローラに亀裂が生じる等して転造ローラが性能低下することを防止でき、その寿命が大幅に延長することとなって、生産コストの低減並びに生産性の向上に大きく寄与する効果を奏する。   According to the rod groove processing method and the rolling roller according to the present invention, since the rolling roller is divided and a large stress concentration portion is eliminated from the rolling roller, the rolling roller is cracked, etc. As a result, it is possible to prevent the performance from deteriorating and the service life thereof is greatly extended, which has the effect of greatly contributing to the reduction of the production cost and the improvement of the productivity.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。
本実施形態は、前記した油圧緩衝器に用いられるロッド(ピストンロッド)1にストッパ部材(カラー)をメタルフロー成形により接合するための溝2を転造加工しようとするもので、そのロッド1には、予め高周波焼入れ焼戻しや浸炭焼入れ焼戻し等の表面硬化処理が施されている。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
In this embodiment, a groove 2 for joining a stopper member (collar) to a rod (piston rod) 1 used in the hydraulic shock absorber described above by metal flow molding is to be rolled. Has been subjected to surface hardening treatment such as induction hardening tempering or carburizing quenching tempering in advance.

図3は、上記したロッド1に溝2を加工するための転造装置の全体的な構造を示したものである。同図において、10A、10Bは平行に配列された2本の回転軸、11A、11Bは前記回転軸10A、10Bのそれぞれに回動不能に取付けられた転造ローラであり、2つの転造ローラ11Aと11Bとの間には、前記ロッド1を支承する支持台12が配設されている。本実施形態において、前記2つの回転軸10A、10Bには、対応する転造ローラ11A、11Bの両側にスペーサ13A、13Bを介して各一対の矯正ローラ14A、14Bが回動不能に取付けられている。   FIG. 3 shows the overall structure of a rolling device for machining the groove 2 in the rod 1 described above. In the figure, 10A and 10B are two rotating shafts arranged in parallel, 11A and 11B are rolling rollers that are non-rotatably attached to the rotating shafts 10A and 10B, respectively, and two rolling rollers A support 12 for supporting the rod 1 is disposed between 11A and 11B. In the present embodiment, a pair of correction rollers 14A and 14B are attached to the two rotary shafts 10A and 10B in a non-rotatable manner via spacers 13A and 13B on both sides of the corresponding rolling rollers 11A and 11B. Yes.

上記2本の回転軸10A、10Bは、図示を略す駆動手段により同一方向へ回転駆動されるようになっており、これに応じて、2つの転造ローラ11A、11Bおよび二対の矯正ローラ14A、14Bも同一方向へ回転する。2本の回転軸10A、10Bはまた、その一方(ここでは、10A)が他方10Bに対して接近離間するようになっており、これに応じて、2つの転造ローラ11A、11Bおよび二対の矯正ローラ14A、14Bも、それぞれの一方11A、14Aが他方11B、14Bに対して接近離間する。   The two rotating shafts 10A and 10B are rotationally driven in the same direction by a driving means (not shown), and accordingly, the two rolling rollers 11A and 11B and the two pairs of correction rollers 14A. , 14B also rotate in the same direction. The two rotating shafts 10A and 10B are also configured such that one of them (here, 10A) approaches and separates from the other 10B, and accordingly, the two rolling rollers 11A and 11B and the two pairs As for the correction rollers 14A and 14B, the respective ones 11A and 14A approach and separate from the other 11B and 14B.

各転造ローラ11A、11Bの周面には、ロッド1の周面に溝2を転造加工する環状の成形凸部20が設けられている。この成形凸部20は、図1および図2にも示されるように、環状凸座21の上面22に設定されており、この上面22は転造深さを規定する加工基準面となっている。成形凸部20は、前記背景技術の項で説明したように、溝2の異形状に整合する断面形状を有しており、その片側は加工基準面22に対して急傾斜をなす急傾斜部20aとして、その他側が加工基準面22に対して緩傾斜をなす緩傾斜部20bとして構成されている(図2)。一方、各一対の矯正ローラ14A、14Bは、その周面がフラットとなっており、それらの外径は、前記転造ローラ11A、11Bの凸座21の外径(基準外径)と同じかそれよりわずか小径に設定されている。   On the peripheral surface of each rolling roller 11A, 11B, an annular forming convex portion 20 for rolling the groove 2 on the peripheral surface of the rod 1 is provided. As shown in FIGS. 1 and 2, the molding convex portion 20 is set on the upper surface 22 of the annular convex seat 21, and the upper surface 22 is a processing reference surface that defines the rolling depth. . As described in the background section above, the forming convex portion 20 has a cross-sectional shape that matches the irregular shape of the groove 2, and one side thereof has a steeply inclined portion that is steeply inclined with respect to the processing reference surface 22. 20a is configured as a gently inclined portion 20b whose other side is gently inclined with respect to the processing reference surface 22 (FIG. 2). On the other hand, each of the pair of straightening rollers 14A and 14B has a flat peripheral surface, and is the outer diameter thereof the same as the outer diameter (reference outer diameter) of the convex seat 21 of the rolling rollers 11A and 11B? The diameter is set slightly smaller than that.

ここで、各転造ローラ11A、11Bは、図1および図2によく示されるように、その成形凸部20の急傾斜部20aと加工基準面22との境界Sで軸方向に二分割されている。より詳しくは、各転造ローラ11A、11Bは、成形凸部20および該成形凸部20の緩傾斜部20bに続く加工基準面22とを備えた主ローラ23と成形凸部20の急傾斜部20bに続く加工基準面22を備えた副ローラ24とからなっている。主ローラ23は、回転軸10A、10Bに対する嵌合部である内径側に筒状のボス部25を有する形状となっており、一方、副ローラ24は単純なリング形状となっている。主ローラ23には、その円周方向に等配して複数のねじ孔25が設けられており、副ローラ24は、前記ボス部25に軽いしばりばめされた状態で、前記各ねじ孔25にねじ込んだボルト26により主ローラ23の片面に締付け固定されている。   Here, each rolling roller 11A, 11B is divided into two in the axial direction at the boundary S between the steeply inclined portion 20a of the forming convex portion 20 and the processing reference surface 22 as well shown in FIGS. ing. More specifically, each of the rolling rollers 11A and 11B includes a main roller 23 having a forming convex portion 20 and a processing reference surface 22 following the gently inclined portion 20b of the forming convex portion 20, and a steeply inclined portion of the forming convex portion 20. It consists of a sub roller 24 having a processing reference surface 22 following 20b. The main roller 23 has a shape having a cylindrical boss portion 25 on the inner diameter side which is a fitting portion with respect to the rotary shafts 10A and 10B, while the sub roller 24 has a simple ring shape. The main roller 23 is provided with a plurality of screw holes 25 equally distributed in the circumferential direction thereof, and the sub-roller 24 is in a state of being lightly fitted to the boss portion 25 and the screw holes 25. It is fastened and fixed to one surface of the main roller 23 by a bolt 26 screwed into the main roller 23.

以下、上記のように構成した転造装置によるロッド溝加工方法について説明する。
溝加工に際しては、予め一方の転造ローラ11Aを他方の転造ローラ11Bから離間させ、この状態での支持台12上にロッド1を載置する。その後、2つの転造ローラ11A、11Bを同一方向に回転させながら、その一方の転造ローラ11Aを他方の転造ローラ11Bに対して接近させる。すると、支持台12上のロッド1は、両転造ローラ11Aと11Bとの間で転動し、各転造ローラ11A、11Bの周面に設けられた環状の成形凸部20がロッド1の周面に次第に押込まれる。そして、遂には成形凸部20の全体がロッド1の周面に押込まれ、これによりロッド1の周面には前記した異形状の溝2が創成される。
Hereinafter, the rod groove processing method by the rolling device configured as described above will be described.
When grooving, one rolling roller 11A is previously separated from the other rolling roller 11B, and the rod 1 is placed on the support base 12 in this state. Then, while rotating the two rolling rollers 11A and 11B in the same direction, the one rolling roller 11A is brought closer to the other rolling roller 11B. Then, the rod 1 on the support base 12 rolls between the rolling rollers 11A and 11B, and the annular forming convex portion 20 provided on the peripheral surface of each rolling roller 11A, 11B is the rod 1's. It is gradually pushed into the peripheral surface. Finally, the entire molding convex part 20 is pushed into the peripheral surface of the rod 1, and thereby the irregularly shaped groove 2 described above is created on the peripheral surface of the rod 1.

上記した溝加工の間、図2に示すように、加工初期にロッド1に対する成形凸部20の押込領域の両側に発生した材料の盛上り3が、加工中期から末期にかけて凸座21上の加工基準面22により押し潰される。これにより転造ローラ11A、11Bに大きな応力が発生し、この応力は、成形凸部20の急傾斜部20aとこれに続く加工基準面22との境界(コーナ部)Sに集中しようとする。しかして、本転造ローラ11A、11Bは、前記応力の集中し易い境界Sで軸方向に二分割されているので、この応力は分割要素である主ローラ23と副ローラ24とに分散し、この結果、転造ローラ11A、11Bに亀裂が生じる等して転造ローラが性能低下することを防止できる。   During the above groove processing, as shown in FIG. 2, the bulges 3 of the material generated on both sides of the indentation region of the molding convex portion 20 with respect to the rod 1 at the initial stage of machining are processed on the convex seat 21 from the middle stage to the last stage of machining. It is crushed by the reference surface 22. As a result, a large stress is generated in the rolling rollers 11A and 11B, and this stress tends to concentrate on the boundary (corner portion) S between the steeply inclined portion 20a of the forming convex portion 20 and the subsequent processing reference surface 22. Since the rolling rollers 11A and 11B are divided in the axial direction at the boundary S where the stress tends to concentrate, the stress is distributed to the main roller 23 and the sub roller 24 which are the dividing elements. As a result, it is possible to prevent the rolling roller from degrading in performance due to, for example, cracking in the rolling rollers 11A and 11B.

このように転造を利用したロッド溝加工によれば、表面硬化層は、ほぼその厚さを維持したまま溝2内に押込まれるので、表面硬化処理による強度上昇の効果が失われることはない。
また、上記した溝加工の間、成形凸部20の押込みにより生じた余剰の肉(材料)が軸方向へ流れるため、溝2を中心にロッド1の全体に曲がりが生じようとするが、本実施形態においては、各転造ローラ11A、11Bの両側に矯正ローラ14A、14Bを配置しているので、前記した曲がり発生が抑制され、真直度に優れたロッド1が得られるようになる。
Thus, according to the rod groove processing using rolling, the surface hardened layer is pushed into the groove 2 while maintaining its thickness substantially, so that the effect of increasing the strength by the surface hardening treatment is lost. Absent.
Further, during the above-described grooving, excess meat (material) generated by the pressing of the molding convex portion 20 flows in the axial direction, so that the entire rod 1 is bent around the groove 2. In the embodiment, since the correction rollers 14A and 14B are disposed on both sides of the respective rolling rollers 11A and 11B, the occurrence of the bending described above is suppressed, and the rod 1 having excellent straightness can be obtained.

なお、上記実施形態においては、各転造ローラ11A、11Bを、成形凸部20の急傾斜部20aとこれに続く加工基準面22との境界Sで軸方向に二分割するようにしたが、成形凸部の形状によっては、その両側が応力集中箇所となる場合があるので、この場合は、加工基準面22に対する該成形凸部の両側の連接箇所(境界)で転造ローラを軸方向に三分割するのが望ましい。
また、本発明が加工対象とするロッドの種類は任意であり、予め表面硬化処理を施したものであれば、その用途は問わない。
In the above embodiment, each of the rolling rollers 11A and 11B is divided into two in the axial direction at the boundary S between the steeply inclined portion 20a of the forming convex portion 20 and the subsequent processing reference surface 22. Depending on the shape of the forming convex portion, both sides may be stress concentration portions. In this case, the rolling roller is moved in the axial direction at the connecting portion (boundary) on both sides of the forming convex portion with respect to the processing reference surface 22. It is desirable to divide into three parts.
Moreover, the kind of rod which this invention makes a process target is arbitrary, The application will not be ask | required if surface hardening processing is performed previously.

本発明に係るロッド溝加工方法の実施に用いる転造ローラの構造と転造の実施状況とを示す断面図である。It is sectional drawing which shows the structure of the rolling roller used for implementation of the rod groove processing method which concerns on this invention, and the implementation condition of rolling. 本転造ローラの要部構造を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part structure of this rolling roller. 本ロッド溝加工方法の実施に用いる転造装置の全体的構造と転造の実施状況とを示す断面図である。It is sectional drawing which shows the whole structure of the rolling apparatus used for implementation of this rod groove processing method, and the implementation condition of rolling. 従来の転造によるロッド溝加工方法を経時的に示す断面図である。It is sectional drawing which shows the rod groove processing method by the conventional rolling over time.

符号の説明Explanation of symbols

1 ロッド(ピストンロッド)
2 溝
10A、10B 回転軸
11A、11B 転造ローラ
20 成形凸部
20a 急傾斜部
20b 緩傾斜部
22 加工基準面
23 主ローラ
24 副ローラ
S 急傾斜部と加工基準面との境界

1 Rod (piston rod)
2 Groove 10A, 10B Rotating shaft 11A, 11B Rolling roller 20 Forming convex part 20a Steeply inclined part 20b Slowly inclined part 22 Processing reference surface 23 Main roller 24 Sub-roller S Boundary between steeply inclined part and processing reference surface

Claims (4)

表面硬化処理を施してなるロッドの周面に転造加工によって溝を形成するロッド溝加工方法であって、前記ロッドに押圧される転造ローラを、環状の成形凸部とその両側の加工基準面との境界であって、少なくとも転造時に応力がより多く集中する側の境界で軸方向に分割し、転造時に発生する応力を前記分割要素に分散させることを特徴とするロッド溝加工方法。 A rod groove processing method for forming a groove on a peripheral surface of a rod subjected to surface hardening treatment by rolling, wherein a rolling roller pressed by the rod is formed with an annular forming convex portion and processing standards on both sides thereof. A rod groove machining method characterized by dividing in the axial direction at least at a boundary with a surface where stress is more concentrated at the time of rolling, and dispersing the stress generated at the time of rolling to the divided elements . 転造ローラの環状の成形凸部は、その片側が基準外周面に対して急傾斜をなす急傾斜部として、その他側が加工基準面に対して緩傾斜をなす緩傾斜部としてそれぞれ構成されており、前記転造ローラは、前記成形凸部の急傾斜部と該急傾斜部に続く加工基準面との境界で軸方向に二分割されることを特徴とする請求項1に記載のロッド溝加工方法。 The annular forming convex part of the rolling roller is configured as a steeply inclined part whose one side is steeply inclined with respect to the reference outer peripheral surface, and as a gently inclined part whose other side is gently inclined with respect to the processing reference surface. 2. The rod groove processing according to claim 1, wherein the rolling roller is divided into two in the axial direction at a boundary between a steeply inclined portion of the forming convex portion and a processing reference surface following the steeply inclined portion. Method. 表面硬化処理を施してなるロッドの周面に溝を転造加工する環状の成形凸部を有する転造ローラにおいて、前記環状の成形凸部とその両側の加工基準面との境界であって、少なくとも転造時に応力がより多く集中する側の境界で軸方向に分割されていることを特徴とする転造ローラ。 In a rolling roller having an annular molding convex part that rolls a groove on a peripheral surface of a rod subjected to surface hardening treatment, the boundary between the annular molding convex part and the processing reference surfaces on both sides thereof, A rolling roller characterized by being divided in the axial direction at least at a boundary where stress is concentrated more during rolling. 環状の成形凸部は、その片側が加工基準面に対して急傾斜をなす急傾斜部として、その他側が加工基準面に対して緩傾斜をなす緩傾斜部としてそれぞれ構成されており、前記成形凸部の急傾斜部と該急傾斜部に続く加工基準面との境界で軸方向に二分割されていることを特徴とする請求項3に記載の転造ローラ。

The annular forming convex portion is configured as a steeply inclined portion whose one side is steeply inclined with respect to the processing reference surface, and the other side as a gently inclined portion where the other side is gently inclined with respect to the processing reference surface. The rolling roller according to claim 3, wherein the roller is divided into two in the axial direction at a boundary between a steeply inclined portion of the portion and a processing reference surface following the steeply inclined portion.

JP2003337727A 2003-09-29 2003-09-29 Method for grooving rod, and form rolling roller Pending JP2005103572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337727A JP2005103572A (en) 2003-09-29 2003-09-29 Method for grooving rod, and form rolling roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337727A JP2005103572A (en) 2003-09-29 2003-09-29 Method for grooving rod, and form rolling roller

Publications (1)

Publication Number Publication Date
JP2005103572A true JP2005103572A (en) 2005-04-21

Family

ID=34533470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337727A Pending JP2005103572A (en) 2003-09-29 2003-09-29 Method for grooving rod, and form rolling roller

Country Status (1)

Country Link
JP (1) JP2005103572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045915A (en) * 2009-08-28 2011-03-10 Tokai Rubber Ind Ltd Die for roll forming, method of manufacturing tubular metal fitting using it and method of manufacturing vibration proof rubber bush using tubular metal fitting
JP2015208767A (en) * 2014-04-28 2015-11-24 日産自動車株式会社 Processing roller, fine recessed part processing device, and processing method
JP2016060012A (en) * 2014-09-19 2016-04-25 日産自動車株式会社 Roller and method for machining microfine recess

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045915A (en) * 2009-08-28 2011-03-10 Tokai Rubber Ind Ltd Die for roll forming, method of manufacturing tubular metal fitting using it and method of manufacturing vibration proof rubber bush using tubular metal fitting
JP2015208767A (en) * 2014-04-28 2015-11-24 日産自動車株式会社 Processing roller, fine recessed part processing device, and processing method
JP2016060012A (en) * 2014-09-19 2016-04-25 日産自動車株式会社 Roller and method for machining microfine recess

Similar Documents

Publication Publication Date Title
EP2315958B1 (en) Method of manufacturing a split bearing ring
US20090314050A1 (en) Die assembly and a method of making it
JP4731945B2 (en) Constant velocity universal joint, cage for constant velocity universal joint, and manufacturing method thereof
JP4629385B2 (en) Needle roller bearing
JP2004257563A (en) Deep rolling method for radius part or fillet part
JP2005103572A (en) Method for grooving rod, and form rolling roller
JP6094653B2 (en) Rolling bearing unit for wheel support
JP2008296241A (en) Method for manufacturing bearing ring for rolling bearing
EP2684626B1 (en) Manufacturing method for wheel roller bearing device
AU2014208208A1 (en) Pressing tool and method for manufacturing a pressing tool
JP2005088668A (en) Rolling bearing unit for supporting wheel, and method for manufacturing the same
JP5765757B2 (en) Method for manufacturing annular shaped material
JP3123488B2 (en) Method for manufacturing shaft of rolling sleeve roll
JP2003329048A (en) Manufacturing method for bearing raceway member
US5898997A (en) Method for manufacturing a wheel bearing spindle
JP2006076346A (en) Bearing device for wheel
JP7344992B2 (en) Composite tapered roller bearing outer ring of two parts with interference fit and manufacturing method
JP7004092B2 (en) Caulking assembly and its manufacturing method, hub unit bearing and its manufacturing method, and automobile and its manufacturing method.
JPS6148010B2 (en)
JP7240815B2 (en) Rolling component manufacturing method and bearing manufacturing method
JP2019066029A (en) Metal belt for non-stage transmission and manufacturing method of metal ring for metal belt for non-stage transmission
JP4272952B2 (en) Bearing hole machining method for bearing frame in hoisting machine
JP7183036B2 (en) Punching method for punched material and punching die for punched material
JP5880037B2 (en) Manufacturing method of stepped metal member
JP2013132666A (en) Method of manufacturing stepped columnar member and rolling bearing unit for wheel support