JP2005103409A - Exhaust gas cleaning device of internal combustion engine - Google Patents

Exhaust gas cleaning device of internal combustion engine Download PDF

Info

Publication number
JP2005103409A
JP2005103409A JP2003339049A JP2003339049A JP2005103409A JP 2005103409 A JP2005103409 A JP 2005103409A JP 2003339049 A JP2003339049 A JP 2003339049A JP 2003339049 A JP2003339049 A JP 2003339049A JP 2005103409 A JP2005103409 A JP 2005103409A
Authority
JP
Japan
Prior art keywords
exhaust gas
substrate
catalyst
carrier layer
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003339049A
Other languages
Japanese (ja)
Inventor
Norihiro Shinotsuka
教広 篠塚
Osamu Kuroda
修 黒田
Yuichi Kitahara
雄一 北原
Takeshi Inoue
猛 井上
Toshifumi Hiratsuka
俊史 平塚
Hiroko Watanabe
裕子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003339049A priority Critical patent/JP2005103409A/en
Publication of JP2005103409A publication Critical patent/JP2005103409A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the technical problem that an alkali metal in a lean NOx catalyst has such properties as to move by heat from the inside of a catalyst layer to a cordierite substrate and causes a decrease in the quantity of the alkali metal in the catalyst layer to degrade the catalytic performance. <P>SOLUTION: In the exhaust gas cleaning device, the resistance to movement of an alkali metal is enhanced by decreasing the contact area between a catalyst layer and cordierite, decreasing the quantity and speed of alkali movement. Thus, erosion caused by the movement of an alkali to the substrate is prevented, and the cleaning capability is increased by increasing the quantity of an alkali metal carried by the substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車等の内燃機関から排出される排ガス中に含まれる一酸化炭素(CO),炭化水素(HC),窒素酸化物(NOx)を浄化する触媒及び触媒を用いた排ガス浄化装置に関する。   The present invention relates to a catalyst for purifying carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) contained in exhaust gas discharged from an internal combustion engine such as an automobile, and an exhaust gas purification apparatus using the catalyst. .

リーンバーンエンジン,希薄燃焼で運転されるDI(Direct-Injection)エンジン,ディーゼルエンジンは理論空燃比以上で運転されるため、排気ガス中には酸素が過剰に含まれる。   Since lean burn engines, DI (Direct-Injection) engines operated by lean combustion, and diesel engines are operated at a theoretical air fuel ratio or higher, oxygen is excessively contained in the exhaust gas.

自動車用ガソリンエンジンにおいて、一般的に排気ガス浄化に用いられる三元触媒では、リーンバーンエンジン,DIエンジン及びディーゼルエンジンからの排ガス中に含まれるHC及びCOは浄化できるが、希薄燃焼状態下では、NOxを浄化することは出来ない。   In a gasoline engine for automobiles, a three-way catalyst generally used for exhaust gas purification can purify HC and CO contained in exhaust gas from lean burn engines, DI engines and diesel engines, but under lean combustion conditions, NOx cannot be purified.

このため、酸素を含む排ガス中のNOxを効果的に浄化する触媒(リーンNOx触媒)の開発が進められ、NOxを一旦吸着剤等に捕捉した後、捕捉したNOxを還元浄化する触媒の実用化が進んでいる。   For this reason, development of a catalyst (lean NOx catalyst) that effectively purifies NOx in exhaust gas containing oxygen is advanced, and after NOx is once trapped in an adsorbent or the like, a catalyst that reduces and purifies the trapped NOx is put to practical use. Is progressing.

リーンNOx触媒は、年々厳しくなる排気規制に対応するため、使用されるNOx補足材の塩基度が高くなるだけでなく、使用量も増加している。   The lean NOx catalyst not only increases the basicity of the NOx supplement used, but also increases the amount of use, in order to meet exhaust regulations that are becoming stricter year by year.

具体的にはNa,Kといったアルカリ金属が多量に担持されているが、アルカリ金属は一般に触媒基体として使用されるコージェライトと高温下で容易に反応する性質がある。   Specifically, a large amount of alkali metals such as Na and K are supported, but the alkali metals generally have a property of easily reacting with cordierite used as a catalyst substrate at a high temperature.

このアルカリ金属によるコージェライトとの反応はアルカリアタックとして知られている。このアルカリアタックの現象によって触媒層中のアルカリ金属量が減少し、十分な浄化性能を維持できなくなる。   This reaction of alkali metal with cordierite is known as alkali attack. This alkali attack phenomenon reduces the amount of alkali metal in the catalyst layer, making it impossible to maintain sufficient purification performance.

このため、例えば、特許文献1では、触媒層中にSi等のアルカリ親和物を設けることが開示されている。   For this reason, for example, Patent Document 1 discloses providing an alkali affinity substance such as Si in the catalyst layer.

また、特許文献2には、コージェライト表面にシリカ等のアルカリ移動抑制層を設けることが開示されている。   Patent Document 2 discloses that an alkali migration suppression layer such as silica is provided on the cordierite surface.

特開2000−279810号公報JP 2000-279810 A 特開2002−095973号公報JP 2002-095973 A

しかしこの特許文献1の触媒では、アルカリ金属のコージェライトへの移動は抑制できるが、アルカリは触媒層中のSiと反応してしまうため、その生成物が十分な触媒活性を持たない場合、触媒活性が低下するという問題がある。   However, in the catalyst of this patent document 1, although the movement of alkali metal to cordierite can be suppressed, since alkali reacts with Si in the catalyst layer, the catalyst does not have sufficient catalytic activity. There is a problem that the activity decreases.

同様に、特許文献2においても、アルカリ金属のコージェライトへの移動は抑制できるが、アルカリとは移動抑制層中のSiとの反応生成物が十分な触媒活性を持たない場合は、触媒活性を維持できなくなるという問題がある。   Similarly, in Patent Document 2, the migration of alkali metal to cordierite can be suppressed. However, when the reaction product with Si in the migration suppression layer does not have a sufficient catalytic activity, the alkali has a catalytic activity. There is a problem that it cannot be maintained.

本発明は、前記従来技術の課題を鑑み、アルカリの化学形態変化を利用してアルカリアタックを抑制するのではなく、物理的手法によりコージェライトへの移動を抑制する排気浄化触媒及びその触媒を用いた排気浄化装置及び浄化方法を提供するものである。   In view of the above-mentioned problems of the prior art, the present invention uses an exhaust purification catalyst that suppresses migration to cordierite by a physical method, and does not suppress alkali attack by utilizing a change in alkali chemical form, and the catalyst. The present invention provides an exhaust purification device and a purification method.

上記課題を解決するために、本発明では、触媒活性成分を担持するための担体層と、前記担体層を保持するモノリス構造を有する基体とを有し、前記担体層と前記基体の接触面積を減少させ、前記触媒活性成分の基体中への移動抵抗を高め、前記触媒活性成分の基体中への移動量又は移動速度を低下させたことを特徴とする。   In order to solve the above problems, the present invention has a carrier layer for supporting a catalytically active component and a substrate having a monolith structure for holding the carrier layer, and the contact area between the carrier layer and the substrate is increased. This is characterized by increasing the resistance of movement of the catalytically active component into the substrate and decreasing the amount or speed of movement of the catalytically active component into the substrate.

本発明においては、アルカリ金属成分のハニカム基体への移動が抑制され、効果的に触媒の耐熱性能を向上することができた。特に、リーンNOx触媒では、浄化性能を上げるためにアルカリ成分である触媒活性成分を増量することが可能になった。   In the present invention, the movement of the alkali metal component to the honeycomb substrate is suppressed, and the heat resistance performance of the catalyst can be effectively improved. In particular, in the lean NOx catalyst, it is possible to increase the amount of the catalytically active component that is an alkaline component in order to improve the purification performance.

本発明は、自動車等の内燃機関から排出される排ガス中に含まれる一酸化炭素(CO),炭化水素(HC),窒素酸化物(NOx)を浄化する触媒及び触媒を用いた排ガス浄化装置,排ガス浄化触媒に関する。特に、触媒中のアルカリ成分が熱によって基体中へ移動することで触媒性能低下を防止するための触媒成分の移動抑制に関する。   The present invention relates to a catalyst for purifying carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) contained in exhaust gas discharged from an internal combustion engine such as an automobile, and an exhaust gas purification apparatus using the catalyst, The present invention relates to an exhaust gas purification catalyst. In particular, the present invention relates to the suppression of the movement of the catalyst component for preventing the catalyst performance from being lowered due to the alkali component in the catalyst moving into the substrate by heat.

本発明は、触媒を用いた内燃機関の排ガス浄化装置又は排ガス浄化触媒であって、触媒活性成分を担持するための担体層と、担体層を保持するモノリス構造を有する基体とを備えた触媒を有し、該担体層と基体の接触面積を減少させることで、触媒活性成分の基体中への移動抵抗を高め、触媒活性成分の基体中への移動量及び移動速度を低下させるものである。   The present invention relates to an exhaust gas purification apparatus or exhaust gas purification catalyst for an internal combustion engine using a catalyst, comprising a carrier layer for supporting a catalytically active component and a substrate having a monolith structure for holding the carrier layer. And reducing the contact area between the carrier layer and the substrate, thereby increasing the resistance to movement of the catalytically active component into the substrate and reducing the amount and speed of movement of the catalytically active component into the substrate.

また、本発明では、担体層と基体との間に平均粒径20μm以上の粒子層を設けることにより、担体層と基体との接触面積を減少させることを特徴とする。   In the present invention, the contact area between the carrier layer and the substrate is reduced by providing a particle layer having an average particle size of 20 μm or more between the carrier layer and the substrate.

また、本発明では、触媒活性成分を担持するための担体層と、担体層を保持するモノリス構造を有する基体とを備えた触媒を有し、この担体層は、複数の担体層であって、基体上に構成され、各担体層間の接触面積を減少させることで、触媒成分の担体層中での移動抵抗を高め、触媒成分の基体中への移動量及び移動速度を低下させるものである。   Further, in the present invention, it has a catalyst comprising a carrier layer for supporting a catalytically active component and a substrate having a monolith structure that holds the carrier layer, and this carrier layer is a plurality of carrier layers, By reducing the contact area between the support layers, the resistance of the catalyst component in the support layer is increased, and the amount and speed of movement of the catalyst component into the substrate are reduced.

本発明では、各担体層間に平均粒径20μm以上の粒子層を設けることにより、各担体層間の接触面積を減少させるものである。   In the present invention, by providing a particle layer having an average particle size of 20 μm or more between the carrier layers, the contact area between the carrier layers is reduced.

さらに、本発明は、排ガス浄化用触媒が、酸素過剰雰囲気でも効率的に排ガス中のNOxを除去できる触媒、例えば、リーンNOx触媒であることを特徴とする。   Furthermore, the present invention is characterized in that the exhaust gas purifying catalyst is a catalyst capable of efficiently removing NOx in the exhaust gas even in an oxygen excess atmosphere, for example, a lean NOx catalyst.

以下、具体的な例で本発明を説明するが、本発明はこれらの実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated with a specific example, this invention is not restrict | limited by these Examples.

本発明の実施例の一例を図1に示す。   An example of an embodiment of the present invention is shown in FIG.

「実施例1」
γアルミナ(平均粒径30μm),硝酸,アルミナ前駆体,精製水からなるアルミナスラリーを調製し、スラリー1とした。
"Example 1"
An alumina slurry composed of γ-alumina (average particle size 30 μm), nitric acid, an alumina precursor, and purified water was prepared as slurry 1.

γアルミナ(平均粒径18μm),硝酸,アルミナ前駆体,精製水からなるアルミナスラリーを調製し、スラリー2とした。   An alumina slurry composed of γ-alumina (average particle size 18 μm), nitric acid, an alumina precursor, and purified water was prepared as slurry 2.

コージェライトハニカム上に、コート量30g¥/Lとなるようにスラリー1をコーティングし、焼成を行った。   Slurry 1 was coated on a cordierite honeycomb so as to have a coating amount of 30 g / L and fired.

このハニカムに対して、コート量190g/Lとなるようにスラリー2をコーティングし、焼成を行うことでアルミナコートハニカムを作成した。   This honeycomb was coated with slurry 2 so as to have a coating amount of 190 g / L and fired to prepare an alumina-coated honeycomb.

こうして作成したハニカムに、Na,Kを主成分とするNOx捕捉成分溶液を含浸・焼成し、さらにジニトロジアンミンPt溶液,ジニトロジアンミンPd溶液,硝酸Rh溶液を含浸・焼成した。   The honeycomb produced in this manner was impregnated and fired with a NOx trapping component solution containing Na and K as main components, and further impregnated and fired with a dinitrodiammine Pt solution, a dinitrodiammine Pd solution, and a nitric acid Rh solution.

以上の手法で作成した触媒を「実施例1」とした。   The catalyst prepared by the above method was designated as “Example 1”.

実施例1によって、基体と担体層間に粒径の大きなアルミナ粒子による層ができるので、触媒活性成分であるアルカリ成分が基体を被毒しにくくなり、基体へのアルカリアタックを抑制している。   In Example 1, since a layer of alumina particles having a large particle diameter is formed between the substrate and the carrier layer, the alkali component as the catalytically active component is less likely to poison the substrate, and the alkali attack on the substrate is suppressed.

「実施例2」
コージェライトハニカム上に、コート量15g¥/Lとなるようにスラリー1をコーティングし、焼成を行った。
"Example 2"
Slurry 1 was coated on a cordierite honeycomb so as to have a coating amount of 15 g ¥ / L and fired.

このハニカムに対して、コート量95g¥/Lとなるようにスラリー2をコーティングし、焼成を行った。   The honeycomb 2 was coated on the honeycomb so as to have a coating amount of 95 g / L and fired.

上記スラリー1及び2によるコーティングをもう1回ずつ行うことで、実施例1と同じ190g¥/Lのコート量となったアルミナコートハニカムを作成した。   The coating with the slurry 1 and 2 was performed once more, whereby an alumina-coated honeycomb having a coating amount of 190 g / L as in Example 1 was produced.

こうして作成したハニカムに、実施例1と同じ成分を有する含浸液を含浸させ、焼成を行った。   The honeycomb thus prepared was impregnated with an impregnation liquid having the same components as in Example 1 and fired.

以上の手法で作成した触媒を「実施例2」とした。   The catalyst prepared by the above method was designated as “Example 2”.

実施例2も、実施例1と同様に、基体と担体層間に粒径の大きなアルミナ粒子による層ができるので、触媒活性成分であるアルカリ成分が基体を被毒しにくくなり、基体へのアルカリアタックを抑制している。   In Example 2, as in Example 1, a layer made of alumina particles having a large particle size is formed between the substrate and the carrier layer, so that the alkali component as the catalytically active component is less likely to poison the substrate, and the alkali attack on the substrate is performed. Is suppressed.

「比較例」
コージェライトハニカム上に、コート量190g¥/Lとなるようにスラリー2をコーティングし、焼成を行うことでアルミナコートハニカムを作成した。
"Comparative example"
The slurry 2 was coated on the cordierite honeycomb so as to have a coating amount of 190 g / L and fired to prepare an alumina-coated honeycomb.

こうして作成したハニカムに、実施例1と同じ成分を有する含浸液を含浸させ、焼成を行った。   The honeycomb thus prepared was impregnated with an impregnation liquid having the same components as in Example 1 and fired.

以上の手法で作成した触媒を「比較例」とした。   The catalyst prepared by the above method was designated as “Comparative Example”.

「実験例」
ハニカム触媒を、空気雰囲気炉中で830℃×60hrの熱耐久を行った。
"Experimental example"
The honeycomb catalyst was subjected to thermal durability of 830 ° C. × 60 hr in an air atmosphere furnace.

耐久後の触媒を、市販の2.0L リーンバーン車に装着した。   The catalyst after durability was mounted on a commercially available 2.0 L lean burn vehicle.

リーンバーン車を10−15モード走行試験に供し、排出されたNOx量を測定した。   The lean burn vehicle was subjected to a 10-15 mode running test, and the amount of exhausted NOx was measured.

以上の評価方法を「実験例」とした。   The above evaluation method was designated as “Experimental Example”.

実施例1,2及び比較例を実験例にて評価した結果を図2に示す。   The results of evaluating Examples 1 and 2 and a comparative example in an experimental example are shown in FIG.

図2から明らかなように、本発明触媒は比較例に対して、10−15モードにおける浄化性能が上回った。これは、基体と担体層間に粒径の大きなアルミナ粒子による層ができ、触媒活性成分であるアルカリ成分が基体を被毒しにくくなり、基体へのアルカリアタックを抑制したためである。   As is clear from FIG. 2, the catalyst of the present invention was superior in purification performance in the 10-15 mode to the comparative example. This is because a layer of alumina particles having a large particle size is formed between the substrate and the support layer, and the alkali component as the catalytically active component is less likely to poison the substrate, thereby suppressing alkali attack on the substrate.

本発明によるアルカリ成分移動抑制の概略図。Schematic of alkaline component movement suppression according to the present invention. 本発明による性能向上の効果。The effect of the performance improvement by this invention.

Claims (12)

触媒を用いた内燃機関の排ガス浄化装置であって、
触媒活性成分を担持するための担体層と、前記担体層を保持するモノリス構造を有する基体とを有し、前記担体層と前記基体の接触面積を減少させ、前記触媒活性成分の基体中への移動抵抗を高め、前記触媒活性成分の基体中への移動量又は移動速度を低下させたことを特徴とする内燃機関の排ガス浄化装置。
An exhaust gas purification device for an internal combustion engine using a catalyst,
A carrier layer for supporting the catalytically active component; and a substrate having a monolith structure for holding the carrier layer, reducing a contact area between the carrier layer and the substrate, and allowing the catalytically active component to enter the substrate. An exhaust gas purifying apparatus for an internal combustion engine, wherein the resistance to movement is increased and the amount or speed of movement of the catalytically active component into the substrate is reduced.
請求項1において、
前記担体層と前記基体との間に平均粒径20μm以上の粒子層を設け、前記担体層と前記基体との接触面積を減少させたことを特徴とする内燃機関の排ガス浄化装置。
In claim 1,
An exhaust gas purifying apparatus for an internal combustion engine, wherein a particle layer having an average particle size of 20 μm or more is provided between the carrier layer and the substrate, and a contact area between the carrier layer and the substrate is reduced.
触媒を用いた内燃機関の排ガス浄化装置であって、
触媒活性成分を担持するための担体層と、前記担体層を保持するモノリス構造を有する基体とを有し、前記担体層は複数であって、上記複数の単体層の各担体層間の接触面積を減少させて、前記触媒活性成分の担体層中での移動抵抗を高め、前記触媒活性成分の基体中への移動量又は移動速度を低下させたことを特徴とする内燃機関の排ガス浄化装置。
An exhaust gas purification device for an internal combustion engine using a catalyst,
A carrier layer for supporting a catalytically active component; and a substrate having a monolith structure for holding the carrier layer, wherein the carrier layer is plural, and the contact area between the carrier layers of the plurality of single layers is increased. An exhaust gas purifying apparatus for an internal combustion engine, characterized by increasing the resistance of movement of the catalytically active component in the carrier layer and decreasing the amount or speed of movement of the catalytically active component into the substrate.
請求項3において、
前記各担体層間に平均粒径20μm以上の粒子層を設け、前記各担体層間の接触面積を減少させたことを特徴とする内燃機関の排ガス浄化装置。
In claim 3,
An exhaust gas purifying apparatus for an internal combustion engine, wherein a particle layer having an average particle size of 20 μm or more is provided between the carrier layers to reduce a contact area between the carrier layers.
請求項1において、
前記排ガス浄化装置の触媒の触媒活性成分は、Li,Na,K等のアルカリ金属から選ばれる少なくとも1種以上の元素であり、該元素が前記担体層に担持されていることを特徴とする内燃機関用排ガス浄化装置。
In claim 1,
The catalytic active component of the catalyst of the exhaust gas purification apparatus is at least one element selected from alkali metals such as Li, Na, K, etc., and the element is supported on the carrier layer. Exhaust gas purification equipment for engines.
請求項1において、
前記排ガス浄化装置の触媒は、酸素過剰雰囲気で排ガス中のNOxを除去する触媒であることを特徴とする内燃機関の排ガス浄化装置。
In claim 1,
The exhaust gas purifying apparatus for an internal combustion engine, wherein the catalyst of the exhaust gas purifying apparatus is a catalyst for removing NOx in the exhaust gas in an oxygen-excess atmosphere.
触媒活性成分を担持するための担体層と、前記担体層を保持するモノリス構造を有する基体とを有し、前記担体層と前記基体の接触面積を減少させ、前記触媒活性成分の基体中への移動抵抗を高め、前記触媒活性成分の基体中への移動量又は移動速度を低下させたことを特徴とする内燃機関の排ガス浄化触媒。   A carrier layer for supporting the catalytically active component; and a substrate having a monolith structure for holding the carrier layer, reducing a contact area between the carrier layer and the substrate, and allowing the catalytically active component to enter the substrate. An exhaust gas purification catalyst for an internal combustion engine, characterized by increasing movement resistance and reducing the amount or speed of movement of the catalytically active component into the substrate. 請求項7において、
前記担体層と前記基体との間に平均粒径20μm以上の粒子層を設け、前記担体層と前記基体との接触面積を減少させたことを特徴とする内燃機関の排ガス浄化触媒。
In claim 7,
An exhaust gas purifying catalyst for an internal combustion engine, wherein a particle layer having an average particle size of 20 μm or more is provided between the carrier layer and the substrate to reduce a contact area between the carrier layer and the substrate.
前記排ガス浄化触媒の前記担体層は複数層であって、上記複数の単体層の各担体層間の接触面積を減少させて、前記触媒活性成分の担体層中での移動抵抗を高め、前記触媒活性成分の基体中への移動量又は移動速度を低下させたことを特徴とする内燃機関の排ガス浄化装置。   The support layer of the exhaust gas purification catalyst is a plurality of layers, and the contact area between the support layers of the plurality of single layers is reduced to increase the movement resistance of the catalytically active component in the support layer, and the catalyst activity An exhaust gas purifying apparatus for an internal combustion engine, wherein the amount or speed of movement of the component into the substrate is reduced. 請求項9において、
前記各担体層間に平均粒径20μm以上の粒子層を設け、前記各担体層間の接触面積を減少させたことを特徴とする内燃機関の排ガス浄化触媒。
In claim 9,
An exhaust gas purification catalyst for an internal combustion engine, wherein a particle layer having an average particle diameter of 20 μm or more is provided between the carrier layers, and a contact area between the carrier layers is reduced.
請求項7において、
前記排ガス浄化装置の触媒の触媒活性成分は、Li,Na,K等のアルカリ金属から選ばれる少なくとも1種以上の元素であり、該元素が前記担体層に担持されていることを特徴とする内燃機関用排ガス浄化触媒。
In claim 7,
The catalytic active component of the catalyst of the exhaust gas purification apparatus is at least one element selected from alkali metals such as Li, Na, K, etc., and the element is supported on the carrier layer. Exhaust gas purification catalyst for engines.
請求項7において、
前記排ガス浄化装置の触媒は、酸素過剰雰囲気で排ガス中のNOxを除去することを特徴とする内燃機関の排ガス浄化触媒。
In claim 7,
The exhaust gas purifying catalyst for an internal combustion engine, wherein the exhaust gas purifying device removes NOx in the exhaust gas in an oxygen-excess atmosphere.
JP2003339049A 2003-09-30 2003-09-30 Exhaust gas cleaning device of internal combustion engine Pending JP2005103409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339049A JP2005103409A (en) 2003-09-30 2003-09-30 Exhaust gas cleaning device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339049A JP2005103409A (en) 2003-09-30 2003-09-30 Exhaust gas cleaning device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005103409A true JP2005103409A (en) 2005-04-21

Family

ID=34534342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339049A Pending JP2005103409A (en) 2003-09-30 2003-09-30 Exhaust gas cleaning device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005103409A (en)

Similar Documents

Publication Publication Date Title
US9073011B2 (en) Systems and methods for diesel oxidation catalyst with decreased SO3 emissions
RU2557056C2 (en) Trap-type catalyst for cleaning nox-depleted exhaust gases and exhaust gas cleaning system
KR20150099618A (en) Automobile exhaust gas treatment catalyst with resistance to poisoning and method for treating automobile exhaust gas
JPH08229395A (en) Exhaust gas purifying catalyst
JP4703818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP6027241B2 (en) Nitrogen oxide removal catalyst
JPH10118458A (en) Catalyst and method for removing nitrogen oxide
JP2020179348A (en) Exhaust gas purifying catalyst
JP2002361083A (en) Exhaust gas cleaning catalyst for internal combustion engine, method of producing the same and claening apparatus
JP2006255539A (en) Exhaust gas purifying device
JP2006231204A (en) Catalyst for cleaning exhaust gas
JPH11123306A (en) Filter for cleaning gaseous emission and apparatus for cleaning gaseous emission in which the filter is used
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JP2007278101A (en) Exhaust-gas cleaning catalytic converter
JP3267862B2 (en) Diesel engine exhaust gas purification catalyst and exhaust gas purification method using the same
JP5094199B2 (en) Exhaust gas purification device
JP2005081250A (en) Exhaust emission control device
JP2004016850A (en) Exhaust gas cleaning catalyst, production method and exhaust gas cleaning system
JP3408905B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method
JP2005103409A (en) Exhaust gas cleaning device of internal combustion engine
JP4503314B2 (en) Exhaust gas purification catalyst
JP7388951B2 (en) Exhaust gas purification device
JPH0568888A (en) Waste gas cleaning catalyst
JP2004322022A (en) Catalyst for cleaning exhaust gas
US20230294077A1 (en) Method of producing catalyst for exhaust gas purification